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Recent evidence indicates that measures from cerebrospinal fluid, MRI scans and cognitive testing obtained from cognitively

normal individuals can be used to predict likelihood of progression to mild cognitive impairment several years later, for groups

of individuals. However, it remains unclear whether these measures are useful for predicting likelihood of progression for an

individual. The increasing focus on early intervention in clinical trials for Alzheimer’s disease emphasizes the importance of

improving the ability to identify which cognitively normal individuals are more likely to progress over time, thus allowing

researchers to efficiently screen participants, as well as determine the efficacy of any treatment intervention. The goal of this

study was to determine which measures, obtained when individuals were cognitively normal, predict on an individual basis, the

onset of clinical symptoms associated with a diagnosis of mild cognitive impairment due to Alzheimer’s disease. Cognitively normal

participants (n = 224, mean baseline age = 57 years) were evaluated with a range of measures, including: cerebrospinal fluid

amyloid-b and phosphorylated-tau, hippocampal and entorhinal cortex volume, cognitive tests scores and APOE genotype.

They were then followed to determine which individuals developed mild cognitive impairment over time (mean follow-up = 11

years). The primary outcome was progression from normal cognition to the onset of clinical symptoms of mild cognitive impair-

ment due to Alzheimer’s disease at 5 years post-baseline. Time-dependent receiver operating characteristic analyses examined the

sensitivity and specificity of individual measures, and combinations of measures, as predictors of the outcome. Six measures, in

combination, were the most parsimonious predictors of transition to mild cognitive impairment 5 years after baseline (area under

the curve = 0.85; sensitivity = 0.80, specificity = 0.75). The addition of variables from each domain significantly improved the

accuracy of prediction. The incremental accuracy of prediction achieved by adding individual measures or sets of measures

successively to one another was also examined, as might be done when enrolling individuals in a clinical trial. The results indicate

that biomarkers obtained when individuals are cognitively normal can be used to predict which individuals are likely to develop

clinical symptoms at 5 years post-baseline. As a number of the measures included in the study could also be used as subject

selection criteria in a clinical trial, the findings also provide information about measures that would be useful for screening in a

clinical trial aimed at individuals with preclinical Alzheimer’s disease.
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Introduction
Accumulating evidence indicates that the underlying neuro-

pathological mechanisms associated with Alzheimer’s dis-

ease begin a decade or more before the emergence of

cognitive impairment (Sperling et al., 2011). This under-

standing has had a substantial impact on the conduct of

clinical trials related to Alzheimer’s disease, since it is

hypothesized that disease-modifying therapies are likely to

be more successful when administered early in the course of

disease. Several clinical trials are currently underway

among asymptomatic individuals known to be in the pre-

clinical phase of Alzheimer’s disease, due to the presence of

genetic mutations that cause Alzheimer’s disease (Moulder

et al., 2013; Fleisher et al., 2015). A small number of trials

have also been initiated among cognitively normal individ-

uals thought to be at risk for progression to mild cognitive

impairment (MCI), by virtue of their apolipoprotein E

(APOE) genetic status (Reiman et al., 2011) or brain ima-

ging evidence of amyloid accumulation (Sperling et al.,

2014), one of the pathological hallmarks of Alzheimer’s

disease (Holtzman, 2011). Moreover, many clinical trials

are ongoing, or recently completed, that include individuals

in the MCI phase of disease (Lasser et al., 2015; Sevigny

et al., 2015). The recent failure of several therapeutic

agents emphasizes the importance of not only finding im-

proved medications for Alzheimer’s disease, but also of de-

signing subject selection criteria that maximize the

enrolment of subjects who are most likely to progress

over the duration of the study, since lack of progression

limits the ability to determine if a treatment is efficacious.

A number of prior studies have indicated that CSF and

MRI Alzheimer’s disease biomarkers are associated with

the risk of progression from normal cognition to MCI or

dementia. These biomarkers include CSF amyloid-b, total

tau and phosphorylated tau (p-tau) (Moghekar et al., 2013;

Roe et al., 2013; Toledo et al., 2014; Vos et al., 2016), as

well as the volumes of the hippocampus or entorhinal

cortex on MRI (Csernansky et al., 2005; Toledo et al.,

2014; Soldan et al., 2015). However, few studies are avail-

able that provide data on optimizing subject selection cri-

teria for the preclinical phase of Alzheimer’s disease. This is

because most longitudinal studies that have enrolled cogni-

tively normal individuals and collected relevant measures

have limited follow-up. Importantly, studies with limited

follow-up tend to lack a sufficient number of clinical out-

comes (i.e. number of cases who progress to MCI) neces-

sary for robust statistical analyses to determine which

measures most reliably predict progression.

Such analyses are feasible using data from the BIOCARD

study, in which participants were cognitively normal when

first enrolled, a wide range of informative measures were

collected at baseline, and participants have now been fol-

lowed for up to 20 years. The measures collected include:

CSF, MRI, cognitive testing, and APOE genetic status. The

availability of these measures at baseline, when the subjects

were cognitively normal, and the unusually long duration

of follow-up in the study (mean = 11 years), allowed the

examination of several questions of particular relevance

to the outcome of individuals with preclinical Alzheimer’s

disease, and the design of clinical trials aimed at this phase

of disease.

The primary goal of these analyses was to identify which

measures, or combination of measures, obtained among

individuals who were cognitively normal at enrolment,

could be used to accurately predict, on an individual

basis, subsequent progression from normal cognition to

onset of clinical symptoms associated with a diagnosis of

MCI due to Alzheimer’s disease. As a number of the meas-

ures included in the study could also be used as subject

selection criteria in a clinical trial, we also examined the

incremental accuracy of the prediction that could be

achieved when adding individual measures, or sets of meas-

ures, successively to one another, as might be done when

enrolling individuals in a clinical trial. Time-dependent re-

ceiver operating characteristic (ROC) analyses were used to

evaluate the diagnostic accuracy, sensitivity, and specificity

of the measures in predicting which individual subjects de-

veloped clinical symptoms associated with MCI due

Alzheimer’s disease at different durations of follow-up

(i.e. at 5, 7 and 10 years post-baseline).

Materials and methods

Study design

The BIOCARD study, the parent study from which these data
are drawn, was initiated at the National Institutes of Health
(NIH) in 1995. While at the NIH, subjects were administered
a neuropsychological battery and clinical assessments annually.
MRI scans, CSF, and blood specimens were obtained approxi-
mately every 2 years. The study was stopped in 2005 for ad-
ministrative reasons and re-established at Johns Hopkins in
2009, at which point the annual clinical and neuropsycho-
logical assessments were reinitiated. Bi-annual collection of
CSF and MRI scans was re-established in 2015, as well as
the acquisition of PET scans using Pittsburgh Compound B
(PiB) (see Supplementary Fig. 1 for a schematic representation
of the study design).

Selection of participants

Recruitment was conducted by the staff of the Geriatric
Psychiatry branch of the intramural program of the National
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Institute of Mental Health. At baseline, all participants com-
pleted a comprehensive evaluation at the NIH, consisting of a
physical and neurological examination, an ECG, standard la-
boratory studies, and neuropsychological testing. Individuals
were excluded from participation if they were cognitively im-
paired, or had significant medical problems such as severe
cerebrovascular disease, epilepsy or alcohol or drug abuse.

A total of 349 individuals were initially enrolled in the
study, after providing written informed consent. By design,
�75% of the participants had a first degree relative with de-
mentia of the Alzheimer type. The analyses presented here are
based on data from 224 subjects who were cognitively normal
at baseline and had complete observations on the baseline
variables of interest. Most of the exclusions pertained to the
availability of a complete dataset for the participants (see
Supplementary material, section 1 for the reasons subjects
were excluded from the analyses).

Of the 224 subjects included in these analyses, 178 subjects
remained cognitively normal at their last visit (this includes 22
subjects with a diagnosis of ‘Impaired Not MCI’ at their last
visit) and 46 subjects were diagnosed with MCI or dementia
due to Alzheimer’s disease by the time of their last visit. The
demographic characteristics of the subjects in the analysis are
shown in Table 1, which are similar to the characteristics of
the cohort as a whole.

Consensus diagnostic procedures

Clinical and cognitive assessments were completed annually at
the NIH initially and subsequently at Johns Hopkins, as noted
above. A consensus diagnosis for each study visit was estab-
lished by the staff of the BIOCARD Clinical Core at Johns
Hopkins (prospectively for subjects evaluated starting in
2009 and retrospectively for subjects evaluated at the NIH).
As previously described (Albert et al., 2014), each consensus
diagnosis was handled in a similar manner. First a syndromic
diagnosis was established: (i) clinical data pertaining to the
medical, neurologic and psychiatric status of the subject were
examined; (ii) reports of changes in cognition by the subject
and by a collateral source were reviewed; and (iii) decline in
cognitive performance, based on review of longitudinal testing
from multiple domains (and by comparison with published
norms) was determined. If a subject was deemed to be im-
paired, the decision about the likely aetiology of the syndrome

was based on the medical, neurological, and psychiatric infor-
mation collected at each visit, as well as medical records ob-
tained from the subject, where necessary. More than one
aetiology could be endorsed for each subject (e.g.
Alzheimer’s disease and vascular disease). The consensus diag-
nosis procedures followed the diagnostic recommendations

incorporated in the NIA-AA working group reports for the
diagnosis of MCI (Albert et al., 2011) and dementia due to
Alzheimer’s disease (McKhann et al., 2011).

The estimated age of onset of clinical symptoms was estab-
lished separately, based primarily on a semi-structured inter-
view with the subject and the collateral source. The staff
conducting the consensus diagnoses were blinded to the CSF
and MRI measures and to the APOE status of the participants
(see Supplementary material, section 2 for additional details
regarding the diagnostic procedures).

Selection criteria for variables
included in the analyses

The ROC analyses presented here include variables from the
four primary domains evaluated in the BIOCARD study, ob-
tained when subjects were first enrolled. These domains

included: (i) CSF values; (ii) MRI measures; (iii) cognitive
test scores; and (iv) APOE genetic status. To be as parsimo-
nious as possible, we based the selection of which specific vari-
ables should be included in the ROC analyses on findings from
prior publications in which we had conducted Cox regression
analyses designed in a parallel fashion. In each of these prior
publications we used Cox regression procedures to examine
the relationship between the values obtained at baseline
(when participants were cognitively normal) and time to
onset of clinical symptoms consistent with a diagnosis of
MCI due to Alzheimer’s disease. Since the measures in these
prior analyses had been standardized (using z-scores), it was
possible to not only determine the relationship between the
baseline measure and the outcome of interest (onset of clinical
symptoms) but to also directly compare the hazard ratios
across variables and domains. The measures selected from
these prior analyses are described below.

Cognitive assessments

The annual, comprehensive neuropsychological battery cov-
ered all major cognitive domains, including memory, executive
function, language, visuospatial ability, attention, speed of pro-
cessing and psychomotor speed (see Albert et al., 2014 for the
complete battery). Of the 17 variables selected from the cog-
nitive battery (based on exploratory plots of change patterns
over time), nine were significantly associated with the outcome,
i.e. time to onset of clinical symptoms (Albert et al., 2014).
The majority of the significant associations pertained to tests

of episodic memory. We selected the two cognitive measures
with the strongest association between baseline and outcome,
based on hazard ratios, to include in the ROC analyses:
(i) Digit Symbol Substitution Test from the Wechsler Adult
Intelligence Scale – Revised; and (ii) Verbal Paired Associates
– Immediate recall from the Wechsler Memory Scale –
Revised.

Table 1 Baseline characteristics of the participants

included in the analyses in comparison to the cohort

as a whole

Variable Cohort as

a whole

(n = 349)

Subjects in

analyses

(n = 224)

Age, mean years (SD) 57.3 (10.4) 56.9 (8.4)

Gender, % females 57.6% 62.1%

Education, mean years (SD) 17.0 (2.4) 17.1 (2.3)

Ethnicity, % Caucasians 97.1 97.8%

% APOE4 carriers 33.6 37.5

MMSE, mean score (SD) 29.5 (0.9) 29.4 (1.0)

NART, mean score (SD) 119.6 (7.9) 121.0 (7.3)

MMSE = Mini-Mental State Examination; NART = National Adult Reading Test.
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CSF assessments

The CSF specimens collected from the participants were ana-
lysed using the xMAP-based AlzBio3 kit (Innogenetics) run on
the Bioplex 200 system. The assay procedures were identical to
those used in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). CSF specimens were analysed in triplicate on the same
plate. Three variables were generated from these analyses:
(i) CSF amyloid-b; (ii) CSF total tau; and (iii) CSF p-tau (see
Supplementary material, section 3 for further details of the
CSF assays). We selected the two CSF measures that showed
a significant association between baseline and time to onset of
clinical symptoms, based on hazard ratios, to include in the
ROC analyses: (i) CSF amyloid-b; and (ii) CSF p-tau
(Moghekar et al., 2013). Although the ratios for CSF
tau/amyloid-b and CSF p-tau/amyloid-b were also significantly
associated with time to onset of clinical symptoms in our prior
analyses (Moghekar et al., 2013), the use of the individual CSF
measures allowed us to examine their incremental predictive
value on an individual basis.

MRI assessments

The MRI scans acquired from the participants were obtained
using a standard multi-modal protocol with a GE 1.5 T scan-
ner. We used the coronal scans to reconstruct the volumes of
the entorhinal cortex, the hippocampus and the amygdala, as
well as the thickness of the entorhinal cortex. The coronal
scans used an SPGR (spoiled gradient echo) sequence (repeti-
tion time = 24 ms, echo time = 2 ms, field of view = 256 � 256,
thickness/gaP = 2.0/0.0 mm, flip angle = 20�, 124 slices). The
scans were processed with a semi-automated method, using
region of interest large deformation diffeomorphic metric
mapping (ROI-LDDMM) techniques (Miller et al., 2013)
(see Supplementary material, section 4 for further details of
these methods). We selected the two MRI measures that
showed a significant association between baseline and time
to onset of clinical symptoms, based on hazard ratios, to
include in the ROC analyses: (i) right entorhinal cortex thick-
ness; and (ii) right hippocampal volume (normalized by intra-
cranial cavity volume) (Soldan et al., 2015).

APOE genotype

APOE genotypes were determined by restriction endonuclease
digestion of polymerase chain reaction amplified genomic
DNA (performed by Athena Diagnostics). APOE4 carrier
status was coded by an indicator variable, with E4 carriers
coded as 1 if the subject had at least one E4 allele and non-
carriers coded as 0.

Summary of variables included
in the analyses

The variables included in the ROC analyses, based on the se-
lection criteria described above, were therefore as follows:
(i) the Digit Symbol Substitution test and Paired Associates
Immediate Recall scores from the cognitive domain; (ii) CSF
amyloid-b and CSF p-tau from the CSF domain; (iii) right
hippocampal volume and right entorhinal cortex thickness
from the MRI domain; and (iv) APOE4 status from the

genetics domain. Aside from the variables described above,
all of the ROC analyses always included demographic vari-
ables (age, education), since all prior analyses indicated that
these variables have important modifying effects on time to
onset of clinical symptoms.

Each of the variables described above were continuous vari-
ables (with the exception of APOE status, which was a binary
measure). All continuous measures were standardized (using z-
scores) prior to inclusion in the ROC analyses. This makes it
possible to directly compare the hazard ratios from each variable
to one another (note that the hazard ratio for APOE is therefore
not comparable to the hazard ratios for the continuous variables).

Table 2 presents the means and standard deviations of the
measures in the analysis for subjects who remained normal
over time versus those who progressed to MCI; the P-values
are based on t-tests or chi squares comparing the subjects in
the two groups.

Statistical analysis

The overall goal of the time-dependent ROC analyses, as
noted above, was to evaluate the prognostic accuracy of the
measures described above in predicting which individual sub-
jects developed clinical symptoms consistent with a diagnosis
of MCI due to Alzheimer’s disease. These analyses were con-
ducted with three durations of follow-up: 5, 7 and 10 years
post-baseline. Four sets of ROC analyses were performed,
using these time frames. First, we examined the predictability
of the measures for each individual domain. Second, we exam-
ined the predictability of all the variables combined (i.e. the
Full Model). Third, we sought to determine if a smaller set of
measures would have comparable results to the Full Model,

Table 2 Mean and standard deviation of variables at

baseline for subjects who remained normal versus

subjects who developed clinical symptoms and were

diagnosed with MCI or Alzheimer’s disease dementia

on follow-up

Variable Remained

normal

(n = 178)

Progressed

to MCI or

Alzheimer’s

disease

dementia

(n = 46)

P-values

Age 56.5 (7.2) 62.3 (11.4) 0.002*

Gender, % female 62.4 60.9 0.988

Education 17.1 (2.6) 16.6 (2.4) 0.193

Ethnicity, % Caucasian 99.4 91.3 50.01*

% APOE4 carriers 36.0 43.5 0.442

Digit Symbol

Substitution

55.5 (11.1) 46.6 (8.1) 50.001*

Paired Associates

Immediate

20.9 (2.8) 19.1 (3.2) 50.001*

CSF amyloid-b 415.5 (93.8) 363.8 (102.9) 0.003*

CSF p-tau 34.1 (12.7) 44.6 (21.8) 0.003*

R. Hippocampus

volume (mm3)

1.70 (0.21) 1.66 (0.23) 0.318

R. entorhinal cortex

thickness (mm)

2.14 (0.30) 2.00 (0.26) 0.002*

R = right.

*Significant difference between groups (P 5 0.05).
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reducing the number of variables that would need to be as-

sessed (i.e. referred to here as the Efficient Model); to accom-

plish this goal, variables were selected on the basis that each
one had to be statistically significant when combined together,

based on hazard ratios. Lastly, we examined the incremental

predictability of variables in models designed to emulate selec-

tion criteria that might be used in clinical trials aimed at indi-
viduals with preclinical Alzheimer’s disease.

Demographic variables (age, education) were included in all
models. For each model mentioned above, we first combined

the relevant variables by entering them into a Cox propor-

tional hazards model. The next step was to assess model fit.
Cox models were run for every potential combination of vari-

ables (among the set of variables chosen for that particular

model) in order to determine whether a model with all vari-
ables—or a model with a reduced set of variables—produced a

better model fit. The Akaike Information Criterion (AIC) was

used to compare models to one another to determine the

model fit for a given set of biomarker variables and covariates.
The AIC was selected for this purpose because it provides an

index of the relative balance of model fit (based on the partial

likelihood function for the Cox proportional hazards model)
and model parsimony (based on the number of parameters in

the model). A smaller AIC value indicates a better balance

between fit and parsimony (Akaike, 1974).
If the AIC criterion for a set of measures was acceptable (i.e.

the difference between the alternate models was 52), then the
partial likelihood method for the Cox proportional hazards

model was used to create a weighted sum of the measures (the

weights being the log hazard ratio corresponding to each meas-

ure). Next, the weighted combination of measures from the pro-
portional hazards model was used so that the area under the

ROC curve (AUC) was maximized (McIntosh and Pepe, 2002;

Blanche et al., 2013). The ROC represents a combined function

of the sensitivity (true positive rate) and the specificity (true nega-
tive rate) of prediction and the AUC is widely considered a
highly informative reflection of a measure(s) overall accuracy
for predicting a disease-related outcome. The optimal sensitivity
and specificity cut-off point for each model was established by
maximizing the Youden index (sensitivity + specificity� 1)
(Youden, 1950). The combined set of markers with the higher
AUC was considered to be more predictive of disease progres-
sion. In this setting the AUC measures the intrinsic ability of the
variables to discriminate between participants who developed
clinical symptoms and participants who remained normal.

Lastly, different models were compared to one another using
point-wise confidence intervals of the AUCs, with confidence
intervals constructed using the bootstrap method (Hilbe,
2011). All analyses were implemented in R, Version 3.1.0
(see Supplementary material, section 5 for further details re-
garding the statistical methods).

Results

Predicting progression from normal
cognition to MCI for individual
domains

The first set of ROC analyses assessed the predictability of

the measures from each individual domain separately (i.e.

CSF, MRI, Cognition, APOE status). For each domain, the

optimal AIC value (i.e. lowest) was obtained when includ-

ing both variables from the given domain in the model

(after co-varying age and education). As shown in

Table 3, in the optimal model for each domain, each of

Table 3 Predicting progression from normal cognition to MCI using measures from individual domains

Variable HR of model

(95% CI)

HR:

P-value

AUC of Model

(95% CI)

Time to

outcome

for model

Model

sensitivity

Model

specificity

APOE4 0.703 (0.627, 0.798) 5 years 0.629 0.660

0.699 (0.628, 0.784) 7 years 0.613 0.671

0.685 (0.617, 0.764) 10 years 0.618 0.644

APOE4a 1.862 (1.013, 3.424) 0.045

Cognitive domain 0.764 (0.715, 0.834) 5 years 0.690 0.705

0.768 (0.720, 0.831) 7 years 0.684 0.718

0.767 (0.712, 0.831) 10 years 0.675 0.724

Paired Associates Immediate 0.630 (0.485, 0.819) 0.001

Digit Symbol Substitution 0.550 (0.381, 0.795) 0.001

MRI domain 0.740 (0.679, 0.819) 5 years 0.641 0.710

0.722 (0.670, 0.788) 7 years 0.662 0.659

0.705 (0.652, 0.773) 10 years 0.616 0.678

R. Hippocampus volume 0.728 (0.552, 0.961) 0.025

R. entorhinal cortex thickness 0.668 (0.492, 0.905) 0.009

CSF domain 0.717 (0.664, 0.812) 5 years 0.572 0.750

0.714 (0.663, 0.788) 7 years 0.578 0.735

0.740 (0.681, 0.807) 10 years 0.549 0.816

Amyloid-b 0.765 (0.581, 1.008) 0.057

P-tau 1.391 (1.069, 1.812) 0.014

aAPOE4 is a binary variable, and thus not standardized as other continuous variables. Therefore its hazard ratio is not comparable to those of continuous variables.

HR = hazard ratio; R = right. Age and education were entered first in each model.

Predicting progression from normal to MCI BRAIN 2018: 141; 877–887 | 881



the individual variables were significantly associated with

progression from normal cognition to the onset of symp-

toms of MCI, except for CSF amyloid-b, which was not

significant (P = 0.057). Table 3 also shows the AUCs, sen-

sitivities and specificities for the predictability of each

domain in relation to the outcome. AUCs were �0.70 for

all domains, indicating moderate predictive power.

Predicting progression from normal
cognition to MCI combining variables
from multiple domains

The second set of ROC analyses assessed the accuracy of

predicting progression from normal cognition to MCI using

the Full Model, which combined all of the variables in the

analysis, with no prespecified ordering of the variables.

This model was associated with high predictive accuracy

(AUC40.83 at 5, 7, and 10 years post-baseline) (see

Table 4 for the hazard ratios, AUCs, sensitivities and

specificities).

We then examined the hazard ratio for each variable in

the Full Model to determine if it was statistically signifi-

cant. The only variable that did not meet these criteria was

CSF amyloid-b, as noted above. This variable was therefore

excluded, and the Efficient Model was rerun with the re-

maining variables. The predictive accuracy of the Efficient

Model was also high (AUC4 0.82 at 5, 7, and 10 years

post-baseline) (Table 4). Statistical comparisons between

the Full Model and the Efficient Model revealed no signifi-

cant differences. Specifically, the high AUCs for both the

Full and Efficient Models (40.83 and 40.82, respectively)

did not differ significantly, indicating no difference in pre-

dictability (P = 0.53, 0.63, and 0.16, at 5, 7 and 10 years,

respectively). This finding is illustrated graphically in Fig. 1,

which shows that the Full Model and the Efficient Model

have overlapping time-dependent ROC curves at 5 years

post-baseline. Likewise, the difference in AIC values be-

tween the Full and Efficient Models (393.99 and 394.25,

respectively) was 52 at 5 years post-baseline, indicating

that the two models were indistinguishable from one an-

other at this time frame (Hilbe, 2011).

Table 4 Predicting progression from normal cognition to MCI using variables from multiple domains: the Full Model,

Efficient Model, and Demographics only Model

Variable HR of model

(95% CI)

HR:

P-value

AUC of model

(95% CI)

Time to

outcome

for model

Model

sensitivity

Model

specificity

Full Model 0.850 (0.807, 0.913) 5 years 0.804 0.740

0.843 (0.803, 0.897) 7 years 0.815 0.724

0.831 (0.781, 0.890) 10 years 0.764 0.759

Age 1.364 (1.014, 1.834) 0.040

Education 0.750 (0.535, 1.052) 0.095

APOE4a 1.904 (1.024, 3.541) 0.042

Paired Associates Immediate 0.617 (0.469, 0.812) 0.001

Digit Symbol Substitution 0.454 (0.315, 0.655) 50.001

CSF amyloid-b 0.785 (0.572, 1.077) 0.133

CSF p-tau 1.779 (1.355, 2.336) 50.001

R. Hippocampus volume 0.699 (0.526, 0.930) 0.014

R. entorhinal cortex Thickness 0.594 (0.429, 0.821) 0.002

Efficient Model 0.849 (0.802, 0.910) 5 years 0.799 0.745

0.843 (0.798, 0.897) 7 years 0.803 0.735

0.822 (0.769, 0.886) 10 years 0.737 0.770

Age 1.430 (1.069, 1.914) 0.016

Education 0.737 (0.519, 1.045) 0.086

APOE4a 2.068 (1.124, 3.805) 0.020

Paired Associates Immediate 0.625 (0.476, 0.821) 0.001

Digit Symbol Substitution 0.445 (0.306, 0.648) 50.001

CSF amyloid-b - -

CSF p-tau 1.912 (1.490, 2.454) 50.001

R. Hippocampus volume 0.667 (0.503, 0.884) 0.005

R. entorhinal cortex thickness 0.588 (0.424, 0.815) 0.001

Demographics Model 0.681 (0.614, 0.770) 5 years 0.592 0.675

0.678 (0.615, 0.753) 7 years 0.585 0.676

0.680 (0.612, 0.756) 10 years 0.566 0.701

Age 1.079 (1.045, 1.113) 50.01

Education 0.909 (0.804, 1.029) 0.132

aAPOE4 is a binary variable, and thus not standardized as other continuous variables. Therefore its hazard ratio is not comparable to those of continuous variables.

HR = hazard ratio; R = right.
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Of note, an examination of cases that were misclassified

by the Efficient Model at 5 years post-baseline revealed that

about 35% of false positive classifications pertained to in-

dividuals who progressed at a later time point (mean time

from baseline to symptom onset = 7.9 years) (Supplementary

material, section 6).

Since the analyses of both the Full Model and the

Efficient model demonstrated the importance of demo-

graphic variables for accurate prediction (Table 4), we con-

ducted separate ROC analyses with only these variables.

The AUCs for demographics alone were approximately

0.68 for all time frames post-baseline (Table 4).

Increment in predictability for
variables added in order of potential
application in a clinical trial

The last set of ROC analyses examined models designed to

emulate an approach to screening that might be used in a

clinical trial. In the first model, APOE status was included

first, immediately after the demographic variables – this

model was designed to emulate the situation in which

APOE4 carrier status might be used as an inclusion criter-

ion in a clinical trial aimed at individuals with preclinical

Alzheimer’s disease (such as in the API Trial) (Reiman

et al., 2011). We then examined the increment in predict-

ability as measures were added consecutively within the

model, based on feasibility in a clinical trial, to determine

how much each domain adds to the accuracy of prediction

at each time point (i.e. APOE status, cognitive measures,

MRI measures and CSF measures, adjusted by demograph-

ics). Similar to the analyses described above, we continued

to require that all variables added to the model had to have

a significant hazard ratio and that the model had the smal-

lest AIC compared to alternative models.

Table 5 shows the hazard ratio for each variable when

added to the model (as well as the AUCs, sensitivities and

specificities) for predicting onset of clinical symptoms at 5,

7 and 10 years post-baseline. Table 5 also shows the

P-values comparing the AUCs for models in which we in-

crementally added variables from the cognitive, MRI and

CSF domains, respectively. With only APOE status and

demographics in the model, the AUC was approximately

0.70 at 5, 7 and 10 years post-baseline. The addition of the

cognitive variables to this model significantly increased the

AUC to approximately 0.78 for all follow-up time points

(all P50.03). The addition of the MRI measures margin-

ally improved predictability above and beyond the genetic

and cognitive domains at 5 years (P = 0.052), but the add-

ition of the MRI measures did not significantly improve

predictability at 7 and 10 years post-baseline. However,

predictability was significantly increased by the addition

of CSF p-tau at the last step, increasing AUCs to approxi-

mately 0.84 (P5 0.03 for each time point). Figure 2 shows

the incremental change in the time-dependent ROC curves

predicting the onset of clinical symptoms for variables in

this model at 5 years post-baseline. Of note, in a separate

set of analyses, using the same model, we added the ratio of

CSF p-tau/amyloid-b at the last step (instead of CSF p-tau

alone) and found that the addition of this measure did not

significantly increase predictability. Moreover, the same

finding was true if we added the ratio of CSF.p-tau/amyl-

oid-b at the last step, but APOE4 status was not included

at the first step (Supplementary material, section 6).

In the second and third models within this set we focused

primarily on the predictability derived from the introduc-

tion of the first variable(s) in the model (after the demo-

graphics). Since amyloid imaging using PET is currently

being used to screen subjects for inclusion in a clinical

trial of cognitively normal individuals (e.g. the A4 Study)

(Sperling et al., 2014), the second model examined the

impact of putting CSF amyloid-b in the model first. With

only CSF amyloid-b and demographics in the model, the

AUC ranged from 0.70 to 0.72 at 5, 7 and 10 years post-

baseline. The sensitivity was 0.64 and the specificity was

0.67 at 5 years. With the addition of other domains to the

model, the results were comparable to those in which

APOE was added first (Supplementary material, section 7).

In the third model, CSF amyloid-b and CSF p-tau were

included first, after the demographic variables—this model

was designed to anticipate a future study in which both

amyloid imaging and tau imaging might be used to

screen subjects for inclusion in a clinical trial aimed at

randomizing those who were both amyloid and tau PET

positive. With CSF amyloid-b and CSF p-tau in the model

(after demographics), the AUC ranged from 0.72 to 0.74 at

5, 7 and 10 years post-baseline (see Table 3, showing

model results for the CSF domain). The sensitivity was

0.57 and the specificity was 0.75 at 5 years post-baseline.

Figure 1 ROC curves for Full Model and Efficient Model.

Time dependent ROC curves for the Full Model and the Efficient

Model at 5 years post-baseline. Black = Full Model; red = Efficient

Model.
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With the addition of the cognitive and MRI domains to the

model, there was an increase in the AUC, with results com-

parable to those in which either APOE or CSF amyloid-b
was added first (data not shown).

As noted above, the models in which two cognitive tests

or two MRI variables were included, after the demographic

variables, also showed moderate predictability (see Table 3,

showing model results for the cognitive and MRI domains).

Screening procedures such as these are often considered

when more technologically complex and costly methods,

such as PET scanning, are not feasible. Of note, though

the AUC for both of these models was numerically larger

than the one that included APOE (after demographics)

(0.76 for cognitive and 0.74 for MRI, versus 0.70 for

APOE), the AUC for the models with either the cognitive

or the MRI measures included (after demographics) did not

differ significantly from the model with APOE (and demo-

graphics) at 5 years post-baseline (P = 0.07 and 0.15, re-

spectively), although at 7 and 10 years the difference was

significant (P = 0.04 and P = 0.01, respectively).

Discussion
While a number of studies have examined the risk of pro-

gression from normal cognition to MCI at the group level

(Csernansky et al., 2005; Moghekar et al., 2013; Pettigrew

et al., 2013; Roe et al., 2013; Toledo et al., 2014; Soldan

et al., 2015; Vos et al., 2016), little is known about

whether these same measures are useful for predicting pro-

gression at the individual level. These results demonstrate,

for the first time to our knowledge, that biomarkers ob-

tained when individuals are cognitively normal can be used

to predict which individuals will develop clinical symptoms

at 5, 7 or 10 years post-baseline. Both of the primary

models examined (i.e. the Full Model and the Efficient

Model) had sensitivities and specificities that approached

or exceeded 0.80, the level recommended by biomarker

workgroups as providing meaningful prediction (Ronald

and Nancy Reagan Institute of the Alzheimer’s

Association and National Institute on Aging Working

Group on Biological Markers of Alzheimer’s Disease,

Table 5 Increment in prediction of progression from normal cognition to MCI for variables added in order of

potential application in a clinical trial

Variable HR of model

(95% CI)

HR:

P-value

AUC of model

(95% CI)

Time to

outcome

for model

Model

sensitivity

Model

specificity

Change in

AUC

versus

prior step

in model:

P-value

APOE4 0.703 (0.627, 0.798) 5 years 0.629 0.660 -

0.699 (0.628, 0.784) 7 years 0.613 0.671 -

0.685 (0.617, 0.764) 10 years 0.618 0.644 -

APOE4a 1.862 (1.013, 3.424) 0.045

APOE4 + Cognitive 0.777 (0.730, 0.850) 5 years 0.708 0.710 0.021

0.785 (0.738, 0.852) 7 years 0.696 0.735 0.006

0.772 (0.716, 0.842) 10 years 0.680 0.724 0.010

APOE4a 1.931 (1.042, 3.580) 0.037

Paired Associates Immediate 0.629 (0.484, 0.816) 50.001

Digit Symbol Substitution 0.553 (0.384, 0.796) 0.001

APOE4 + Cognitive + MRI 0.811 (0.769, 0.880) 5 years 0.723 0.750 0.052

0.811 (0.769, 0.871) 7 years 0.723 0.747 0.062

0.787 (0.733, 0.861) 10 years 0.680 0.759 0.223

APOE4a 2.036 (1.108, 3.740) 0.022

Paired Associates Immediate 0.695 (0.534, 0.905) 0.007

Digit Symbol Substitution 0.500 (0.347, 0.719) 50.001

R. Hippocampus volume 0.712 (0.539, 0.939) 0.016

R. entorhinal cortex thickness 0.705 (0.522, 0.952) 0.022

APOE4 + Cognitive + MRI + CSF p-tau 0.849 (0.802, 0.910) 5 years 0.799 0.745 0.015

0.843 (0.798, 0.897) 7 years 0.803 0.735 0.014

0.822 (0.769, 0.886) 10 years 0.737 0.770 0.024

APOE4a 2.068 (1.124, 3.805) 0.020

Paired Associates Immediate 0.625 (0.476, 0.821) 0.001

Digit Symbol Substitution 0.445 (0.306, 0.648) 50.001

R. Hippocampus volume 0.667 (0.503, 0.884) 0.005

R. entorhinal cortex thickness 0.588 (0.424, 0.815) 0.001

CSF p-tau 1.912 (1.490, 2.454) 50.001

aAPOE4 is a binary variable, and thus not standardized as other continuous variables. Therefore its hazard ratio (HR) is not comparable to those of continuous variables.

R = right.

Age and education were entered first in each model.
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1998). The finding that 35% of false positive classifications

by the Efficient Model at 5 years pertained to individuals

who progressed at a later time point suggests that this

model is quite sensitive in detecting the presence of preclin-

ical Alzheimer’s disease. Moreover, the false negative rate

was quite low (52%).

Moreover, at 5 years post-baseline, each domain in both

the Full Model and the Efficient Model significantly im-

proved the accuracy of prediction when added consecutively

to one another, demonstrating that each set of measures

provided valuable, non-redundant, information with respect

to the outcome. In contrast, the accuracy of prediction was

slightly lower at 7 and 10 years post-baseline; this may sug-

gest that the neurobiological changes associated with the

development of Alzheimer’s disease are less pronounced 7

and 10 years prior to symptom onset, and thus less well

captured by the measurements included in the study.

The incremental benefit in prediction that is generated by

adding each of the domains consecutively to one another

provides information that might be particularly useful for

designing a screening strategy for a clinical trial. These ana-

lyses demonstrated several findings of note. First, age and

education alone, combined with an individual’s APOE4

status and scores on two cognitive tests, was highly inform-

ative (sensitivity = 0.71, specificity = 0.71, AUC = 0.78). This

suggests that it might be possible to enrich a sample of

cognitively normal individuals likely to progress with these

relatively non-invasive and inexpensive procedures.

Second, when APOE4 status was entered first in the

model, the measure of CSF amyloid-b was not significant

(with the same being true when CSF amyloid-b was added

first, followed by APOE4). These findings likely reflect the

strong association between APOE4 genotype and amyloid

accumulation in the brain, as reflected in both in vivo

(Morris et al., 2010; Resnick et al., 2015) and neuropath-

ology studies (Gomez-Isla et al., 1996; Kok et al., 2009).

Of note, information about an individual’s degree of amyl-

oid accumulation and APOE4 status (adjusted by age and

education) was slightly less accurate in predicting an indi-

vidual’s outcome at 5 years compared to the model includ-

ing APOE4 status and the two cognitive test scores,

adjusted by demographics (sensitivity = 0.62, specifi-

city = 0.70, AUC = 0.72).

Third, the addition of the MRI measures and CSF p-tau

added relatively little in predictive power, above the other

measures. Thus, it might be possible to forgo these expensive

procedures, depending on the nature of the clinical trial that

is being planned, although it is possible that alternative MRI

measures (e.g. using 3 T MRI or different volumetric meas-

ures) would add more predictive power. It is, however, note-

worthy that when CSF p-tau was added at the last step in

the models, it significantly improved prediction, even though

the sensitivity and specificity of the models were already

quite good. Recent findings have demonstrated a moderate

correlation between CSF p-tau and tau accumulation in the

temporal lobe, as measured by tau PET imaging among cog-

nitively normal individuals (using AV-1451) (Chhatwal

et al., 2016; cf., Gordon et al., 2016), and elevated neocor-

tical tau, particularly in the inferior temporal lobe, has been

reported in patients with MCI (Johnson et al., 2016). Taken

together with the results of the present study, these findings

raise the possibility that the inclusion of tau imaging for

screening subjects in a clinical trial of cognitively normal

individuals may be highly informative.

Finally, it is also important to acknowledge the utility of

the demographic variables in predicting the outcome. These

analyses demonstrated that the prediction for an individual,

based on demographics alone, yielded an AUC of 0.68 at all

durations of follow-up (Table 4). This moderate predictabil-

ity exemplifies the well-known increase in Alzheimer’s dis-

ease prevalence with age (Brookmeyer et al., 1998), which is

also reflected by the fact that those who progressed to MCI

in the present study were significantly older at baseline than

those who remained cognitively normal (Table 2).

Our results complement studies that have examined dif-

ferent cognitive measures and Alzheimer’s disease bio-

markers in relation to the onset of dementia among non-

demented individuals (Amieva et al., 2004; Coupé et al.,

2015; Stephan et al., 2015; Ritchie et al., 2016), which

represents a later phase in the disease. For example,

Coupé et al. (2015) reported that MRI biomarkers had

moderate predictive utility on their own (AUC 0.64–

0.73), but may have limited additional predictive power

after accounting for demographics, cognitive status, and

APOE4 genotype, at least on the group level (Stephan

et al., 2015).

Taken as a whole, these analyses provide valuable infor-

mation for researchers seeking to determine optimal methods

Figure 2 ROC Curves ordered by applicability in a clinical

trial. Time-dependent ROC curves for measures in the Efficient

Model ordered by applicability in a clinical trial at 5 years post-

baseline. Purple: demographics, APOE4, Cognitive, MRI, CSF; yellow:

demographics, APOE4, Cognitive, MRI; orange: demographics,

APOE4, Cognitive; blue: demographics, APOE4; green: demographics.
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for screening subjects for inclusion in clinical trials aimed at

those with preclinical Alzheimer’s disease. The importance of

selecting subjects likely to progress over the duration of a

clinical trial is emphasized by a recent analysis of placebo

data from MCI clinical trials; this report found that many

subjects enrolled in these trials had limited progression over

time, making it difficult to determine whether the subjects

treated with active medication were, in fact, benefiting from

treatment (Petersen et al., 2017). The findings reported here

may, therefore, provide valuable information about how to

select participants likely to progress for clinical trials in pre-

clinical Alzheimer’s disease.

Limitations

This study has several limitations. It is important to acknow-

ledge that although CSF amyloid-b correlates moderately

with PET amyloid levels (Fagan et al., 2006; Vlassenko

et al., 2016; Vos et al., 2016), the two are not identical;

thus, results may differ if amyloid levels are measured with

PET instead of CSF. Likewise, measures of CSF p-tau do not

provide information about the regional distribution of tau

throughout the brain and tau imaging may therefore provide

additional valuable information that can be used in subject

selection. Additionally, the use of different MRI measures

(i.e. 3 T MRI or other volumetric measures) would likely

give different results. The BIOCARD participants were well

educated, primarily Caucasian, and the majority had a family

history of dementia, so the results may not generalize to the

population at large. Participants were also primarily middle-

aged when first enrolled, thus the findings may not generalize

to older cohorts. Additionally, the relatively small sample size

did not allow us to test the reproducibility of these results,

and prior work has shown that the specific measures selected

may affect diagnostic accuracy (Frisoni et al., 2013). Future

studies are therefore necessary to determine if similar findings

would be obtained using more diverse groups of older indi-

viduals, and different biomarker measures (e.g. 3 T MRI

scans; PET imaging for amyloid and tau).

Conclusion
In summary, these results indicate that it is feasible to pre-

dict on an individual basis which cognitively normal indi-

viduals are likely to progress to MCI at 5, 7 and 10 years

post-baseline. This should facilitate the design of interven-

tion studies aimed at the preclinical phase of Alzheimer’s

disease, when treatments might be most effective.
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