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Abstract

Purpose: To develop a subspace learning method for the recently proposed subspace-based 

MRSI approach known as SPICE, and achieve ultrafast 1H-MRSI of the brain.

Theory and Methods: A novel strategy is formulated to learn a low-dimensional subspace 

representation of MR spectra from specially acquired training data and use the learned subspace 

for general MRSI experiments. Specifically, the subspace learning problem is formulated as 

learning “empirical” distributions of molecule-specific spectral parameters (e.g., concentrations, 

lineshapes and frequency shifts) by integrating physics-based model and the training data. The 

learned spectral parameters and quantum mechanical simulation basis can then be combined to 

construct acquisition-specific subspace for spatiospectral encoding and processing. High-

resolution MRSI acquisitions combining ultrashort-TE/short-TR excitation, sparse sampling, and 

the elimination of water suppression have been performed to evaluate the feasibility of the 

proposed method.

Results: The accuracy of the learned subspace and the capability of the proposed method in 

producing high-resolution 3D 1H metabolite maps and high-quality spatially-resolved spectra 

(with a nominal resolution of ~2. 4×2.4×3 mm3 in 5 minutes) were demonstrated using phantom 

and in vivo studies. By eliminating water suppression, we are also able to extract valuable 

information from the water signals for data processing (B0 map, frequency drift, and coil 

sensitivity) as well as for mapping tissue susceptibility and relaxation parameters.

Conclusion: The proposed method enables ultrafast 1H-MRSI of the brain using a learned 

subspace, eliminating the need of acquiring subject-dependent navigator data (known as 𝒟1) in the 

original SPICE technique. It represents a new way to perform MRSI experiments and an important 

step towards practical applications of high-resolution MRSI.
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INTRODUCTION

MRSI has been considered a potentially powerful in vivo molecular imaging modality, with 

the capability to detect and quantify various endogenous metabolites and neurotransmitters 

simultaneously (1–5). However, practical applications of MRSI have been hindered by 

several fundamental technical hurdles, including the inherently low SNR, high 

dimensionality of the spatiospectral imaging problem, the presence of strong nuisance 

signals (e.g., water/lipid signals in 1H-MRSI) and the effects of B0 field inhomogeneity 

(which can lead to signal loss and spectral distortion). Despite the significant efforts devoted 

to improve individual components of MRSI, including faster acquisitions (6–12), nuisance 

signal suppression (13–17), more sophisticated image reconstruction methods (18–27), and 

advanced instrumentation (28–33), the combination of speed, resolution, SNR and organ 

coverage offered by the state-of-the-art methods still remains rather limited.

Recently, SPICE (SPectroscopic Imaging by exploiting spatiospectral CorrElation) has 

emerged as a new approach for achieving fast, high-resolution MRSI by modeling high-

dimensional spatiospectral functions of interest using low-dimensional subspace 

representations (34–36). The key components within the SPICE framework include the 

estimation of the subspace structure and the use of this subspace for rapid spatiospectral 

encoding and data processing. The current strategy to address the subspace estimation issue 

is to acquire a set of high-SNR, low-resolution navigator data (denoted as 𝒟1) during each 

experiment, and extract a data-dependent subspace for subsequent processing (37–39). Such 

an acquisition often requires sophisticated experimental setup for water/lipid suppression 

and challenging data processing steps for correcting B0 inhomogeneity effects and removing 

residual nuisance signals due to the limited k-space coverage. Moreover, for 1H-MRSI data 

acquired without solvent suppression, removal of the 3 to 4 order-of-magnitude stronger 

nuisance signals requires much more accurate water and lipid signal subspaces, which are 

very difficult to obtain from only low-resolution 𝒟1(39).

We present in this work a new approach to improve SPICE by formulating a subspace 

learning strategy that combines physics-based spectral models and the acquisition of spectral 

training data. Specifically, we recognize that a general in vivo spectrum is inherently a 

combination of signals originating from a small number of molecules, each of which has a 

well-characterized resonance structure and experiment/molecule-dependent variations 

captured by a few parameters (40). Leveraging this well-established spectral prior, we use 

quantum mechanical simulations to predict the resonance structures of individual 

metabolites and acquire specially designed training data to learn the distributions of the 

molecule-dependent parameters. The combination of these two ingredients allows us to 

efficiently capture the physiologically meaningful spectral variations, from which low-

dimensional subspaces can be determined and used for general MRSI experiments. As a 

result, the acquisition of experiment-dependent 𝒟1 data (37,38,41) is no longer necessary, 

further reducing the imaging time. A rapid acquisition strategy that synergistically integrates 

ultrashort-TE, short-TR excitation, sparse spatiospectral encoding and the elimination of 

water/lipid suppression is then deployed for the actual 3D 1H-MRSI experiments. This 
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allows us to generate high-resolution data in a short period with high SNR efficiency and 

self-calibration capability. A union-of-subspaces model based processing strategy with the 

learned subspace is developed to separate the different signal components with large 

dynamic range differences, i.e., the unsuppressed water/lipid signals, the metabolite signal of 

interest, and the macromolecule baseline, and to obtain high-SNR metabolite reconstruction 

from the noisy data.

Phantom and in vivo experiments have been carried out to evaluate the proposed method, 

and demonstrated the accuracy of the learned subspace in representing general in vivo 

spectral variations and its utility to achieve ultrafast high-resolution MRSI of the brain. 

Using the learned subspace, 3D MRSI with a large brain coverage and millimeter-level 

resolution (e.g., a nominal 2.5 mm in-plane and 3 mm through-plane resolution) without any 

water/lipid suppression in just a few minutes (i.e., 5 to 8 minutes) can be achieved. The 

detailed subspace learning, data acquisition and processing methods as well as the 

experimental results are described in the subsequent sections.

THEORY

SPICE: Subspace-Based MRSI

SPICE is an emerging approach to high-resolution MRSI that is characterized by the use of 

the following union-of-subspaces (UoSS) model to drive both data acquisition and image 

reconstruction (37–39)

ρ(r, f ) = ∑
lm = 1

Lm
clm

(r)ϕlm
( f ) + ∑

lw = 1

Lw
clw

(r)ϕlw
( f ) + ∑

lf = 1

Lf
clf

(r)ϕlf
( f )

+ ∑
lMM = 1

LMM
clMM

(r)ϕlMM
( f ) .

[1]

It assumes that different signal components in the spatiospectral function of interest ρ(r, f), 
i.e., metabolites (m), water (w), lipids (f) and macromolecules (MM), reside in individual 

low-dimensional subspaces, each spanned by the basis functions ϕlm
( f )

lm = 1

Lm
, 

ϕlw
( f )

lw = 1

Lw
, ϕlf

( f )
lf = 1

Lf
 and ϕlMM

( f )
lMM = 1

LMM
, respectively, and with Lm, Lw, Lf, LMM 

≪ Nf (Nf denotes the number of spectral samples to achieve the desired spectral resolution). 

This model dramatically reduces the number of degrees-of-freedom by transforming the 

original problem of recovering the very-high-dimensional ρ(r, f) into the estimation of the 

spatial co-efficients clx
(r)

lx = 1

Lx
 and the bases ϕlx

( f )
lx = 1

Lx
 (with x being m, w, f, or MM), 

thereby enabling a better tradeoff between speed, resolution and SNR. For example, consider 

a discretized spatiospectral function with 100×100 voxels each having a 512-point spectrum, 

the model in Eq. [1] with an order of 16 reduces the number of unknowns from 
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100×100×512 to 100×100×16+16×512 (a factor of about 30). However, directly estimating 

both clx
(r) and ϕlx

( f ) from noisy, high-resolution MRSI data is not practical (37), thus 

special acquisition and reconstruction strategies need to be designed to solve these problems.

A critical step for the subspace imaging framework specified by Eq. [1] is the determination 

of {ϕlx(·)} (also referred to as the subspace below). With predetermined subspaces, only the 

spatial coefficients need to be determined for high-resolution spatiospectral reconstruction. 

This further reduces the degrees-of-freedom and also effectively incorporates molecule 

spectral structure constraints, allowing for better separation of the different signal 

components with large dynamic ranges, e.g., the much stronger water/lipid signals and the 

weak metabolite signals (37, 38). In previously proposed SPICE-based methods, this was 

addressed by acquiring high-SNR, low-spatial-resolution and high-spectral-resolution 

navigator data (𝒟1) during each experiment, from which the subspaces for the metabolites 

and water/lipids were estimated (e.g., through SVD analysis) and used for subsequent 

processing (37). However, this strategy typically requires sophisticated experimental setup, 

adds extra scan time to each experiment, and imposes additional challenges for data 

processing due to the limited k-space coverage.

Subspace-Based MRSI with Learned Spectral Bases

We propose in this work a new strategy to learn the subspace from a set of specially acquired 

training data instead of from experiment-dependent 𝒟1. The proposed method is motivated 

by recognizing the significant amount of prior knowledge available for the spectral 

variations of individual molecules of interest (especially in brain tissues). Specifically, a 

voxel spectrum is inherently a combination of signals originating from a small number of 

molecules, each of which is characterized by a well-defined resonance structure φm(t) (also 

known as the metabolite basis in the spectral quantification literature) with m being the 

molecule index and some parameters θm that specify the spectral variations. With these two 

ingredients, the most commonly used model to represent an experimentally acquired FID 

assumes θm = δ f m, T2, m*  and can be written as

s(t) = ∑
m = 1

M
cmφm(t)e

−t /T2, m* + i2πδ f mt
h(t), [2]

where cm denotes the metabolite concentrations, T2, m*  and δfm denote the subject/tissue-

dependent linshape and frequency shifts for each molecule, respectively. The Fourier 

transform of the resonance structure φm(t) contains relative frequencies, amplitudes and 

phases of different spectral components for a single molecule. The additional modulation 

function h(t) absorbs other system imperfection related components (e.g., B0 field 

inhomogeneity or eddy currents induced lineshape distortions).

Accordingly, all the FIDs governed by the parametric Eq. [2] can be considered as points 

residing on a nonlinear low-dimensional manifold embedded in the high-dimensional vector 

space (42,43). This manifold can be learned given a sufficiently large number of data 

samples. But with special constraints on individual components, a low-dimensional subspace 
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approximation can also be estimated. More specifically, we assume that a) φm(t) can be 

predicted by molecular structures and quantum mechanical (QM) simulations (as illustrated 

in Fig. 1a) and this feature remains stable across different tissue types; b) the specific values 

of T2, m*  and δfm can vary for different voxels and subjects, but their distributions under 

typical physiological conditions should be similar and thus can be learned from training data 

(Fig. 1b); and c) a significant portion of experiment-to-experiment variations in the spectra 

originates from h(t), e.g., caused by B0 inhomogeneity variations and eddy currents, and h(t) 
can be estimated from unsuppressed water spectroscopic signals and separated from the 

molecule and tissue dependent spectral variations. With these assumptions and specially 

designed training data to capture representative distributions of the spectral parameters (i.e., 

cm, T2, m*  and δfm), we can learn a linear subspace to accurately approximate the low-

dimensional manifold that captures the physiologically meaningful spectral variations (Fig. 

1c), and use this learned subspace for general high-resolution MRSI experiments (Fig. 1d). 

To illustrate that spectral functions generated using parameters from a certain distribution 

can be approximated by a subspace, we simulated 10,000 metabolite spectra with uniform 

randomly distributed cm, Gaussian distributed T2, m*  (with mean and standard deviations from 

literature values) and δfm (mean 0 and standard deviation 3 Hz)1. As shown in Fig. 2, the 

Casorati matrix formed by these spectra (a) has rapidly decaying singular values, implying 

they reside in a low-dimensional subspace, which is also supported by comparing a newly 

generated spectrum and its projection onto a 14-dimensional subspace from the current 

10,000 (c). The projection error is negligible.

While learning the metabolite signal subspace requires special high-SNR data, the water and 

lipid subspaces can be directly determined from the high-resolution MRSI data if acquired 

without water/lipid suppression pulses, as these two components have excellent SNR. The 

key issue for this step is how to handle spatiospectral encodings with more flexible sampling 

grids, e.g., the sparse sampling scheme used in (39,41). To this end, we can perform an 

initial spatiotemporal reconstruction leveraging both parallel imaging and regularization 

methods to interpolate the undersampled k-space data (as described in (41)) and apply the 

following multi-peak exponential model fitting to this initial reconstruction (ignoring the 

metabolites since they are negligible compared to the unsuppressed water/lipids)

ρ(r, t) = ρw(r)e
−R2, w* (r)t

+ ρf(r)φf(t)e
−R2, f* (r)t

ei2πΔ f (r)t . [3]

The ρw(r) and ρf(r) functions capture the linear coefficients, φf(t) the resonance structure for 

subcutaneous lipids (44), R2, w* (r) and R2, f* (r) the apparent relaxation constants, and Δf(r) the 

B0 field inhomogeneity. The fitted water and lipid signals can then be synthesized (at the 

desired temporal grids) and arranged into Casorati matrices from which their individual 

bases can be extracted using SVD. Note that the B0 information estimated in this step can 

also be used for inhomogeneity correction during the subsequent metabolite reconstruction. 

For data acquired with short or ultrashort-TE, the macromolecule (MM) baseline signal 

1Note that these distributions just serve the illustration purpose and are not the actual ones we learned from training data to capture the 
physiologically meaningful subspace.
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needs to be taken into account during reconstruction. To this end, we estimated the MM 

subspace from previously obtained metabolite-nulled CSI data as described in (45) and 

incorporate it into the processing.

Spatiospectral Reconstruction Using Learned Subspaces

With the learned signal subspaces, reconstruction from high-resolution MRSI data acquired 

in an experiment without 𝒟1 can be obtained. The unsuppressed water/lipid signals are first 

removed from the data using the estimated water/lipid bases and a UoSS-based least-squares 

fitting method adapted from (39). After water/lipids removal, the residual water sidebands 

were further removed using the method described in (46). The final metabolite 

reconstruction was subsequently obtained from the water/lipid-removed data. More 

specifically, we first solve the following explicit subspace constrained reconstruction 

problem (37)

Cm, CMM = arg min
Cm, CMM

dres − Ω FB ⊙ CmΦm + CMMΦMM 2
2

+ λm DwCm F
2 + λMM CMM F

2 ,
[4]

where Φm and ΦMM are matrix representations of the learned metabolite and macromolecule 

(MM) bases, respectively, Cx represent the corresponding spatial coefficients, B captures the 

B0 field inhomogeneity induced frequency shifts and lineshape modulation functions derived 

from the water FIDs, F denotes the Fourier transform operator, the vector dres contains the 

(k,t)-space data coupled with a sampling operator Ω and Dw contains edge weightings 

calculated from the companion water images. The regularization parameters λm and λMM 

were chosen based on the discrepancy principle with noise variance estimated from the 

background. With Cm and CMM, an initial spatiotemporal reconstruction can be synthesized 

as CmΦm or CMMΦMM. These estimates can be used as the final reconstruction but they can 

have structured errors due to modeling bias. To reduce this bias, an additional refitting step 

can be performed. For example, we use here the initial estimates (CmΦm and CMMΦMM) 

from the first step as references for a second reconstruction, i.e.,

ρm, ρMM = arg min
ρm, ρMM

dres − Ω FB ⊙ ρm + ρMM 2
2 + λm′ ρm − CmΦm F

2

+ λMM′ ρMM − CMMΦMM F
2 .

[5]

ρm will be the final metabolite spatiotemporal reconstruction. This additional step helps to 

reduce potential model bias and improve data consistency by imposing a softer constraint, 

which is further discussed below and demonstrated with supporting results.
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METHODS

Data Acquisition

Data were acquired from both a physical phantom and healthy volunteers to evaluate the 

performance of the proposed method. All experiments were carried out on a Prisma 3T 

system (Siemens Healthineers, Erlangen, Germany) using a 20-channel head coil. The in 

vivo study was approved by the local Institutional Review Board and carried out with 

participants’ consent. The metabolite phantom was constructed using a glass water jar with a 

customized screw-on polycarbonate lid. Nine glass vials with three different diameters were 

glued into the phantom and filled with brain metabolite solutions at physiological 

concentrations (more details on the metabolite phantom are provided in the appendix). Since 

the molecular composition of the phantom is stable, training data was acquired only once 

using a long FID-CSI sequence with 2.3 ms TE, 60×60 matrix size, 200×200 mm2 FOV, and 

10 mm slice thickness. The spectral bandwidth (BW) was 2000 Hz with 1024 FID samples. 

The subspace estimated from this data was used for all the future experiments. For in vivo 

experiments, a low-resolution, 3D FID-EPSI sequence was implemented to acquire the 

training data for subspace learning, with TR/TE = 310/2.5 ms, a resolution of approximately 

1 cm3, 1500 Hz spectral bandwidth, 80 Hz weak water suppression and outer volume 

suppression (OVS). The total acquisition time is approximately three minutes with three 

signal averages. An accompanying nonwater-suppressed data with matched resolution was 

also acquired in each training scan (additional 1 min). Data were acquired from 5 different 

healthy volunteers to demonstrate the feasibility of the proposed method, while more 

training data can be obtained in the future for a denser sampling of the spectral parameter 

space for improved subspace learning.

With the subspaces learned from training data, high-resolution MRSI acquisitions can be 

performed in a general experiment session (without the need of acquiring 𝒟1). Specifically, 

we used a rapid acquisition strategy that integrates the following features (41): 1) an FID 

pulse-acquire excitation scheme that achieved ultrashort TEs (less than 3 ms); 2) an EPSI-

like gradient waveform that can produce (k,t)-space trajectories with an extended k-space 

coverage along the frequency encoding direction (e.g., kx) and sparse spectral sampling for 

rapid spatiospectral encoding after each excitation; 3) a small number of spectral encodings 

acquired each TR, which combined with the FID excitation achieved very short TRs (less 

than 200 ms) with optimized SNR efficiency (11); 4) a variable-density k-space sparse 

sampling strategy that extends the coverage along the phase encoding directions (e.g., ky and 

kz) for high resolution while keeping a center k-space region fully sampled to maintain a 

sufficient SNR for metabolite reconstructions; and 5) the elimination of solvent suppression 

modules, and inclusion of a set of navigators (including FIDs acquired at the central k-space, 

linear projections and orbital projections) to track system instability and subject motion with 

minimal perturbation of the steady state. These features work synergistically within the 

subspace framework, resulting in an unprecedented ultrashort-TE, very-short-TR, rapid 

acquisition scheme that can produce ultrahigh-resolution MRSI data in a short period. For 

phantom scans, high-resolution 3D MRSI data were acquired using the following 

parameters: TR/TE = 280/2.5 ms, matrix size = 80×80×24, FOV = 210×210×72 mm3 (a 

nominal voxel size of 2.6×2.6×3 mm3), number of echoes = 120, readout dwell time = 6 μs, 
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echospacing=1.4 ms,2 and the navigators acquired every 50 TRs (14 s). In vivo data were 

acquired with TR/TE = 210/2.5 ms, matrix size = 96×110×24, FOV = 230×230×72 mm3 (a 

nominal voxel size of 2.4×2.1×3 mm3), number of echoes = 110, readout dwell time = 6 μs, 

and echospacing = 1.76 ms. The total acquisition time was about 5 minutes with a factor of 

two undersampling along ky. The center 32 ky encodings were fully sampled.

Subspace Estimation Implementation

The residual nuisance water and lipid signals were first removed from each water-suppressed 

training data using the method described in Refs. (37, 39) followed by B0 inhomogeneity 

corrected reconstruction using additionally acquired high-resolution field maps (37). The 

correction was also applied to the accompanying nonwater-suppressed data, from which 

voxel-wise lineshape distortion h(t) was extracted. To this end, we first performed a single-

Lorentzian-peak fit to the unsuppressed data and used the initial fit as a reference signal to 

determine the residual temporal modulation function h(t) through a generalized-series model 

refitting (45). The estimated h(t) was incorporated into Eq. [2] for a subsequent spectral 

fitting of the water-suppressed data to obtain estimates of cm, T2, m*  and δfm, using the 

QUEST quantification method (47). As each data set contains many voxels, the estimated 

spectral parameters can be treated as samples from their underlying distributions (referred to 

as the empirical distributions). Combining these sampled parameter values and metabolite 

basis φm(t) generated for the specific imaging acquisition (FID, ultrashort-TE excitation in 

this case) through QM simulations using the NMR-SCOPE package (48), a collection of 

spectra can be generated and arranged into a Casorati matrix (a total of 5000 spectra were 

obtained), from which a subspace can be constructed using SVD. Note that alternative 

strategies can be used for this step, although we took a simplified approach for the purpose 

of feasibility demonstration in this work. For example, more sophisticated parameter 

distributions can be assumed and explicitly learned from the training data so that an even 

larger collection of training spectra can be generated by sampling from these distributions, 

which may lead to improved subspace accuracy and generalization capability.

RESULTS

Figures 3 and 4 show the subspace learning results from the in vivo training data. Figure 3a 

demonstrates the rapidly decaying singular values for the Casorati matrices formed by fitted 

spectra from all five training data, which implies that all the spectral functions reside in a 

low-dimensional subspace. Similar histograms for the estimated spectral parameters (i.e., 

T2*) are shown for three subjects (Figs. 3b–d), implying an underlying consistent subspace 

structure across different subjects (The histograms for all five subjects are shown in the 

Supporting Information Figure S1). The accuracy of the subspace learned from all the 

training data is evaluated in Fig. 4, which compares the spectral basis estimated from one 

test data set to the subspace learned from other training data using a projection test. As 

shown by the projection results, the learned subspace can represent the test spectral basis 

accurately even though individual spectra may vary. A projection error eproj, as defined 

below, was also calculated for a quantitative comparison:

2The echospacing is defined as the interval between two echoes acquired with the same gradient polarity.
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epro j =
V1 − V1 * PV0 2

V1 2
[6]

where V1 denotes the basis estimated from the first training data, V0 the learned basis from 

the other four and PV0
 a projection operator that projects V1 onto the subspace spanned by 

V0. Similar tests have been performed for basis estimated from each individual training data 

and yielded similarly small errors, shown in Supporting Information Figure S2. These data 

support the feasibility of using training data to learn a subject-independent subspace that can 

be used for general MRSI experiments.

Figure 5 shows a set of representative results obtained by the proposed method from an 8 

min phantom scan. As no water suppression is applied, structural images can be 

reconstructed from the unsuppressed water signals (Fig. 5a), which can be used for 

subsequent processing (e.g., providing spatial support or edge information). Reconstructed 

spatial maps of different metabolites (Figs. 5b–e), i.e., NAA, Cr, Cho, and myoinositol (mI), 

are shown to demonstrate the performance in terms of resolution and SNR. The 

concentration differences between the vials can be clearly visualized in these metabolite 

maps. High-quality spatially-resolved spectra (corresponding to a nominal voxel size of 2.6 

2.6×3 mm3) were produced (Supporting Information Figure S3). A further quantitative 

comparison of metabolite ratios between different vials can be found in the Supporting 

Information Figure S4.

A set of 3D brain 1H-MRSI results from our ultrafast acquisition obtained using the 

subspace learned from training data of the other four volunteers are shown in Figure 6, with 

a comparison to the results obtained using the subspace estimated from a 𝒟1 acquired for 

this particular subject. The metabolite maps of NAA, Cr and Cho for different slices across 

the imaging volume are shown (different rows in Fig. 6a and b), along with representative 

spatially-resolved spectra from the two different reconstructions (Fig. 6c, encoded with 

different colors). High-SNR metabolite reconstructions can be produced from only a 5 min 

scan. The spatially-resolved spectra from selected voxels also exhibit high SNR and clearly 

resolved metabolite peaks with negligible water/lipid residuals and good separation from the 

macromolecule baseline. Furthermore, the reconstructions produced using the learned 

subspace and subspace from subject-specific 𝒟1 are fairly consistent, demonstrated by both 

visual inspection and a relative 𝓁2 error. Such an error comparison for all 5 high-resolution 

acquisitions each associated with an experiment-specific 𝒟1 can be found in the Supporting 

Information Table S1. We have also evaluated the reconstruction residuals with and without 

using the refitting step in Eq. [5] to demonstrate the improved data consistency and reduced 

modeling bias offered by this additional step. As shown in the Supporting Information 

Figure S5, the residuals from the second step are more similar to random noise with reduced 

structured errors observed in the residuals from the direct subspace fitting.

Figure 7 shows another set of ultrafast 1H-MRSI results from a new data set not among the 

previous 5 acquisitions. Again, high-resolution, high-SNR metabolite maps can be 
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reconstructed from the data using the learned subspace (Fig. 7a–d). Moreover, as no water 

suppression was used, the companion unsuppressed water spectroscopic signals in our data 

offer unique self-calibrating capabilities and richer information than conventional 

spectroscopic acquisitions. For example, structural information can be obtained from water 

reconstruction (Fig. 7e) and tissue susceptibility (χ) maps from the phase variations (41). 

Other useful information that can be extracted from the water FIDs is shown in the 

Supporting Information Figure S6.

DISCUSSION

We have presented a new strategy for learning a signal subspace that can capture molecule-

specific spectral variations from specially designed training data, and using this learned 

subspace for MRSI data acquisition and reconstruction, removing the need of acquiring 

experiment/subject-dependent 𝒟1 data as described in the original SPICE method (37). With 

the proposed method, rapid, high-resolution, volumetric MRSI without solvent suppression 

has been demonstrated using both phantom and in vivo experiments. An impressive 

combination of speed, resolution and SNR (approximately 3 mm isotropic resolution in a 

few minutes) was achieved. Note that while ultrahigh-resolution 2D MRSI results have 

recently been produced on ultrahigh-field scanners (e.g., 7 and 9.4 T scanners) (33, 49), the 

subspace learning approach and acquisition strategy can readily be extended to these 

systems and effectively take advantage of the improved sensitivity for better performance. It 

is also worth noting that the dimensionality reduction (which leads to noise reduction) 

offered by low-dimensional subspace models is the main factor contributing to the 

significant SNR improvement, while the spatial regularization offers additional improvement 

by taking advantage of anatomical prior information from water images.

The proposed method effectively integrated physics-based modeling and experimental data 

for constructing a low-dimensional subspace representation of spectral functions. While a 

subspace can also be constructed by directly taking an SVD of the collection of measured 

spectra from the training data, it is important to note that this scheme represents a distinct 

approach to subspace learning from the proposed method. Specifically, learning the 

subspace directly from the measured spectra can be framed as learning their distribution by 

treating each spectral function as a point in a high-dimensional space, which requires a large 

amount of training data. By introducing the physical model (e.g., the QM simulated basis), 

we translated the subspace learning problem to learning the distributions of a small number 

of spectral parameters, which theoretically should require significantly less data. 

Furthermore, as the QM basis is acquisition dependent (e.g., SE versus FID excitation) while 

the spectral parameters are not, our proposed strategy allows us to use acquisitions 

optimized for the molecules of interest to learn their parameter distributions and construct 

acquisition-specific subspace for general high-resolution MRSI experiments, and is thus 

much more flexible. There are also other practical benefits of our strategy, such as separation 

of residual nuisance signals and other signal distortions from the molecular signals of 

interest by incorporating the physics constraints.

We have simplified 1H-MRSI experiments by eliminating the need for sophisticated water 

and lipid suppression modules. Besides allowing for more flexible experimental designs by 
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1) reducing the burden or complexity in optimizing the RF pulses and gradients for 

saturation, and 2) alleviating the SAR issue especially when translating the proposed 

acquisition to higher fields, it also allows us to retain all the valuable information from the 

water protons. The reference information extracted from the unsuppressed water signals 

offers improved consistency to the MRSI data compared to the conventional approaches 

where the MRSI data and water referencing data are acquired separately. For spatiospectral 

encoding, the scheme shown in this paper is just one of the many options to implement the 

subspace-based acquisition strategy with differential emphasis on spatial and spectral 

dimensions. We chose the echo-planar-based trajectories due to its high efficiency in 

traversing the (k,t)-space, ease of implementation, lower susceptibility to trajectory errors 

(due to gradient imperfection), and reduced computational burdens in data processing. But 

other non-Cartesian trajectories such as radial (50), spiral (8) and concentric rings (51) that 

offer higher efficiency in covering the (k,t)-space with potential further acceleration and/or 

extended k-space coverage can be considered.

Other mathematical structures can be incorporated into our subspace imaging framework to 

further improve reconstruction. For instance, exploiting the Hankel low-rank structures 

induced by the linear predictability properties in spectroscopy data may offer additional 

benefits (35, 52, 53). More advanced strategies to impose spatial prior information can also 

lead to potential improvements in SNR, and/or further reduction of artifacts (e.g., residual 

nuisance signals and spectral distortion) (54). The current subspace learning strategy 

assumes consistent subspace structures across different subjects (even when individual voxel 

spectra vary). This can be violated for specific patient populations where spectral parameters 

fall far outside of the normal physiological ranges, or there are novel spectral components 

due to a certain pathology. In these cases, additional training data need to be acquired to 

establish pathology-specific metabolite subspaces. This issue is currently being investigated 

and will be addressed in subsequent publications in the context of specific applications.

CONCLUSION

We have successfully developed a subspace learning method for subspace MRSI (i.e., 

SPICE) and demonstrated its feasibility in achieving rapid, high-resolution 1H-MRSI of the 

brain with large organ coverage and without water/lipid suppression. With the proposed 

method, the experiment-dependent navigator 𝒟1 data for subspace estimation is no longer 

needed, which represents a new way of performing MRSI experiments. The new ultrafast 

MRSI capability also offers richer information than conventional methods. Such a capability, 

we believe, is an important step towards practical applications of high-resolution MRSI, and 

with further optimization and development will open up new opportunities for in vivo 

metabolic studies in various neuroscience and clinical investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Phantom Design

The metabolite phantom is a cylindrical glass jar fully filled with sodium chloride doped 

water and contains nine vials glued in three rows to the cap. Each row of vials had the same 

diameter and were filled with solutions of NAA, Cr, glycerophosphocholine (Cho), myo-

inositol (mI), glutamate (Glu) and γ-aminobutyric acid (GABA) at physiological 

concentrations (5). More specifically, each row of vials were designed to have three different 

concentrations: (C1) 15 mM NAA, 12 mM Cr, 3 mM Cho, 12 mM mI, 8 mM Glu, 2 mM 

GABA; (C2) 10 mM NAA, 10 mM Cr, 3 mM Cho, 10 mM mI, 8 mI Glu, 2 mI GABA; (C3) 

8 mM NAA, 8 mM Cr, 6 mM Cho, 8 mM mI, 10 mM Glu, 1 mM GABA. Accordingly, each 

column of vials with the same concentration will have three different sizes. The pH value for 

all the solutions was adjusted to approximately 7.2 using concentrated NaOH and HCL. A 

customized screw-on cap was made with polycarbonate and used to seal that glass jar.

Variance Analysis

To further demonstrate the SNR improvement offered by the subspace imaging approach, we 

provide here a theoretical variance analysis for subspace-based reconstruction against 

standard Fourier reconstruction. To simplify the mathematical expressions without loss of 

generality, we ignore B0 field inhomogeneity and sparse sampling here. As a result, we can 

express the standard Fourier reconstruction ρ as

ρ = ρ + n, [7]

where ρ is an T × N matrix denoting the true spatiospectral function with T being the 

number of FID points (e.g., 256) and N the number of voxels, and n denotes the noise matrix 

(assumed to be i.i.d. Gaussian). Accordingly, the covariance matrix of each voxel FID ρn

(i.e., each column in ρ, treated as a random vector) is COV ρn = σ2IT, where IT denotes a T 

× T identity matrix. With the subspace model ρ = VC where V ∈ 𝒞T × L and C ∈ 𝒞L × N

denote the subspace (with orthogonal basis) and the spatial coefficients, respectively, the 

least-squares coefficient estimate C can be expressed as (VHV = IL)

C = VH ρ . [8]

The covariance matrix of each column in C (corresponding to each voxel) is then (V is a 

deterministic matrix)

COV Cn = VHCOV ρn V = σ2VHITV = σ2IL . [9]
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Since each voxel FID in the subspace-based reconstruction, ρs,n, in this case is simply

ρs, n = VCn, [10]

its covariance matrix can be written as

COV ρs, n = VCOV Cn VH = σ2VVH, [11]

which we can use to quantify the variance changes/reduction achieved by the subspace 

constraint. Specifically, using a rank-10 subspace estimated from the training data as 

described in the main text, we calculated the entire covariance matrix in Eq. [11], shown in 

Supporting Information Figure S7. Each element in the matrix has a unit of σ2 and the 

diagonal elements represent the variances for each FID points. As can be seen, the noise in 

the reconstruction became correlated but the variances were significantly reduced. Figure 

S7b also shows the diagonal elements of VVH which further demonstrates the variance 

reduction at individual FID points.
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Figure 1: 
An illustration of the proposed subspace learning strategy: (a) Resonance structures for 

individual metabolites are obtained by QM simulations; (b) High-SNR training data are 

acquired and fitted to sample the distributions of spectral parameters (i.e., cm, T2, m* , δfm); (c) 

Integration of these two generates sample spectra that reside on a low-dimensional manifold. 

Assuming that the parameters for physiologically meaningful spectra came from an 

underlying distribution independent of subjects, this manifold can be accurately 

approximated by a low-dimensional subspace that can be learned from training data (d) and 

used for general MRSI experiments.
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Figure 2: 
Illustration of subspace approximation for spectra with parameters generated from specific 

distributions: 10000 metabolite spectra were synthesized using Eq. [2] with randomly 

distributed {cm}, {T2, m* }and {δfm}, and arranged into a Casorati matrix (a), which has very 

rapidly decaying singular values as shown in (b), indicating that these spectra can be well 

approximated by a low-dimensional subspace. The dash line indicates where the rank 

truncation error falls below 1e−3 (rank 14). A new spectra (not among the existing 10000) 

was generated and projected onto a 14-dimensional subspace (c); the projection error is 

negligible, further validating the subspace model.
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Figure 3: 
Subspace learning from in vivo data: (a) Singular value decays for the Casorati matrices 

formed by the fitted spatiospectral functions from all five training data (different volunteers); 

the rapid decays demonstrate the accuracy of low-dimensional subspace representation; (b–

d) Histograms of the estimated T2* parameters for three data sets. Similar distributions can be 

observed, supporting the concept of using training data to determine a subject-independent 

distribution from which a subspace can be constructed.
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Figure 4: 
Evaluation of the learned subspace: The first row shows the spectral basis estimated from the 

first training data set (the 1st, 2nd, 6th and 9th bases are shown in different columns, 

respectively); The second row shows the basis learned from the remaining four data; The 

third row compares the basis in the first row (blue) and their projections onto the subspace 

spanned by the basis in the second row (red). As can be seen, while individual spectra may 

vary, the projections match the original spectral basis very well, implying an accurate 

representation using the learned subspace. The project error was around 3%.
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Figure 5: 
High-resolution, 3D 1H-MRSI results from the metabolite phantom using an 8 min scan: (a) 

Images reconstructed from the unsuppressed water signals illustrating the structural 

arrangement of the phantom (note that the lengths of vials are different for different rows 

thus the changing features across slices); (b–e) Reconstructed metabolite maps, i.e., NAA 

(b), Cr (c), Cho (d) and mI (e) for the corresponding slices in (a). As can be seen, the 

proposed method produced high-resolution, high-SNR reconstructions, allowing 

visualization of even the smallest vials as well as resolving the concentration differences.
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Figure 6: 
Spatiospectral reconstructions from a 5 min, 3D brain 1H-MRSI acquisition. The metabolite 

reconstructions were produced using the learned subspace (a) and the subspace estimated 

from a single subject-specific 𝒟1 (b), respectively. The maps of NAA, Cr, and Cho are 

shown in different rows. The plots in (c) compare the reconstructed spatially-resolved 

spectra at selected voxels, locations indicated by the red symbols in (a). As can be seen, the 

two spatiospectral reconstructions are very similar to each other; but the learned subspace 

can achieve this result without acquiring subject-specific 𝒟1. The relative 𝓁2 errors for the 

NAA, Cr and Cho maps are 2.4%, 6.4%, and 8.0%, respectively.
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Figure 7: 
Ultrafast, 3D 1H-MRSI of the brain from another 5 min scan without water suppression 

using the learned subspace: (a-d) Reconstructed metabolite maps of NAA, Cr, Cho and mI 

for different slices across the 3D volume; (e) anatomical images with T2* contrast 

reconstructed from the unsuppressed water signals; (f) tissue quantitative susceptibility maps 

(QSM) obtained from the phase variations encoded in the water spectroscopic signals.
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