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Abstract
We present the construction of Babel, a distributed storage system that meets stringent requirements on dependability, availability,
and scalability. Together with Babel, we developed an application that uses our system to store medical images. Accordingly, we
show the feasibility of our proposal to provide an alternative solution for massive scientific storage and describe the software
architecture style that manages the DICOM images life cycle, utilizing Babel like a virtual local storage component for a picture
archiving and communication system (PACS-Babel Interface). Furthermore, we describe the communication interface in the
Unified Modeling Language (UML) and show how it can be extended to manage the hard work associated with data migration
processes on PACS in case of updates or disaster recovery.
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Introduction

The amount of digital information that theworld is accumulating,
as well as the increasing rates under which information has been
produced, have become the driving forces that move the scien-
tific community to find new solutions, in order to face the so-
called Bdeluge^ of information [1, 2]. As storage has become a
strategic asset, we are witnessing the evolution of storage tech-
nologies. Not only scientific computing but also the government,
banking, and any IT-based organization will be the beneficiaries
of this shift in massive storage [3–5]. In the short term, IT man-
agers will be required to make an important decision concerning
the storage capacities of their corresponding organizations:
whether storage is supported based on their own resources, or
as a service that is provided by outsourcing [6–9].

We understand that people need to store their private informa-
tion and, for this, they can resort to either a physical device, or a
virtual device. This is, in the first case, they choose a product and,
in the second case, they choose a service. In either of the two
situations, the user is the owner of the information and can inde-
pendently choose the solution to save his or her information.

As for the storage of organizations, we have that the users
depend on the access policies fixed by their organization and
may be limited in the related decisions with the use, storage,
and transport of information. IT managers have, among other
responsibilities, to implement primary and secondary storage so-
lutions, to mitigate risks, foreseeing contingencies and even di-
sasters. In this context, they have to decide again whether, to
build these capabilities, they buy a product, or they hire a service.
However, the answer is not as simple as in the case of personal
storage, because this time, the volume plays a key role to
consider.

Whether it is the storage of a person or an organization, the
solution chosen in both cases must take into account that access
to information must be done under the control of its owner or the
authorized persons. However, due to the volume, it is usually
easier to guarantee the confidentiality of the number of docu-
ments of a person, if we compare them with the quantity of
documents that an organization can classify as sensitive. If the
managers of an organization are interested in buying a product to
solve their storage needs, they would be assuming the cost of
their management in exchange for maintaining control of access
to their information. If, on the other hand, they were inclined
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towards the purchase of a service, they would be deciding to
release the cost of the management, but relinquishing control of
the storage details.

In the first instance, it would seem that an organization should
not relinquish control of the details related to the storage of its
information; however, there are two requirements to consider.
Normally, the requirement of availability of information in-
creases with the size of the organization. Besides, information
grows even at exponential rates, and that means that the manage-
ment of storage devices can become a task that absorbs more and
more resources of the organization itself. The cost-benefit analy-
sis must have a medium- and long-term horizon where the avail-
ability of information and the scalability of its storage are key
elements in the decision-making process [10–14]. This scenario,
related to the storage of organizations, is the context of our work.

The Babel Storage System (after BThe Library of Babel,^ a
short story by Jorge Luis Borges [15]) is a dependable, scalable,
and flexible software-defined storage system, developed by
INFOTEC. Among its main features, it can be underlined the
availability of different types of data redundancy, a careful
decoupling between data and metadata, a middleware that en-
forces metadata consistency, and its own load balance and allo-
cation procedure which adapts to the number and capacities of
the supporting storage devices. It can be deployed over different
hardware platforms, i.e., fully hardware-agnostic. Enterprises and
Service Providers are challenged to build scale-out storage infra-
structures that support multiple application workloads and pro-
vide the highest data resiliency with the current technical limita-
tions and costs of current traditional vendors. To stay flexible,
efficient, and cost-effective, Babel provides different mecha-
nisms for protecting data including replication and the informa-
tion dispersal algorithm (IDA) [16]. Babel supports objects
(HTTP/WebDAV/REST) [17, 18], easily integrating into many
standard and custom applications.

Health institutions produce a huge number of digital im-
ages from clinical studies that may reach more than 100 thou-
sand radiology procedures per year, which implies the preser-
vation (also known as retention) of dozens of terabytes of
uncompressed historical data. The minimum retention time
of medical information depends on national regulations (for
example: a study of x-rays in the USA has a retention period
of 5 years from its generation [19], while in Australia, it is
7 years [20]). In Mexico, the institutions certified to provide
health services must guarantee a retention period of 5 years
[21] for all information concerning the health status of pa-
tients, the corresponding files weigh between 3.5 and
1500MB and, according to national regulations, must be kept
under very rigorous requirements of integrity, availability, and
privacy.

We have developed an interface that connects Babel with
the PACS (picture archiving and communication system) at
the INR (Instituto Nacional de Rehabilitación) [22] which is a
system to transmit, store, retrieve, and display medical

imaging information, in strict conformance to DICOM
(Digital Imaging and Communications in Medicine) [23]
which is the international standard on this field. In this work,
we present the design principles followed in the construction
of this communication interface, we consider that the value of
our proposal stands on the feasibility of an alternative ap-
proach, to meet the most stringent requirements on medical
image storage.

The new trends in health sciences (such as genomics) will
benefit frommassive storage technology and indeed, our storage
architecture may be exported to these scenarios too.
Nevertheless, medical imaging will always be a key tool
supporting health services. In this sense, we can grant that the
PACSINR [22], being a system that is deployed andworking in a
National Institute, is fully complying with all the regulations
required to provide support on such critical environments.
Every day, at its most demanding moment, the PACS supports
300 concurrent users, including surgery operations, this shows
that this is a highly dependable system. Medical image manage-
ment procedures are continuously evolving to benefit not only
from new image technologies, but also from the latest achieve-
ments on information management. This is the context that
frames our contribution, we present a storage model that is not
tied to any particular infrastructure and, as we alreadymentioned,
can be exported to any situation where information is required to
remain available over long terms, which implies the challenge of
volume and scalability. We considered that the PACS at the INR
has provided us with a very demanding testbed.

The rest of this paper includes the following: in BThe Babel
Storage System in a Nutshell,^ we introduce the main aspects of
Babel itself. In BThe Implementation Details of the
Communication Interface,^we show themain software elements
and components than resolve the communications between a
DICOM storage server application entity and the Babel Storage
System. Finally, in theBDiscussion^ and BConclusion^ sections,
we analyze the results and the directions for further work.

The Babel Storage System in a Nutshell

Storage systems can be classified in three main categories: file
oriented, block oriented, and object oriented.

Files and blocks are based on the concept of file system.
Most of the users are familiar with them, such as FAT, NFS,
CIFS, and EXT. They organize data into files and folders in a
tree-like hierarchy and give a path to the file while also
retaining a small amount of metadata about this central entity.
The key difference between file access (deployed on a NAS)
and block access (deployed on a SAN) is that in the first case,
the file system resides on the disk array. Meanwhile, in block
access, the file system is external to the array and I/O calls are
handled by the file system on the server, with only block-level
information required to access data from the SAN. From this
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distinction can be explained the different scenarios where they
are applied. NAS is best fitted to retention and access of entire
files and has locking systems that prevent simultaneous
changes and corruption to files. Meanwhile, SAN systems
allow changes to blocks within entire files and so are extreme-
ly well suited to database and transactional processing.

In the other hand, as the name suggests, object-based storage
allocates data in isolated containers known as objects. Each sin-
gle object has a unique identifier and is stored in a flat memory
model. This is important for two reasons: (i) an object can be
rapidly retrieved by simply presenting its identifier (ID), thus
making information much easier to find in a large pool of data.
(ii) The data could be physically stored on a local server, or a
remote server in the cloud. Object storage also lends much great-
er flexibility to metadata. Scalability is where object-based stor-
age does its most impressive work. Scaling out an object archi-
tecture is as simple as adding additional nodes to the storage
cluster.

As we have already pointed out, scalability has been a
driving force in our design. Based on the fact that the
DICOM standard enforces the compliance on the procedures,
independently from technology, we consider that object stor-
age (which is supported by Babel using REST-ful services)
has been the right approach that will provide a long-lasting
storage service.

We have built a distributed system that can be initially
deployed on a small group of storage devices and offers a
capacity of a few terabytes, but, if required, it may incorporate
additional devices to achieve a massive scale, even of tens of
petabytes (Fig. 1).

The key performance goals to consider in our construction are
availability, fault-tolerance, and scalability. To meet these goals,
we have considered two basic mechanisms: (a) two alternative
information redundancy techniques and (b) amodular data place-
ment algorithm. The former refers to the redundant information
produced in order to attain availability and fault-tolerance. The
latter refers to the (re)allocation of data within the available stor-
age devices, in order to support changes and enforce load
balance.

1. Redundant information can be obtained from simple rep-
lication that generates n copies of the original file. This is
the principle followed by GFS [6] and HDFS [24].
Alternatively, redundancy can also be produced using
error-correcting techniques such as the IDA [16, 25].
Traditional systems allocate several copies (replicas) of
the object been uploaded, on the different devices that
make up the cluster of disks. For instance, let us assume
that a medical image of 1 GB is uploaded. Normally the
system takes two additional copies, and finally, three in-
stances are allocated on three different devices. The inten-
tion of data redundancy is to guarantee that even if various
storage devices go out of service, with a good probability,

there will be a device that remains available. Chances
improve with a bigger number of copies of the same ob-
ject. Nevertheless, the price to pay is the effective overall
storage capacity. In our example, we say that each object
occupies 300% of its original size, in storage capacity. In
other words, it reduces the initial raw capacity to 1/3. In
contrast, Babel uses a coding technique known as the
IDA. Let O be an object to be stored, which occupies
|O| bytes. Using IDA, O is transformed into n objects
called dispersals, each of size |O|/m. O can be recovered
provided that any m out of n dispersals remain available.
In this case, the object occupies n/m × 100% of its original
size and it is possible to tolerate the absence of any n-m
storage devices. Compared with the initial example, we
can transform the same object into n = 5 dispersals (for
instance), each of size |O|/3; therefore, we produce an
excess of information equal to (5/3) × 100% (vs 300%
of the initial approach), and even if we lose any 2 (=5-3)
of them (Fig. 2), it will be possible to recover the original
object. Using IDA, the effective capacity is 3/5 of the raw
capacity (vs 1/3 of the initial approach). Our current im-
plementation of IDA achieves processing times that are
similar to those observed in replica-based systems.
Nevertheless, considering different scenarios, we decided
to accommodate replication and IDA to offer alternatives
to fit the requirements of different applications.

2. Data placement schemes (dps) must be designed consid-
ering the number of data units produced by the redundan-
cy mechanism, herein referred to as Bblocks.^ Besides,
any pair of blocks resulting from the same redundancy
operation must be allocated on two different storage de-
vices. Otherwise, the failure of this very device could
compromise the availability of redundant information
and, therefore, the recovery of the initial object.

A data placement scheme is required to answer a very
simple question: what is the storage device in charge of a
given block? This question is issued at different moments
during the block’s lifetime, (i) the first time it is uploaded,
(ii) every time it is retrieved. Nevertheless, a distributed
system is a dynamic entity whose components may
change over time. Indeed, there is a third condition to
invoke the dps, (iii) when a new storage device has been
incorporated either to replace a faulty one, or to scale up
the overall system capacity. On this last circumstance, the
dps helps the system to recover its load balance. A dps
builds a link between each block and the storage device
where it is allocated. In our solution, this link is calculated
each time that it is required, based on a fixed attribute of
the block, that we call its signature (such as its name, or its
date of creation). This attribute is introduced to a given
hash function that returns a position on a virtual address
space. In turn, the virtual space is partitioned into parcels,
and each parcel is assigned to a different device.
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One of the key design principles in object storage systems is
the decoupling between data and metadata. The former are
redundantly stored at the cluster of disks, while the latter cor-
respond to a replicated database in charge of the system servers

also known as proxies. This decision is the base on which
scalability is achieved: data may be reallocated over time, but
the information required to retrieve this data (i.e., the metadata)
remains always at the same places. Notice that a redundant set
of proxies prevents bottlenecks, but mainly introduce redun-
dant functions that build fault-tolerance. Nevertheless, they
also imply a potential inconsistency on the replicated informa-
tion that each server has recorded. Also, as the load balance
procedure is invoked, metadata may become out of date. The
consistency of a replicated DB has been guaranteed by means
of a middleware that enforces the updating of any DB replica,
even if the corresponding server experiences temporal failures.
This means that thanks to its redundant design, Babel is a
dependable system that remains in full operation even when
some of its components are degraded.

The Implementation Details
of the Communication Interface

Babel as a Storage Component of a PACS

A picture archiving and communication system (PACS) is an
integrated medical image management system, designed to
replace the film hardcopy by digital images. It consists of
medical image data acquisition, storage, and display compo-
nents, all integrated into a high-performance network [22].

Fig. 1 The Babel Storage System consists of a set of machines with storage and processing capabilities, connected through a local network. Babel
customers perceive only one machine, called a coordinator or proxy, which dispatches their requests for file storage and retrieval

Fig. 2 Example of redundancy using IDA, a file is transformed into five
dispersals and only three are needed to rebuild it again
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The major components in PACS consist of an image and
data acquisition gateway, a PACS server and archive, and
several display workstations [26]. The PACS server is respon-
sible for storage, retrieval, and clustering of multimodality
images, as well as the access to the database through security
mechanisms.

Digital Imaging and Communications in Medicine
(DICOM) is the standard used in PACS systems for produc-
ing, storing, displaying, processing, retrieving, querying, and
printing medical images and its associated information.

DICOM enables the integration of scanners, servers, work-
stations, printers, network hardware, and storage devices from
multiple suppliers. It includes a file format definition, contain-
ing image and the patient’s data, as well as communications
rules that use the TCP/IP suite to exchange information be-
tween two systems or AE (Application Entities) [23]. The
different devices that make part of a PACS must have
DICOM conformance statements to describe the service clas-
ses that they support. The images, reports, and the patient’s
data represent data units which are called information object
definitions (IODs).

A PACS should be able to support several simultaneous
clients, either connected by means of a local area network or
by a wide area network, in order to exchange digital images,
regardless of the place where its services are required [26].

There are PACS schemes that do not offer a whole scheme
of security (Manufacturer’s Image Acquisition Device
Network), database backups (field service engineers external
task) and secondary storage servers [26], or any type of busi-
ness continuity plans, so that under critical circumstances,
information recovery may require considerable time-
consuming processing, or even manual migration from the
archived image data. Also to improve the efficiency, effective-
ness, and safety of electronic health systems, it is necessary to
incorporate the recommendations of the HIPAA (Health
Insurance portability and Accountability Act of 1996) [27]
associated with patient data privacy [28] taking into ac-
count that in the early PACS design, the HIPAA recommen-
dations were not considered.

The DICOM standard is strongly oriented to the fulfill-
ment of the image management procedures. Therefore, de-
signers have sufficient leeway to decide the technologies
that support each of the critical procedures. This implies
that some recovery procedures, though available, might not
be fully automatized (or optimized). Image preservation is
the so-called core business of any PACS. Nevertheless, the
amount of information to be preserved imposes a structure
that divides the storage capabilities in two main categories:
primary and secondary. Primary storage is where studies
are initially allocated; it is required from these devices to
offer small transfer latency. In contrast, secondary storage
is the support of the long-term archiving. These devices
must be able to accommodate a massive volume of studies.

Depending on the storage policies fixed by the orga-
nization, studies migrate from the primary to the sec-
ondary at some point of their lifetimes. This feature
prevents the primary from being overloaded, limits its
size, and allows the usage of solid state devices, for
instance, which have very low latencies, but do not
offer big capabilities. We propose the usage of Babel
as an alternative to secondary storage. In our solution,
each study that is received at the primary server is au-
tomatically backed up at Babel in a transparent way.
Also, the catalog that describes the collection (logs
and metadata from the PACS) is regularly backed up,
enabling disaster recovery procedures. Should a study
that has been eliminated from the primary server is re-
quired, it will be automatically recovered from Babel in
a transparent way.

We call this new organization Bthe closed library model,^
because, as it happens in some libraries, users are not allowed
to directly interact with the entire collection which remains
closed for them (for security issues). Instead, there is an au-
thorized clerk that stores and retrieves any document from the
shelves. We built an automatic clerk, which is the only autho-
rized to interact with the library of Babel.

We should emphasize that we built an interface that
connects the PACS primary storage with Babel, as the
secondary storage. At the PACS side, according to the
DICOM standard, there must be a log that supports any
possible audit and the same happens on the side of
Babel (and the information recorded on each side is
complementary). Although DICOM does not require it
in a compulsory way, the architecture of Babel allows
an encryption or ciphering stage before storing objects,
but we did not consider it necessary because all the
objects are fragmented and encoded before being saved.

On the other hand, we want to underline that, according to
INR regulations, we developed the initial interface between a
substitute PACS and Babel. In this stage, we also tested the
upload and download speeds that support image transfers
from both sides. Results show that we can fully migrate the
secondary storage from its current server to Babel within a
couple of months. In the second part of our project, both
storage systems are working in parallel. We plan to shut down
the commercial server, at the end of its lifetime, when Babel
will have proved to be completely compatible with the INR
requirements.

We built a test PACS prototype (storage server com-
ponent) that supports a subset of the services described
according to the DICOM specifications (Figs. 3 and 4).
Our design is based on the PixelMed [29] Java DICOM
toolkit, which is a set of free/libre and open source
libraries implementing code for reading and creating da-
ta, network and file support, object database manage-
ment, display of directories, and images.
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This prototype server is structured having the following
layers:

1. DICOM communications: provides a normalized infor-
mation exchange between AEs (PixelMed libraries).

2. DICOM services: inherits functionalities from the afore-
mentioned layer and extends these capabilities, to support
the hypertext terminal protocol (http); it also implements a
database interface to support a connection with a database
in order to control image identification.

3. DICOM storage: recognizes the normalized database
scheme, including the patient’s data, studies, series,
and images. It is important to mention that this lay-
er records a file-fingerprint granted by Babel, corre-
sponding to each instance unique identifier (UID) of
a SOP (Service Object Pair).

The storage server contains a database to store IOD
datasets; it also offers four DICOM services: storage
(StorageSCP), query (QuerySCU), retrieval (RetrieveSCP),
and verification (EchoSCP), in order to support information
exchange with an AE (DICOMClient) (Fig. 3).

When an AE (DICOMClient) requires storing an IOD, the
storage server extracts the DICOM dataset from the IOD and
records these properties in a database according to a normal-
ized structure. Next, the server contacts Babel’s proxy and
submits the IOD. When this operation is successfully accom-
plished, the proxy replies with the ID that has granted to the
IOD just stored. Then, the server updates its database

attaching the ID to the information already recorded,
concerning the IOD.

In the short term, the PACS prototype will be replaced by
the PACSINR, which is a system in production. Nevertheless,
according to the design principles that we settle, the interface
obeys a well-defined pattern and a standard protocol that al-
lows a smooth transition to the operational stage. The interface
was developed in the Java language, based on the domain
model (Fig. 5) which is a well-known resource from software
engineering. Next, we defined a temporary buffer in which the
PACSINR simultaneously stores a copy of the studies allocat-
ed at its primary server. Finally, we developed a component
that verifies the status of the buffer and automatically backs up
in Babel, each new study that is detected.

The PACSINR-Babel interface performs several tasks, in-
cluding file exchange, as well as file system analysis to deter-
mine DICOM images migration (data life cycle management).
It also offers a web GUI (graphical user interface) (Fig. 6). The
figure shows the main functional requirements of the inter-
face. In the first instance, the administrator is signed in and
executes the use case DataLifeCycleManagement, which ex-
tends the three basic suboperations:

1. FileSystemManagement. Provides mechanisms to man-
age (create, monitor, and update) the file systems where
the PACS server stores the DICOM images.

2. RulesManagement. Provides automated file system poli-
cies for file management (creation, updating, and delet-
ing), including policies for image size, creation dates,

Fig. 3 Deployment diagram: the Babel Storage System is the main
storage repository it supports REST, WEBDAV, and FTP
communications protocols; the PACS prototype supports DICOM
services (Storage, Query, Retrieval) to manage medical images; the

PACS-Babel interface is responsible for medical images exchanging
between the source PACS local file system and Babel, via REST-ful
services
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Fig. 4 PACSINR-Babel software architecture. The deployment diagram shows the general components of the proposal. The interface has access only to
file systems where medical images are stored, and according to a set of rules, images are sent to Babel using RESTweb services

Fig. 5 Design model of the PACSINR-Babel communication interface,
extends an MVC architectural style. The model is supported with
dependency injection pattern and facade, the controller is supported

with a REST-ful implementation, and the view is supported with a finite
state machine (FSM). This proposal facilitates the maintenance of the
architecture and decouples the dependencies between components
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modalities (according to DICOM), as well as free space
management.

3. DataLifeCycleExecution. This use case is responsible for
automatically migrate target files, according to the defined
migration policies. It also manages file systems utilization
by automatically moving DICOM images from the prima-
ry file systems to Babel. Should the operation be success-
ful, Babel returns a unique file identifier (UFID) for each
DICOM image stored. This UFID is recorded in a binna-
cle (a database table), being the only way to access the
image.

Table 1 shows the time it takes to store a study for each
supported modality at the PACSINR. Notice that, depending
on the type of study, it might include several frames; therefore,
the total amount of information can be estimated multiplying
the individual image size, times the number of frames includ-
ed on the given modality. It is also worth considering that
storage time does not only include communications and writ-
ing operations, but it might also perform transactions on a
database using the DICOM Query/Retrieve service. This in-
troduces a higher variability that explains the difference on
service times between study 2 and study 3. This table can be
understood as a sample (or snapshot) that was taken during the
rush hour at INR network. In addition, the areas where the
modalities come from do not necessarily belong to the same
network segment where the storage server is connected. The
last column shows the average throughput during the corre-
sponding storage operation, which at the most demanding
moment (in study 2) achieved 26.74 Mbps. In contrast, the
link to Babel offers a speed of 185 Mbps that can easily ac-
commodate the requirements of the INR. Our preliminary

conclusion is that neither the architecture of our interface,
nor the speed that supports the link, limit the adoption of
Babel as an alternative for secondary storage.

The PACSINR-Babel Interface Architecture

The communication interface design is structured accord-
ing to the Model-View-Controller (MVC) architectural
style as it facilitates re-usability due to low coupling (sep-
arates application data, user interface, and control logic)
between pattern elements. The model layer implementation
is developed through a generic service class; this class en-
ables the CRUD (Create, Read, Update, and Delete) data-
base operations with the support of the dependency injec-
tion and facade patterns. In turn, the DAOSManager class
handles the concrete classes through beans (configuration
file in XML format) to declare the actual dependencies. The
controller layer implementation is based on REST-ful ser-
vices; it supports the client in charge of the interface man-
agement and uses an API that automatically sends to Babel
all the DICOM images that are initially stored in a pre-
configured file system. Finally, the client layer handles
the mechanisms to show the views related to the role based
access control. It is implemented using a finite state ma-
chine (FSM) that describes the navigation between views
based on a descriptor relating the actions selected by a giv-
en user (Fig. 8).

Dynamic Behavior

To understand the file monitoring process, it is necessary to
use another type of diagram where it is captured the way a

Fig. 6 Data life cycle management use case diagram. Only the
administrator is allowed to execute the described operations for the file
systems through the established rules. The diagram only shows this

scenario, but the interface has the functionality to create users with
different access profiles, provides REST-ful services, and manages the
GUI through a finite state machine (FSM)
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process evolves through time. Figure 7 introduces a se-
quence diagram. Initially, the administrator issues a login
request to the system. Next, the system validates the request
and identifies the user profile. With this information, the
client settles the views allowed to the corresponding role,
based on a FSM.

The most important operations that the administrator
performs are file system configuration and updating, as

well as the file exchanging policies that rule the image
migration between the PACS server and Babel.

Based on the configured policies, the BfileSystemMonitor^
class uses a thread to manage all the operations related to file
migration. The coupled systems (i.e., PACS and Babel) ex-
change files invoking REST services which are implemented
in the API BRestCl ien tCont ro l le r.^ In turn , the
BDAOSManager^ class instantiates the specialized facade

Table 1 Time it takes to store a
study for each supported modality
at the PACSINR Study Modality

Image size
(KB)

Number of
frames

Study
size

Storage
time

Average
throughput

1 TC 512 3420 1.69 GB 10.13 min 2.84 Mbps

2 RX 22,423 7 153 MB 5.72 s 26.74 Mbps

3 MR 255–512 502 126 MB 2.19 min 0.96 Mbps

4 US 541 9 4.74 MB 4.84 s 0.97 Mbps

5 MN 3393 9 29.8 MB 4.86 s 6.13 Mbps

Fig. 7 The sequence diagram shows the interaction between objects at
runtime. The key elements of the architecture are described in the
following way: the administrator issues a login request to the system,
which identifies his/her user role and the corresponding finite state
machine supporting the allowed navigation rules. When the

administrator has been recognized, the system allows him/her to add,
delete, or update the policies defining DICOM images exchange
between the PACSINR and Babel. All operations are registered in a
database for security, traceability, and file recovery
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according to the requested service, thus hiding the operations
that are performed on the database (preserving loose coupling).

User Interface Management, Client Side

The view repository is hosted on the server side (Fig. 8,
deployment). When a user issues a login request, he\she also
submits his\her credentials defining a profile and a given role
supported by a set of navigation rules. In turn, these rules are
described using a FSM. Upon starting, the system loads a
default FSM specification, with a reduced set of supported
instructions (BLog in^ and BSign Up^ states only). Once a
user selects a particular login option, the system validates
the user role and configures the FSM according to the corre-
sponding profile (root, super user, or AET). This design deci-
sion aims to facilitate the implementation of an independent
GUI, regardless of platform or framework, since the file views
and the FSM itself are specified in an XML format.
Accordingly, each state contains a file view, the actions trig-
gered by a user selection, the associated RESTservice, and the
new state. The right side of Fig. 8 includes an excerpt of the
partial FSM; it shows a state chart and the reactions upon a
user login request.

Discussion

Health providers increasingly rely on medical imaging instru-
ments, such as ultrasound (US), magnetic resonance (MR),
computed tomography (CT), positron emission tomography
(PET), endoscopy (ES), and computed radiography (CR), to
provide quality care to patients. Within this context, a PACS is
normally deployedwithin the hospitals’ protected internal net-
work. However, the lack of scalability and high-level disaster

recovery provisions involve significant risks and costs for
onsite systems. These systems usually generate a huge amount
of data, which implies an increasing stress on the hospitals’
computing, storage, and network infrastructures. Although
many concerns exist about security, privacy, and liability is-
sues involving highly sensitive medical information, external
storage may represent a promising approach that can be
regarded as the first step towards a private cloud, where all
stakeholders may profit from a shared infrastructure.

As online PACS storage server requires more storage
space, efficient storage strategies are becoming a key compo-
nent in healthcare informatics. However, these strategies can
be costly to manage and complex to access. The PACSINR-
Babel interface (Fig. 6) simplifies management procedures for
dependable archiving (redundant, highly available, and se-
cure) which, from the PACS server perspective, perceive
Babel as a part of a local file system.

In turn, Babel is a large-scale, highly dependable, software-
defined, storage system that can be considered as a LEGO-
type family of solutions, this means that it is a hardware-
agnostic system that allows IT managers the possibility to
settle a trade-off between price and performance, depending
on their particular priorities. It has been designed to address
three basic non-functional requirements that provide the foun-
dations of a long-lasting system: (1) reliability, (2) scalability,
and (3) service times. In addition, it supports a standardized
set of communications protocols which guarantees
interoperability.

Within this context, this paper shows the coupling be-
tween the PACSINR (a system in production) and an in-
stance of Babel, by means of a standard web service. This
interface immediately extends the value of an onsite central
storage to external locations. The interface caches the active
datasets, which means that application entities have imme-
diate access to this information. Additionally, management
is based on a web centralized model, which ensures full data
consistency and solves data integrity issues on site. In other
words, the administrators have the ability to control all file
access policies and hierarchies that allow the growth of a
secure access model.

Conclusion

In this paper, we described the design of a communication
interface between a PACS and a massive storage system. In
short, the main contributions of this work are

& The representation of the proposal is done in the UML
(Unified Modeling Language), which facilitates its imple-
mentation in any programming language.

& The structure of the model (Fig. 6), based on multi-tier
layers, supports the development of independent entitiesFig. 8 Navigability rules definition and state chart diagram
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each offering a well-defined service (JPAEntities,
DAOInterfaces, DAOImplementation, CRUDRepository,
RESTservices, BabelServices, etc.). This design principle,
also known as Bcomponent loose coupling,^ prevents the
propagation of errors when layers are being updated.

& The system is extensible, offering an interface for building
new services to implement new functions (model and
views are decoupled).

& Our proposal, on one hand, tries to provide an alter-
native to PACS storage self-management by the def-
inition of storage automated mechanisms between
both systems and, on the other hand, to implement
the solution which allows creating an auxiliary sys-
tem that facilitates the migration processes (PACS
updates or disaster recovery) of medical images, re-
gardless of libraries or third-party systems.

From a broad perspective, we have developed a new
model that can be employed to manage any type of
cataloged collection. This design is mainly focused on
high availability and scalability. We have considered that
the amount of information to be preserved imposes a
structure that divides the storage capabilities in two main
categories: primary and secondary servers. We propose
the usage of Babel as an alternative to secondary storage.
In our model, each document that is received at the pri-
mary server is automatically backed up at Babel in a
transparent way. Also, the catalog that describes the col-
lection (logs and metadata from the PACS) is regularly
backed up, enabling disaster recovery procedures.
Should a document that has been eliminated from the
primary server is required, it will be automatically recov-
ered from Babel in a transparent way. We call this orga-
nization Bthe closed library model.^ It is worth pointing
that both storage subsystems may evolve independently
from each other, without compromising availability,
which offers IT managers a long-lasting profit from the
involved infrastructure.

The future work is oriented along two main directions: (1)
run stress tests to evaluate latency times to retrieve historical
studies and compare them to a trading application such as
EMC Centera. (2) Link of two health institutes, to share med-
ical images based on Babel as a private storage cloud.
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