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Abstract

In drug discovery, protonation states and tautomerization are easily overlooked. Through a Merck–

Rutgers collaboration, this paper re-examined the initial settings and preparations for the 

Thermodynamic Integration (TI) calculation in AMBER Free-Energy Workflows, demonstrating 

the value of careful consideration of ligand protonation and tautomer state. Finally, promising 

results comparing AMBER TI and Schrödinger FEP+ are shown that should encourage others to 

explore the value of TI in routine Structure-based Drug Design.
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Introduction

Molecular modelling, especially free energy calculations, are widely implemented in 

predicting the protein–ligand binding affinities or at least ranking the order of the candidates 

in small molecule structure-based drug design (SBDD). Structure-based, in silico binding 

affinity prediction is playing a more and more important role in both pre-lead and lead 

optimization [1–6]. Rigorous alchemical methods such as Thermodynamic Integration (TI) 

and Free Energy Perturbation (FEP) have shown considerable success in making accurate 

predictions [1, 2, 4, 5]. However, the application of such approaches in structure-based 

virtual screening is obstructed for the non-expert users by the prerequisite of knowledge of 

the methods and parameter settings and reduced interest for experienced users due to 

tedious, time-consuming and error-prone setup.
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The increasing demand for fast and accurate computational predictions draws attention to 

automate these free energy calculation methods. Several commercial and academic 

workflows have been developed to simplify the setups in recent years. Schrödinger MCPRO

+ is a program built upon the MCPRO [7] application supporting lead optimization. It 

automates the setup of FEP calculation using Monte Carlo sampling. Schrödinger FEP+ [2] 

is a program which automates the setup of FEP using molecular dynamics (MD) 

simulations. Another tool FESetup [8] supports the setup of alchemical free energy such as 

TI and FEP utilizing Maximum Common Substructure Search (MCSS) mapping, and post-

processing methods like Molecular Mechanics-Generalized Born Surface Area (MM-

GBSA), Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA), Linear 

Interaction Energy (LIE) simulations for modelling packages-AMBER, GROMACS, Sire 

and NAMD. LOMAP [9] is a tool to systematically plan relative binding free energy 

calculations. It optimizes the ligand pair transformation maps by considering the structural 

similarity, properly treating rings and net charges, which reduce the error accumulation. 

Combining with recent developed python tools alchemical-setup.py [10] and alchemical-

analysis.py [11], it provides a full tool sets for planning, setting up and analyzing relative 

free energy calculations in GROMACS. The PMX software [12] provides the setup of 

alchemical free energy calculations to determine binding free energy or protein stability 

resulting from amino acid mutation. The Binding Affinity Calculator (BAC) [13] automates 

the MM-PBSA calculations in AMBER for protein–ligand binding free energy predictions 

encompassing the entropic contribution from normal-mode analysis. The AMBER FEW 

program [14] provides command-line, multistep workflows to automate four scoring 

methods, MM-GBSA, MM-PBSA, LIE and TI and supports both protein–ligand [14] and 

membrane protein–ligand systems [15]. AMBER FEW program significantly reduces the 

amount of time to setup the calculations. Through a Merck–Rutgers collaboration, an in-

house high quality free energy calculation platform has been built upon AMBER FEW at 

Merck, which not only provides access to the well-developed SBDD computational 

predictions of MMGBSA, MMPBSA, LIE and TI, but also facilitates adding new free 

energy calculations modules as they arise.

Protonation states and tautomerization are easily overlooked in drug discovery. In this work, 

we re-examined the same data set in the FEW study [14], scrutinized various parameter 

settings, and investigated the effect of correct protonation and suitable tautomerization on 

the calculated ligand binding affinity by using the TI workflow in AMBER FEW. To our 

knowledge, there is currently no comparison study between academic workflow AMBER 

FEW with commercial software Schrodinger FEP+ [2], an arising accurate prediction tool in 

industry and showing increasing success in drug design. Furthermore, we compared the 

performance of TI calculations using AMBER FEW with Schrödinger FEP calculations. We 

hope the current study would timely encourage the application of AMBER FEW TI 

workflow in structure-based drug design.

Hu et al. Page 2

J Comput Aided Mol Des. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Structure preparation of FXa data set

The structures of ligand and receptor were carefully prepared based on the high resolution 

Factor Xa–L51a crystal complex structure (PDB code: 2RA0, resolution: 2.3Å) with no 

missing residues. The structure of Factor Xa was first separated from the crystal complex 

with all crystallographic water molecules. Back mutation was modeled for L88V mutation in 

the L chain. N-methyl-capping group (NME) was added to the C-termini of both chain A 

and L, while Acetyl-capping group (ACE) was only added to the N-termini of the chain L 

which is in the exterior of the protein. The missing but structurally important Ca2+ and Na+ 

ions were placed and aligned with PDB structure 2W26. The structure of L51a in the crystal 

complex structure was used as the starting point to build models for ligand L51b–L51k. For 

details of the system preparation, please refer to Homeyer and Gohlke’s work in the Ref. 

[14]. The prepared structures were used as input structures for FEW and Schrödinger FEP+ 

workflows after checking the correctness by visual inspection on the assignment of residue 

protonation states, rotamers, disulfide bond connections, ions, termini, ligand atom types and 

starting conformations. The apparent pKa prediction (pKaapp) from the ACD Labs/pKa DB 

(v.11.02, Advanced Chemistry Development, Inc., Toronto, Ontario, Canada) is based on 

experimental data and is widely accepted as providing quality pKa predictions. We estimated 

the protonated state structures of the inhibitors using the ACD Labs/pKa DB calculation 

algorithm [16, 17] (see Table 1), leading to significant changes from the neutral state of the 

inhibitors exclusively used in the original FEW paper [14]. The preferred, protonated input 

structures of receptor and inhibitors were used in comparisons of the FEP+ and AMBER TI 

predictions later.

AMBER FEW TI calculations

The AMBER FEW thermodynamic integration approach was used to calculate relative 

binding free energies using the AMBER14 suite [19]. Nine ligand transformations based on 

the structural similarity score in the Ref. [14] were preserved in this work. Within the 

workflow, atom types of the inhibitors were automatically assigned from General Amber 

Force Field (GAFF) [20], atomic partial charges were prepared using the AM1-BCC 

approach [21, 22], and the relative binding free energies (ΔΔGbind) between two structurally 

similar ligands was determined by the dual topology, soft-core approach [23]. For each 

transformation, the alchemical space was divided into nine λ-values from 0.1 to 0.9 with Δλ 
= 0.1. Simulations at the endpoints (λ = 0 and λ = 1) were not conducted, as recommended 

for the soft-core approach in AMBER. A default of 5 ns simulation length was run in each of 

the nine λ windows. Both of the ff99SB and ff12SB force fields were employed to calculate 

Δ3ΔGbind of the original data sets, and the ff12SB were applied as the default force field. 

The convergence was repeatedly measured every 250 ps, and the simulation at the given λ 
step will be terminated once it is below the defined threshold.
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ΔA = ∫
0

1 ∂ℋ x, px; λ
∂λ

λ
dλ (1)

The differences in the free energies for the complex and ligand transformation were 

calculated according to Eq. (1), respectively. Binding free energy was computed by 

numerical integration employing the calculation approaches with and without linear 

extrapolation of dV/dλ to the physical end states at λ = 0 and 1.

ΔΔGbind = ΔGcomplex − ΔGligand (2)

Since the same receptor was used, by taking the difference of these values, Eq. (2) gives the 

relative binding free energy. (Details of the TI setup protocol and determination of the ligand 

pairs for the transformation simulations are described in Ref. [14]).

Schrödinger FEP calculations

The relative binding free energies were estimated using the Desmond FEP+ module in 

Schrödinger Maestro Suite 2015 [24]. The OPLS2005 force field was used to describe the 

protein and ligand. The setup of the FEP [25] calculation was automated by the FEP+ 

module, in which the CM1A-BCC method was used to prepare ligand atomic partial charges 

[26]. Unlike the AMBER TI workflow, the Desmond FEP+ has been implemented on a 

graphics processing unit (GPU) platform. A FEP/REST (free energy perturbation/replica 

exchange with solute tempering) algorithm [27, 28] was employed to accelerate 

conformational sampling by effectively locally heating the binding region [28]. The ligand 

transformations were determined by using the FEP Mapper module based on the similarity 

scores. The direct transformations (no intermediate ligands involved) which contain the 

same ligand pairs as the TI calculations were selected for the final FEP calculations. Cycle 

closure calculations [29] were used for error analysis. Details of the method were described 

in Ref. [2].

Results and discussion

Re-examination of AMBER force fields, convergence methods and linear extrapolation

In the showcase example of Homeyer and Gohlke’s work [14], the AMBER ff99SB force 

field was used to conduct the TI calculations for the ligands in their neutral states using 

convergence method 1 (details of the convergence methods are described in below). By 

taking the FEW TI workflow approach, we repeated the TI calculations with the same 

settings and additionally carried out calculations with the newer ff12SB force field. Similar 

TI ΔΔG predictions were generated as the Ref. [14] using the ff99SB force field with a 

correlation R2 = 0.88 to the result with linear extrapolation at the endpoints (see data in 

Table S1, Fig. S1). Compared to the AMBER ff99SB, the ff12SB force field markedly 

improved the correlation of the relative binding free energy with the experimental result 
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regardless of which convergence method was used, shown in Table 2. The ff12SB force field 

was thereafter used as the default.

Two approaches were employed to check the convergence of the dV/dλ values as 

implemented in FEW, where method 1 evaluated the difference in the standard error of the 

mean dV/dλ values [23] with error limit 0.01 kcal/mol in two successive checking steps, and 

method 2 examined the deviation of the true mean of dV/dλ from the sample mean by using 

the Student’s distribution and a confidence limit of 95 % with error limit 0.2 kcal/mol. We 

found method 2 converged slightly more slowly than method 1. However, the differences in 

the uncertainties of the calculated ΔΔGbind values are trivial, and there is almost no 

difference in the overall correlations to the experimental result (details of the result are 

shown Table S1).

Consistent with the finding in the Ref. [14], the ΔΔG predictions without extrapolation at the 

end states using both convergence methods were markedly improved over the linear 

extrapolation result, which is commonly understood by the nonlinear dV/dλ curves.

Improvement of AMBER TI predictions with ligand protonation state and tautomerization 
correction

In drug discovery, protonation states and tautomerization are easily overlooked. By using the 

commonly applied apparent pKa prediction tool ACD Labs/pKa DB, of which prediction 

algorithm [16, 17] is based on experimental data and is widely accepted as providing quality 

pKa predictions, we determined the protonation states of each ligand at pH = 7.4 (data are 

shown in Table 1). TI predictions of the relative binding affinities of charged ligand 

transformations are listed in Table S2. Generally, a thermodynamically stable tautomer is 

favored at equilibrium. Experimentally, ligand L51b is about 11 fold more potent than L51a, 

resulting in a −1.45 kcal/mol experimental ΔΔG, while the calculation suggested a +1.52 

kcal/mol ΔΔG. Quantum Mechanics calculations indicated the tautomer state of ligand L51b 

is preferred. By considering the alternative tautomer of ligand L51b (referred as ligand 

L51bt), we found that the predicted relative binding affinity of L51bt to L51a was 

significantly improved and ΔΔG was now −1.17 kcal/mol. The rank was false predicted by 

using L51b structure, where 2.23 kcal/mol (3.73 kcal/mol by using ff99SB) was found by 

using neutral state of the inhibitors, and 1.52 kcal/mol in charged state; by using the L51bt 

structure, the ΔΔGbind reduced to 0.16 kcal/mol in neutral state, and moved to −1.17 

kcal/mol in charged state which captured the correct rank in a tolerated error.

The effect on overall correlations of AMBER TI predicted relative binding affinities are 

shown in Table 2, demonstrating the importance of incorporating ligand state at pH = 7.4 

and tautomerization correction. After correcting the ligand structures, the correlation R2 of 

AMBER TI prediction was improved remarkably from 0.41 to 0.63 (up to 0.73 without 

linear extrapolation), and the root mean squared error (RMSE) was reduced to less than 1.0 

kcal/-mol within the experimental error (shown in Fig. 1).

Schrödinger FEP prediction

By taking the Schrödinger FEP+ workflow using Desmond, we conducted the FEP 

calculations for the ligand transformations determined by the FEP Mapper tool. The 
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uncorrected FEP-predicted relative binding affinities and cycle closure corrected energetics 

for the ligands in both neutral state and charged state are shown in Table S3. By fitting to the 

experimental results, a correlation coefficient R2 of 0.38 was found for the neutral ligand 

pair transformations and 0.49 for the charged ligand pairs. Interestingly, the cycle closure 

correction contributed no improvement to the correlation.

Comparison of Schrödinger FEP and AMBER TI workflows

By taking the same input structures, the calculation results by using Schrödinger FEP 

(corrected predictions) were highly correlated with the AMBER TI predictions (with linear 

extrapolation). They are almost equivalent with a correlation R2 = 0.80, RMSE = 0.64 

kcal/mol at neutral state, and R2 = 0.96, RMSE = 0.30 kcal/mol when the charges and 

protonation states are corrected for all the ligands (the correlation of Amber TI and 

Schrödinger FEP are shown in Fig. 2).

The Schrödinger FEP and AMBER TI workflows are then comparable except for the speed: 

for the AMBER TI workflow, it takes approximately 1 week to perform one transformation 

with TI calculation on a state-of-the-art computer cluster using 64 CPU cores (16 cores/

node) per λ window, but it only takes a day or less to complete one Schrödinger FEP 

calculation using 4 GPU cores per transformation. GPU supported AMBER TI module is in 

active development and is expected to be available in the AMBER16 release [30].

Conclusion

Herein, we first repeated the calculation with the same data set as used in the original FEW 

[14] work which led to similar correlation R2 to the experiments. Then, we carefully 

examined the influences of using different force fields and control parameters, and further 

investigated the effect of protonation and tautomerization states on the calculated ligand 

binding affinity. Variation of the convergence methods in AMBER FEW makes negligible 

difference to the correlation of the prediction to experimental data. However, linear 

extrapolation slightly reduced the accuracy of the predictions. As expected, the AMBER 

ff12SB improves the correlation R2 to the experiments from 0.29 to 0.41 (or from 0.35 to 

0.42) compared to the ff99SB force field.

Compared to the published predictions based on Factor X inhibitors in their neutral state, the 

usage of correct protonation states boosted both AMBER TI and Schrödinger FEP, where 

the result R2 correlation was improved up to 0.49 in Schrödinger FEP and 0.73 in AMBER 

TI. Using the right tautomer state significantly reduced the prediction error, and corrected 

the ranking between the example inhibitors transformation (e.g. L51a to L51b).

We further benchmarked the AMBER TI in FEW with the Schrödinger FEP+. To our 

knowledge, this is the first performance comparison of predictions between the AMBER 

FEW with the Schrödinger FEP+. Although the AMBER TI calculation is relatively slow, 

the accuracy of both methods is almost equivalent. It proves that the AMBER TI method can 

be valuable for accurately determining relative binding affinity of chemically similar, 

pharmaceutical-like compounds.
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Fig. 1. 
Correlation of AMBER TI relative binding affinity predictions with convergence method 2 

and no linear extrapolation coupled to the experimental results (The left panel shows the TI 

calculations using ff99SB force field with original neutral ligands, and the right panel shows 

the TI calculations using ff12SB force field with corrected charged ligands and tautomer)
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Fig. 2. 
Correlation of AMBER FEW TI prediction with Schrödinger FEP for the relative binding 

affinities of ligand transformations at neutral state (left panel) and charged state (right panel) 
(Note Both plots showed the AMBER TI result using extrapolation and convergence method 

1. Similar correlations were found by using no extrapolation or convergence method 2, 

shown in Fig. S2)
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