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Abstract: The Global Positioning System demonstrates the significance of Location Based Services
but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor
Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints
are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy,
however they have many drawbacks: creating radio maps is time consuming, the radio maps will
become outdated with any environmental change, different mobile devices read the received signal
strength (RSS) differently, and peoples’ presence in LOS between access points and mobile device
affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called
DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence
effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the
effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for
floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced
the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by
considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other
works, DIPS achieves better positioning without extra devices.
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1. Introduction

The location of a specific mobile device (MD) or user in a specific environment can be determined
using positioning systems [1]. The Global Positioning System (GPS) is a satellite-based positioning
system developed by the United States in 1973. The widespread usage of the GPS has shown the
significance of Location Based Services (LBS) in people’s daily life [2]. LBS are defined as services that
integrate a mobile user’s location and other data or information to provide more valuable information
to that user [3]. LBS have been used in several areas and critical systems such as: military, healthcare,
manufacturing, marketing, logistics and many other industries [4].

Despite its great use, the GPS service fails to accurately identify indoor locations due to the
lack of line of sight (LOS) between GPS receivers and satellites. This limitation has pushed many
researchers to explore other techniques and methods to enable LBS in such closed environments.
Many technologies have been proposed to enable indoor LBS such as Radio Frequency Identification
(RFID) [5], Infrared Radiation (IR) [6], Ultra-Wide Band (UWB) [7], Ultrasound [8], Bluetooth [9] and
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Wireless LAN (WLAN) [10,11]. An Indoor Positioning System (IPS) is a system that determines the
physical location (floor, room, or point coordinates) of a MD within a closed environment [12].

Fingerprinting is a technique to identify MD locations based on RF features analysis. It operates
in two different phases: the offline and online phase. The offline phase is considered the initialization
phase, in which each site’s location in the desired environment will be surveyed to calibrate RF’s
features, such as RSS values, of all the available Access Points (APs). Then the location coordinates
and its respective calibrated RF’s features values will be stored to create the site’s fingerprint database
which is called a radio map (RM). On the other hand, the current location of an MD, which is unknown,
will be determined based on the online values of the calibrated RF’s features in the online phase. In the
online phase, pattern recognition techniques or algorithms such as K-Nearest Neighbor (KNN) and
Artificial Neural Networks (ANN) can be used as positioning algorithms [13].

Although fingerprinting is one of the most accurate positioning methods, the accuracy can
decline due to many factors such as: occurrence of environmental changes, received signal strength
(RSS) variation due to MDs’ heterogeneity [14], and the people presence effect (PPE) on RSS [15–17].
Such factors will affect the physical effects (reflection, refraction, diffraction, etc.) of the waves.
Then initiating the RM database by surveying all the site locations to calibrate RSS is a time
consuming process.

Therefore, there is a real need for an adaptive indoor positioning model to provide accurate
positioning results based on WLAN fingerprinting method for dynamic and multi-floor environments.
Dynamic in our context refers to the people effect and device heterogeneity. This research proposes
a new adaptive indoor positioning model based on path loss model to adapt WLAN fingerprints
RM according to the occurrence of environmental changes. The proposed model is also able to
overcome the MD heterogeneity problem and considers the presence of people as a WLAN signal’s
attenuation factor.

2. Related Work

The related work in this section was organized in four different subsections. The first subsection
explores the dynamic radio map updating solutions to overcome the environmental change occurrence.
The second subsection provides some of the proposed solutions for multi-floor indoor positioning.
The researches related to the effect of people presence are discussed in the third subsection. The final
subsection presents and discusses some MD heterogeneity-related works.

2.1. Dynamic Radio Map

Bahl el al. [18] proposed RADAR as the pioneer of the IPS based on WLAN fingerprinting.
It records and processes the WLAN’s RSS to determine the mobile user’s location. Then
Krishnan et al. [19] provided Location Estimation Assisted by Stationary Emitters (LEASE) that
uses a small number of stationary emitters and sniffers to avoid the time consuming RM calibration
process. The experimental results show that LEASE can provide accurate localization in multi-floor
environments, but it is considered a costly system since it needs stationary emitters and sniffers in
each site in the environment.

Xiaoyong et al. [20] showed empirically that reducing the sampling time or the number of location
samples reduces the positioning accuracy rate. They then proposed Hidden Markov Model (HMM) and
Expectation Maximization (EM) algorithms to reduce the RM calibration efforts without decreasing the
accuracy. This method could not overcome the effects of the occurrence of changes because the manual
RM calibration is still needed. Ji et al. [21] proposed a dynamic indoor localization method which uses
a deterministic signal propagation model and ray tracing model to create a radio map and uses a Least
Mean Square Error (LMSE) principle to determine the current position of a MD. The computational
cost of the techniques used in the proposed solution decreases the IPS’ responsiveness. Another
solution to overcome the time consuming map calibration process by creating an adaptive radio map
based on inter-beacon co-calibration was proposed by Lo et al. [22]. In the training phase, two types of
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RSS need to be calibrated in the same time for each location in the site. They are Beacon-to-Device
(BD_RSS) and Beacon-to-Beacon (BB_RSS). However, measuring the BB_RSS in real time is difficult to
achieve. Then Narzullaev et al. [23] proposed an algorithm that combined the concept of the reference
point (feedback point) and the one-slope-model (OSM) path loss signal prediction model to obtain a
time-efficient calibration process. However, the algorithm increased the computational complexity by
searching for the strongest APs and determining their locations.

Chen et al. [24] proposed a sensor–assisted WiFi-indoor localization system to overcome the
effects of the changes in the dynamic environment. The proposed system used three different
technologies (RFID, Bluetooth, and HR sensors) in order to achieve the desired target. Using these
technologies together means extra cost and computational burden for the environment infrastructure.
Later Adaptive Localization with Enhancement (DALE) was proposed by Segou et al. [25] to overcome
the effects of the occurrence of environmental changes without using complex hardware or feedback
points. A number of beacons and APs were placed in each room in the desired environment. Then a
simple algorithm was used to determine the location of a MD based on its measurements of the RSS
of the available APs. The proposed algorithm needed at least four APs in each room which means
it brought extra costs to the environment infrastructure. Chen et al. [26] proposed an adaptive WiFi
positioning model that combined K-means algorithm and ANN in order to use a trilateration method
to estimate the current position of a MD in a dynamic environment. This proposed model has high
computional complexity since it used K-Means, ANN and included all the available MDs in order to
determine one MD location.

Atia et al. [27] proposed a system that dynamically and continuously calibrates a fine radio map
by using the Bayesian regression algorithm to estimate the posterior RSS probability distribution
over all locations based on online observations of the available APs and Gaussian prior centered
over logarithmic path loss mean. It is difficult to update the APs’ firmware in order to collect RSS
of the other APs and send it within its beacon frame and this will place a heavy load on the APs.
Koweerawong et al. [28] created an adaptive RSS database by asking a feedback point to read the RSS
of the available APs, then estimate the RSS for the remain locations of the site based on the nearest
three feedback points, using feedback devices to cover 5% of the targeted environment site locations
but this requires extra infrastructre.

Ali et al. [29] proposed a systematic localization approach, “LOCALI”, for indoor positioning.
LOCALI generates RSS maps based on the environment plan, so it does not require a calibration
database and extensive updates. LOCALI converts the environment plan into a pixel map of 10 pixel/m
resolution. Then it generates a RSS map based on the pixel map and estimates the target location based
on the generated RSS map. The experimental results show that LOCALI achieved accurate positioning
result with 2 m of distance error. However, the proposed LOCALI did not consider the people presence
effect and the mobile heterogeneity effect. In addition, it is not applicable in multi-floor environments.

2.2. Multi-Floor Indoor Positioning

Multi-floor positioning is considered as a challenge for indoor positioning. It is important to
mention that multi-floor positioning-based WiFi-based fingerprinting for dynamic environments was
listed as one a goals of the IPIN 2016 competition [30].

Liu et al. [31] provided IPS based on combining the fingerprinting method and path loss models
for multi floor indoor positioning. A sample of reference points per floor were selected to create the
fingerprints radio map and in the online phase the floor number was localized based on searching the
radio map. After determining the floors, the MD location was determined by triangulation methods
based on the APs’ location. A manual RM calibration will be needed in the case of any environmental
change occurrence. Fan et al. [32] showed that the RSS is relatively sensitive to indoor obstructions,
wall and ceilings, and on the other hand most of the existing localization algorithms are not suitable
due to the complex indoor environment. In addition tof that the Multi-Wall Model (MWM) which was
proposed in [33] only considered attenuation caused by wall number and texture and it did not consider
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the attenuation caused by the ceiling penetration in multi floor buildings. To overcome that problem
the researchers proposed a sensor-based localization for multi-wall and multi-floor environments.
It applied to wireless sensor networks (WSNs) and this means extra costs to the environment.

Kejiong et al. [34] noticed that most of the IPS focused on relatively small environments.
Then they proposed a location estimation system for a large multi-floor building using hybrid
networks which are GSM and WLAN. The proposed solution was based on using compound RSS
fingerprinting by measuring the RSS of all available APs’ and GSM signals. The searching of the most
effective transmitter of the combined technologies, which are GSM and WLAN, increased the system
computational complexity.

2.3. People Presence Effect

RADAR [18] researchers noticed that RSS in any location varied based on the orientation of the
person who was calibrating it with respect to an AP. The researchers built a four orientations RM to
overcome this problem. Unfortunately the proposed solution increased the calibration effort four times
and it is not applicable for dynamic environments. Chen et al. [24] identified people presence as one of
the main attenuation factors of WLAN signals and they assumed there are two different states, which
are blocking and block-around, to reflect people presence near MDs. However, the block-around state
is generally an infrequent state or case to represent peoples’ presence indoors. Hence, it needs more
investigation about PPE on IPS positioning accuracy.

Hamida et al. [35] observed the relationship between fluctuations in RSS and the presence of
people activity within WLAN coverage areas. Unfortunately, the researchers did not mention the
number of people in the environment during the daytime. Karadimas et al. [36] statistically proved
that the signal strength can vary over time based on the human activity in the short-range 60 GHz
wireless network. Turner et al. [37] studied the human movement in 2.4 GHz environments and proved
experimentally that there is significant impact of the number of people and their movement speed
on the signal strength, but this work considered only the case in which the human body obstructed
the LOS and it did not provide any indication about RSS decline, in dBm, as the effect of a single
human body.

Fet et al. [38] mentioned that the manual RM building required orientation-dependent RSS
calibration to overcome the signal attenuation caused by the human body. The researchers showed
that WLAN signal distribution with distance takes an elliptical shape due to the presence of people.
Then, based on the properties of the ellipse and some empirical measurements they proposed a RSS
distribution model to generate a multiple orientation RM depending on the 0◦ direction calibration.
However, using multi-orientations RM means extra computational burden for the whole IPS.

People presence was listed as signal attenuation factor in many studies, but more investigation
is needed to overcome this effect in IPS. Bahl et al. [18] and Fet et al. [38] used the concept of
multi-orientation RM to overcome the effect of people presence on IPS positioning results which
either requires a huge human effort or does not fit MDs’ limitations. On the other hand, Chen et al. [24]
used an infrequent case by considering the block-around state and the rest of the discussed works
either studied the effect of PPE on RSS. However, PPE on RSS need to be modeled and integrated to
gain accurate positioning result.

2.4. MD Heterogeneity

The proposed solutions for the MD heterogeneity problem can be categorized as manual
solutions [39] or automatic solutions [40]. The subsequent solutions, named calibration-free solutions,
aim to find suitable RSS transformations by extracting common features from RSS tuples in the online
phase without any extra calibration [41,42].

Hossain et al. [43] proposed to use the Signal Strength Difference (SSD) values between each pairs
of the received signal to replace the absolute signal strength value as a location fingerprint. It can be



Sensors 2017, 17, 1789 5 of 29

considered as a costly solution because SDD relied on the combination

(
n
2

)
of extracted features

where n is the number of the available APs. Kjaergaard and Munk [44] proposed the Hyperbolic
Location Fingerprinting (HLF) method that replaced the absolute signal strength with the ratio between
each pair of received signals. However, the accuracy of such an approach is still low (52%) so MD
heterogeneity still needs a better solution.

The usage of Spearman Ranking Correlation coefficients was proposed by Jimenez and
Ruizhong [45] to find the correlation between RSS tuples’ items. However, the achieved positioning
accuracy only reached 50% which is low and its computational cost is high, which decreases the
responsiveness features of the positioning system. Luo and Zhan [46] suggested to adjust the RSS
Gaussian curve fitting by considering the skewness and kurtosis coefficients to ensure accurate
modelling of RSS, but this needs extra statistical processing which will lead to a high computational cost.
Lyu-Han [42] proposed a calibration-free indoor positioning algorithm based on two common features
of different MDs which are RSS order and the linear dependency between the measured RSS by different
MDs. Their experimental work showed that the proposed algorithm can achieve a small distance
error (1.8 m). Although the proposed algorithm achieved acceptable accurate positioning results, it is
considered as a costly solution in terms of responsiveness since it uses complex computation.

The previous solutions can be considered good solutions to handle the MD heterogeneity problem.
However, none of these can be considered as mature solution to overcome this problem since the
achieved positioning accuracy still low and requires high computational loads. This means that more
investigation is needed to overcome the problem.

3. Methodology

The model of the proposed system is illustrated in Figure 1. It combines and extends our previous
works described in [47–51].

Sensors 2017, 17, 1789  5 of 28 

 

the ratio between each pair of received signals. However, the accuracy of such an approach is still 
low (52%) so MD heterogeneity still needs a better solution.  

The usage of Spearman Ranking Correlation coefficients was proposed by Jimenez and 
Ruizhong [45] to find the correlation between RSS tuples’ items. However, the achieved positioning 
accuracy only reached 50% which is low and its computational cost is high, which decreases the 
responsiveness features of the positioning system. Luo and Zhan [46] suggested to adjust the RSS 
Gaussian curve fitting by considering the skewness and kurtosis coefficients to ensure accurate 
modelling of RSS, but this needs extra statistical processing which will lead to a high computational 
cost. Lyu-Han [42] proposed a calibration-free indoor positioning algorithm based on two common 
features of different MDs which are RSS order and the linear dependency between the measured 
RSS by different MDs. Their experimental work showed that the proposed algorithm can achieve a 
small distance error (1.8 m). Although the proposed algorithm achieved acceptable accurate 
positioning results, it is considered as a costly solution in terms of responsiveness since it uses 
complex computation.  

The previous solutions can be considered good solutions to handle the MD heterogeneity 
problem. However, none of these can be considered as mature solution to overcome this problem 
since the achieved positioning accuracy still low and requires high computational loads. This means 
that more investigation is needed to overcome the problem.  

3. Methodology 

The model of the proposed system is illustrated in Figure 1. It combines and extends our 
previous works described in [47–51].  

 
Figure 1. The proposed adaptive indoor positioning model (DIPS). 

It starts when the current location of MD is required. Then, the RSS Calibrator calibrates the 
RSS-tuples of the available APs, where the available APs list can be extracted from an Environment 
Layout Description (ELD). In parallel, the Dynamic Radio Map (DRM) Generator will generate 
DRMs for the desired positioning level based on ELD and People Locations. Then both of the DRM 
and RSS-tuple will be passed to RSC component to convert it to RSC-DRM and RSC-tuple. Finally, 
the positioning algorithm will estimate the current positioning of MD, as a 3-tuple positioning result 

Figure 1. The proposed adaptive indoor positioning model (DIPS).



Sensors 2017, 17, 1789 6 of 29

It starts when the current location of MD is required. Then, the RSS Calibrator calibrates the
RSS-tuples of the available APs, where the available APs list can be extracted from an Environment
Layout Description (ELD). In parallel, the Dynamic Radio Map (DRM) Generator will generate DRMs
for the desired positioning level based on ELD and People Locations. Then both of the DRM and
RSS-tuple will be passed to RSC component to convert it to RSC-DRM and RSC-tuple. Finally, the
positioning algorithm will estimate the current positioning of MD, as a 3-tuple positioning result (floor,
room, point), based on the RSC-DRM and RSC-tuple. The decision is used to control the hierarchal
DRM generation for the different positioning levels floor, room and point.

The ELD component contains information about environment such as the area, the existing floors
and the available rooms, walls and APs in each floor. All this information is required to generate a
DRM by using the modified path loss model in Equation (1). PL(d0) is the free space propagation loss
at reference distance d0 (typically 1 m), n is the slope factor (power decay index) which becomes 2 for
free space and 6.5 for obstructed space [52]. ∑ WAF, ∑ FAF, and ∑ PAF are the sum of the attenuation
factor of all the walls, floors, and people between AP and reference point. X is a zero-mean Gaussian
distributed random variable:

PL(d) = PL(d0) + 10n log
(

d
d0

)
+ ∑ WAF + ∑ FAF + ∑ PAF + X (1)

People’s location component includes information about the existing people locations which are
identified by floor number and position coordinates. This information will be used to consider the
effect of people presence in the LOS between AP and MD as a signal attenuation factor to integrate it
into DRM generator as seen in Equation (1). The DRM generator (DRMG) is a key component that will
be used to generate RM fingerprints based on the path loss model shown in Equation (1). It generates
DRM upon the incoming positioning request, and generates three DRMs for floor, room and point
positioning levels, respectively. First, Floor DRM (FDRM) will be generated based on the APs and
floor information only. APs information consists of RSSI and MAC address. The algorithm is shown in
Algorithm 1. FDRM consists of a small number of reference points (maximum eight reference points
per floor), each of which is labeled with the floor label (FL). We just use a small number of reference
points to make a light RM which can fit with the MDs’ limitations. The algorithm starts by dividing
the area of each floor into a number of sub-areas (two, four, and eight sub-areas) which each of them
has same area as explained in line 1 to line 8. The center point of each sub-area of each floor will be
used as reference point in this FDRM. Then the DRMG will use these reference points to form the
target FDRM.

RSS Calibrator, represents the MD, initiates the positioning process by calibrating RSS from the
available of APs online. RSS Calibrator gets the available APs list from the ELD, so it can filter collected
beacon frames based on this list. Received Signal Strength Certainty (RSC) is the component that is
responsible for addressing the MD heterogeneity problem. RSC component converts the generated
DRM instances (RSS tuples) and then the MD calibrated RSS tuple into RSC tuples in order to determine
the current location of MD.

Then RSC, DRM and RSC tuple will be passed to the positioning algorithm to find the current
location of an MD. The positioning algorithm is the component that will be used to determine the
current location of the MD based on the RSC RM and RSC tuple. KNN and ANN were nominated to
be used as positioning algorithms.
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Algorithm 1: Floor Dynamic Radio Map (FDRM) Generation

Input: Area W&L, Floors List, AccessPoints Lis
Output: Floor Dynamic Radio Map (FDRM)

1: Create Re f erence Point List (RP)
2: For i ← 1 to 4 do
3: For j ← 1 to 2 do
4: rp.x ← (i ∗ 2− 1) ∗ L/8
5: rp.y ← (j ∗ 2− 1) ∗W/4
6: RP.add(rp)
7: End For
8: End For
9: Create Floor Dynamic Radio Map List (FDRM)

10: For each FN in Floors List do
11: For each RP in Re f erence Point List do
12: For each AP in AccessPoints List do
13: d ← EuclideanDistance(RP, AP)
14: f b ← Absolute(FN − AP. f loor)
15: rss ← −34− 22 ∗ log10(d)− f b ∗ 26 − random(−1, 1)
16: FDRM.add(rss + FN)

17: End For
18: End For
19: End For
20: Return FDRM

3.1. Dynamic Radio Map Generation (DRGM)

DRMG is a solution to overcome the manual RM calibration issue in multi-floor environments
and to overcome the effect of any environmental change occurrence on IPS. First, manual RM was
calibrated over the selected testbed site. Second, an experiment was conducted to adopt one positioning
algorithm from the nominated positioning algorithms to be used in the next step. Third, dynamic RM
(DRM) was generated based on path loss model for multi-floor indoor positioning. The generated
DRM was validated in three positioning levels which are floor positioning, room positioning and point
positioning. Furthermore, for each positioning level a specific DRM was generated. The positioning
process started by generating Floor-DRM (FDRM) for floor positioning as described in Algorithm 1.
Then based on the floor positioning result, room positioning was performed by generating Room-DRM
(RDRM) for the selected floor. Finally based on the room positioning result, the point positioning level
was performed by generating Point-DRM (PDRM) for the selected room.

3.1.1. Manual Radio Map Calibration

The eastern side of the 3rd floor in Menara Razak (Figure 2) was gridded into small areas of
size 1 m2, and each cell represented a reference point in the targeted manual RM. The area of the
selected site is 300 m2 which is covering 300 different reference points for RSS calibrations. We collected
30 beacons at each reference point. Then, RSS values of the three APs as shown in Figure 2 were
extracted from the beacon dataset to create the first manual RM. This manual RM was labeled as the
Raw Radio Map (RRM). Then to overcome the possible effect of RSS fluctuation on the positioning
result, each reference point in the site was represented by the average value of the calibrated RSS of
each AP which named as Averaged RM (ARM) and it has only 300 instances. ARM can be considered
as a normalized calibrated RM.
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3.1.2. Positioning Algorithm Adoption

The nominated positioning algorithms (KNN and ANN) were trained and tested two times by
using 10-fold (10 splits) cross-validation process based on the calibrated RMs. First, they were trained
and tested based on RRM and their accuracy were determined using 10-fold cross-validation process;
Second, they were trained and tested based on ARM and their accuracy were determined using 10-fold
cross-validation process; Finally, the achieved results were compared, and the positioning algorithm
with the highest positioning accuracy was adopted.

3.1.3. DRM Generation for Multi-Floor Environments

The initial step is to determine the parameters of the path loss model. Then the next step is DRM
generation for multi-floor environments. The results are the FDRM, RDRM and PDRM, which are the
floor, room and point positioning levels, respectively. The accurate estimation of a specific AP’s RSS
from a certain reference distance depends on the accurate values of the parameters of the path loss
model. Determining these parameters accurately requires a good understanding of the targeted indoor
environment. The targeted parameters are path loss at a reference distance, path loss exponent, wall
attenuation factor (WAF) and floor attenuation factor (FAF).

To define the path loss at a reference distance, three APs and MD were fixed at the same high
with a reference distance d0 that is equal to 1 m. APs were configured to generate four beacon frames
per second, and the MD was configured to scan the air for the available APs beacon frames four
times per second for 10 min. The duplicated beacon frames were deleted to remove any bias. This
duplication occurred because of the difficulty to synchronize time between the access points and the
mobile devices. Then in order to estimate the path loss exponent in the selected environment, RSS of
the available three APs were calibrated with over 30 reference points in ASL2, ASL1, GRA rooms, and
the corridor in front of it as shown in Figure 2. Then based on the coordinates of both the APs and the
reference points, the OSM path loss propagation model was used to estimate the path loss exponent
value for each access point. Then the mean of path loss exponent values for all APs was computed.

The layout of the selected environment has been determined by plaster walls with a thickness of
5 cm each. To estimate WAF in the selected environment, AP and MD were fixed with a distance of
2.05 m in between. In the first case, AP and MD were in LOS, while in the second case AP and MD
were rotated 90◦ to have NLOS between AP and MD with a wall in the middle of the distance. FAF,
which is caused by the ceilings in multi-story environments, can have a high impact on RSS. According
to the literature, the ceiling’s thickness and material determine its attenuation factor. To estimate FAF
value in the selected environment, RSS was calibrated for more than 5 min in the two cases. First, AP
and MD were fixed on a vertical line where the AP was fixed on the fourth floor tile and MD was fixed
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on the third floor tile; Second, AP and MD were fixed on a horizontal line with a distance of 4 m in
between, which is the floor’s overall height.

DRM was generated automatically to overcome the effect of the environmental change occurrence
for multi-floor indoor positioning. The generated DRM size will vary based on the targeted positioning
level. First, a light FDRM was generated with a small number of reference points; Second, RDRM
was generated based on the output of the floor positioning level. The center point of each room in
the selected floor represents one reference point in RDRM; finally, PDRM was generated based on the
output of the room positioning level. The selected room was gridded into cells with an area of 1 m2 and
each cell presents a reference point in PDRM. A multi-floor RM contains a huge number of reference
points, and this makes it unsuitable due to the limitations of the MD. To overcome this, a light FDRM
was generated to meet MD specification for floor positioning. After the validation process, only one of
these FDRMs was adopted for floor positioning level.

The generated DRMs were used as the basis for WLAN fingerprinting-based IPS. KNN was used
as a positioning algorithm. Experiment started by calibrating RSS at fifty reference points over three
different floors in the selected testbed which are Level 3, Level 4 and Level 5 in Menara Razak building.
Most of these reference points were chosen in the main corridors and some different rooms or offices
in the different floors. Two validation processes were conducted, the first process was conducted with
KNN (k = 1) and the second one with KNN (k = 3).

3.2. Received Signal Strength Certainty (RSC)

We propose RSC because it can be a robust solution for the MD heterogeneity problem. There
are three phases in RSC. The first phase aims to show the effect of MD heterogeneity on RSS. Hence,
different MDs will be used to calibrate RSS simultaneously at different reference points. Then the
calibrated RSS will be presented to show the effect of MD heterogeneity on the calibrated RSS and
to extract patterns from these RSS values to address the MD heterogeneity problem. The second
phase aims to present and validate RSC as a robust solution for the MD heterogeneity problem. This
validation includes a mathematical proof for RSC concept. The third phase aims to validate RSC effect
on indoor positioning result to show the efficiency of RSC as a robust solution for the MD heterogeneity
problem. This validation includes its effect on the three levels of positioning floor, room and point
positioning. In addition, a comparison between RSC and some of the most recent related works will be
conducted. RSC must be applied on the generated DRM as well as the online calibrated RSS tuple,
then RSC component appear twice in the proposed DIPS.

3.2.1. MD Heterogeneity Effect of RSS

Three different MDs (ASUS Zenphone4, LENOVO A386, and Samsung TAB4) were used to
calibrate the RSS of the available APs simultaneously at different reference points. These reference
points were located on different floors, and different rooms on the eastern side of Menara Razak
(Level 4 and Level 3). Then the calibrated RSS, 150 beacons for 5 min over each point, were presented
in line chart to explore and extract patterns from these RSS values. This extracted pattern was used to
address the MD heterogeneity problem.

In order to show the MD heterogeneity effect on different floors, MDs were calibrated RSS of the
available APs in Level 3 (AP31 and AP32) and Level 4 (AP41 and AP42) at two different points. These
two points were chosen in the center of Level 3 and Level 4, respectively.

3.2.2. Theoretical RSS Presentation

To understand the concept behind the RSC, assume that there are n AP in the selected environment
and assume that MD represented RSS of the all AP as n-tuple (rss1; rss2; . . . ; rssn) where rssi is RSS of
the ith AP. Now, RSC tuple is (rsc1; rsc2; . . . ; rscn) where rsci =

rssi
∑n

1 rssj
.

In order to prove that the different RSS tuples—which were calibrated at the same reference point
and time by different MDs—have similar RSC tuples mathematically, one-to-one and onto function
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must be found between different RSC tuples. Therefore, a proof for the following hypothesis must be
provided. The hypothesis is “For each different RSS tuple T1 and T2, which were calibrated by MD1
and MD2 at the same reference point simultaneously, there are two similar RSC tuples T1

′ and T2
′

where T1
′ = RSC(T1) and T2

′ = RSC(T2)”.
In order to prove this hypothesis, assume that T1 and T2 are two different RSS tuples for MD1

and MD2 respectively, and T1
′ and T2

′ are the corresponding RSC tuples of T1 and T2 respectively.
So that based on Equation (2) we need to show that the i-th items pi and qi in each RSC tuple,
T1
′ and T2

′, are similar with different constants {a, b} and {x, y} respectively where pi = a× Si + b
and qi = x× Si + y. Hence, the proof will start by Equation (3):

Pmi = ai × P(d) + bi (2)

pi
∑ pi

∼=
qi

∑ qi
(3)

then by replacing pi and qi in the previous Equation (4) then it becomes as Equation (4):

a× si + b
a×∑ si + nb

∼=
x× si + y

x×∑ si + ny
. (4)

Let us define function T : R→ R as in Equation (5):

T(x) = T

((
a

∑ pi
,

b
∑ pi

)(
r
t

))
(5)

where r and t any two real numbers, then we can define y as in Equation (6):

→
(

x
∑ qi

,
y

∑ qi

)(
r
t

)
= y (6)

This value is valid since ∀ x ∈ R r and t can be taken as x
2a ∑ pi and x

2b ∑ pi respectively, and T is a
linear transformation as in Equation (7):

T(γx + y) = γT(x) + T(y) (7)

hence:

T
(

pi
∑ pi

)
= T

((
a

∑ pi
,

b
∑ pi

)(
si

1

))
(8)

=

(
x

∑ qi
,

y
∑ qi

)(
si

1

)
=

xsi + y
∑ qi

=
qi

∑ qi
(9)

T1
′ ≈ T2

′ (10)

This means T1
′ and T2

′ are similar and they have the same properties.

3.2.3. Practical Validation of the RSC Effect

This section provides practical validation of the effect RSC on the indoor positioning accuracy in
different positioning levels: floor, room and point positioning levels. For this task, the DRM generation
was adopted to be the base for any positioning process. In addition, two different testing sets were
calibrated by using three different MDs: ASUS; LENOVO and TAB4. The first testing set, which was
named as Floor Heterogeneous MD Testing set (FHMDT), was used to validate the effect of RSC on
floor positioning and the second testing set, which was named as Heterogeneous MD Testing set
(HMDT), was used to validate the effect of RSC on room and point positioning levels.
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8FDRM was generated for floor positioning in this validation level. RSC was applied on both of
8FDRM and FHMDT. In addition, KNN algorithm with k = 1 was used as positioning algorithm. This
adoption was carried because 8FDRM and KNN with k = 1 achieved the best positioning result for
floor positioning level.

3.3. People Presence Effect

According to the literature, peoples’ presence under the WLAN coverage affects its signal strength.
Although this effect may lead to inaccurate positioning it is hard to find research that involved peoples’
presence in their proposed WLAN-based indoor positioning due to the unpredictable behavior of
people. In this section, the effect of the presence of people between AP and MD was investigated
experimentally. This investigation aimed to model PPE on RSS in order to integrate PPE into DRG.
To achieve this, untechnical information such as people allocation or queueing psychology in closed
environments is needed. This information will be used to make assumptions for formulating PPE as
attenuation factor. Then this formulation will be included to the proposed IPS model.

3.3.1. People Allocation Psychology

There is no rule that controls people allocation psychology indoor due to their unexpected
behavior. Proxemics is a famous psychological concept which talks about the spatial requirements
of humans and the effects of population density on their behavior, communication, and social
interaction [53]. Proxemics theories stated that people always keep at a distance from others in
order to have a special space or zone to find their privacy. This space varies according to the relation
between the person and the surrounding people [54]. This means that people are always allocated
irregularly in order to keep at a distance from other people. Edward Hall, an American anthropologist,
presented the concept of reaction bubbles. The reaction bubbles theory states that there are four
different zones surrounding any person which are intimate space, personal space, social space and
public space. Intimate space is the closest space which is used for embracing, touching or whispering
and its distance is less than 0.46 m. The personal space distance ranges from 0.46 cm to 1.2 m and
it used for interactions between close friends or family. The social space used for interactions with
colleagues or associates and it distances ranges from 1.2 m to 3.7 m. Finally, the public space ranges
from 3.7 m to 7.6 m or more and it always used for public speaking or talking to a large group.

In this research, 1 m of distance will be adopted as personal space for people who involved in the
subsequent experimental work. This adoption fitted with the environment gridding and it maintains
a social zone between people in the environment. This social zone is an intermediate zone between
personal space and public space as shown in personal reaction bubbles figure.

3.3.2. PPE in Horizontal LOS

In order to show PPE in HLOS, this section provides the design of three different experiments.
These experiments have the same configurations but they differ in their people presence scenarios.
Furthermore, in this experiment both of the used AP (CISCO WAP4410N Wireless-N, Cisco, Taipei,
Taiwan) and MD (Samsung Tab 4-T231, Samsung Electronic, Binh Duong, Vietnam) were fixed on
0.75 m height portable cabinets with 3 m of distance between them. AP was configured to generate
four beacons frames per each second and MD was configured to calibrate RSS, of 200 beacons over
seven minutes, per scenario.

3.3.3. PPE in Diagonal LOS

Wireless experts advise placing APs in high places, such as ceilings, in order to have the best
coverage. Hence, diagonal LOS (DLOS) between AP and MD is the most common case in the indoor
environments. In order to show PPE in DLOS, this section provides the design of two different
experiments. The first experiment aims to show PPE on RSS in corridor with 2.5 m of width. The
second experiment aims to show PPE on RSS in free space. Then the calibrated RSS will be analyzed



Sensors 2017, 17, 1789 12 of 29

in order to have general view bout PPE on RSS and its distribution in the case of DLOS. In the first
experiment, RSS was calibrated in a corridor, with 2.5 m of width and different scenarios of people
presence. The RSS centroid values and its distribution values were extracted from the descriptive
statistics of the calibrated RSS.

3.3.4. PPE in Virtual LOS

PPE in Virtual LOS (VLOS) means people presence in the virtual line on LOS in the case on NLOS
as shown in Figure 3. In order to show PPE in DLOS, this section provides the design of two different
experiments. The first experiment aims to show PPE on RSS in VLOS where a wall obstacle LOS
between AP and MD as shown in Figure 4a. The second experiment aims to show PPE on RSS in VLOS
where a floor and a wall obstacle LOS between AP and MD as shown in Figure 4b.
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3.3.5. Defining PPE Influence Distance (PPID)

Path loss models show a negative correlation between RSS and the distance between AP and
MD. In this phase, a new concept related to this correlation will be presented and it is named as PPE
Influence Distance (PPID). PPID can be defined as the distance in which peoples’ presence can hinder
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the LOS line between AP and MD. Although peoples’ presence between AP and MD affects the RSS,
this effect varies according to distance between the people and the MD. This concept was developed
based on the assumption that the AP position is higher than the MD position as a result of the best
practice to locate AP indoors. Hence, the influence distance must be determined based on the location
of both AP and MD. Figure 3 presents a general geometry view of AP and MD in indoor environments.
Here aph is the AP height from the horizontal line with MD, d is base distance between AP and MD in
horizontal line, C is hypotenuse C “LOS length between AP & MD”, α is Alpha Angle, ph is person
height 1.5–1.7 m, mdh is mobile device height and d′ is person height influence distance. Based on the
triangle geometry, the influence distance d′ was formulated as in Equation (11):

d′ =
ph−mdh

tan(α)
(11)

and since:
tan(α) =

aph−mdh
d

(12)

then:

d′ =
d× (ph−mdh)
(aph−mdh)

(13)

This means that the influence distance concept is theoretically true, as shown in the previous
Equations (11)–(13), and we need to show its validity practically. In order to show the validity of
the influence distance, many experiments were conducted in different places with different numbers
of people. The aim of these experiments is to show that PPE on RSS will vanish when the person’s
presence could hinder the LOS between the AP and MD. The experimental work for the DLOS case
was designed with the following measurements: aph = 3.5 m, mdh = 0.8 m, ph = 1.6 m and d = 8.8 m.
The influence distance in this case is 2.6 m. Then the experimental work for the VLOS case 1 was
designed with aph = 3.5 m, mdh = 0.8 m, ph = 1.6 m and d = 9.6 m. Hence, the influence distance in this
case is 2.9 m. Finally, aph = 8 m, mdh = 0.8 m, ph = 1.6 m and d = 9.6 m was used in the experimental
work for VLOS case 2 and the influence distance in this case is equal to 1.3 m.

3.3.6. Integrating PPE into DRMG

In this section PPE was considered in the PDRM generation process. Hence, PPE within the
influence distance was added to in the proposed path loss model as People Attenuation Factor (PAF)
to generated PDRM for point positioning as shown in Equation (1). Then the effect of integrating
PPE as PAF was validated in free space area. The RSS of the used APs was calibrated in ten different
points with people presence in the LOS between MD and APs. Figure 5 shows the coordinates on these
testing points and listed the coordinates on which people were located in LOS between MD and APs.
Distance error was used as performance to validate the effect including PPE in PDRM generating.

In order to validate PPE on IPS positioning results, an experiment was conducted in 88 m2 of
free space area and RSS of APs was calibrated at ten different points with people presence in the LOS
between APs and MD as shown in Figure 5. The all of people presence case occurred at a distance less
than the computed PPID. This is because PPE on RSS must occur to validate the effect of considering
PPE, in PDRM, on point positioning results. PDRM was generated for the grid area based on the path
loss model in Equation (1) excluding WAF and FAF since the selected testbed is free space area. Two
PDRMs were generated the first one, named is PDRMT, did consider PPE and the second one, named
as PDRMP, considered PPE. Hence, KNN was used to find the coordinates of the current location of
MD for each testing points against PDRMT and PDRMP as well.
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4. Results and Discussion

4.1. Performance of Dynamic Radio Map Generation

A manual dataset of beacon frames collected over 300 reference points in two different sessions
was created based on the experiment explained in Section 3.1.1. Each session took more than 10 h
of work to obtain a dataset with 9000 instances, in which 30 beacon signals were collected for each
300 reference points. This means that, by the end of the second session, a beacon frame dataset with
18,000 instances was created after 20 h of work. After removing the duplicate instances which occurred
due to unsynchronized time between APs and MD, there were 4900 unique instances in the collected
dataset. The experiment was conducted using three APs for each floor.
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The detailed results of the KNN and ANN experiments explained in Section 3.1.2 can be seen in
Figures 6 and 7. These testing points were located in different rooms or locations such as academic
staff lounge 1 (ASL1), academic staff lounge 2 (ASL2), graduate assistant room (GAR), pantry (PAN),
professional training lab (PTL), research lab (RSL), prayer room male (PRM), prayer room female (PRF)
and corridor (COR). The lowest obtained positioning rate, which is 79.77% (RRM) or 51.47% (ARM),
was in the corridor because the tight width of the corridor increases the signal reflection. This reflection
increases the fluctuation of RSS. Most of the confidence intervals range between ±1 to ±3.
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The average accuracy of IPS when using KNN and ANN can be seen in Figures 8 and 9. The
obtained results showed that KNN could achieve more accurate positioning results than ANN. On the
other hand, ANN had two weakness other than the poor performance. First, ANN is a model-based
machine learning algorithm, which means that the system should retrain the network in case of
environmental change occurrence; Second, ANN is a complex system that needs heavy computations
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especially in the training phase, and this complexity does not fit with mobile device limitation. Hence,
KNN algorithm was adopted to be the fingerprint matching algorithm based on its acceptable accuracy
and its relevance to the limitations of mobile devices.
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Figure 11 shows the calibrated RSS on both of the LOS and NLOS cases. The described cases show
that there is −26.21 dBm difference between their constant coefficients. This difference represents FAF
of the existing ceiling. Hence, in this research −26 dBm was adopted as the FAF.
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Figure 11. Floor attenuation factor (FAF) estimation.

Figure 12 shows the result of the first validation process. The overall results showed that the
proposed model can achieve highly accurate floor determination in the indoor positioning process
with a positioning accuracy that exceeds 98% on average. Of the obtained results, the highest accuracy
rate (100%) occurred when k (in kNN) was set to 1 and the reference points were set to 8 (8FDRM) in
each floor. This high accuracy occurred due to two factors: (1) the accurate determination of the path
loss model parameters which lead to generate accurate represented radio map for each floor; (2) The
high attenuation of RSSI due to floor attenuation factor which lead to high differences in RSSI between
different floors.
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The higher rate occurred with k = 1 because the similarities between reference points located in
different floors is lower than the similarities between reference points in the same floor due to FAF.
On the other hand, the false positioning results occurred only within the elevators and stairs area. This
result was expected because these areas are considered a challenge for any wireless communication
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due to their unique characteristics such as the thickness of the concrete walls, huge amounts of metal,
and the movement of elevators.

After determining the floor number, the layout description of the selected floor was used to
generate RDRM for the floor. The center point of each room was used as a reference point in RDRM.
Each reference point was labeled with the room label based on the environment description. The
existing walls were considered in RDRM generation with WAF = −3 dBm. In order to validate the
proposed DIPS, the generated RDRM for room positioning level, two different testing sets named
tRRM and tARM were extracted from the manual RRM and ARM respectively. The size of tRRM
and tARM testing sets are 986 and 38 instances respectively and it represented 38 testing points were
selected randomly from the manual calibrated RM. KNN with k = 1 was used to retrieve the room label
for each instance in the previously described testing sets. The achieved positioning accuracy exceeded
92%. Point positioning is the last step. The efficiency of the proposed method in point positioning was
validated by the distance error performance metric.

After determining the room in which MD was located, only the points within the predetermined
room were selected as reference points to generate PDRM in this positioning level. Each of these
reference points was labeled with its coordinates on the complete floor grid. As in the case of RDRM,
only the available APs in the pre-determined floor and the existing walls were used to generate PDRM.
KNN with k = 1 was used as a positioning algorithm retrieved the coordinates of the point that best
matched with each testing point. In addition, Euclidian Distance geometry was used to compute the
distance error between the selected RM point and the testing point.

Figure 13 shows the database and prediction of RSSI, and Figure 14 shows the important statistical
values, such as the minimum; maximum and the average, of the computed distance error in each
room or location. The minimum distance error did not exceed 1 m. The maximum distance error (3 m)
is considered relatively small in comparison with other works such as [55]. On the other hand, the
achieved average distance error gave very interesting results since the achieved maximum average
was 1.8 m in each room or location. This promising result was achieved due to three different reasons:
(1) the hierarchal positioning levels which as adopted in the proposed DIPS; (2) the small size of the
generated PDRM of the pre-determined room; (3) the accurate determination of the parameters of the
path loss model.Sensors 2017, 17, 1789  18 of 28 
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The validation process showed that the generated DRM achieved 98% and 92% of positioning
accuracy for floor and room positioning respectively. For point localization, the validation process
showed that the generated DRM achieved 1.2 m distance error. In comparison with the most recent
related works as shown in Tables 1 and 2, the automatically generated DRM achieved the highest
positioning result accuracy. It is hard to infer the exact testing environment from previous works.
Hence we only listed the results (accuracy, distance error) from the most related works and compared
it with our proposed method.

Table 1. Related work floor positioning techniques and accuracy rate.

Authors Used Technique Accuracy

Shi [56] Path loss model with Feedback analysis Up to 100%
Campos [57] Kohenon and Backpropagation Neural Network 91–97%

Gupta [58] Radio propagation model, maximum likelihood and
pressure sensor Up to 100%

Maneerat [59] WSN with confidence interval Up to 100%
Sun [10] Fisher’s Linear Discriminant and weighted KNN 94%

The Proposed Model Path loss model + KNN 93–100%

Table 2. Related work floor positioning techniques and distance error.

Study The Method Used Distance Error (m)

Bahl [18] Manual Radio Map + KNN 2.5
Hung-Huan [31] Path Loss model + Triangulation 1.6

Vahidnia [60] Manual Radio Map + BPM 1.4
Sun [10] Manual Radio Map + Weighted KNN 1.2

The Proposed Model Path Loss Model + KNN 1.2

4.2. Solution of Mobile Devices Heterogeneity

The result of the experiments explained in Section 3.2 can be seen in Figure 15. It shows line charts
which represent the calibrated RSS tuples over two different floors. Hence, over all the calibrated
RSS tuples there is a pattern can be exposed. That pattern exposed that the highest RSS value in the
calibrated RSS tuple came from the nearest AP, and the lowest RSS value came from the farthest AP
and so on regardless of the used MD.
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In order to provide an overview of RSS differences due to different MDs, a line chart based on
the absolute test set was drawn as shown in Figure 16. The chart shows that the absolute calibrated
RSS by the different mobile devices from the available access points (AP1, AP2, AP3) on four different
reference points in different rooms. These rooms are Pantry, Academic Staff Lounge 2, Professional
Training Lab and Corridor. The line charts showed that there is a general trend or phenomenon
in representing the absolute RSS of each MD. This trend exposed that the highest RSS value in the
received signal tuple came from the nearest access point, and the lowest RSS value came from the
farthest access point and so on regardless of the used MD.
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The obtained positioning accuracy before and after applying RSC is presented in Figure 17. These
results show that heterogeneous MDs provided different accuracy positioning because each of them
have different RSS tuple or pattern, as shown in the previous section, and this tuple differs from the
automatically generated pattern for the same testing points. The mean of all the achieved positioning
results was 88% for floor positioning, after applying RSC on 8FDRM and HMDT sets the overall
average of achieved positioning accuracy increased by 11%.
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RSC (FHMDT).

Room HMDT (RHMDT) was used to validate the effect of RSC on room positioning level. Figure 18
summarizes the obtained positioning accuracy before and after applying RSC on RHMDT. The graph
shows that applying RSC on RHMDT increased the positioning accuracy of the ASUS MD by 23% to
reach 75%, increased the positioning accuracy of the LENOVO MD by 4% to reach 69% and increased
the positioning accuracy of the TAB4 MD by 2% to reach 93%.

Sensors 2017, 17, 1789  21 of 28 

 

mean for the same group of sample on two different cases, or when we have matched pairs. The 
significance (2-tailed) value of the SPSS application of the Paired-samples T-test for the obtained 
distance error based on PHMDT and RSC (PHMDT) is 0.000, which is lower than 0.05, shows 
statistically there is a significant difference in applying RSC for point positioning level.  

 
Figure 18. Room positioning accuracy percentage before and after applying RSC, RHMDT and RSC 
(RHMDT). 

Hyperbolic Location Fingerprinting (HLF) was proposed by Kjaergaard [41] by replace the 
absolute	 ܴܵ ܵ	in both RM and the calibrated RSS tuple, by the ratio between each pair of the 
received signal. Hossain [61] proposed to replace the absolute ܴܵ ܵ in both RM and the calibrated 
RSS tuple, by the signal strength difference (SSD) values between each pairs of the received signal n-tuple. Zheng [14] proposed weight-RSS (w-RSS) by combine the absolute RSS and its relation, i.e.,  
it computed the distance between the online RSS tuple and the offline one by involving its weight.  

RSC and the selected related works were tested based on the generated RDRM for the selected 
testbed and RHMDT set. Table 3 provides the obtained positioning accuracy based on the HLF, SSD, 
wRSS and RSC methods. This comparison shows RSC as the best base method to handle the device 
heterogeneity.  

Table 3. Positioning results based on different calibration-free techniques. 

Calibration-Free Techniques 
Mobile Devices Positioning 

Average ASUS LENOVO TAB4
w-RSS [14] 38% 69% 69% 59% 
HLF [41] 58% 73% 54% 62% 
SSD [61] 65% 65% 58% 63% 

RSC 73% 69% 93% 78% 

4.3. People Presence Effect 

Figure 19 shows the minimum, maximum and RSS’s centroid values for all scenarios, based on 
the experiment explained in Section 3.3.2. It easily shows the negative effect of peoples’ presence on 
the received signal strength. For the first scenario (NoBody), RSS fluctuates maximally by −4 dBm. 
For the second scenario (P inLOS), where one person was in the room and he was not in the LOS 
between AP and MD, RSS fluctuation range increased to reach −6 dBm. In the P outLOS scenario, 
one person was positioned in LOS between AP and MD, the fluctuation range of RSS was equal to  
−5 dBm. The effect of a moving person on the LOS is presented in the P movBT scenario where the 
RSS fluctuation range increased to reach −15 dBm. This value occurs because the person moved 
between AP and MD and in this movement when the person became close to MD his effect increased 
and it decreased as he was further away. For example, the minimum RSS value (−50 dBm) calibrated 
while the person was too close to the MD and the maximum RSS value (−36 dBm) calibrated while 

0%

20%

40%

60%

80%

100%

ASUS LENOVO TAB 4 Average

50%

65%

91%

69%

73% 69%

93% 78%

A
cc

ur
ac

y 
P

er
ce

nt
ag

e

RHMDT RSC(RHMDT)

Figure 18. Room positioning accuracy percentage before and after applying RSC, RHMDT and
RSC (RHMDT).

Point HMDT (PHMDT) was used to validate the effect of RSC on point positioning level. The
distance error was adopted as validation metric in this validation level and it was measured before
and after applying RSC. Paired-samples T-test was adopted to show the significance before and after
applying RSC on point positioning level. Paired-samples t-test used when we need to compare the
mean for the same group of sample on two different cases, or when we have matched pairs. The
significance (2-tailed) value of the SPSS application of the Paired-samples T-test for the obtained
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distance error based on PHMDT and RSC (PHMDT) is 0.000, which is lower than 0.05, shows
statistically there is a significant difference in applying RSC for point positioning level.

Hyperbolic Location Fingerprinting (HLF) was proposed by Kjaergaard [41] by replace
the absolute RSSi in both RM and the calibrated RSS tuple, by the ratio between each pair of the
received signal. Hossain [61] proposed to replace the absolute RSSi in both RM and the calibrated
RSS tuple, by the signal strength difference (SSD) values between each pairs of the received signal
n-tuple. Zheng [14] proposed weight-RSS (w-RSS) by combine the absolute RSS and its relation, i.e., it
computed the distance between the online RSS tuple and the offline one by involving its weight.

RSC and the selected related works were tested based on the generated RDRM for the selected
testbed and RHMDT set. Table 3 provides the obtained positioning accuracy based on the HLF,
SSD, wRSS and RSC methods. This comparison shows RSC as the best base method to handle the
device heterogeneity.

Table 3. Positioning results based on different calibration-free techniques.

Calibration-Free
Techniques

Mobile Devices Positioning
AverageASUS LENOVO TAB4

w-RSS [14] 38% 69% 69% 59%
HLF [41] 58% 73% 54% 62%
SSD [61] 65% 65% 58% 63%

RSC 73% 69% 93% 78%

4.3. People Presence Effect

Figure 19 shows the minimum, maximum and RSS’s centroid values for all scenarios, based on
the experiment explained in Section 3.3.2. It easily shows the negative effect of peoples’ presence on
the received signal strength. For the first scenario (NoBody), RSS fluctuates maximally by −4 dBm. For
the second scenario (P inLOS), where one person was in the room and he was not in the LOS between
AP and MD, RSS fluctuation range increased to reach −6 dBm. In the P outLOS scenario, one person
was positioned in LOS between AP and MD, the fluctuation range of RSS was equal to −5 dBm. The
effect of a moving person on the LOS is presented in the P movBT scenario where the RSS fluctuation
range increased to reach −15 dBm. This value occurs because the person moved between AP and MD
and in this movement when the person became close to MD his effect increased and it decreased as
he was further away. For example, the minimum RSS value (−50 dBm) calibrated while the person
was too close to the MD and the maximum RSS value (−36 dBm) calibrated while the person was at a
further distance from the MD because the effect of multipath strengthened the RSS along the distance
between the person and MD. Finally, the last scenario (P movRN) in this experiment shows that the
randomly moved person affected the calibrated RSS values which ranged from −46 dBm to −36 dBm.
Thus, peoples’ presence in HLOS affected the calibrated RSS and this effect reached its maximum
value when the person stands between the AP and MD as in P inLOS.

The result of the experiment described in Section 3.3.3 can be shown at Figure 20. It shows that
the median RSS value reached its lowest value, which is −55 dBm, when the person was positioned at
the closest point at 1 m from MD with −3 dBm of difference from the control case “No Body”.

In addition, this RSS value recovered its strength gradually as the person moved further away
from the MD to reach −53 dBm when that person was positioned at 6 m from the MD. With the
assumption that a small change (−1 dBm) will not be considered, RSS completely recovered its
strength after 4 m. Furthermore, this result supports the results of the previous section. In general,
these values were obtained because when the person is close to the MD his or her body hinders the
direct signal towards the MD and prevents the multipath signals from strengthening the main signal.
This means more variation in the received signal, so that the distribution values were high. When a
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person is positioned close to MD in DLOS with 1 m distance between them, the calibrated RSS declined
by −2 dBm to −3 dBm.
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Figures 21 and 22 show the result of the experiment in Section 3.3.4. RSS reached its lowest value,
−51 dBm and −78 dBm respectively, when the person was located at 1 m of distance from the MD
within the virtual line between the AP and MD. Then the RSS value started to recover its strength
gradually as the person was further away. This is because when the person was located at a close
point with respect to the MD between the AP and MD, his/her body hinders the incoming signals and
diffracts them. Hence, the MD can receive the reflected signals after that person’s body and they must
be lower than the expected ones.

The obtained results from all previous experiments, which aimed to show PPE on RSS in HLOS;
DLOS and VLOS, showed that same trend. This trend is that RSS was at its lowest values as the
person was located close to the MD between the AP and MD. Then RSS started to recover its strength
gradually as the person was further away from the MD. In addition, the distributed probability values
of the calibrated RSS reached it maximum values as the person was located close to the MD between
the AP and MD. Then these distribution values started to decline slowly as the person was located in
further distance from MD.
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Figure 23 shows the result of experiments to define PPE Influence Distance as described in
Section 3.3.5. There are three cases (DLOS, VLOS case-1, and VLOS case-2) in these experiments, and
each case involves 1, 2, and 3 persons. The position of the person can be seen in Table 4.

Table 4. People position in experiments to define PPE influence distance.

Number of
Persons

Distance from MD (m)

Position A Position B Position C Position D

1 person 1 2 3 4
2 person 1 and 2 1 and 3 1 and 4 2 and 3
3 person 1, 2, and 3 1, 2, and 4 1, 3 and 4 2, 3 and 4

In comparison to the NoBody case, the person presence affected the calibrated RSS as the person
located at distances less than the influence distance. In addition, the calibrated RSS recovered its
strength even with the presence of a person at distances larger than the influence distance. This
means when the person could not hinder the LOS between AP and MD, the calibrated RSS recovered
it strength as there is no any obstacle. In addition, PAF will be adopted to be −2 dBm as the most
frequent value as a result of PP.

Figure 24 shows the obtained distance error based on PDRMT and PDRMP. The average distance
error shows that there is a slight enhancement (0.2 m) on the obtained positioning result. This
enhancement is consider important for two reasons. First, this slight enhancement includes more than
50% of the obtained results less or equal to 1 m; second, based on our literature review, this is the first
time in which PPE was included in IPS.
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5. Conclusions

In this research study, an adaptive indoor positioning model (DIPS) based on WLAN
fingerprinting for dynamic and multi-floor environments was designed and validated. DIPS contained
three main components which are: Dynamic RM Generator (DRMG), RSS Certainty (RSC) and People
Locations component which was added to consider the influence of peoples’ presence as PAF in the
proposed path loss model to generate a realistic DRM. DRMG was used to overcome the manual
RM calibration issues as well as to overcome the effect of the environmental change on the obtained
positioning accuracy. DRMG was developed based on the modified path loss model and relied on
the environment layout description. The experimental work and the benchmarking showed that
DIPS, DRMG, provided high positioning accuracy reaching 100% for floor positioning, 93% for room
positioning and 1.2 m of dstance error for point positioning. Furthermore, this promising positioning
results did not require any extra devices in the targeted environment.

RSC is presented as a robust solution for the MD heterogeneity problem. The experimental work
showed that RSC enhanced the positioning accuracy significantly (99% for floor positioning accuracy,
78% for room positioning accuracy, and 1.9 m for distance error). The significance of positioning
enhancement was proved statistically by using the paired-sample T-test. Furthermore, RSC was
benchmarked against some of the most recent related works, such as Weighted RSS (wRSS), Hyper
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Location Fingerprint (HLF) and Signal Strength Difference (SSD). The benchmarking results showed
that RSC achieved the highest positioning results with enhancements ranging from 15% to 19%.

PPE to RSS within the influence distance (PPID), in both DLOS and VLOS cases, was modeled
by −2 dBm for the person closest to the MD. PPE was integrated into DRMG to generate DRM for
point positioning level. The experimental work was conducted in a free space environment to validate
this integration empirically. The obtained results showed that considering this influence as signal
attenuation factor in generating PDRM reduced the distance error by 0.2 m to reach 1.7 m.

Some future work directions are finding an automatic way to detect and identify any
environmental change occurrence, and accordingly update the environment layout description
automatically. Validating the proposed DIPS accuracy on different positioning algorithm such
as Weighted KNN (WKNN) and Learning Vector Quantization (LVQ) algorithms. Validating the
scalability and robustness by testing the proposed DIPS in crowded multi-floor environments.
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