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Abstract

The Boolean multireference alignment problem consists in recovering a Boolean signal from 

multiple shifted and noisy observations. In this paper we obtain an expression for the error 

exponent of the maximum A posteriori decoder. This expression is used to characterize the 

number of measurements needed for signal recovery in the low SNR regime, in terms of higher 

order autocorrelations of the signal. The characterization is explicit for various signal dimensions, 

such as prime and even dimensions.

I. Introduction

The Boolean multireference alignment (BMA) problem consists of estimating an unknown 

signal x ∈ ℤ2
L, from noisy cyclically shifted copies Y1, …, YN ∈ ℤ2

L, i.e.,

Y i = R
Six ⊕ Zi, i ∈ {1, …, N}, (1)

where the error Zi ~ Ber(p)L, the product measure of L Bernoulli variables with parameter p, 

⊕ denotes addition mod 2, R is the index cyclic shift operator that shifts a vector one 

element to the right (x1, …, xN) ↦ (xN, x1, …, xN−1), RSi corresponds to applying Si times 

the operator R and the shifts Si ~ (ℤL), the uniform distribution in ℤL.

The motivation to study this problem comes from the classical multireference alignment 

problem, where the signal and observations are real valued vectors, and the error is Gaussian 

white noise. Several algorithms were recently proposed to solve the problem, including 

angular synchronization [1], semidefinite program relaxations of the maximum likelihood 

decoder [2] and reconstruction using the bispectrum [3]. This problem is also an instance of 

a larger class of problems, called Non-Unique Games, which also includes the orientation 

estimation problem in cryo-electron microscopy [4].

HHS Public Access
Author manuscript
Proc IEEE Int Symp Info Theory. Author manuscript; available in PMC 2018 May 11.

Published in final edited form as:
Proc IEEE Int Symp Info Theory. 2017 June ; 2017: 1316–1320. doi:10.1109/ISIT.2017.8006742.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite these advancements in algorithmic development, not much progress has been made 

in understanding the fundamental limits of signal recovery. The recent paper [5] investigated 

fundamental limits of shift recovery in multireference alignment, but not those of signal 

recovery. We note that estimating the shifts is impossible at low signal-to-noise ratio (SNR) 

even if an oracle presents us with the true signal. Also, the goal of many applications is 

signal recovery rather than shift estimation. Our paper aims to fill the gap on signal recovery, 

by studying the Boolean case.

We focus on the low SNR regime, since pairwise alignment performs well in the high SNR 

regime, while in applications, such as cryo-electron microscopy, the low regime is 

predominant. We show here that signal recovery is possible at arbitrarily low SNR, if 

sufficiently many measurements are available, and quantify this tradeoff. We do not consider 

here the problem of determining the sample complexity of multireference alignment in the 

real-valued Gaussian noise case, which is a topic of ongoing research [6], [7].

In BMA the search space is finite, and the maximum A posteriori decoder (MAP) minimizes 

the probability of error. Our main contribution is an expression for the error exponent of 

MAP, in the low SNR regime, given in Theorems III.2 and III.3. Our results imply how 

many measurements are needed, as a function of the SNR, in order to accurately estimate the 

signal.

The expression depends on the autocorrelations of the signal, defined in (6). Our results 

connect the order of autocorrelations needed to reconstruct the signal to the number of 

measurements needed to estimate the signal. This has some connections with previous 

theoretical work on uniqueness of the bispectrum [8].

We also consider some generalizations of the original problem in order to model some 

aspects of multireference alignment that arise in applications, such as the introduction of 

deletions.

II. BMA Problem

In the BMA problem, the errors are i.i.d. Bernoulli of parameter p. If p = 1
2 , then the 

observations Y i Ber(1
2)L

, regardless of the original signal, and signal recovery is impossible. 

This corresponds to the case when SNR = 0. On the other hand, p = 0 or 1 corresponds to the 

noiseless case. Thus we define

SNR: = p − 1
2

2
. (2)

In contrast to proposing an algorithm to solve the BMA problem, our paper focuses on its 

sample complexity, in the low SNR regime, when p 1
2  and SNR → 0.
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Note that the observations Yi, i ∈ [N], given the signal x, are i.i.d., since both the shifts Si 

and the errors Zi are i.i.d. For that reason we will drop the index i when it is more 

convenient. We rewrite (1), denoting by x(j) the j-th entry of x.

Y( j) = x(S + j) ⊕ Z( j), j ∈ ℤL, (3)

where ‘+’ is addition mod L.

Our paper also considers the sample complexity of the following variations of the basic 

BMA problem:

• BMA Problem with consecutive deletions: In this case the measurements Y1, …, 

YN are in ℤ2
K, with K ≤ L, and

Y( j) = x(S + j) ⊕ Z( j), j ∈ ℤK . (4)

When K = L we obtain the original BMA problem.

• BMA Problem with known deletions: Let V ⊂ ℤL be an ordered set of non-

deletions, i.e. the set of deletions is ℤL\V. Now the measurements Y1, …, YN are 

in ℤ2
K, with K = |V|, and:

Y( j) = x(S + V j) ⊕ Z( j), ∀ j ∈ ℤK, (5)

where Vj denotes the j-th element of V. When V = [K] we recover the BMA 

problem with consecutive deletions.

• BMA Problem (and variations) with non uniform rotations: Similar to the 

previous problems, but now the shifts follow some distribution ξ in ℤL.

These variations are motivated by problems similar to multireference alignment. The case of 

possible deletions is intended to model instances where the observations are only partial, 

whereas the extension to non-uniform shifts attempts to represent a non-symmetric version 

of the problem.

III. Results

We start by introducing the following notion of autocorrelation of a signal that is central to 

our main results.

Definition III.1

The (ξ, k)-autocorrelation of x, with respect to a distribution ξ in ℤL and 

k = (k1, k2, …, kd) ∈ ℤL
d is defined as
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Aξ, k(x): = ∑
s = 1

L
ξ(s)x(k1 + s)⋯x(kd + s) . (6)

We refer to d = |k| as the order of the auto-correlation. When ξ ~ (ℤL), we simply write k-
autocorrelation and Ak. Notice Ak is shift invariant, that is Ak(x) = Ak(Rsx), and in this case 
we may assume k1 = 0.

We define the minimum autocorrelation order necessary to distinguish x1 and x2 under ξ and 
V as

tξ, V(x1, x2): = inf {x: Aξ, k(x1) ≠ Aξ, k(x2), k ∈ Vd}, (7)

where Vd denotes the vectors in Z2
d with entries in V. The minimum autocorrelation order 

necessary to describe all signals in  is defined as

tξ, V(𝒳): = max
x1, x2 ∈ 𝒳

x1 ≠ x2

tξ, V(x1, x2) . (8)

Given a prior distribution on the signals PX, with support , denote by X the random 

variable with distribution PX. Given an algorithm for BMA the probability of error is defined 

as

P(X ≠ X) = ∑
xi ∈ 𝒳

P(X ≠ xi)PX(xi), (9)

where X̂ is the answer given by the algorithm. In the BMA problem the search space is 

finite, thus MAP minimizes the probability of error (9). We obtain results that do not depend 

on the prior distribution, they depend only on its support.

Theorem III.2

Consider the BMA problem with known deletions ZL\V and shift distribution ξ. Let 𝒳 ⊂ Z2
L

be the support of the prior distribution of the signals and μx the conditional distribution in 

ℤ2
K of the observations Y given the signal x, where K = |V|. The probability of error of the 

MAP estimator, denoted by Pe, has the following asymptotic behavior
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lim
N ∞

1
N log Pe = min

x1, x2 ∈ 𝒳

x1 ≠ x2

C(μx1
, μx2

), (10)

with

C(μx1
, μx2

) = 24t − 3

t! SNRt ∑
k ∈ Vt

Aξ, k(x1) − Aξ, k(x2) 2 + O(SNRt + 1), (11)

and t = tξ,V (x1, x2).

The theorem implies that the exponent on SNR is tξ,V( ). In the original problem, with 

uniform shifts and no deletions, the recovery of the original signal is possible only up to a 

shift, i.e. we can only recover Rkx, where x is the original signal, and k is some shift in ℤL. 

For that reason, we consider  to have exactly one element of each class of all the shifts of a 

signal, i.e., there are no two elements in  where one is a shift of the other (for example, if 

L is prime, then there are 2L − 2 such elements).

Corollary III.3

Consider the original problem, with V = [L], ξ ~ (ℤL) and  as defined above. By 
inspection one can obtain the error exponent for L ≤ 5. For L ≥ 6, we either have

lim
N ∞

1
N log Pe =

210
L SNR3 + O(SNR4)

O(SNR4)
(12)

Also, the first case occurs when L is prime, and the second when L ≥ 12 and is even. The 
other values of L remain open.

IV. Proof Techniques

Proof of Theorem III.2—The proof consists of two main parts. The next theorem gives a 

formula to the error exponent and claim IV.2 makes the connection with autocorrelations.

Theorem IV.1

Consider the BMA problem with known deletions ZL\V and shift distribution ξ. Let 𝒳 ⊂ Z2
L

be the space of possible signals and μx := PY|X (·|x) the conditional distribution in ℤ2
K of the 

observations given the signal x. The probability of error of the MAP estimator (Pe) has the 
following asymptotic behavior
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lim
N ∞

1
N log Pe = min

x1 ≠ x2 ∈ 𝒳 C(μx1
, μx2

), (13)

with

C(μx1
, μx2

) =
1
2 − p

2s

8(s!)2 ∑
y ∈ ℤ2

K

μx1
(s) y; 1

2 − μx2
(s) y; 1

2
2

μx1
y; 1

2
+ O 1

2 − p
2s + 2

, (14)

where μx
(m)(y; p) denotes the m-th derivative of μx(y; p) in p, i.e. the derivative of the 

conditional distribution in y given x in order of the Bernoulli parameter p, and

s(x1, x2): = inf m: μx1
(m) y; 1

2 ≠ μx2
(m) y; 1

2 , y ∈ ℤ2
K .

This theorem follows from Theorems 1 and 2 in [9]. Theorem 1 is a corollary of Sanov 

Theorem, and expression (13) is in fact the Chernoff Information between distributions μx1 
and μx2 [10]. In Theorem 2 [9] we Taylor expand the Chernoff Information (13) and obtain 

(14).

Claim IV.2

If

μx1
(m) y; 1

2 = μx2
(m) y; 1

2 ∀m < n, y ∈ ℤ2
K, (15)

then the following expressions are equal:

∑
y ∈ ℤ2

K

μx1
(n) y; 1

2 − μx2
(n) y; 1

2
2

μx1
y; 1

2
(16)

and

24nn! ∑
k ∈ VL

Aξ, k(x1) − Aξ, k(x2) 2 . (17)
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In fact, since the expressions (16) and (17) are both sum of squares, the claim implies that 

tξ,V (x1, x2) = s(x1, x2), what concludes the proof of theorem III.2.

Proof of Claim IV.2—The claim is proved by induction on n. Note that condition (15) is 

equivalent to (16) vanishing for m < n, which implies (17) also vanishes by applying the 

claim with m. In general (17) is a function of (16) and lower order terms, which vanish when 

we enforce condition (15). The rigorous proof follows.

Denote by x(V) the vector in ℤ2
K (K = ∣ V ∣ ) that consists of the values of x with indices in 

V, i.e. the j-th element of x(V) is x(Vj). Also, given s ∈ ℤL denote by s + V the ordered set 

corresponding to the sum of each element in V with s mod L. Equation (5) can then be 

rewritten, as

Y = x(S + V) ⊕ Z (18)

Then since Z ~ Ber(p)L, we have

μx(y; p ∣ S = s) = (1 − p)K − w(y ⊕ x(s + V))pw(y ⊕ x(s + V)),

where w denotes the Hamming weight, and since S ~ ξ

μx(y; p) = ∑
s = 1

L
ξ(s)(1 − p)K − w(y ⊕ x(s + V))pw(y ⊕ x(s + V)) . (19)

In the statement of the theorem we have x ∈ ℤ2
L, however it is convenient for the proof to 

consider the entries of x to be −1, 1, changed by the rule: a ↦ 1 − 2a. We will call

u: = 1 − 2x ∈ ∑2
L (20)

the corresponding element of x with ±1 values, where Σ2 := {−1, 1}, and v := 1 − 2y. In 

analogy to the Hamming weight, we define

W(u): = ∑
s = 1

L
u(s) = L − 2w(x) . (21)

With this we rewrite (19)
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μu(v; p) = ∑
s = 1

L
ξ(s)(1 − p)

K
2 + W(v ⊕ u(s + V))

2 p
K
2 − W(v ⊕ u(s + V))

2 , (22)

where μu(v; p) := μx(y; p). For simplicity of notation denote

Wv, u, s: = W(v ⊕ u(s + V)) .

By properties of Jacobi polynomials [11] we have

p

K
2 − b

2(1 − p)
K
2 + b

2

∣ p = 1
2

(m)

= ( − 2)m − KPm(b),

where Pm is a polynomial with the following property

Pm(b) = bm + Qm(b), (23)

where Qm has degree at most m − 1, and Q0 ≡ Q1 ≡ 0. Thus

μu
(m) v; 1

2 = ( − 2)m − K ∑
s = 1

L
ξ(s)Pm(Wv, u, s) . (24)

Then when m = 1

∑
v ∈ ∑2

K

μu1
(1) v; 1

2 − μu2
(1) v; 1

2
2

μu1
(v; 1

2)
= 22 − K ∑

v ∈ ∑2
K

∑
s = 1

L
ξ(s) (Wv, u1, s − Wv, u2, s)

2
.

Now, by the induction hypothesis if μu1
(k) v; 1

2 = μu2
(k) v; 1

2  for all k ≤ n − 1, v ∈ ∑2
K

∑
s = 1

L
ξ(s)Qn(Wv, u1, s) = ∑

s = 1

L
ξ(s)Qn(Wv, u2, s),
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for all v ∈ ∑2
K since Qn has degree at most n − 1. Thus by (23) and (24)

∑
v ∈ ∑2

K

μu1
(n) v; 1

2 − μu2
(n) v; 1

2
2

μu1
v; 1

2
= 22n − K ∑

v ∈ ∑2
K

∑
s = 1

L
ξ(s) (Wv, u1, s

n − Wv, u2, s
n )

2
(25)

Now splitting the square of the sum on the RHS into a product of two sums and expanding, 

we obtain terms of the form

∑
s1 = 1

L
∑

s2 = 1

L
ξ(s1)ξ(s2)( − 1)α + β ∑

v ∈ ∑2
K

Wv, uα, s1
n Wv, uβ, s2

n , (26)

where α and β are 1 or 2. By Lemma IV.3 we get

∑
v ∈ ∑2

K
Wv, uα, s1

n Wv, uβ, s2
n = 2K ∑

A ∈ M[2n]
A is even

CA ∏
i = 1

∣ A ∣
∑

k = 1

K
∏
j = 1

∣ ai ∣

uai j
(k) , (27)

Where uaij is uα(s1 + V) if aij ≤ n, and is uβ(s2 + V) otherwise. So, since |ai| is even, as A is 

an even partition, and the entries of uaij are ±1,

∑
k = 1

K
∏
j = 1

∣ ai ∣
uai j

(k) = ∑
k ∈ V

uα(s1 + k)uβ(s2 + k)

if |ai ∩ [n]| is odd, and it is K otherwise. Then

∑
v ∈ ∑2

K
Wv, uα, s1

n Wv, uβ, s2
n = Rn ∑

k ∈ V
uα(s1 + k)uβ(s2 + k) ,

where Rn is a polynomial with degree n (with coefficients possibly depending on K and n), 

and R1(b) = 2kb. It cannot have degree n + 1 since |A| ≤ n, since it is an even partition of 

[2n]. For it to be a power of order n, we need |A| = n, so |ai| = 2 for i = 1, …, n, thus CA = 1, 

by the Lemma. Also |ai ∩ [n]| must be odd for all i, thus |ai ∩ [n]| = 1. There are exactly n! 

partitions with this property, so the leading coefficient of Rn is 2K n!. We also have
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∑
s1 = 1

L
∑

s2 = 1

L
ξ(s1)ξ(s2) ∑

k ∈ V
uα(s1 + k)uβ(s2 + k)

n

= ∑
s1 = 1

L
∑

s2 = 1

L
ξ(s1)ξ(s2) ∑

k ∈ Vn
∏
i = 1

n
uα(s1 + ki)uβ(s2 + ki)

= ∑
k ∈ Vn

Aξ, k(uα)Aξ, k(uβ),

(28)

The equation will be true for n = 1, since R1(b) = 2kb. As in (25), the induction hypothesis 

implies the lower order terms in Rn cancel and only the leading coefficient is of interest. We 

get

∑
v ∈ ∑2

K
∑

s = 1

L
ξ(s) (Wv, u1, s

n − Wv, u2, s
n )

2
= 2kn! ∑

k ∈ Vn
(Aξ, k(u1) − Aξ, k(u2))2 (29)

Now through some algebraic manipulation, and using again the argument of the leading 

coefficient, if |k| = n, then

∑
k ∈ Vn

(Aξ, k(u1) − Aξ, k(u2))2 = 22n ∑
k ∈ Vn

(Aξ, k(x1) − Aξ, k(x2))2 (30)

This together with (25) and (29) concludes the proof.

Lemma IV.3

For any partition A = {a1, …, a|A|} of the set {1, 2, …, m}, denote by aij the j-th entry of ai 

and M[m] the set of all such partitions. If u1, …, um ∈ ∑2
K

∑
v ∈ ∑2

K
W(u1 ⊕ v)⋯W(um ⊕ v) = 2K ∑

A ∈ M[m]
A is even

CA ∏
i = 1

∣ A ∣
∑

k = 1

K
∏
j = 1

∣ ai ∣

uai j
(k) , (31)

where A is even if all |ai| are even for i ∈ {1, …, |A|}. Moreover, CA is a constant that 
depends only on the partition A and is always 1 if |ai| = 2 for all i ∈ {1, …, |A|}.

Proof—Recall (21). We have W(u ⊕ v) = ∑
k = 1

K
u(k)v(k)
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∑
v ∈ ∑2

K
W(u1 ⊕ v)⋯W(um ⊕ v)

= ∑
k1 = 1

K
⋯ ∑

km = 1

K
u1(k1)⋯um(km) ∑

v ∈ ∑2
K

v(k1)⋯v(km)

= ∑
A ∈ M[m]

∑
k1, …, k ∣ A ∣ = 1

all distinct

K
∏
i = 1

∣ A ∣
∏
j = 1

∣ ai ∣

uai j
(ki) ∑

v ∈ ∑2
K

∏
i = 1

∣ A ∣
v(ki)

∣ ai ∣
,

(32)

The last sum is 2K when A is even, and 0 otherwise. Using a combinatorial argument we can 

rewrite (32) without the ‘all-distinct’ condition, at the cost of a constant CA, which is 1 when 

|ai| = 2 for i ∈ {1, …, |A|}. We get

2K ∑
A ∈ M[m]
A is even

CA ∑
k1, …, k ∣ A ∣ = 1

K
∏

i = 1

∣ A ∣
∏
j = 1

∣ ai ∣
uai j

(ki) = 2K ∑
A ∈ M[m]
A is even

CA ∏
i = 1

∣ A ∣
∑

k = 1

K
∏
j = 1

∣ ai ∣
uai j

(k)

Proof of Corollary III.3—We first prove equation (12). Recall (6), and denote by

Bm(x1, x2): = ∑
k ∈ ℤL

m
Ak(x1) − Ak(x2) 2

and

Bm(L): = min
x1 ≠ x2 ∈ 𝒳 Bm(x1, x2)

Note that Bm(x1, x2) = 0 if m < tξ,V (x1, x2) by (7). For convenience let B(x1, x2) := 

Btξ,V(x1,x2)(x1, x2) and B(L) := Btξ,V( )(L). Using this notation we rewrite (10) and (11)

lim
N ∞

1
N log Pe = B(L)2

4tL − 3

tL! SNR
tL + O SNR

tL + 1

Now equation (12) is equivalent to having tξ,V( ) ≥ 3 and B3(L) either 12
L  or 0. Turns out, 

for L ≥ 6, if we take
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x1
∗ = (1, 1, 0, 1, 0, …, 0

L − 4 zeros
) and x2

∗ = (1, 0, 1, 1, 0, …, 0
L − 4 zeros

),

then tξ, V(𝒳) ≥ tξ, V(x1
∗, x2

∗) = 3 and B3(L) ≤ B(x1
∗, x2

∗) = 12
L . Also we cannot have 

12
L > B3(L) > 0. This implies there exists x1 and x2 in  such that 12

L > B(x1, x2) > 0. Since it 

is positive, there is k∗ ∈ ℤL
3 such that Ak*(x1) ≠ Ak*(x2). But by definition (6), since ξ(s) = 1

L , 

LAk*(x) is an integer for x ∈ ℤ2
L, and L2(Ak*(x1) − Ak*(x2))2 ∈ ℤ.

Now by the definition we also have Aσ(k*)(x) = Ak*(x), where σ permutes the entries of k*. 

Also, for s ∈ ℤL, let s + k∗: = (s + k1
∗, s + k2

∗, s + k3
∗), then As+k*(x) = Ak*(x). There is 6 

permutations and L possible values for s ∈ ℤL, so B(x1, x2) is an integer multiple of 6
L . (we 

can also have not trivial s and σ such that s + k* = σ(k*) but that case also has the property 

mentioned). However we cannot have B(x1, x2) = 6
L . That means there exists only one 

k∗ ∈ ℤL
3 (with permutations and shifts) such that Ak*(x1) ≠ Ak* (x2). Then

∑
k ∈ ℤL

3
Ak(x1) − Ak(x2) = 6L(A

k∗(x1) − A
k∗(x2)) ≠ 0 (33)

On the other hand

∑
k ∈ ℤL

3
Ak(x1) = 1

L ∑
s = 1

L
∑

k ∈ ℤL
2

x(k1 + s)x(k2 + s)x(k3 + s)

= L3A0(x1)3,

where A0 denotes k-autocorrelation with k = 0. Since tL > 1, A0(x1) = A0(x2), so equation 

(33) must be 0, and equation (12) follows by contradiction. Now if L ≥ 12 is even, choose

x1
∗ = (1, 1, 0, 1, …, 1

L
2 − 3 ones

, 0, 0, 1, 0, …, 0
L
2 − 3 zeros

)

and x2
∗ the vector obtained by reversing the entries of x1

∗. Since one is the reverse of the other, 

they have same 1 and 2 order autocorrelations. Recall (20) and (6) and notice that in this 

case both Ak(u1) and Ak(u2) are 0 when |k| is odd, since half of the signal is the symmetric 
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of the other half, i.e. u1({1, …, L
2 }) = − u1({L

2 + 1, …, L}). Now because of (30) we have 

Ak(x1) = Ak(x2) when |k| = 3, so tL ≥ 4, and B3(L) = 0.

Finally, let L ≥ 6 be prime. We prove by contradiction that tL = 3 and B3(L) = 12
L . If this is 

not true, then it exists x1
∗ and x2

∗ such that t
x1
∗, x2

∗ > 3, so

Ak(x1
∗) = Ak(x2

∗), k ∈ ℤL
n, n ≤ 3 (34)

By Theorem 2 of paper [8], if the Fourier coefficients of x1
∗ and x2

∗ are non-zero, then 

equation (34) implies one is a shift of the other. Denote by {r j
1}

j ∈ ℤL
 and {r j

2}
j ∈ ℤL

 the 

Fourier coefficients of x1
∗ and x2

∗, respectively, which are given by

r j
α = 1

L ∑
s = 1

L
xα(s)ωL

− js, α ∈ {1, 2}, j ∈ ℤL, (35)

= 1
L ∑

s: xα(s) = 1
ωL

− js, (36)

where ωL is the L’th root of unity. r0
α = 0 implies xα

∗ only has zeros, and r j
α is 0 only if wL

− j is 

a root of the polynomial

∑
s: xα(s) = 1

bs (37)

However, since L is prime, the minimal polynomial of wL
− j in ℚ[x], for L > j > 0, is 1 + x + 

··· + xL−1 [12], so this polynomial must divide (37). Thus x1
∗ and x2

∗ must be the all zeros and 

all ones signals, but these signals also do not satisfy (34).
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