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Abstract

Head motion estimates in functional magnetic resonance imaging (fMRI) scans appear 

qualitatively different with sub-second image sampling rates compared to the multi-second 

sampling rates common in the past. Whereas formerly the head appeared still for much of a scan 

with brief excursions from baseline, the head now appears to be in constant motion, and motion 

estimates often seem to divulge little information about what is happening in a scan. This constant 

motion has been attributed to respiratory oscillations that do not alias at faster sampling rates, and 

investigators are divided on the extent to which such motion is “real” motion or only “apparent” 

pseudomotion. Some investigators have abandoned the use of motion estimates entirely due to 

these considerations. Here we investigate the properties of motion in several fMRI datasets 

sampled at rates between 720–1160 ms, and describe 5 distinct kinds of respiratory motion: 1) 

constant real respiratory motion in the form of head nodding most evident in vertical position and 

pitch, which can be very large; 2) constant pseudomotion at the same respiratory rate as real 

motion, occurring only in the phase encode direction; 3) punctate real motions occurring at times 

of very deep breaths; 4) a low-frequency pseudomotion in only the phase encode direction at and 

after very deep breaths; 5) slow modulation of vertical and anterior-posterior head position by the 

respiratory envelope. We reformulate motion estimates in light of these considerations and obtain 

good concordance between motion estimates, physiologic records, image quality measures, and 

events evident in the fMRI signals. We demonstrate how variables describing respiration or body 
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habitus separately scale with distinct kinds of head motion. We also note heritable aspects of 

respiration and motion.

Introduction

Head motion causes major signal disruptions in functional magnetic resonance imaging 

(fMRI) data (Caballero-Gaudes and Reynolds, 2017; Friston et al., 1996). Head motion 

causes modeling confounds in task fMRI when it correlates with task design (Barch et al., 

1999; Bullmore et al., 1999), and it clouds interpretation of resting state fMRI studies 

because it adds spatially focal covariance to images (Horien et al., 2018; Satterthwaite et al., 

2017). Though some motion may be voluntary, some is involuntary, arising from head 

nodding during respiratory cycles, head bobbing with cardiac pulsations, or events like 

yawns or sighs or twitches or sneezes, in addition to other factors (Zaitsev et al., 2017). In 

previous decades, when whole-brain fMRI images were typically obtained only every few 

seconds, little could be said about the extent to which various motions reflected various 

physiological or voluntary causes in a typical dataset. However, multi-band accelerations 

now permit much more rapid brain imaging, and sub-second whole-brain acquisitions are 

becoming normative. Such rapid acquisitions are yielding head position estimates 

fundamentally different than prior estimates, as noted by several authors (Glasser et al., 

2018; Power, 2017). Figure 1 illustrates the difference using data from the Brain Genomics 

Superstruct Project (GSP) and the Human Connectome Project (HCP) (Holmes et al., 2015; 

Van Essen et al., 2013). In older datasets like the GSP with multi-second sampling rates it 

was common for the head to appear essentially still for much of the scan, with occasional 

spikes of motion. However, in datasets like the HCP, with sub-second sampling rates, motion 

estimates appear much “noisier”, and in many cases the head appears to be in constant 

motion.

Some authors have attributed this noisy appearance of head motion in fast-repetition-time 

(fast-TR) data to the fact that some physiological cycles no longer alias, in particular 

respiratory cycles (Burgess et al., 2016; Siegel et al., 2017). Breathing can cause the head to 

move, but changes in lung volume can also cause a particular kind of artifact called 

pseudomotion, which manifests as a shift of the brain when the lung expands (Brosch et al., 

2002; Durand et al., 2001; Raj et al., 2001). Some authors have postulated that the HCP data, 

and fast-TR data generally, are substantially contaminated by respiratory pseudomotion and 

have proposed either filters to remove the motion (Fair et al., 2018), or to disregard motion 

estimates entirely and measure “motion” in terms of where denoising strategies intervene in 

the timeseries (Glasser et al., 2018). Because motion of the head is hardly ever measured 

externally, and because respiratory records are also infrequently obtained during scanning, 

there has been little evidence to inform the extent to which motion in fast-TR data is “real” 

or not. However, we recently found that physical restraint of heads by anatomy-specific 

molds reduced head motion amplitude in images, and evidence of motion artifact, and that 

this occurred even in the low-motion portions of scans where only ongoing respiratory 

motions were apparent (Power et al., 2019b). These findings are compatible with a reduction 

in real motion, and are hard to explain by pseudomotion, prompting us to examine the 

sources of motion in fast-TR data more closely.
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In this article we examine scans from several fast-TR datasets and discern five distinct kinds 

of respiratory motion: true constant motion of the head at the respiratory rate, constant 

pseudomotion of the head at the respiratory rate, true intermittent spikes in motion due to 

sighs and yawns, a distinct and very slow form of pseudomotion at the times of sighs and 

yawns, and long-term modulation of head position by respiratory depth. We reformulate 

motion estimates for fast-TR data, and demonstrate how reformulation reveals distinct kinds 

of relationships between motion and respiration and body habitus. Table 1 summarizes the 

major topics and findings of the paper.

Methods

Data

The “900-subject” release of the Human Connectome Project data was obtained, with a 

focus on the following files in each subject:

Four resting state fMRI scans transformed to atlas space (in each subject’s/MNINonLinear/

Results folder): [RUN]=REST1_LR, REST1_RL, REST2_LR, REST2_RL (this order is 

runs 1–4 in the text). rfMRI_[RUN].nii.gz and rfMRI_[RUN]_hp2000_clean.nii.gz scans 

were obtained, representing minimally preprocessed and FIX-ICA-denoised data. For each 

of these scans, the [RUN]_Physio_log.txt and Movement_Regressors_dt.txt files were also 

obtained.

As detailed below, both kinds of images are analyzed to form DVARS measures, since 

DVARS, especially in FIX-ICA-denoised data, has been proposed as a surrogate measure of 

motion. The fMRI signals themselves appear in this paper in only one form: illustrations of 

minimally preprocessed timeseries in “gray plots”, illustrating respiratory effects and motion 

effects.

Structural scans transformed to atlas space were also obtained (in each subject’s/

MNINonLinear/folder): the T1w.nii.gz and the aparc+aseg.nii.gz files, representing the 

anatomical T1-weighted scan and its FreeSurfer segmentation.

Image Processing

The aparc+aseg.nii.gz file for each subject underwent a set of serial erosions within white 

matter and ventricle segments, exactly as in (Power et al., 2017b). Masks of cortical gray 

matter, the cerebellum, and subcortical nuclei were extracted, as were serially eroded layers 

of superficial, deep, and deepest (with respect to distance from gray matter) masks of the 

white matter and ventricles. These masks, together, include all in-brain voxels of these tissue 

types, and are used to extract certain signals and to order signals for “gray plots” (Power, 

2017).

For the purpose of making useful gray plots, because of the considerable thermal noise in 

HCP scans, a within-mask 6 mm FWHM Gaussian kernel was applied to the data using the 

above masks (illustrated for HCP data in (Power, 2017)). This blurring does not mix tissue 

compartments due to the use of masks (other than partial volume effects already inherent to 

the voxels within a mask).
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Parameter processing

Respiratory and cardiac measures: Respiratory belt and pulse oximeter traces 

(sampled at 400 Hz) first underwent visual inspection in their entirety to determine if the 

quality was sufficient for reliable peak detection, since traces are often partially or fully 

corrupted. Only subjects with traces deemed likely to successfully undergo peak detection in 

all runs were analyzed (440 of the original 900 passed this quality control step; traces and 

quality decisions can be seen in the materials of (Power, 2019)1.).

After selection, for respiratory traces, an outlier replacement filter was used to eliminate 

spurious spike artifacts (Matlab command: filloutliers(resp_trace,’linear’,’movmedian’,100)) 

and the traces were then gently blurred to aid peak detection (Matlab command: 

smoothdata(resp_trace,’sgolay’,400)) (a 1-second window for a 400 Hz signal). These 

treated respiratory traces are the ones shown in Figures unless indicated.

Following prior literature, several respiratory measures were derived from the treated 

respiratory belt trace. First, the envelope of the trace over a 10-second window (at 400 Hz) 

was calculated after (Power et al., 2018) (Matlab command: envelope(zscore_resp_trace,

4000,’rms’)). Second, the RV measure, defined as the standard deviation of the treated 

respiratory trace within a 6-second window, was calculated following (Chang and Glover, 

2009) (Matlab command: movstd(zscore_resp_trace,2400,’endpoints’,’shrink’)). Finally, the 

RVT measure, defined for all peaks as ((peak-prior trough)/(time between peaks)), was 

calculated after (Birn et al., 2006). Peak detection on the trace yielded peaks (and troughs, 

using the inverted trace) for calculations (Matlab command: 

(findpeaks(zscore_resp_trace,’minpeakdistance’,800,’minpeakprominence’,.5)). The 

minimum peak distance presumes breaths occur more than 2 seconds apart. If a peak did not 

have a preceding trough prior to the previous peak, no value was scored at that peak; in other 

words, alternation of peaks and troughs was mandated. This RVT trace reflects the “core” 

calculation of the full RVT algorithm, and its behavior mirrors those of full implementations 

in FSL and AFNI (Power et al., 2019a). All traces and derived measures were visually 

checked to ensure that outliers and abnormalities would not drive results. These 3 measures 

were termed ENV, RV, and RVT in figures.

Data quality measures: The data quality measure DVARS was calculated after (Power et 

al., 2012; Smyser et al., 2010) as the root mean squared value in the brain at each timepoint 

of all voxel timeseries differentiated in time by backwards differences. DVARS by 

convention is 0 at the first timepoint.

Head position and head motion measures: Head position was taken from the 

Movement_Regressors_dt.txt files. These files contain the realignment parameters derived 

by the FSL MCFLIRT command operating on the scanner space images, with trend terms 

removed. In Figures these position parameters are displayed either after subtracting the first 

timepoint value from the timeseries (so that all traces start at zero) or by spreading them on 

the y-axis by adding constants to each trace (so that each individual trace is seen clearly). 

1https://www.jonathanpower.net/2018-glasser-comment.html
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Head motion was represented by Framewise Displacement (FD) measures, following (Power 

et al., 2012), wherein all position measures were differentiated in time by backwards 

differences, rotational measures were converted to arc displacement at 5 cm radius, and the 

sum of the absolute value of these measures was calculated. FD is typically calculated by 

backwards differences to the preceding timepoint (for HCP data, 720 ms prior), but 

historically FD measures using sampling rates of 2–4 seconds were common; for 

comparison to such measures, FD was also calculated by backwards differences over 4 

timepoints (e.g., 4 *720 ms = 2.88 seconds effective sampling rate) where indicated.

Frequency content: At times, the frequency content of certain signals is illustrated, such 

as for respiratory belt traces or for position estimates. Power spectral density estimates were 

generated via Welch’s method (e.g., for a respiratory trace, Matlab command: [pw pf] = 

pwelch(signal,[],[],[],400,’power’)) and are shown on a semilogarithmic scale. All spectra 

were visually checked to ensure correct peak frequency identification.

At times and where indicated, position estimates were filtered to exclude certain frequencies 

using a Butterworth filter (Matlab commands for an example stopband of 0.2–0.5 Hz: TR = 

0.72; nyq = (1/TR)/2; stopband=[0.2 0.5]; Wn = stopband/nyq; filtN = 10; [B,A] = 

butter(filtN,Wn,’stop’); filtposition(:,column) = filtfilt(B,A,position(:,column));). The 

effective length of the filter was about 30 seconds to 1% modulation of impulse response 

functions; a steep drop-off was desired to separate signals spanning 0.10–0.15 Hz from 

signals beginning just under 0.2 Hz. Lower order filters with shorter effective lengths (and 

more gradual roll-offs) should also suffice to produce filtered estimates similar to those in 

this paper.

Accessory data

To examine the generalizability of certain findings, head position estimates from other fast-

TR datasets were examined. Characteristics of those datasets (and the corresponding 

characteristics of the HCP dataset) are provided below.

MyConnectome dataset: The data studied were motion estimates from 84 scans of a single 

adult scanned at rest, with TR = 1160 ms and scan durations of 10 minutes, the exact data 

used in (Laumann et al., 2015; Power, 2017; Power et al., 2017b). These position estimates 

were obtained using the 4dfp tools of Washington University, which yield similar estimates 

to other software packages (Power et al., 2017a). A Siemens 3T Skyra scanner with 32-

channel head coil was used, and the sequence was a multi-band factor 4 EPI sequence with 

TR = 1160 ms, TE = 30 ms, flip angle = 63 degrees, voxel size 2.4 × 2.4 × 2 mm, and AP 

phase encode direction. Respiratory records were not acquired with this dataset.

Cornell Dataset 1: N = 70 adult subjects scanned once at rest on a Siemens Prisma 3T 

scanner using a 32-channel head coil for 5.4 min at rest with AP phase encode direction, TR 

= 766 ms, TE = 34 ms, multi-band factor 8, and 2 mm isotropic voxel sizes. Realignment 

was calculated using AFNI’s 3dvolreg command. These scans have not been previously 

published and were collected with written informed consent from subjects under a protocol 

approved by the Weill Cornell Medicine Institutional Review Board. Respiratory records 

were not provided with this dataset.

Power et al. Page 5

Neuroimage. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cornell Dataset 2: N = 11 pediatric subjects (ages 7–17 years old, mean 13.7) scanned twice 

each at rest for 4.8 min in a Siemens Prisma 3T scanner with 32-channel head coil. 

Sequences used AP phase encode, TR = 800 ms, TE = 30 ms, multi-band factor 6, and 2.4 

mm isotropic voxel sizes. Realignment was calculated using AFNI’s 3dvolreg command. 

These scans are a subset of the data published in (Power et al., 2019b), the “head mold off” 

scans of subjects younger than 18 years old. For the present paper, one additional young 

adult subject was scanned using the same sequence with AP phase encode, then a 

comparable sequence using LR phase encode, the Subject X of Figure S8. The scans were 

collected with written informed consent from parents and assent of pediatric subjects under a 

protocol approved by the Weill Cornell Medicine Institutional Review Board.

HCP dataset: N = 440 young adults scanned 4 times for 14.4 minutes (twice on two days) at 

rest on a modified Siemens Skyra 3T scanner with a 32-channel head coil. Sequences were 

counterbalanced LR/RL phase encode sequences, with TR = 720 ms, TE = 33.1 ms, flip 

angle 52 degrees, multi-band factor 8, and 2 mm isotropic voxels. Realignment was 

calculated using the FSL MCFLIRT command. The data are publicly available, and are 

comprehensively described in (Van Essen et al., 2013).

Estimating motion before image realignment

For 10 subjects of the HCP dataset and 10 sessions of the MyConnectome dataset, 

unprocessed scanner space images were obtained, and the center of mass was calculated in 

each volume, yielding position estimates in the X (left-right), Y (anterior-posterior), and Z 

(superior-inferior) axes.

Results

The important kinds of measures used in this paper are illustrated in Figure 2 for portions of 

three HCP scans. At top in gray are the realignment parameters (shown on 2 mm vertical 

scale) and in red the framewise displacement (FD) motion estimate (also shown on a 2 mm 

scale). The respiratory belt trace is in blue in the third panel. Note the constant zigzags in the 

gray position traces matching visually the frequency seen in the blue respiratory traces. 

DVARS traces before and after FIX-ICA denoising are shown, as are respiratory measures 

derived from the respiratory belt (ENV, RV, and RVT). “DVARS dips” in FIX-ICA-denoised 

images have been proposed as a measure of motion that would be insensitive to 

pseudomotion (Glasser et al., 2018). DVARS spikes in minimally processed data indicate 

that signals are changing abnormally rapidly, and DVARS dips after FIX-ICA denoising 

indicate abnormally little change in signals at those times. The dips are caused by FIX-ICA 

intervening strongly at those timepoints to remove so much variance that unusually little 

variance remains, and the logic of proposing DVARS dips as an index of motion is that FIX-

ICA would intervene so strongly mainly at times of motion. At bottom are the signals of all 

in-brain voxels of the minimally processed image shown as a heat map and ordered by 

anatomical compartment. These scans were chosen to illustrate a “best case” scenario at left, 

where FD and DVARS abnormalities are highly concordant, and then two “worse” scenarios 

at middle and right where there is less concordance between measures. In the middle and 

right scans, there is so much “noise” in the motion estimate that visible step changes in the 
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gray position measures do not necessarily translate into noticeable motion spikes. 

Sometimes these changes in position have no DVARS spike, and sometimes they have a 

spike but no dip. These images encapsulate the uncertainty about what “motion” means in 

fast-TR data. Both constant and punctate motions are seen, but either might simply be 

pseudomotion, since many of the punctate motions (black arrows) are occurring at times of 

brief pauses and/or deep breaths visible in the respiratory traces.

Head position power reflects respiratory power, with additional systematic peaks

We will soon begin to fractionate motions based on their properties, but first it is helpful to 

examine the respiratory properties that are likely to manifest in the motion estimates. 

Breathing assumes a variety of forms within and across scans. Figure 3 illustrates respiratory 

traces from 8 subjects, notable for the variation in frequencies across scans and within scans. 

Many scans exhibit pauses in breathing, changes in the depth of breathing, occasional deep 

breaths, and some breathing patterns simply appear chaotic. Breathing patterns have 

recognizable and reproducible features within subjects. Figure 4A shows the peak 

respiratory frequency for each of the four scans for all 440 subjects studied in this paper. 

Peak frequencies almost entirely fall between 0.2–0.4 Hz, with an average of 0.3 Hz. 

Within-subject variance in peak frequency is 0.018 Hz, much less than the variance across 

the group of 0.055 Hz. A minority of subjects do display quite variable peak frequency 

across scans (the instances with purple stars in Figure 4A are shown in Figure S1). Some 

subjects have very broad spectral peaks reflecting a wide variety of respiratory rates within a 

run. Harmonics are visible in the spectra (i.e., the secondary peaks at twice the fundamental 

frequency in the 2nd-4th panels of Figure 4B). In the examples shown, there is obvious 

similarity of the spectra within individuals, an observation borne out statistically in the entire 

dataset: correlations of the spectra (spanning 0.05–0.6Hz) are r = 0.79 ± 0.15 within subjects 

versus r = 0.44 ± 0.30 across subjects (statistics are mean and std of all within-subject 

spectra correlations (2,640) and of all across-subject spectra correlations (3,093,200); p = 0 

by two-sample t-test). Individual subjects sometimes exhibit characteristic events in multiple 

scans. For example, the top subject of Figure 4B has notable accelerations and decelerations 

in each run (see black ovals), and the third subject has idiosyncratic deep breaths followed 

by strong breathing depth attenuation followed by a “ballooning” pattern in the respiratory 

envelope in each run (black ovals). To the extent that pseudomotion or real motion 

accompany breathing, motion estimates should share many of these properties.

The power spectra of respiratory and position traces contain informative similarities and 

differences (spectra of all subjects can be seen in online movies2). Spectra of all runs are 

shown for 8 individual HCP subjects in Figure 5A, with clear representation of respiratory 

frequencies in the position traces. Additionally, there is a low-frequency peak around 0.10–

0.15 Hz in the position traces that is not present in the respiratory traces (red ovals). When 

power spectra from all runs of all HCP subjects are shown as a heat map, ordered by peak 

respiratory frequency (Figure 5B), three properties are evident. First, the peak frequencies of 

respiration and its harmonics map onto the peak frequencies of position traces. Second, there 

is a position frequency peak around 0.12 Hz in virtually all subjects that is not present in 

2www.jonathanpower.net/2019-respiratory-motion.html
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respiratory traces, corresponding to the red ovals above. Third, there is a position frequency 

peak around 0.55 Hz in virtually all subjects that is not present in respiratory traces. The 

narrowness of the 0.55 Hz peak suggests that it is an artifact, and this will be confirmed 

below, but the 0.12 Hz peak has interesting properties that will be explored further. Figure 

5C plots peak respiratory frequency against peak head position frequency, with excellent 

correspondence above ~0.20 Hz. Below ~0.2 Hz the main respiratory peak begins to merge 

with the 0.12 Hz peak and the correspondence weakens. The respiratory traces have not 

undergone any filtering that would influence signals at 0.10–0.15 Hz, but to ensure that the 

outlier replacement and 1-second blurring procedures used to prepare the respiratory traces 

did not somehow obscure a 0.12 Hz peak, identical analyses were performed on the raw 

respiratory belt traces that had undergone no processing, and these analyses yielded no 

evidence in respiratory traces of a 0.12 Hz peak, or of a 0.55 Hz peak (data not shown). 

When analyzed similarly, pulse oximetry traces yielded no evidence of a cardiac 0.12 Hz 

peak (data not shown).

A very low-frequency pseudomotion during and after deep breaths

Although the low-frequency 0.12 Hz peak in position traces is not evident in respiratory 

spectra, it is a respiratory phenomenon. This fact is appreciable in single subjects. Figure 6 

shows data from the starred subject of Figure 5A (this subject was chosen because the data 

display considerable amplitude at the low-frequency peak, see the 0.12 Hz peak height in 

Figure 5A). At top, respiratory traces of all runs are shown, with red ovals placed to encircle 

numerous deep breaths. Overlaid in black, the signal captured by a 0.08–0.18 Hz filter in the 

respiratory traces is shown, capturing amplitude during these deep breaths. When deep 

breaths occur, the full process of inspiration and exhalation transpires more slowly than tidal 

breaths, evidently occupying about 8 seconds per cycle (approximately 0.12 Hz), in contrast 

to the main tidal rate of about 0.3 Hz in this subject. These deep breaths represent 

infrequent, aperiodic low-frequency events that, while occurring at ~0.12 Hz, do not 

contribute enough power in the overall respiratory trace to yield peaks at that frequency. 

Below, the X position traces are shown, with high-amplitude low-frequency waves emerging 

at the times of the deep breaths (see identically placed ovals). The third panel illustrates the 

signal captured by a 0.08–0.18 Hz stopband filter, confirming that these waves are the ones 

that constitute the low-frequency peak. DVARS traces indicate that there are usually image 

abnormalities at these times. Thus, the low-frequency X position changes are associated with 

deep inspirations.

Because subjects are scanned lying supine, the occiput is the natural pivot of the head due to 

movement of the chest, and respiratory motion should most prominently appear in the pitch 

rotation estimate and the superior-inferior translation estimate. However, the parameter used 

for Figures 5 and 6 is the left-right (X) parameter. Position parameters are coupled in rigid 

body realignment in ways fundamentally dependent on the origin of the coordinate system. 

Thus, one could posit that deep breaths cause some kind of true low-frequency motion, and 

the left-right parameter changes are due to coupled “bleeding” of motion from one 

parameter into another. There is, however, another explanation. Expansion of the lungs can 

shift the B0 field, which can manifest as apparent motion in the phase encode direction 

despite the head remaining still, the phenomenon called pseudomotion (Brosch et al., 2002; 
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Durand et al., 2001; Raj et al., 2001). The left-right direction is also the phase encode 

direction of the HCP data, and thus both true motion and pseudomotion could explain the 

low-frequency waves.

To help disambiguate these possibilities, several fast-TR datasets with different phase 

encode directions were obtained, and power spectra of all 6 position estimates of these 

datasets are shown in Figure 7. A low-frequency peak appears in each of these datasets, but 

only in the phase-encode direction (red arrows). Thus, these low-frequency waves are 

consistent with pseudomotion resulting from B0 shifts with deep breaths. The fact that this 

in-plane translational motion does not “bleed” into other parameters during realignment is 

informative because roll effects might have also been expected due to inferior brain tissue 

being closer to the lungs. By contrast, the peak respiratory frequencies of the HCP data 

appear in all position parameters, consistent with true head motion occurring in multiple 

parameters as the head pivots about the occiput and then “bleeding” into all position 

estimates via the rigid body assumptions. Whether this presumably true respiratory motion is 

accompanied by pseudomotion (in only the phase encode direction) will be examined below.

A fast-TR developmental dataset gathered on the same scanner as the Cornell 1 dataset 

yields a further interesting finding. In 11 children and teenagers scanned twice for 4.8 

minutes with TR of 800 ms, typical respiratory frequencies are observed in position power 

spectra in all directions, but there is no low-frequency peak in the phase encode direction 

(Figure S2). The apparent absence of the low-frequency pseudomotion in the Cornell 2 

dataset may be due to the relatively small lungs and bodies of these children, which should 

produce less perturbation of B0 fields during breaths than adult bodies produce. Another 

possibility is that the children take relatively few or no deep breaths. These findings suggest 

that different kinds of motion may manifest over development for technical (or biological) 

reasons in addition to the tendency of children to be restless and active in the scanner.

A final comment on these findings is that only in the HCP data is a 0.55 Hz peak in position 

spectra seen, making the scanner, sequence, or environmental artifacts specific to this dataset 

the most likely explanation of this peak.

Dissociation of constant respiratory motion and pseudomotion in unprocessed images

Pseudomotion can be distinguished most clearly from real motion in one of two ways: by 

demonstrating a pseudomotion in only the phase encode direction in unprocessed images, 

and by demonstrating a real motion in a non-phase-encode direction in unprocessed images. 

To describe motion in unregistered, unprocessed, scanner space images, one can calculate 

the centers of mass of the entire image, yielding motions in the X, Y, and Z directions 

(rotations may or may not influence the center of mass). A number of unprocessed HCP and 

MyConnectome datasets were obtained, and center of mass traces were calculated and 

inspected. Readers may view data from all scans online3, and data from several scans are 

shown in Figure 8. In HCP scans there are visible respiratory fluctuations in the phase 

encode (left-right), frequency encode (anterior-posterior), and slice stack (superior-inferior) 

directions. MyConnectome scans also exhibited respiratory-appearing motion in all 3 

3www.jonathanpower.net/2019-respiratory-motion.html
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directions (respiratory records were not acquired with MyConnectome datasets). These 

results indicate that much of the constant respiratory motion is real motion because it is not 

limited to the phase encode direction.

The head will be variably placed within scanner space, but, assuming a reasonably aligned 

placement, one would expect respiratory nodding to substantially appear in the superior-

inferior direction, to partially appear in the anterior-posterior direction, and to rarely appear 

in the left-right direction. Compatible observations are made in the unprocessed images. 

First, constant respiratory fluctuation in the superior-inferior direction is seen in all 

examined scans. Second, constant respiratory fluctuation in one or both of the left-right and 

anterior-posterior directions is seen in most scans, and is accentuated in the phase encode 

direction. Reexamination of the data entering Figure 7 yields congruent information: 

collectively, the Z parameter and pitch parameter and whichever parameter is the phase 

encode direction have the strongest respiratory power in all datasets (seen visually in the 

peak heights, and the brightness of the grayscale images). This augmentation of respiratory 

power in the phase encode direction presumably reflects the contribution of pseudomotion at 

the respiratory rate. These patterns accord with the findings in (Raj et al., 2001), in which 

left-right oscillations were absent in acquisitions with anterior-posterior phase encode 

direction but were prominent in left-right phase encode acquisitions, whereas anterior-

posterior oscillations were present regardless of phase encode direction but were stronger 

with anterior-posterior phase encode acquisitions. Similarly, the mannequin constructed by 

Brosch and colleagues to investigate respiratory pseudomotion yielded only phase encode 

effects (Brosch et al., 2002). Stated differently: in phantom studies, there appears to be little 

true left-right respiratory head motion, whereas there appears to be true anterior-posterior 

respiratory head motion, and whichever of these directions is the phase encode direction will 

display increased respiratory movement due to pseudomotion.

Pseudomotion and real motion can be dissociated from one another in time. Under normal 

circumstances, when air is moving into and out of the lungs, both real head motion and 

pseudomotion could scale with deeper breathing. However, during apneas, dissociations can 

occur. If an apnea is central (i.e., there is no respiratory drive and no ventilatory effort), both 

pseudomotion and respiratory motion should essentially cease. But if an apnea is obstructive 

(i.e., soft tissues impede air flow), pseudomotion should cease but respiratory efforts may 

continue and even increase. Instances of both of these phenomena can be found in the 10 

subjects we examined, and some examples are shown in Figure 9. Note that the inspiratory 

efforts can cause large vertical and anterior-posterior motions during partial or complete 

obstruction as the subject attempts to breathe against resistance and/or restore air flow.

The occurrence and magnitude of true respiratory motion will depend on steps taken to 

physically restrain the head, and on characteristics of the subject. For example, subjects with 

asthma will exert themselves more to draw breaths due to increased airway resistance. Or if 

partial airway obstruction occurs as a subject relaxes or sleeps, snoring or inspiratory efforts 

will ensue at the breathing frequency. That the amplitude of constant real respiratory motion 

can become very large is both self-evident and demonstrated in Figure 9. The occurrence 

and magnitude of pseudomotion will largely depend on scan parameters (e.g., phase encode 

direction, field strength), and the size of lungs and the body. The largest amplitude changes 
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in pseudomotion are seen during very deep breaths, which, by their nature, occur more 

slowly than typical respirations.

Beyond the constant respiratory motion and pseudomotion, large changes in vertical and 

anterior-posterior positions that followed the respiratory envelope (but not the respiratory 

rate) were often seen (see black and blue traces at the boxed times of Figure 8). The 

magnitude of these changes is generally considerably larger than that of the constant 

respiratory oscillations of the phase encode direction. Other examples of real step motions in 

all three directions at deep inspirations are seen in Figure 9, as are examples of real motions 

in all three directions that appear completely unrelated to respiration.

Collectively, these observations indicate that the head is in constant motion due to 

respiratory cycles, that pseudomotion augments this constant motion in the phase encode 

direction, but that much constant motion and most major motions are not attributable to 

pseudomotion.

Re-presenting motion in fast-TR data: suppression of pseudomotion

In a contemporary fast-TR dataset like the HCP data, based on the above observations, 

investigators may encounter at least seven kinds of motion, five of them related to 

respiration: 1) constant real respiratory motion in the form of head nodding most evident in 

vertical position and pitch, which can be very large at times (Figure 9); 2) constant 

pseudomotion at the same respiratory rate as real motion, occurring only in the phase encode 

direction (Figure 9, see obstructive examples); 3) punctate real motions occurring at times of 

very deep breaths (Figure 9); 4) a low-frequency pseudomotion in only the phase encode 

direction at very deep breaths (Figures 6 and 9); 5) slow modulation of vertical and anterior-

posterior head position by the respiratory envelope (Figures 8 and 9); 6) punctate real 

motions unrelated to respiration (Figure 9 and S7); and 7) periodic or transient artifacts such 

as the 0.55 Hz motion of the HCP data (Figure 5). The existence of distinct kinds of motion 

raises interrelated questions: how well can the kinds of motion be separated, are effect sizes 

meaningful if different kinds of motion are separated, and what purposes could be served by 

separating kinds of motion?

In the case of pseudomotion, it seems self-evident that one might wish to separate 

“apparent” from “true” motion for a variety of purposes (e.g., one is within-plane motion 

and largely a respiratory epiphenomenon, the other is largely through-plane motion with 

different physical consequences for fMRI signals).

The low-frequency pseudomotion can often be isolated by frequency filters, since most 

subjects have respiratory frequencies well above the low-frequency pseudomotion. Figure 10 

illustrates filtering the phase-encode direction position parameter to suppress low-frequency 

pseudomotion in two representative subjects (compare gray and black X position traces, and 

the corresponding gray and black FD traces). Slight changes in both traces are seen after 

filtering. The FD effects are small because low-frequency pseudomotion is typically 

prominent during only a small fraction of the scan and affects only one of six position 

parameters. Additionally, though low-frequency pseudomotion effects are large amplitude in 

some subjects, this is not true of most subjects (see the relative peak heights in spectra of 
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Figure 5). Across subjects, filtering out low-frequency pseudomotion results in mean FD 

correlated at r = 0.999 with original FD, with magnitude of 98.9% of original magnitudes 

(Figure S3). Practically, for purposes of motion estimation, filtering out such pseudomotion 

has little effect in most subjects. The largest effects occur in subjects with low respiratory 

frequencies, which is predictable because in such subjects the low-frequency filter (here, a 

stop band of 0.08 – 0.18 Hz) removes some of the true cyclic respiratory motion. Although 

removing low-frequency pseudomotion has little impact on motion estimates in most 

subjects, the isolation of low-frequency pseudomotion via filtering could potentially serve as 

an index of deep respiration in data lacking respiratory records.

A different way to eliminate pseudomotion would be to omit the phase encode direction 

entirely from motion calculations. This approach is simple, but has a practical constraint: 

though one might be relatively comfortable omitting a left-right phase encode position 

parameter from motion calculations in HCP data (since little true respiratory motion is 

expected in this direction, see above summary of experimental findings of (Brosch et al., 

2002; Raj et al., 2001)), one might hesitate to eliminate an anterior-posterior phase encode 

parameter in a different dataset (since some true motion occurs in this orientation (Brosch et 

al., 2002; Raj et al., 2001)). For illustrative purposes, FD calculated without the left-right 

phase encode parameter is shown for the subjects in Figure 10 (compare gray and maroon 

FD). Because there is constant real motion at the respiratory rate in multiple parameters of 

comparable (or greater) magnitude than the pseudomotion in the phase encode parameter, 

ongoing respiratory motion remains a prominent effect in the trace. Across subjects, 

omitting the phase encode direction results in mean FD correlated at r = 0.921 with original 

FD, with magnitude of 66.7% of original magnitudes (Figure S3; both the reduction in 

magnitude and in correlations are significant at p = 0 by paired t-test).

Re-presenting motion in fast-TR data: suppression of constant respiratory motion

The dominant respiratory frequency is present at all times in the scan and affects all position 

parameters. Filtering out those frequencies has a large effect on head motion (compare gray 

and red traces in Figure 10). Filtered position estimates are “smoothed” out with relative 

preservation of step changes. The filter in Figure 10 has a 0.2 – 0.5 Hz stop band, and across 

subjects this filter yields mean FD with magnitude 51.9% of the original magnitudes, 

correlated at r = 0.819 with original FD (Figure S3; both reductions, as above, are significant 

at p = 0 by paired t-test). Some comments should be made about filter selection and 

application, but prior to discussing these issues, it is helpful to consider what purpose is 

served by removing respiratory motion.

Re-presenting motion in fast-TR data: rationale for respiratory filtering and calculating 
motion over multiple seconds

There are two main reasons to separate constant respiratory motion from episodic or gradual 

motion. The first reason is conceptual: different neural phenomena and behavioral or 

biological predispositions may underlie constant respiratory versus episodic/gradual motion. 

For example, constant respiratory motion may relate to body habitus, whereas episodic/

gradual motion may more closely reflect restlessness, impatience, fatigue, or anxiety. 

Separating kinds of motion can help identify such distinct relationships, and examples of 
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such dissociations will be provided below. The second reason to filter out respiratory motion 

is practical: motion traces become more visually useful and more congruent with other data 

quality traces once constant respiratory motion is suppressed.

In fMRI datasets with TRs of 2–4 seconds, it is customary to see FD traces with well-

defined, flat “floor” values from which brief, clear excursions are seen during motion, and 

these FD traces closely resemble DVARS traces and other data quality traces (Power et al., 

2012; Power et al., 2014; Satterthwaite et al., 2013; Yan et al., 2013). Multiple authors have 

noted that the HCP FD traces do not have these properties, and, instead, there appears to be 

constant motion in the traces often without clear excursions even when motion is known to 

occur (Burgess et al., 2016; Glasser et al., 2018; Power, 2017). There are two reasons for 

such properties. First, constant, cyclic, respiratory motion used to be aliased with slower 

fMRI sampling rates but is not aliased in HCP data due to the faster sampling, and the head 

is truly in constant motion in the images. Second, and separately, episodic or gradual shifts 

of head position that would appear large if measured every 2–4 seconds become subdivided 

in fast TR data to such an extent that the motion can “disappear” into the cyclic respiratory 

motion. Two steps can be taken to counter these two phenomena. First, respiratory filtering 

can suppress much of the cyclic motion. Second, calculating FD over multiple TRs rather 

than a single TR can “undo” the subdivision of episodic or gradual motion. Note that 

calculating FD over multiple TRs can be viewed equivalently as a difference in positions 

(e.g., position(t) – position (t-4)) or as convolution of position estimates with a kernel with 

specific frequency characteristics; we employ a difference calculation here. To illustrate 

these steps, FD was calculated over intervals of 4 TRs (4 * 720 ms = 2880 ms), using the 

position estimates with 0.2–0.5 Hz frequencies removed, to yield the orange FD traces in 

Figure 10. These orange FD traces show large excursions from a floor value, at times when 

motion is visually evident in the position traces, during which times image abnormalities are 

indexed by DVARS spikes. These orange FD traces are visually useful in ways comparable 

to FD traces in traditional slow-TR datasets; they plainly reflect the changes visible in 

position estimates.

Re-presenting motion in fast-TR data: practical considerations and limitations of filtering

Returning to filter selection and application, there is no single “correct” way to treat or filter 

motion estimates to suppress respiratory motion, for the simple reason that respiratory rates 

vary widely across and within subjects. Some subjects have low respiratory rates that 

overlap with deep breath pseudomotion frequencies. Many more subjects have variable 

respiratory rates that sometimes drop to low frequencies for portions of scans. An example is 

in Figure 10 at the end of the bottom scan, where the respiratory rate drops dramatically in 

the final 30 seconds of the scan, and respiratory motion starts to escape the respiratory filter 

(red position traces), causing a continuous elevation of FD even after filtering (see red and 

orange FD traces). When a subject’s frequency peak is narrow (i.e., the subject exhibits a 

relatively constant periodicity of breathing), a rather narrow stop band filter could suppress 

much respiratory motion. But if the frequency peak is broad (i.e., there are times of slow and 

of fast breathing, e.g., the bottom panel of Figure 10), then a wider stop band is needed to 

suppress respiratory motion.
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Faced with these characteristics, an investigator can apply a uniform filter intended to 

suppress much but not all of the respiratory motion (the choice made here), or apply a filter 

tailored to each subject’s respiratory characteristics. The width of the stop band interacts 

with the ability to localize motion in time. Step changes and brief spikes in motion have 

broadband frequency characteristics, and, as stop bands widen and remove more 

frequencies, the ability to represent rapid position changes diminishes. This fact is seen in 

two forms in Figure 10: the lower slopes of red filtered position traces compared to gray 

unfiltered position traces at step changes, and the relatively small sizes of peaks in the red 

filtered FD traces. The boxed portions of Figure 10 show several instances where motion is 

evident in the original position traces, but is difficult to discern in the red filtered FD traces 

until drawn out by calculating 4-TR differentials shown in the orange FD trace. An 

additional factor in filter selection is that the broader the stop band, the fewer the degrees of 

freedom in the residuals. We chose our filter to be uniform across subjects in order to avoid 

adding further complexity to the paper. The filter parameters were chosen to suppress most 

respiratory motion in most subjects, knowing that respiratory motion may persist if breaths 

are sufficiently slow, but balancing this consideration against wanting clear peaks of motion. 

Interpretations of our motion-related findings below will bear these caveats in mind (and, at 

times, we only examine subjects with peak frequencies within the respiratory stop band (i.e., 

above 0.2 Hz) to minimize confounds of unsuppressed respiratory motion). An additional 

choice we made was to sharply define the stop-band using higher-order filters, in order to 

discriminate clearly between the low-frequency deep breath pseudomotion effects and the 

main respiratory motion effects; investigators desiring more temporal independence in 

filtered estimates (e.g., for nuisance regression) might instead use lower-order filters or 

different filtering approaches.

Finally, we should note that if an investigator possesses respiratory records, those records (or 

treatments of the records) can be used as nuisance regressors in the motion traces. However, 

the relationships that are so visually evident between respiratory records and motion traces 

can be complicated to capture statistically in a regressor: respiratory records often hit ceiling 

and floor values during deep inspirations and exhalations, and position does not tend to scale 

linearly with belt values during deep breaths; obstructive apneas dissociate motion from 

respiratory fluctuations; and position estimates contain a variety of step changes and gradual 

shifts not present in the respiratory traces. For these reasons, regressors from belt traces can 

show markedly different success at removing respiratory motion across scans and even 

across single position parameters in a scan. Figure S4 shows instances of success and failure. 

With regard to identifying or removing respiratory motion, respiratory records are probably 

mainly useful for independently establishing respiratory frequencies (which, for example, 

could be used to guide a wavelet-based removal of respiratory motion).

Re-presenting motion in fast-TR data: the utility of filtering and multi-second sampling

The net effect of filtering out respiratory frequencies and calculating motion over multiple 

TRs is shown in Figure 11 (similar plots are shown online for all subjects4). The original 

motion estimate shows nothing informative beyond seemingly constant motion. Once 

4www.jonathanpower.net/2019-respiratory-motion.html
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respiratory frequencies are suppressed and a 4-TR differential is calculated, motion 

estimates show modest but distinct episodes of motion corresponding to the visible changes 

in position estimates, and to changes in the centers of mass in anterior-posterior and 

superior-inferior directions. DVARS spikes are present at these times, but DVARS dips are 

largely absent. These images demonstrate how motion traces can be modified to become 

informative about events in a scan.

Having produced these filtered, multi-second versions of motion estimates (FDfiltered,4-TR), 

and having seen in individual scans how these estimates differ from the original unfiltered 

motion estimates (FDoriginal), in the rest of the paper we examine relationships of motion, 

respiration, and body habitus with an eye toward whether new information can be gained 

from FDfiltered,4-TR in comparison to the information in FDoriginal.

Respiration correlates within and across subjects with summary motion

A strong association of summary motion and variance in respiration measures is seen in the 

HCP data. Across subjects, the standard deviation of the ENV trace and mean FDfiltered,4-TR 

correlate at r = 0.51 across subjects (p = 0; see scatter plot in Figure 12). This statistic is 

obtained using the mean of the summary values across each run, and using only a single 

subject per family, but it does not matter whether all subjects are used, whether only single 

runs are examined, whether also only subjects with respiratory frequencies over 0.2 Hz are 

examined, or whether also high-motion subjects are excluded from the calculation (Figure 

12). If within-subject linear fits are calculated across the 4 runs between the standard 

deviation of ENV and mean FDfiltered,4-TR, the betas are 0.40 ± 0.93 (p = 0 by one-sample t-

test). A similar set of findings emerges from calculations using RV and RVT, both with the 

correlations (Figure 12) and with the across-subject betas: RV betas are 0.39 ± 0.74 (p = 0) 

and RVT betas are 0.41 ± 1.33 (p = 0). All of these tests converge on the finding that 

increased variance in respiratory measures scales with increased motion, both across 

subjects and within subjects. If FD with respiratory filtering only is used (FDfiltered), the 

relationships above are weakened to approximately r = 0.35, and remain significant. If FD 

without respiratory filtering is used (FDoriginal), permitting constant respiratory motions to 

overshadow other motions, the relationships are largely lost (Figure 12). These findings 

demonstrate a strong link between respiration and motion that exists beyond an effect of 

pseudomotion: the effect is strongest when constant respiratory cycle motion (including 

pseudomotion) is suppressed, and is largely abolished when respiratory cycles are permitted 

to influence motion estimates.

Pseudomotion scales with weight and BMI, but not height (or lung volume)

Pseudomotion is suspected to arise as a function of changes in lung volume, due to both 

expansion of the lung cavity and displacement of the organs and soft tissues, but the relative 

contribution of each factor has been debated. In general, as BMI increases, tidal volumes and 

lung capacities decrease, whereas the work of breathing, minute ventilation, and respiratory 

rates all rise (Littleton, 2012; Luce, 1980). If expansion of the lung cavity is the important 

factor in causing pseudomotion, one might expect less pseudomotion in heavier subjects, 

and one might predict more pseudomotion in taller subjects, since lung volume scales 

strongly with height (Hepper et al., 1960). Either prediction could interact with respiratory 
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rate, since shorter subjects breathe faster, as do heavier subjects (Chlif et al., 2009; Sampson 

and Grassino, 1983). In the HCP data, however, FDoriginal has no correlation with height, but 

correlates at r = 0.5−0.7 with weight and/or BMI (Figure 13, using 1 subject per family). 

When individual realignment parameters are examined, the amplitude of fluctuations in the 

left-right phase encode direction scales at r = 0.8 with BMI but not at all with height. 

Evidently, the soft tissues are the decisive factor in causing pseudomotion.

The scaling of BMI and motion could be due to the role of soft tissue mass in generating 

pseudomotion, but it might also be explained by increased minute ventilation and respiratory 

rates in heavier subjects. Figure S5 summarizes relevant findings. As expected, there is a 

modest correlation of BMI and weight to respiratory rate (BMI: r = 0.17 and 0.26 for males 

and females; weight r = 0.15 and 0.17). Respiratory rate correlated with mean FDoriginal in 

males at r = 0.14 and at r = 0.32 in females (likely due to the influence of the shorter 

subjects: in males height did not correlate with respiratory rate (r = 0.01) but in females, the 

shortest subjects around 5 feet tall had notably higher respiratory rates, causing a modest 

correlation of r = −0.22 between height and respiratory rate). The relationship of respiratory 

rate to motion was abolished in males and females in FDfiltered. Thus, the explanatory power 

of respiratory rate for motion is much less than that of BMI, and the influence of respiratory 

rate disappears after filtering whereas BMI displays a persistent if weakened relationship to 

motion.

Real motion scales with weight and BMI, seemingly beyond respiratory effects

BMI displayed the strongest relationship to motion in FDoriginal, but correlations remained 

significant in FDfiltered,4-TR, though correlation magnitudes were approximately halved. We 

wondered if the respiratory variables that indexed motion in Figure 12 might mediate the 

persistent influence of BMI on motion even after respiratory filtering, but there was no 

evidence for this (e.g., correlations of variance in ENV with BMI were r = 0 for males and r 

= 0.06 for females, and comparably low for weight and height). Different patterns of obesity 

exist, but generally, as BMI increases, fat deposits between the ribs and organs, reducing the 

flexibility of the trunk (Littleton, 2012). We speculate that this lack of flexibility may cause 

motions of all kinds to become more likely to be transferred to the neck and head.

Respiratory parameters and motion estimates are heritable “traits”

A prior study demonstrated in multiple datasets (including HCP data) that BMI and head 

motion (corresponding to FDoriginal) are heritable traits, as is peak respiratory rate (Hodgson 

et al., 2017). In the HCP subjects studied here, 31 monozygous (MZ) and 23 (DZ) dizygous 

twin pairs are present (more subjects are twins, but without an accompanying twin under 

analysis). These numbers are not high, but permit preliminary descriptions of the heritability 

of the respiratory and motion parameters studied in this paper. As mentioned earlier, 

respiratory power spectra are much more similar within-subject (r = 0.79 ± 0.15) than 

between subjects (r = 0.44 ± 0.30). These observations extend to the twins: MZ pairs exhibit 

mean correlations between spectra of r = 0.64 ± 0.26, and DZ pairs exhibit mean 

correlations of r = 0.46 ± 0.34. As mentioned earlier, peak respiratory frequency is usually 

stable within subjects (standard deviation 0.018 Hz across 4 runs compared to 0.055 Hz 

across the group). As in (Hodgson et al., 2017), we find heritability of respiratory rate (MZ 

Power et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intraclass correlation coefficient = 0.48 (p = 0.002) and DZ ICC = 0.25 (n.s.), estimated H2 

= 0.46, compared to H2 = 0.62 in (Hodgson et al., 2017)). Summary respiratory parameters 

such as variance in ENV are more similar within individuals than across the group (standard 

deviation within subject 0.048 vs 0.082 for the group), and are heritable (MZ ICC = 0.50 (p 

= 0.002) and DZ ICC = −0.14 (n.s.)). For variance in RVT, similar findings emerge: within-

subject standard deviation of 0.037, group standard deviation of 0.069, MZ ICC = 0.46 (p = 

0.003), and DZ ICC = −0.27 (n.s.). For FDoriginal, within-subject standard deviations are 

0.021 mm, group standard deviations are 0.061 mm, MZ ICC = 0.56 (p = 0) and DZ ICC = 

−0.03 (n.s.). For FDfiltered,4-TR, within-subject standard deviation is 0.034 mm, group 

standard deviation is 0.078 mm, MZ ICC = 0.46 (p = 0.003), and DZ ICC = −0.12 (n.s.). All 

of these statistics conform to the pattern of respiratory and motion properties being most 

similar within-subject, next-most-similar within monozygotic twins, and then less similar 

within dizygotic twins (and unrelated subjects).

Discordance in twin pairs demonstrates modulation of motion by respiration measures

Prior studies have linked BMI to FDoriginal (Hodgson et al., 2017) and found no major 

influence of respiratory rate on that relationship. Here, we have described a link between 

two other measures: variance in respiratory measures like ENV, and mean values of the 

motion measure FDfiltered,4-TR. As a final investigation of the link between BMI and 

respiration and motion, we examined discordance between twin pairs for BMI, standard 

deviation in ENV, and mean FDfiltered,4-TR. There was no relationship of discordance of BMI 

to discordance of motion or to variance in ENV in either MZ or DZ twins (in other words, 

the twin with higher BMI did not reliably have proportionally higher variance in ENV or 

higher mean motion, see Figure S6). However, there was a strong relationship between 

discordance in variance in ENV and mean FDfiltered,4-TR, r = 0.78 for MZ (p = 0) and r = 

0.64 for DZ (p = 0). In other words, the twin with higher variance in ENV reliably had 

proportionally higher motion, both in MZ and DZ twin pairs. These results are consistent 

with a causal “state” interpretation whereby the respiratory events indexed by variance in 

ENV cause increased punctate and gradual head motion.

Discussion

The popularity of functional connectivity techniques, and the fact that head motion confers 

systematic artifacts to fMRI data while also correlating with variables of interest, has made 

the identification of head motion and its correlates an important topic in human neuroscience 

(Hodgson et al., 2017; Siegel et al., 2017; Zeng et al., 2014). The challenge of controlling 

for this artifact has been compounded by the emergence of fast-TR sequences: motion 

estimates in fMRI images obtained with sub-second sampling are qualitatively different than 

the older, slower motion estimates, both because constant respiratory motion no longer 

aliases to the extent it used to, and because larger, sustained motions get subdivided and lost 

amidst the constant respiratory motion. An additional complication is that parallel image 

reconstruction entails increased reliance on coil sensitivity profiles that can be altered when 

the head moves (Godenschweger et al., 2016). The different appearance of motion estimates 

in slow versus fast-TR data, and the detection in large datasets of strong relationships 

between BMI and motion, have led some investigators to abandon the use of realignment 
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estimates as measures of motion due to a suspicion that the estimates are so contaminated by 

pseudomotion as to be untrustworthy (Glasser et al., 2018). Other groups have begun to 

apply respiratory filters to the data, agnostic of the extent to which they are suppressing 

motion or pseudomotion (Fair et al., 2018; Siegel et al., 2017).

Motivated by an apparent reduction in low-amplitude real motion in our subjects who wear 

head molds (Power et al., 2019b), we examined fast-TR data for evidence of respiratory 

pseudomotion, and came to recognize five distinct kinds of respiratory motion: constant real 

motion, constant pseudomotion, real motion at deep breaths, real gradual motions modulated 

by breathing depth, and a low-frequency pseudomotion at deep breaths. We now discuss 

some implications of these findings.

On the low-frequency pseudomotion

The fact that a low-frequency wave around ~0.12 Hz appears only in the phase encode 

direction during and after deep breaths is interesting for several reasons. First, because it is 

undoubtedly a form of pseudomotion associated with deep breaths. Second, because of the 

disparity in power between respiratory and position traces (unlike tidal frequencies, where 

power is strong in both spectra). Whereas phase encode position spectra routinely contain a 

peak around ~0.12 Hz, respiratory power spectra display little or no evidence of a 

corresponding low-frequency peak. The disparity (i.e., nonlinearity) may arise as follows. 

Deep breaths expand the lung and displace soft tissue to unusual extents, creating unusually 

large amplitude pseudomotion at these times. However, the scaling of respiratory belts often 

includes ceiling and floor limits, or nonlinearities, which can constrain amplitude in the 

respiratory belt trace at deep breaths. Third, because the pseudomotion appears exclusively 

in the phase encode direction and does not “contaminate” other realignment parameters, 

which informs expectations for how pseudomotion at the tidal rate should manifest. And 

fourth, because the low-frequency motion peak was not evident in our cohort of children but 

was present in all adult cohorts. This finding may relate to the small lungs and bodies of 

children producing relatively small B0 fluctuations during deep breaths, or to a paucity of 

deep breaths in children. If the latter explanation is true, one would wonder whether adults 

were more tired and yawned more than children, or if cognitive or physiologic factors drive 

different rates of sighing in children compared to adults. One potential use of these low-

frequency waves would be to identify them in phase encode parameters as an index of deep 

inspiration in fMRI data lacking respiratory monitoring.

On constant respiratory motions

Constant respiratory motion is evident in all directions of unprocessed images, and appears 

in all realignment parameters, most prominently in the superior-inferior axis and the pitch 

rotation, and also in whichever of the other directions is the phase encode direction. In 

unprocessed images, respiratory displacement in the vertical direction is present in all scans. 

In the literature examining pseudomotion, when the left-right direction is the frequency 

encode direction, virtually no respiratory motion is seen in it, whereas when the anterior-

posterior direction is the frequency encode direction, respiratory motion is seen (Brosch et 

al., 2002; Durand et al., 2001; Raj et al., 2001). These results collectively indicate that true 
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respiratory motion is primarily occurring in the vertical direction, less so in the anterior-

posterior direction, and minimally in the left-right direction.

In this setting, left-right respiratory motion in the HCP data is likely almost entirely 

pseudomotion, which would be consistent with the high proportion of oscillatory variance 

that can be explained by BMI alone (approximately 50–65% of the variance). However, if 

this in-plane motion behaves as the low-frequency pseudomotion identified above, this 

pseudomotion may not “bleed” into the other motion parameters. Thus, one advantage of a 

left-right phase encode acquisition is that pseudomotion is “trapped” in a direction with 

inherently little motion. By contrast, an anterior-posterior phase encode direction is more 

likely to mix real motion and pseudomotion in ways more difficult to disentangle. These 

comments are not a general recommendation of left-right phase encode sequences, for 

multiple factors influence sequence selection (e.g., studies of functional lateralization would 

likely avoid using sequences producing asymmetric images). But in situations where 

breathing may substantially influence data (e.g., use of breath holds, study of asthmatic 

populations, etc.), left-right phase encode acquisitions may be an advantageous choice or 

manipulation.

Pseudomotion became dissociated from real motion during times of obstructive apnea. 

Whereas central apnea abolished respiratory oscillations of all kinds, obstructive apnea 

eliminated phase encode oscillations but enhanced anterior-posterior and vertical 

oscillations. This result makes sense physiologically. In central apnea, there is no respiratory 

effort and thus no head nodding, and also no air flow and thus no pseudomotion. In 

obstructive apnea, there is no air flow and thus no pseudomotion, but the subject will 

increase inspiratory effort as they labor against the obstruction, truly moving the head. 

Potentially, the congruence or incongruence of phase encode and vertical oscillations could 

be used to classify apneas or hypopneas, or to index arousal state, since presumably these 

obstructive events occur as the subject relaxes or falls asleep (Duran et al., 2001). If true, 

then one would expect at the transition to sleep not only punctate hypnic jerks, but also 

potentially sustained, rhythmic motions, which can be large in amplitude.

The amplitude of pseudomotion will vary according to acquisition parameters and subject 

characteristics like BMI or breathing rate. We will therefore only state that in the HCP data, 

omitting the phase encode direction entirely from motion calculations yielded estimates with 

67% of the original amplitude, correlated at r = 0.92 with the original estimates.

On punctate or gradual respiratory motions

In the unprocessed images it appeared that, much as tidal breathing can move the head up 

and down, deep inspirations can move the head, and gradual changes in the depth of 

breathing can modulate head position in correspondingly gradual ways. We used respiratory 

measures like ENV and RV to gauge such events, and found a strong relationship of variance 

in these respiratory variables to motion. This relationship is not attributable to 

pseudomotion: it was absent to weak when constant respiration was part of motion 

estimates, and only emerged strongly once respiratory frequencies were suppressed. These 

results, in fast-TR data, resemble those obtained elsewhere in several slow-TR datasets 

(Power, 2017; Power et al., 2018). This kind of motion is modestly related to BMI (r ~ 0.30–
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0.35), but the reasons for this association are unclear; BMI did not scale with variance in the 

respiratory variables above, leading us to speculate that motions of all kinds are transferred 

more forcefully to the head in heavier subjects due to the relative inflexibility of their chests 

and abdomens. Additional potential explanations of the relationships of BMI to different 

motions may involve physical discomfort in the scanner (for punctate or gradual motions) or 

a tendency to display chest vs abdominal breathing as BMI rises (an interaction of breathing 

style with age is also possible).

On reformulated motion estimates

We examined several reformulations of motion, in part to understand the contribution of 

various phenomena to overall motion, and in part because visualization of motion has been 

challenging in fast-TR data compared to slow-TR data. By suppressing respiratory motion, 

and aggregating position changes over several seconds, we drew out motions that were 

apparent in position estimates but which had largely been “invisible” once temporally 

subdivided and blended into constant respiratory motions in FDoriginal. Our particular 

reformulation of FDfiltered,4-TR is one of many possible and reasonable ways to represent 

motion. The 4-TR differential was chosen mainly to obtain an effective TR comparable to 

TRs we were accustomed to in the past (Power et al., 2014). These modified motion 

estimates are visually helpful for understanding events during a scan – the motions are 

visible, they visually match position changes, they often correspond to changes in 

respiratory traces (deep breaths, modulations of breathing depth), and they often have 

corresponding DVARS spikes and dips.

Sampling over multiple TRs could potentially be tailored to a subject’s respiratory rate. For 

example, assuming sinusoidal motion, an “effective” TR near the full respiratory cycle time 

will yield minimal respiratory motions compared to any other fraction of the cycle time, a 

topic discussed in detail in (Fair et al., 2018). As an illustration, if one presumes perfectly 

sinusoidal respiratory motion at 0.25 Hz, calculating position differences at 4-second 

intervals (a full period) will always perfectly suppress respiratory motion, whereas 

calculation at 2-second intervals (half a period) will maximally capture respiration motion at 

90- and 270-degree phases (practically, however, neither rate nor phase remain constant in 

real data). For the mean respiratory period of 3.33 seconds (0.3 Hz) in this report, the 2.88 

second effective TR we used is approximately the typical cycle time.

One type of motion that cannot be distinguished even with the fast TRs used here are cardiac 

pulsations, for these will still alias (and differentially with TR) even in the fastest 

acquisitions examined. Studies with faster TRs would be needed to isolate such an effect. 

One potential future direction of study would be to examine subjects scanned at multiple 

TRs, including very fast TRs, to try to disambiguate effects of such aliased signals.

On the directionality of motion and respiratory effects

The respiratory records of the HCP data are from a single elastic belt about the abdomen, 

prompting us to make certain caveats about the information it provides. Respiratory efforts 

can occur nearly independently at both the abdomen and chest (Quan et al., 1997; Randerath 

et al., 2017). For this reason, in the respiratory literature, current state-of-the-art noninvasive 
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respiratory monitoring is accomplished via inductive or light plethysmography, which 

involves dual belts or dual optical measurements of abdominal and thoracic excursions. 

More invasive ways to monitor respiration include monitoring air flow via a mask, and 

measuring end-tidal pCO2 by mask or nasal canula. Accompanying pulse oximetry is 

standard (the HCP pulse oximeter provides only a waveform, not blood oxygenation). And 

often electrocardiography and/or electroencephalography are performed, depending on if the 

study is during awake or sleeping periods. There is thus a substantial disparity in the kinds 

of records we possess in HCP data in comparison to the redundant and precise records 

obtained by investigators specifically studying respiratory phenomena.

Is it likely the HCP records are missing respiratory phenomena, or, conversely, that non-

respiratory phenomena are appearing in the abdominal belts? In the respiratory literature, 

chest and abdominal traces are typically congruent even if amplitude is low in one location, 

with one major exception: incongruence or phase shifts between chest and abdomen records 

are a defining feature of obstruction. Our respiratory records show nearly constant 

respiratory efforts other than sometimes transient apneas after very deep breaths, which are 

normal phenomena; we therefore suspect that little information was fundamentally lost by 

not having a chest belt, other than a way to define obstruction (beyond the dissociations in 

head motions above). However, it is possible that body motion caused apparent changes in 

respiratory traces that might resemble respiratory phenomena. Movement of the body can 

strain the abdominal belt, causing brief changes to the trace that could conceivably appear as 

a respiratory pause or breath (and sometimes subjects do make glottal stops during motions 

involving abdominal contracture, but these will probably tend to be brief and without a 

significant impact on ventilation). Without a redundant source of respiratory information, 

like a chest excursion or nasal cannula measure, we have no way of definitively identifying 

such “spurious” respiratory events.

However, one way of disambiguating real respiratory phenomena from “apparent” 

respiratory phenomena would be to monitor cerebral blood flow. Ventilation reduces the 

concentration of CO2 in the bloodstream (pCO2), and pCO2 is a potent modulator of 

cerebral blood flow (Hall, 2016). Increases of pCO2 induced by breath holds or CO2-

enriched gas inhalation can cause cerebral arterial flow increases of up to 50%; such changes 

are associated with large (several percent) BOLD signal changes throughout the brain 

(Bright et al., 2009; Kastrup et al., 1999; Poulin et al., 1996). Thus, one way of verifying 

that, for example, a deep breath is actually a deep breath and not a modulation of the 

respiratory belt by non-respiratory motion, would be to examine the fMRI timeseries for 

evidence of pan-brain signal changes reflecting alterations of cerebral blood flow.

Pan-brain signal changes associated with respiratory trace abnormalities are widespread in 

the HCP fMRI data. An example run from one subject is shown in Figure 14, and several 

examples of deep breaths in other subjects are shown in Figure 15. These images convey 

what is routinely seen in the HCP scans. By contrast, many major motions seem to have no 

effect on the respiratory belt (Figure S7 shows several examples). Though likely there are 

times when respiratory records are altered by abdominal motion apart from breathing, such 

times must be a minor portion of respiratory “events”, and are unlikely to have played any 

significant role in the findings of this paper. Relatedly, since we visually checked all 
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physiology records for quality as a selection criterion for this paper, we probably excluded 

from our analysis many traces that would have had significant issues in this regard.

On the fidelity of position and motion estimates in fast-TR data

We have uncovered evidence of pseudomotion in the HCP data, but this effect is limited to 

the phase encode direction. Though pseudomotion is a substantial amount of the motion in 

the images (approximately a third of the magnitude), it is mainly oscillatory motion 

associated with respiration, and such oscillatory motion is also a true phenomenon in non-

phase-encode directions. When the phase encode direction is not permitted to contribute to 

motion estimates, estimates correlate at r = 0.92 with the original estimates. We see little 

reason to mistrust the position estimates in HCP data, so long as the varied and distinct 

contributions of different kinds of motion and pseudomotion are kept in mind.

Our findings qualify the use of DVARS dips as an index of motion: DVARS dips are highly 

specific but not particularly sensitive indicators of motion. DVARS dips occur when FIX-

ICA identifies structured abnormalities in the images sufficiently large to meet automated 

criteria, causing the denoising procedure to remove so much variance at those timepoints 

that those times exhibit unusually little variance thereafter. In our experience (and figures), 

essentially without exception, DVARS dips occurred at times of motion, and, in this sense, 

the dips are good indicators of motion. However, there are numerous instances of motion for 

which the dips are absent, mainly during smaller motions. A corollary of these observations 

is that DVARS-dip-associated findings are motion-related, but that non-DVARS-dip-

associated findings are not necessarily not-motion-related. Two further points should be 

mentioned. First, the “DVARS dip” measure utilized by (Glasser et al., 2018) was actually a 

combination of dips and spikes, though their measure was so named due to the focus on dips 

after FIX-ICA. Second, multi-echo isolation of S0 signal changes at times of motion 

robustly identifies distance-dependent covariance as a time-limited signature of motion 

artifact (Power et al., 2018). It may therefore be of interest in the future to determine the 

distance-dependent covariance characteristics of timepoints with a DVARS spike, a dip, or a 

spike that is flattened during denoising, especially in relation to the head motion estimates 

themselves, as a way of gauging the motion-related properties of such timepoints.

Revisiting the motivation for this paper

The investigations in this paper were prompted by reductions in motion and motion artifacts 

in fMRI scans obtained while using anatomy-specific head restraints (Power et al., 2019b). 

In that report we contrasted restraining the head by filling the head coil with a customized 

Styrofoam insert molded to the subjects’ heads to our usual procedure of packing head coils 

with soft foam padding. In scans using head molds, absolute displacement and/or absolute 

motion were significantly reduced in all realignment parameters except the anterior-posterior 

axis, an effect we originally attributed to the head already being at rest on the occiput (we 

obtained modest but non-significant reductions in displacement and motion in the Y axis).

Re-examination of those data leads us to suspect that the failure to substantially attenuate 

motion in the Y direction was probably due in part to pseudomotion, for this was also the 

phase encode direction. Without the mold, ongoing constant respiratory motion was 
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prominent in the Z and Y directions, and with the molds the constant respiratory motion was 

visibly attenuated in the Z direction but not visibly attenuated in the Y direction (e.g., Figure 

S8 reproduces Figure 1 of (Power et al., 2019b)). To gauge the likelihood of this 

explanation, we scanned a young adult (age 29 years old, 200 lb.) using the same AP phase 

encode sequence, and again with LR phase encode, yielding prominent and unambiguous 

pseudomotion in the phase encode directions (Figure S8). This result accords with our 

failure to substantially reduce constant motion in the AP phase encode direction using head 

molds in (Power et al., 2019b). These observations prompt two comments. First, a 

developmental comment: though we did not see evidence of the low-frequency 

pseudomotion in our developmental Cornell 2 data (which was the mold “off” scans in the 

younger subjects of (Power et al., 2019b), Figure S2), we do see motion compatible with 

pseudomotion at the dominant respiratory rate in the data. And second, a comment on the 

utility of physical head restraints: to the extent that the residual motion in the Y axis with 

molds on was pseudomotion, we underestimated the reductions in “true” motion produced 

by the molds (we reported a 60% reduction in large motions, and a 25% reduction in mean 

motion (Power et al., 2019b)).

Broad considerations

Respiration can influence subject motion in multiple ways, and it influences fMRI signals 

prominently via cerebral blood flow modulations. It is hoped that resting state fMRI will one 

day have clinical relevance in psychiatry or neurology clinics. Preliminary studies indicate 

that resting state characteristics in extensively scanned subjects are stable and display unique 

features (Braga and Buckner, 2017; Gordon et al., 2017; Horien et al., 2019; Laumann et al., 

2015). The same appears to be true of respiratory waveforms and presumably for the kinds 

of motion they produce: multiple within-subject parameters of respiration were most stable 

in individuals, next-most-stable in monozygotic twins, and less stable in dizygotic twins. 

Certain individuals had peculiar and idiosyncratic patterns in respiration (e.g., the deep 

breath and balloon envelope in Figure 4). In our data, the link between variance in summary 

respiratory properties (variance in ENV) and motion (FDfiltered,4-TR) appeared independent 

of previously-described links of BMI and motion (FDoriginal). Motion is a heritable property 

(Hodgson et al., 2017), and motion characteristics can classify individuals at above-chance 

levels in resting state studies (Horien et al., 2019). More studies will be needed to define the 

extent to which (heritable) respiratory phenomena contribute to such identifying features of 

scans.

Conclusion

We identified five kinds of respiratory motion in this paper, two of which are forms of 

pseudomotion, the other three of which are real motions. One form of pseudomotion is a 

low-frequency form occurring during and after deep breaths. The other form occurs at the 

tidal respiratory rate and is apparent in the phase encode direction of scans, but real tidal 

respiratory motion is apparent in other directions at the same times. Motion estimates, once 

reformulated to accommodate the effects of various kinds of motion, yield productive 

information in fast-TR datasets that accords well with the information that they routinely 

delivered in slow-TR datasets in the past. The head is in constant motion in fast-TR images, 
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but treatments of the motion estimates can permit investigators to “see beyond” the constant 

motion to identify meaningful events in scans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Examines several fast-TR datasets with sampling rates of 720–1160 ms

• Identifies 7 kinds of motion in fMRI scans, 5 of them related to respiration

• Identifies 2 forms of pseudomotion occurring only in the phase encode 

direction

• Pseudomotion is a function of soft tissue mass, not lung volume

• Reformulates motion estimates to draw out particular kinds of motion
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Figure 1: 
Illustrations of head motion in slow-TR vs fast-TR data. Left column shows two 6-minute 

scans from the Brain Genomics Superstruct Project (GSP), right column shows two 6-

minute segments of Human Connectome Project data. Slow-TR scans show “floors” of 

motion in many scans, where the head appears essentially still, with occasional excursions 

from the floor. By contrast, motion is continuously elevated throughout many HCP scans. 

Images are modified from supplemental videos of {Power, 2017}. fMRI signals are from 

images that are realigned but not denoised (the “minimally preprocessed” images for the 

HCP scans).
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Figure 2: 
Examples of concordance and discordance of motion and DVARS. Top panels show position 

and motion estimates (the realignment parameters, and framewise displacement (FD), on a 2 

mm vertical scale; the horizontal line is FD = 0.5 mm), the next panels show DVARS before 

and after FIX-ICA, the next panels show respiratory belt traces and the derived measures 

ENV, RV, and RVT, and bottom panels show heat maps of all in-brain voxel signals in 

minimally preprocessed images. In all scans there is constant motion at the respiratory 

frequency in the gray position estimates and red motion estimate. In the left scan, there is 

good concordance between motion estimates, DVARS spikes, and DVARS dips, a “best case 

scenario”. However, the middle and right scans show poor concordance of motion estimates 

and DVARS, as well as instances of position estimates visibly changing without the changes 

being notable in the motion estimates (or DVARS). Black arrows mark times when position, 

motion, or DVARS measures suggest that motion has occurred.
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Figure 3: 
Examples of respiratory traces and derived measures. For 8 scans from 8 subjects of the 

HCP dataset, respiratory traces and derived ENV, RV, and RVT measures are shown. Each 

scan lasts 14.4 minutes. Note the wide variety of rate and depth of breathing within a scan 

and across subjects, the varied shapes of the raw respiratory belt waveforms, as well as the 

variety of pauses and very large breaths.
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Figure 4: 
Frequency content of respiratory traces. A) The peak in power spectra of respiratory traces 

of each run of each subject, ordered by subject mean peak value. Most runs have peak power 

between 0.2–0.4 Hz. B) Example subject power spectra and respiratory traces. Spectra tend 

to be similar within a subject across runs, reflected in narrow variance in peak location in 

single subjects relative to variance across the group. See Figure S1 for examples of 

dissimilar spectra within individuals across runs (the subjects with purple stars in (A)). 

Black ovals indicate times when characteristic events of the subject are happening in each 

run - marked changes in breathing rate in the first subject, and in the third subject times of 

deep breaths followed by marked attenuation of breathing depth and then a “ballooning” of 

the respiratory envelope.
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Figure 5: 
Comparison of respiratory frequency spectra with head position frequency spectra. A) Power 

spectra of 8 subjects are shown for respiratory and position traces (X realignment 

parameter); the 4 colors denote the 4 runs. Ovals circle a peak in position spectra not present 

in respiratory spectra. B) Heat map of spectra from all runs of all subjects, ordered by peak 

respiratory frequency. Scatter plots are means across subjects. C) Frequency of peak power 

in respiration plotted against frequency of peak power in head position. Correlations of peak 

frequencies across subjects are inset. The starred subject in (A) is examined in Figure 6.

Power et al. Page 32

Neuroimage. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Low-frequency position waveforms emerge during and after deep breaths. For the starred 

subject of Figure 5, top panel shows respiratory traces for all runs, red ovals encircle 

numerous deep breaths, and the signal captured by a 0.08–0.18 Hz stopband filter is shown 

in black. Second panel shows position traces with identically placed ovals, third panel shows 

the position signal captured bgy a 0.08–0.18 Hz stopband filter, illustrating that the low-

frequency peak is occurring during times of deep breaths. DVARS traces are shown in the 

bottom panel.
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Figure 7: 
Low-frequency position waveforms occur only in the phase-encode direction. For 3 fast-TR 

datasets with 2 different phase encode directions, power spectra of position estimates are 

shown for all scans of all subjects. Each dataset contains a low-frequency peak (or shoulder) 

seen only in the phase-encode direction (red arrows), whereas frequencies typical of 

respiratory frequencies are seen congruently in all parameters. Note the respiratory 

harmonics of 0.13 Hz and 0.25 Hz in the MyConnectome dataset, visible because all 84 

scans are of the same subject (whereas the other datasets sample dozens to hundreds of 

subjects and blur a variety of peak frequencies). All plots are scaled identically, a green line 

permits comparison of peaks across scatter plots.
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Figure 8: 
Plots of the center of mass of unprocessed scans from the MyConnectome and HCP datasets. 

Respiratory fluctuations are evident in all 3 directions in scanner space, but especially in the 

superior-inferior direction (slice stack, blue) and the phase encode directions (red for HCP, 

black for MyConnectome).
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Figure 9: 
Examples of motion and pseudomotion. Excerpts from several scans are shown, illustrating 

central apnea, obstructive apnea, obstructive hypopnea, true step motions occurring with 

substantial changes in breathing depth, true motions occurring with deep breaths, marked 

real respiratory motion, real motions without any respiratory contribution, and variable 

appearance of pseudomotion within a subject. LR: left-right; AP: anterior-posterior; SI: 

superior-inferior.
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Figure 10: 
Modifications of motion estimates. Runs for two subjects are shown. At top, the 6 position 

estimates: gray traces show the original estimates, red traces show estimates after removing 

0.2–0.5 Hz respiratory frequencies, and the black X trace represents the phase encode 

direction after removing 0.08–0.18 Hz pseudomotion frequencies. In the middle, FD derived 

from the three kinds of position traces at top are shown. Filtering out pseudomotion has little 

effect on FD (compare gray and black FD traces) whereas filtering respiratory frequencies 

has a large effect (compare gray and red traces). Withholding the X parameter has a modest 

effect. At bottom are the respiratory trace and DVARS traces for reference. Note that several 

motions are apparent in the raw position estimates, with corresponding DVARS 

abnormalities (boxes). However these motions are lost amidst the respiratory noise in the 

gray and black and maroon FD traces, and are also not prominent in the red traces. When a 

4-TR differential in motion is calculated (orange FD trace), true head motions stand out 

from the rest of the trace and match what is seen in DVARS.
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Figure 11: 
Illustration of the utility of filtering motion estimates and sampling motion over 2.88 

seconds instead of 720 ms. Panels are as in prior figures: at top, centers of mass of the 

unprocessed image, next the original position and motion estimates, next the filtered motion 

estimate using 4-TR sampling is shown in red, with a faint trace showing the 1-TR version. 

Bottom panel shows signals of the minimally preprocessed image.
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Figure 12: 
Relationship of summary respiratory measures to summary motion measures. Correlations 

between mean FD and standard deviations of ENV, RV, and RVT are shown, for several 

versions of cohort formation, and for several versions of FD. The scatter plot demonstrate 

the basis of the starred statistic.
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Figure 13: 
Relationship of summary motion measures to summary body habitus measures.
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Figure 14: 
Concordance of respiration records and fMRI timeseries indicative of cerebral blood flow 

changes. Traces are as in prior figures, fMRI timeseries are from minimally preprocessed 

image.
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Figure 15: 
Concordance of respiration records and fMRI timeseries indicative of cerebral blood flow 

changes. Traces are as in prior figures, and fMRI timeseries are from minimally 

preprocessed images.

Power et al. Page 42

Neuroimage. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Power et al. Page 43

Ta
b

le
 1

:

Su
m

m
ar

y 
of

 m
aj

or
 f

in
di

ng
s.

 R
ed

 f
on

t m
ar

ks
 p

se
ud

om
ot

io
n,

 o
ra

ng
e 

fo
nt

 a
rt

if
ac

tu
al

 m
ot

io
n,

 a
nd

 b
lu

e 
fo

nt
 r

ea
l m

ot
io

ns
.

To
pi

c
R

es
ul

t
F

ig
ur

e(
s)

M
ot

io
n 

in
 f

as
t-

T
R

 d
at

a 
(F

D
or

ig
in

al
)

•
In

 c
on

tr
as

t t
o 

sl
ow

-T
R

 d
at

a,
 th

e 
he

ad
 o

ft
en

 a
pp

ea
rs

 to
 b

e 
in

 c
on

st
an

t m
ot

io
n 

in
 f

as
t-

T
R

 d
at

a

•
In

 c
on

tr
as

t t
o 

sl
ow

-T
R

 d
at

a,
 D

V
A

R
S 

is
 o

ft
en

 d
is

co
rd

an
t w

ith
 m

ot
io

n 
in

 f
as

t-
T

R
 d

at
a

1,
 2

R
es

pi
ra

to
ry

 b
el

t t
ra

ce
s

•
Sp

ec
tr

al
 p

ow
er

 is
 (

us
ua

lly
) 

co
ns

is
te

nt
 w

ith
in

 s
ub

je
ct

s 
ov

er
 r

un
s

•
M

os
t s

ca
ns

 e
xh

ib
it 

ch
an

ge
s 

in
 r

at
e 

or
 d

ep
th

 o
f 

br
ea

th
in

g

•
So

m
e 

su
bj

ec
ts

 d
is

pl
ay

 id
io

sy
nc

ra
tic

 b
re

at
hi

ng
 p

at
te

rn
s 

in
 e

ac
h 

sc
an

•
Pe

ak
 r

es
pi

ra
to

ry
 p

ow
er

 is
 n

ea
r 

0.
3 

H
z;

 n
ea

rl
y 

al
l s

ca
ns

 h
av

e 
pe

ak
s 

be
tw

ee
n 

0.
2–

0.
4 

H
z

3,
 4

, S
1

H
ea

d 
po

si
tio

n 
re

fl
ec

ts
 r

es
pi

ra
to

ry
 

os
ci

lla
tio

ns

•
Pe

ak
 p

os
iti

on
 p

ow
er

 m
ir

ro
rs

 p
ea

k 
re

sp
ir

at
or

y 
po

w
er

•
Pe

ak
 r

es
pi

ra
to

ry
 p

ow
er

 is
 p

re
se

nt
 in

 a
ll 

6 
po

si
tio

n 
es

tim
at

es
 (

X
, Y

, Z
, p

itc
h,

 r
ol

l, 
ya

w
)

•
Po

w
er

 h
ig

he
st

 in
 Z

, p
itc

h,
 a

nd
 p

ha
se

 e
nc

od
e 

di
re

ct
io

ns
5,

 7

Id
en

tif
ic

at
io

n 
of

 a
 d

is
tin

ct
 lo

w
-

fr
eq

ue
nc

y 
ps

eu
do

m
ot

io
n

•
In

 h
ea

d 
po

si
tio

n 
tr

ac
es

, a
 ~

0.
10

 H
z 

pe
ak

 is
 p

re
se

nt

–
O

nl
y 

in
 th

e 
ph

as
e 

en
co

de
 d

ir
ec

tio
n 

(d
if

fe
re

nt
 d

ir
ec

tio
n 

in
 d

if
fe

re
nt

 d
at

as
et

s)

–
N

ot
 in

 r
es

pi
ra

to
ry

 o
r 

pu
ls

e 
ox

im
et

ry
 s

pe
ct

ra

–
A

pp
ea

rs
 a

bs
en

t i
n 

ch
ild

re
n

–
In

 te
m

po
ra

l d
om

ai
n,

 lo
w

-f
re

qu
en

cy
 m

od
ul

at
io

n 
oc

cu
rs

 a
t d

ee
p 

br
ea

th
s

5,
 6

, 7
, S

2

Id
en

tif
ic

at
io

n 
of

 a
rt

if
ac

tu
al

 
m

ot
io

n
•

In
 H

C
P 

ph
as

e 
en

co
de

 p
os

iti
on

 p
ar

am
et

er
, 0

.5
5 

H
z 

pe
ak

 p
re

se
nt

, s
ee

n 
in

 n
o 

ot
he

r 
da

ta
se

t
5,

 7

D
is

so
ci

at
io

n 
in

 u
np

ro
ce

ss
ed

 
im

ag
es

 o
f 

co
ns

ta
nt

 r
ea

l 
re

sp
ir

at
or

y 
os

ci
lla

tio
ns

 f
ro

m
 

co
ns

ta
nt

 r
es

pi
ra

to
ry

 
ps

eu
do

m
ot

io
n

•
In

 H
C

P 
da

ta
, d

ur
in

g 
ce

nt
ra

l a
pn

ea
 (

w
he

re
 b

re
at

hi
ng

 e
ff

or
t s

to
ps

)

–
L

ef
t-

ri
gh

t p
ha

se
 e

nc
od

e 
os

ci
lla

tio
ns

 v
an

is
h 

(p
se

ud
om

ot
io

n;
 n

o 
ai

r 
fl

ow
)

–
V

er
tic

al
 a

nd
 a

nt
er

io
r-

po
st

er
io

r 
os

ci
lla

tio
ns

 v
an

is
h 

(r
ea

l m
ot

io
n;

 n
o 

ef
fo

rt
)

•
In

 H
C

P 
da

ta
, d

ur
in

g 
ob

st
ru

ct
iv

e 
ap

ne
a/

hy
po

pn
ea

 (
br

ea
th

in
g 

ef
fo

rt
 c

on
tin

ue
s)

–
L

ef
t-

ri
gh

t p
ha

se
 e

nc
od

e 
os

ci
lla

tio
ns

 d
im

in
is

h 
(p

se
ud

om
ot

io
n;

 r
ed

uc
ed

 a
ir

 f
lo

w
)

–
V

er
tic

al
 a

nd
 a

nt
er

io
r-

po
st

er
io

r 
os

ci
lla

tio
ns

 in
cr

ea
se

 (
re

al
 m

ot
io

n;
 in

cr
ea

se
d 

ef
fo

rt
)

8,
 9

D
em

on
st

ra
tio

ns
 o

f 
pu

nc
ta

te
 r

ea
l 

m
ot

io
n 

at
 d

ee
p 

br
ea

th
s,

 p
un

ct
at

e 
re

al
 m

ot
io

n 
un

re
la

te
d 

to
 

re
sp

ir
at

io
n,

 m
od

ul
at

io
n 

of
 

po
si

tio
n 

by
 r

es
p.

 e
nv

el
op

e

•
M

ot
io

ns
 v

is
ib

le
 in

 m
ul

tip
le

 n
on

-p
ha

se
-e

nc
od

e 
pa

ra
m

et
er

s

•
E

vi
de

nt
 in

 c
en

te
rs

 o
f 

m
as

s 
of

 u
np

ro
ce

ss
ed

 im
ag

es
, a

nd
 in

 r
ig

id
 b

od
y 

re
al

ig
nm

en
t e

st
im

at
es

8,
 9

, 1
4,

 1
5,

 S
7

Neuroimage. Author manuscript; available in PMC 2020 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Power et al. Page 44

To
pi

c
R

es
ul

t
F

ig
ur

e(
s)

R
ef

or
m

ul
at

io
ns

 o
f 

m
ot

io
n 

(F
D

or
ig

in
al

, F
D

fi
lte

re
d,

 
FD

fi
lte

re
d,

4-
T

R
)

•
R

at
io

na
le

 is
 to

 s
up

pr
es

s 
un

w
an

te
d 

m
ot

io
ns

, d
ra

w
 o

ut
 m

ot
io

ns
 s

ub
di

vi
de

d 
by

 f
as

t s
am

pl
in

g

•
Fi

lte
r 

ou
t l

ow
-f

re
qu

en
cy

 p
se

ud
om

ot
io

n:
 c

om
pa

re
d 

to
 F

D
or

ig
in

al
, r

 =
 0

.9
9,

 m
ag

ni
tu

de
 9

9%

•
W

ith
ho

ld
 p

ha
se

 e
nc

od
e 

di
re

ct
io

n:
 r

 =
 0

.9
2,

 m
ag

ni
tu

de
 6

7%

•
Fi

lte
r 

re
sp

ir
at

or
y 

fr
eq

ue
nc

y 
fr

om
 a

ll 
pa

ra
m

et
er

s:
 r

 =
 0

.8
2,

 m
ag

ni
tu

de
 5

2%
 (

FD
fi

lte
re

d)

•
C

al
cu

la
te

 f
ilt

er
ed

 m
ot

io
n 

ov
er

 4
 T

R
s 

(2
.8

8 
se

c)
: r

 =
 0

.6
6,

 m
ag

ni
tu

de
 9

0%
 (

FD
fi

lte
re

d,
4-

T
R
)

•
FD

fi
lte

re
d,

4-
T

R
 h

as
 p

ea
ks

 th
at

 v
is

ib
ly

 m
at

ch
 p

os
iti

on
 c

ha
ng

es
 a

nd
 D

V
A

R
S 

sp
ik

es

10
, 1

1,
 S

3

D
is

tin
ct

 r
el

at
io

ns
 o

f 
bo

dy
 h

ab
itu

s 
an

d 
br

ea
th

in
g 

to
 F

D
or

ig
in

al
 a

nd
 

FD
fi

lte
re

d,
4-

T
R

•
W

ei
gh

t/B
M

I 
sc

al
es

 w
ith

 F
D

or
ig

in
al

 (
r 

~ 
0.

6)
 b

ut
 n

ot
 h

ei
gh

t (
r 

~ 
0)

–
Im

pl
ic

at
io

n 
is

 s
of

t t
is

su
e 

m
as

s,
 n

ot
 lu

ng
 v

ol
um

e,
 g

ov
er

ns
 p

se
ud

om
ot

io
n

•
W

ei
gh

t/B
M

I 
do

es
 n

ot
 s

ca
le

 w
ith

 r
es

pi
ra

to
ry

 v
ar

ia
nc

e 
(c

ro
ss

-s
ub

je
ct

 a
nd

 tw
in

-t
w

in
 a

na
ly

se
s)

•
R

es
pi

ra
to

ry
 v

ar
ia

nc
e 

sc
al

es
 w

ith
 F

D
fi

lte
re

d,
4-

T
R
 (

r 
~ 

0.
5)

, b
ut

 n
ot

 F
D

or
ig

in
al

 (
r 

~ 
0.

1)

–
A

ls
o 

se
en

 w
ith

in
-s

ub
je

ct
 a

cr
os

s 
ru

ns

–
A

ls
o 

se
en

 in
 tw

in
-t

w
in

 d
is

so
ci

at
io

n 
an

al
ys

es
 (

r 
=

 0
.7

8 
M

Z
 a

nd
 0

.6
4 

D
Z

)

•
Im

pl
ic

at
io

n:
 w

ei
gh

t s
tr

on
gl

y 
in

fl
ue

nc
es

 F
D

or
ig

in
al

; r
es

pi
ra

tio
n 

st
ro

ng
ly

 in
fl

ue
nc

es
 F

D
fi

lte
re

d,
4-

T
R

12
, 1

3.
 S

6

H
er

ita
bi

lit
y 

of
 m

ot
io

n 
an

d 
re

sp
ir

at
io

n

•
Fo

r 
al

l m
ot

io
n 

an
d 

re
sp

ir
at

or
y 

pa
ra

m
et

er
s 

ex
am

in
ed

, m
ea

su
re

s 
w

er
e 

m
os

t s
im

ila
r 

w
ith

in
-s

ub
je

ct
, n

ex
t m

os
t s

im
ila

r 
in

 M
Z

 tw
in

s,
 

th
en

 le
as

t s
im

ila
r 

in
 D

Z
 a

nd
 u

nr
el

at
ed

 s
ub

je
ct

s.

•
Im

pl
ic

at
io

n 
is

 r
es

pi
ra

to
ry

 p
ro

pe
rt

ie
s 

m
ay

 h
el

p 
co

nf
er

 in
di

vi
du

al
/h

er
ita

bl
e 

pr
op

er
tie

s 
to

 d
at

a

–
bo

th
 v

ia
 r

es
pi

ra
to

ry
 m

ot
io

n 
an

d 
pC

O
2-

re
la

te
d 

ce
re

br
al

 b
lo

od
 f

lo
w

 e
ff

ec
ts

4,
 S

6

Neuroimage. Author manuscript; available in PMC 2020 November 01.


	Abstract
	Introduction
	Methods
	Data
	Image Processing
	Parameter processing
	Respiratory and cardiac measures:
	Data quality measures:
	Head position and head motion measures:
	Frequency content:

	Accessory data
	Estimating motion before image realignment

	Results
	Head position power reflects respiratory power, with additional systematic peaks
	A very low-frequency pseudomotion during and after deep breaths
	Dissociation of constant respiratory motion and pseudomotion in unprocessed images
	Re-presenting motion in fast-TR data: suppression of pseudomotion
	Re-presenting motion in fast-TR data: suppression of constant respiratory motion
	Re-presenting motion in fast-TR data: rationale for respiratory filtering and calculating motion over multiple seconds
	Re-presenting motion in fast-TR data: practical considerations and limitations of filtering
	Re-presenting motion in fast-TR data: the utility of filtering and multi-second sampling
	Respiration correlates within and across subjects with summary motion
	Pseudomotion scales with weight and BMI, but not height (or lung volume)
	Real motion scales with weight and BMI, seemingly beyond respiratory effects
	Respiratory parameters and motion estimates are heritable “traits”
	Discordance in twin pairs demonstrates modulation of motion by respiration measures

	Discussion
	On the low-frequency pseudomotion
	On constant respiratory motions
	On punctate or gradual respiratory motions
	On reformulated motion estimates
	On the directionality of motion and respiratory effects
	On the fidelity of position and motion estimates in fast-TR data
	Revisiting the motivation for this paper
	Broad considerations

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Figure 13:
	Figure 14:
	Figure 15:
	Table 1:

