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Abstract

In recent years, an abundance of new molecular structures have been elucidated using cryo-

electron microscopy (cryo-EM), largely due to advances in hardware technology and data 

processing techniques. Owing to these new exciting developments, cryo-EM was selected by 

Nature Methods as Method of the Year 2015, and the Nobel Prize in Chemistry 2017 was awarded 

to three pioneers in the field.

The main goal of this article is to introduce the challenging and exciting computational tasks 

involved in reconstructing 3-D molecular structures by cryo-EM. Determining molecular 

structures requires a wide range of computational tools in a variety of fields, including signal 

processing, estimation and detection theory, high-dimensional statistics, convex and non-convex 

optimization, spectral algorithms, dimensionality reduction, and machine learning. The tools from 

these fields must be adapted to work under exceptionally challenging conditions, including 

extreme noise levels, the presence of missing data, and massively large datasets as large as several 

Terabytes.

In addition, we present two statistical models: multi-reference alignment and multi-target 

detection, that abstract away much of the intricacies of cryo-EM, while retaining some of its 

essential features. Based on these abstractions, we discuss some recent intriguing results in the 

mathematical theory of cryo-EM, and delineate relations with group theory, invariant theory, and 

information theory.

I. Introduction

Structural biology studies the structure and dynamics of macromolecules in order to broaden 

our knowledge about the mechanisms of life and impact the drug discovery process. Owing 
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to recent ground-breaking developments, chiefly in hardware technologies and data 

processing techniques, an abundance of new molecular structures have been elucidated to 

near-atomic resolutions using cryo-electron microscopy (cryo-EM) [44], [47], [8], [81], [52]. 

Cryo-EM was selected by Nature Methods as Method of the Year 2015, and the Nobel Prize 

in Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank and Richard 

Henderson “for developing cryoelectron microscopy for the high-resolution structure 

determination of biomolecules in solution1.”

In a cryo-EM experiment, biological macromolecules suspended in a liquid solution are 

rapidly frozen into a thin ice layer. The 3-D location and orientation of particles within the 

ice are random and unknown. An electron beam then passes through the sample and a 2-D 

tomographic projection, called micrograph, is recorded. The goal is to reconstruct a high-

resolution estimate of the 3-D electrostatic potential of the molecule (in particular, its atomic 

structure) from a set of micrographs. The resolution measures the smallest detail that is 

distinguishable in a recovered 3-D structure; structures with better resolutions resolve finer 

features. For example, at resolutions of 9Å α-helices are resolved; at resolutions of 4.8Å 

individual β-strands are resolved; at resolutions of 3.5Å many amino acids side-chains are 

resolved [8]. Figure 1 shows a gallery of important biomedical structures solved by cryo-EM 

at increasingly higher resolutions. Figure 2 presents an example of a micrograph of the 

enzyme β-Galactosidase and the corresponding high-resolution 3-D reconstruction [15].

The signal-to-noise ratio (SNR) of cryo-EM data is very low due to two compounding 

reasons. On the one hand, the micrograph’s contrast is low because of the absence of 

contrast enhancement agents, such as heavy-metal stains. On the other hand, the noise level 

is high because the electron doses must be kept low to prevent damage to the radiation 

sensitive biological molecules. The difficulty to estimate the 3-D structure in this low SNR 

regime, when the orientation and location of the particles are unknown, is the crux of the 

cryo-EM problem.

Forty years ago, Dubochet and colleagues devised a new technique to preserve biological 

samples within a thin layer of an amorphous solid form of water, called vitreous ice [27]. In 

contrast to “regular ice”, vitreous ice lacks crystalline molecular arrangement and therefore 

allows preservation of biological structures. As the vitreous ice is maintained at liquid 

nitrogen or liquid helium temperatures, the technique was named “cryo-EM”. In the next 

decades, the successful application of cryo-EM was limited to study large and highly 

symmetric structures, such as ribosomes and different types of viruses. Before 2013, only 

few structures were resolved at resolutions better than 7Å and the field was dubbed “blob-

ology” due to the blobby appearance of structures at these resolutions. We refer the reader to 

[8], [52], [81], [30] for a more detailed historical account of the development of the 

technology.

Since 2013, single particle reconstruction using cryo-EM has been undergoing fast 

transformations, leading to an abundance of new high-resolution structures, reaching close to 

atomic resolution [15]. Figure 3 presents the historical growth in the number of high-

1https://www.nobelprize.org/prizes/chemistry/2017/press-release/
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resolution structures produced by cryo-EM. Several factors contributed to the “resolution 

revolution” [44]. First and foremost, a new generation of detectors was developed, called 

direct electron detectors (DED), that—in contrast to CCD cameras—do not convert 

electrons to photons. The DED dramatically improved image quality and SNR, and thus 

increased the attainable resolution of cryo-EM. These detectors have high output frame rates 

that allow to record multiple frames per micrograph (“movies”) rather than integrate 

individual exposures [58]. These movies can be used to compensate for motion induced by 

the electron beam to the sample; see Section V-A. In addition, recent hardware 

developments have enabled the acquisition and storage of huge amounts of data, which 

combined with readily access to CPUs and GPU resources, have helped propel the field 

forward.

The prevalent technique in structural biology in the last half a century was X-ray 

crystallography. This technique suffers from three intrinsic weaknesses that can be mitigated 

by using cryo-EM imaging. First, many molecules, among them different types of 

membrane proteins, were notoriously difficult to crystallize. In contrast, the sample 

preparation procedure for a cryo-EM experiment is significantly simpler, does not require 

crystallization, and needs smaller amounts of sample. Second, crystal contacts may alter the 

structure of proteins making it difficult to recover their physiologically relevant 

conformation. Cryo-EM samples, instead, are rapidly frozen in vitreous ice which preserves 

the molecules in a near-physiological state. Third, the X-ray beam aggregates the 

information from all molecules simultaneously and thus hinders visualization of structural 

variability. In stark contrast, the projection of each particle in a cryo-EM experiment is 

recorded independently and thus multiple structures—associated with different functional 

states—can be estimated [74]. A third technique, nuclear magnetic resonance (NMR), can be 

used to elucidate molecular structures in physiological conditions (water solution at room 

temperature) but is restricted to small structures, up to ~50 kDa.

The main goal of this article is to introduce the unique and exciting algorithmic challenges 

and cutting-edge mathematical problems arising from cryo-EM research. Estimating 

molecular structures involves developing and adopting computational tools in signal 

processing, estimation and detection theory, high-dimensional statistics, convex and non-

convex optimization, spectral algorithms, dimensionality reduction, and machine learning, as 

well as knowledge in group theory, invariant theory, and information theory. All tools from 

the aforementioned fields should be adapted to exceptional conditions: an extremely low 

SNR environment and the presence of missing data (for instance, 2-D location and 3-D 

orientation of samples in the micrograph). In addition, the devised algorithms should be 

efficient in order to run on massively large datasets in the order of several Terabytes. The 

article provides an account of the leading software packages in the field and discusses their 

underlying mathematical, statistical, and algorithmic principles [63],[76], [57], [33].

The article is organized as follows. In Section II, we describe the generative (forward) model 

of cryo-EM images and formulate the inverse problem of estimating the 3-D structure of 

molecules. Section III stresses the main computational challenges in cryo-EM data 

processing: high noise level, missing data, and massive datasets. Section IV presents 3-D 

reconstruction methods. In particular, Section IV-A discusses high-resolution techniques and 
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elaborates upon the maximum likelihood framework, which has been shown to be a highly 

effective tool. Then, Section IV-B introduces different methods for ab initio modeling, 

frequently used to constitute 3-D low-resolution estimates. Section V describes different 

building blocks in the algorithmic pipeline of cryo-EM, and relates them to detection, 

classification, denoising, and dimensionality reduction techniques. Section VI introduces 

recent results concerning two mathematical models: multi-reference alignment and multi-

target detection. These models abstract the cryo-EM problem and provide a broader analysis 

framework. In Section VII we suggest future research directions and underscore important—

computational and theoretical—open questions. Section VIII concludes the article.

Before moving on, we want to mention that topics which are of great importance to 

practitioners, such as the physics and optics of an electron microscope, sample preparation, 

and data acquisition are not discussed in this article. These topics are thoroughly covered by 

biological-oriented surveys, such as [81], [52], [30] and references therein.

II. The cryo-EM reconstruction problem

Modern electron microscopes produce multiple micrographs, each one of them composed of 

a series of frames (a “movie”). The first stage of any contemporary algorithmic pipeline is to 

align and average the frames in order to mitigate the effects of movement induced by the 

electron beam, and thus to improve the SNR. This process is called motion correction, or 

movie frame alignment. The next step, termed particle picking, consists in detecting and 

extracting the particles’ tomographic projections from the micrographs. Perfect detection 

requires finding the particles’ center of mass, which is difficult to estimate due to the 

characteristics of the Fourier transform of the microscope’s point spread function (PSF)—

called the contrast transfer function (CTF); see Section V-B. The output of the particle 

picking stage is a series of images I1, …, IN from which we wish to estimate the 3-D 

structure; this section focuses on the latter problem of 3-D reconstruction from picked 

particles, which is the heart of the computational pipeline of single-particle reconstruction 

using cryo-EM. Motion correction and particle picking are discussed in more detail in 

Section V. Figure 4 shows the complete cryo-EM imaging pipeline.

Let ϕ:ℝ3 ℝ represent the 3-D molecular structure to be estimated. Under the assumption 

that the particle picking is executed well (namely, each particle is detected up to a small 

translation; we assume for simplicity no false detection), each image I1, …, IN is formed by 

rotating ϕ by a 3-D rotation Rω, integrating along the z-axis (tomographic projection), 

shifting by a 2-D shift Tt, convolving with the PSF of the microscope hi, and adding noise:

Ii = ℎi * T ti ∫−∞

∞
ϕ Rωi

T r dz + “noise”, r = (x, y, z), i = 1, …, N, (II.1)

where * denotes convolution. The model can be written more concisely as

Ii = ℎi * T tiPRωiϕ + “noise”, i = 1, …, N, (II.2)
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where the tomographic projection is denoted by P, and (Rϕ)(r) = ϕ(RT r). The image is then 

sampled on a Cartesian grid. The integration along the z-axis is called the X-ray transform 

(not to be confused with the Radon transform in which the integration is over hyperplanes). 

The 3-D rotations describe the unknown 3-D orientation of the particles embedded in the 

ice, and can be thought of as random elements of the special orthogonal group ω ∈ SO(3). 

These rotations can be represented as 3 × 3 orthogonal matrices with determinant one or by 

quaternions. The 2-D shifts t ∈ ℝ2 result from detection inaccuracies, which are usually 

small. The PSFs hi are assumed to be known and their Fourier transforms suffer from many 

zero-crossings, making deconvolution challenging; see Section V-B for further discussion.

The cryo-EM inverse problem of reconstruction consists in estimating the 3-D structure ϕ 
from the 2-D images I1, …, IN. Importantly, the 3-D rotations ω1, …,ωN and the 2-D shifts 

t1, …, tN are nuisance variables. Namely, while the rotations and the shifts are unknown a 

priori, their estimation is not an aim by itself. Figure 5 shows an example of the cryo-EM 

problem in its most simplified version, without noise, CTF, and shifts.

The reconstruction of ϕ is possible up to three intrinsic ambiguities: a global 3-D rotation, 

the position of the center of the molecule (3-D location), and handedness. The latter 

symmetry, also called chirality, means that it is impossible to distinguish whether the 

molecule was reflected about a 2-D plane through the origin. The handedness of the 

structure cannot be determined from cryo-EM images alone because the original 3-D object 

and its reflection give rise to identical sets of projections related by the following 

conjugation Rωi = JRωiJ
−1, where J = diag(1, 1, −1).

In the presence of structural variability, ϕ may be thought of as a random signal with an 

unknown distribution defined over a space of possible structures (which might be unknown 

as well). In this case, the task is more ambitious and involves estimating the whole 

distribution of conformations. Usually, the distribution is assumed to be discrete (that is, in 

each measurement we observe one of few possible structures or conformational states) or to 

lie in a low-dimensional subspace or manifold. This subject is further discussed in Section 

VII-A and in a recent survey [74].

The chief noise source in cryo-EM at the frame level (before motion correction) is shot 

noise, which follows a Poisson distribution. After movie frames are averaged to produce 

micrographs, it is customary to assume that the noise is characterized by a Gaussian 

distribution. Indeed, all current algorithms build upon—implicitly or explicitly—the 

speculated Gaussianity of the noise. While the spectrum of the noise is not white—mainly 

due to inelastic scattering, variations in the thickness of ice, and the PSF of the microscope

—it is assumed to be a 1-D radial function (namely, constant along the angular direction). 

The common practice is to estimate the parameters of the noise power spectrum during the 

3-D reconstruction process, or from regions in the micrographs that, presumably, contain no 

signal.
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III. Main computational challenges

The difficulty to determine high-resolution molecular structures using cryo-EM hinges upon 

three characteristic features of the cryo-EM data: high noise level, missing data, and massive 

datasets. This section elaborates on these unique features, while the next sections dive into 

the different tasks and algorithms involved in cryo-EM data processing.

a) High noise level:

In a cryo-EM experiment, the electron doses must be kept low to mitigate radiation damage 

due to the electron illumination. The low doses induce high noise levels on the acquired raw 

data frames. Together with the image’s low contrast, it results in SNR levels that are usually 

well below 0 dB and might be as low as −20 dB (namely, the power of the noise is 100 times 

greater than the power of the signal). Under such low SNR conditions, standard tasks, such 

as aligning, detecting, or clustering signals, become very challenging.

To comprehend the difficulty to perform estimation tasks in a low SNR environment, let us 

consider a simple rotation estimation problem. Let us denote by x ∈ ℝL the samples of a 

periodic signal on the unit circle; x is assumed to be known. We wish to estimate a rotation θ 
∈ [0, 2π) from a noisy measurement

y = Rθx + ε, (III.1)

where ε N 0, σ2I  and Rθ denotes the rotation operator, that is, (Rθx)(t) = x(t − θ). To 

estimate θ, we correlate the signal x with rotated versions of y, and choose the inverse of the 

rotation that maximizes the correlation as the estimator—this technique is called template 
matching. In the absence of noise, template matching simply correlates the signal with its 

rotated versions; the maximum is attained when y is rotated by −θ. However, in the presence 

of noise, we get an additional stochastic term due to the correlation of the noise with the 

signal. Consequently, if σ2 is large, it is likely that the peak of the correlation will not be 

close to −θ. In particular, when σ → ∞ the location of the peak is distributed uniformly on 

the circle. This result can be derived formally using the Neyman-Pearson lemma and holds 

true for any estimation technique, not necessarily template matching [18]. Even if we collect 

N measurements (each with a different rotation), it is impossible to estimate the N rotations 

accurately. In [6], it was shown that the Cramér-Rao bound of this problem is proportional to 

σ2 and independent of N. Therefore, if the noise level is high, the variance of any estimator 

would be high as well.

The same conclusions that were derived for the simple rotation estimation problem (III.1) 

remain true for cryo-EM. For example, even if the 3-D structure is known, aligning a noisy 

raw image against multiple noiseless projection templates that correspond to rotations 

sampled from SO(3) will produce no salient peak in the correlation if the noise level is high. 

In particular, the higher the noise level, the flatter the distribution over SO(3).

b) Missing data—Unknown viewing directions and locations:

The viewing direction and location associated with each particle in a micrograph are 

unknown a priori. If they were known, estimating the structure ϕ would be a linear inverse 
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problem—similarly to the reconstruction problem in computerized-tomography (CT). The 

recovery in this case is based on the Fourier slice theorem, stating that the 2-D Fourier 

transform of a tomographic projection is the restriction of the 3-D Fourier transform of ϕ to 

a 2-D plane. Mathematically, it can be written succinctly as

SRF3ϕ = F2PRϕ, (III.2)

where F2, F3, P and S are, respectively, the 2-D Fourier, 3-D Fourier, tomographic projection 

and restriction operators; this theorem is a direct corollary of the fact that the Fourier 

operator F and the rotation operator R commute, i.e., RF = F R.

The Fourier slice theorem implies that acquiring tomographic projections from known 

viewing directions is equivalent to sampling the 3-D Fourier space. Hence, given enough 

projections, one can estimate ϕ to a certain resolution. This is the underlying principle 

behind many CT imaging algorithms, such as the classical filtered back projection (FBP). 

However, FBP is not optimal for cryo-EM (even if viewing directions are known) since not 

all viewing directions are necessarily represented in the data, and the sampling in Fourier 

domain is non-uniform; the coverage of viewing directions affects the quality of the solution. 

An alternative is the algebraic reconstruction technique (ART) which solves the linear 

inverse problem by iterative projections; this algorithm is called the Kaczmarz method in 

numerical linear algebra. However, ART is rarely used in cryo-EM because it is slow: it does 

not exploit the Fourier slice theorem and thus cannot be accelerated using FFTs. Modern 

approaches were developed to exploit the Fourier slice theorem and to account for non-

uniform sampling; popular algorithms are based on efficient gridding methods (that compute 

a uniformly sampled version of a function from a nonuniformly sampled version by 

choosing proper weights) [55] and using non-uniform FFT packages to harness the structure 

of the linear system [35], [14].

While the viewing directions in cryo-EM are unknown, there is a rigorous technique to 

estimate them based on common-lines; see Section IV-B3 and [79], [72]. Unfortunately, any 

method to estimate the viewing directions is destined to fail when the SNR is low, for the 

same reasons that estimating θ in (III.1) would fail. Bearing in mind that the ultimate goal is 

to estimate the 3-D structure—not the viewing directions—it is essential to consider 

statistical methods that circumvent rotation estimation, such as maximum likelihood and the 

method of moments.

c) Massive datasets and high dimensionality:

A single session of data collection in a typical cryo-EM experiment produces a few thousand 

micrographs, each containing several hundred individual particle projections. Depending on 

the type of detector used during acquisition, micrographs can range in size from a few tens 

of Megapixels up to one hundred Megapixels for the newest detectors. Moreover, the new 

generation of detectors can record each micrograph as a rapid burst of frames, producing 

large movie files that result in datasets of several Terabytes in size. The sheer volume of data 

must be taken into account early on in the algorithmic design process, and in addition to 

storage considerations, steps must be taken to ensure the efficient use of computational 
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resources in order to keep up with the ever-increasing throughput of data produced by 

modern cameras.

Another issue is the dimensionality of the reconstruction problem. The number of voxels of 

a typical 200×200×200 volume is 8 million. Estimating so many parameters poses a 

challenge—both from the computational complexity side (how to efficiently optimize; for 

example, how to find the maximum of the likelihood function of 8 million variables?) and 

also on the statistical estimation front (see Section V-E). The problem is even more severe 

when multiple structures, or even a continuum of structures, need to be estimated (see 

Section VII-A). Getting to high resolution is a major bottleneck because of a compounding 

computational burden effect: as more parameters need to be estimated, more data is required 

for their estimation, and the computation becomes severely more expensive and challenging.

IV. 3-D reconstruction from projections

A. High-resolution refinement

The reconstruction procedure of high-resolution 3-D structures is usually split into two 

stages: constructing an initial low-resolution model, which is later refined by applying an 

iterative algorithm (“refinement algorithm”); See Figure 4. This section is devoted to 

refinements techniques, while different approaches to constitute low-resolution estimates 

using ab initio modeling—initialization-free models—are discussed in the next section.

Refinement techniques for cryo-EM can be broadly classified into two categories: hard and 

soft angular assignment methods. The hard assignment approach is based on template 

matching. At each iteration, multiple projections are generated from the current estimate of 

the structure; the projections should, ideally, densely cover SO(3). Then, a single viewing 

direction is assigned to each experimental image based on the projection with which it 

correlates best. The angular assignment can be performed either in real or Fourier space. The 

advantage of working in Fourier space is that it is not necessary to rotate the molecule: 

projections can be computed fast using off-the-shelf non-uniform FFT packages (e.g., [35], 

[14]) as implied by the Fourier slice theorem. Moreover, using this representation, the CTF 

is simply a diagonal operator. Once the viewing directions of all experimental images are 

assigned, the 3-D structure is constructed using standard linear inversion techniques; see 

discussion in Section III. The algorithm iterates between hard angular assignment and 

structure construction until convergence. While the quality of hard angular assignments may 

be influenced by the high noise levels, there are several examples of packages that follow 

this type of approach, e.g., EMAN2 [76] and cisTEM [33], among others.

A second class of strategies are the soft assignment methods. Similarly to hard assignment 

methods, in each iteration the experimental images are correlated with multiple template 

projections. However, instead of choosing the best match, a similarity score is given to each 

pair of experimental image and projection. These scores, also called weights or 

responsibilities, are computed according to the generative statistical model of the 

experimental images and used for reconstruction as explained below.
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The soft assignment methods are instances or variants of the well-known expectation-

maximization (ML-EM) algorithm [25]. Notably, this relation classifies the 3-D 

reconstruction problem as a problem of maximum likelihood estimation or, more generally, 

a problem in Bayesian statistics, and thus provides a solid theoretical and algorithmic 

framework. In particular, it enables to incorporate priors that essentially act as regularizers in 

the reconstruction process. In the context of cryo-EM, ML-EM was first applied to 2-D 

cryo-EM images by Sigworth [68], and later implemented for 3-D reconstruction by the 

software packages RELION [63] and cryoSPARC [57].

In what follows, we describe the ML-EM algorithm for a more general statistical model, and 

then particularize it to the special case of cryo-EM. Suppose we collect N observations from 

the model:

yi = Lθix + εi, i = 1, …, N, (IV.1)

where Lθ is a linear transformation acting on the signal x, parameterized by a random 

variable θ, and ε N 0, σ2I . The goal is to estimate x, while θ1, …, θN are nuisance 

variables. A typical assumption is that x can be represented by a finite number of 

coefficients (for instance, its Fourier expansion is finite) and these coefficients were drawn 

from a Gaussian distribution with mean μ and covariance matrix Σ. The key for reliable 

estimation is to marginalize over the nuisance variables θ1, …, θN. Without marginalization 

(that is, when the goal is to jointly estimate x and θ1, …, θN), the number of parameters 

grows with the number of measurements indefinitely, and thus the maximum likelihood 

estimator may be inconsistent. This phenomenon is exemplified by the Neyman-Scott 

“paradox.”

In cryo-EM, the transformation Lθ is the operator described in (II.2). This operator rotates 

the volume, computes its 2-D tomographic projection, applies a 2-D translation and 

convolution with the PSF; θ is drawn from a distribution defined over the 5-D space of 3-D 

rotations and 2-D translations. The distribution of θ is generally unknown and should be 

estimated as part of the ML-EM algorithm.

Let us denote y = (y1, …, yN). The posterior distribution p(x|y) of (IV.1) is proportional to 

the product of the prior p(x) with the likelihood function

ℒ(x; y) = p(y |x) = ∏
i = 1

N
∑

θl ∈ Θ
p yi x, θl p θl

= 1
2πσ2 M /2 ∏

i = 1

N
∑

θl ∈ Θ
p θl e− 1

2σ2‖yi − Lθlx‖2
,

(IV.2)

where Θ is a discrete space on which θ is defined, and M is the length of each observation. If 

the entire posterior distribution could be computed, then one could obtain far more statistical 

information about x than just maximizing the likelihood. For instance, the best estimator in 

the minimum mean square error (MMSE) sense is obtained by marginilzing over the 

posterior:
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xMMSE(y) = ∫
x

p(x |y)xdx = E{x |y} . (IV.3)

Unfortunately, the entire posterior can rarely be computed, especially in big data problems, 

such as cryo-EM. The ML-EM framework provides a simple, yet frequently very effective, 

iterative method that tries to compute the maximum a posteriori estimator (MAP), namely, 

the maximal value of p(x|y).

Each iteration of the ML-EM algorithm consists of two steps. The first step (E-step) 

computes the expected value of the log of the posterior with respect to the nuisance 

variables, conditioned on the current estimate of x, denoted here by xt, and the data:

Q x xt = Eθ y, xt log p(x y, θ)

=  constant  − 1
2σ2 ∑

i = 1

N
∑

θl ∈ Θ
wi, l yi − Lθlx 2 + log p(x),

(IV.4)

where

wi, l = p θi = θl yi, xt = e
−1
2σ2 yi − Lθlxt 2

∑θl ∈ Θe
−1
2σ2 yi − Lθlxt 2 . (IV.5)

If x N(0, Σ), then log p(x) = − 1
2xTΣ−1x.

The second step, called the M-step, updates x by

xt + 1 = arg max
x

Q x xt , (IV.6)

which is usually performed by setting the gradient of Q to zero. If x is assumed to be 

Gaussian, then the M-step reduces to solving a linear system of equations with respect to x. 

The E and M steps are applied iteratively. It is well-known that p(xt+1|y) ≥ p(xt|y); however, 

since the landscape of p(x|y) is usually non-convex, the iterations are not guaranteed to 

converge to the MAP estimator [25]. Usually, the ML-EM iterations halt when 
p xt + 1|y − p xt|y

p xt|y
 is smaller than some tolerance (but other criteria can be employed as well). 

The posterior distribution at each iteration can be evaluated according to (IV.2).

The implementation details of the ML-EM algorithm for cryo-EM vary across different 

software packages. The popular package RELION, for example, incorporates a prior of 

uniform distribution of rotations over SO(3) (although the distribution itself is usually non-

uniform), and that each Fourier coefficient of the 3-D volume was drawn independently 

from a normal distribution [63]. The variance of the Fourier coefficients’ prior is updated at 

each iteration by averaging over concentric frequency shells of the current estimate (so it is a 

1-D radial function). If the MLEM algorithm is initialized with a smooth volume (which is 

Bendory et al. Page 10

IEEE Signal Process Mag. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the common practice), the variance would be large only at low-frequencies, hence high 

frequencies would be severely regularized. As a result, the first ML-EM iterations would 

mostly update the low frequencies, but the high frequencies would also be slightly affected. 

As the algorithm proceeds, the structure would include more high frequency content, thus 

the variance of these frequency shells would increase, and the effective resolution of the 3-D 

map would gradually improve. This strategy of initializing with a low resolution structure 

and gradually increasing the resolution is called “frequency marching” and is shared by 

many packages in the field; see further discussion in Section IV-B5. Another popular 

package, cryoSPARC, also employs an ML-EM algorithm with the prior that each voxel in 

real space was drawn independently from an independent Poisson distribution with a 

constant parameter [57]. We mention that such statistical priors (e.g., each voxel or 

frequency is drawn from Poisson or normal distributions) are usually chosen out of 

mathematical and computational convenience and may bias the reconstruction process. It is 

an open challenge to replace those statistical priors by priors which are based on or inspired 

by biological knowledge, such as previously reconstructed structures.

The main drawback of the ML-EM approach, especially at high resolution, is the high 

computational load of the E-step in each iteration. Specifically, each ML-EM iteration 

requires correlating each experimental image (typically a few hundred thousands) with 

multiple synthetic projections of the current structure estimate (sampled densely over SO(3)) 

and their 2-D translations. To alleviate the computational burden, a variety of methods are 

employed to narrow the 5-D search space. Popular techniques are based on multi-scale 

approaches, where an initial search is done on a coarse grid followed by local searches on 

finer grids. A more sophisticated idea was suggested in [57] based on the “branch and 

bound” methodology that rules out regions of the search space that are not likely to contain 

the optimum of the objective function.

B. Ab initio modeling

In this section, we describe some of the intriguing ideas that were proposed to construct ab 
initio models, namely, models that do not require an initial guess. These methods usually 

result in low-resolution estimates that can be later refined as described in the previous 

section. To emphasize the importance of robust ab initio techniques, we begin by discussing 

model bias—a phenomenon of crucial importance in cryo-EM and statistics in general.

1) Model bias and validation: The cryo-EM inverse problem is non-convex and thus 

the output of the 3-D reconstruction algorithms may depend on their initializations. This 

raises the validation problem: how can we verify that a given estimate is a faithful 

representation of the underlying data? Currently, a 3-D model is treated as valid if its 

structural features meet the common biological knowledge (primary structure, secondary 

structure, etc.) and if it passes some computational tests based on different heuristics. For 

instance, the reconstruction algorithm can be initialized from many different points. If the 

algorithm always converges to the same or similar structures, it strengthens the confidence in 

the attained solution. Moreover, since the data is usually uploaded to public repositories, 

different researchers can examine it and compare the results against each other [61]; see a 

more detailed discussion in Section VII-B.
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Despite all precautions taken by researchers in the field, the verification methods are not 

immunized against systemic errors—this pitfall is dubbed model bias. One important 

example concerns the particle picking stage in which one aims to detect and extract particle 

projections from noisy micrographs. The majority of the detection algorithms in the field are 

based on template matching techniques, despite their intrinsic flaws. Specifically, choosing 

improper templates can lead to erroneous detection, which in turn biases the 3-D 

reconstruction algorithm toward the chosen templates; see [39] and further discussion on 

particle picking techniques in V-C.

The model bias phenomenon is exemplified by the “Einstein from noise” experiment [67]. In 

this experiment, N images of pure i.i.d. Gaussian noise are correlated with a reference image 

(in the original paper the authors chose an image of Einstein as the reference and thus the 

name). Then, each pure-noise image is shifted to best align with the reference image (based 

on the peak of their cross-correlation), and finally all images are averaged. Without bias, one 

would expect that averaging pure noise images will converge toward an image of zeros as N 
diverges. However, in practice the resulting image is similar to the reference image, that is, 

the algorithm is biased toward the reference image; see [67, Figure 2]. In the context of 

cryo-EM, the lesson is that without prudent algorithmic design, the reconstructed molecular 

structure may reflect the scientist’s presumptions rather than the structure that best explains 

the data.

We now turn our attention to some of the existing techniques for ab initio modeling.

2) Stochastic gradient descent over the likelihood function: Stochastic gradient 

descent (SGD) gained popularity in recent years, especially due to its invaluable role in the 

field of deep learning [21]. The underlying idea is very simple. Suppose that we wish to 

minimize an objective function of the form

f(x) = 1
N ∑

i = 1

N
fi(x) . (IV.7)

A gradient descent algorithm is an optimization technique used to minimize the objective 

function by iteratively moving in the direction opposite to its gradient. Its tth iteration takes 

on the form

xt + 1 = xt − ηt
1
N ∑

i = 1

N
∇fi xt , (IV.8)

where ∇ denotes a gradient, and ηt is called the step size, or learning rate. In SGD, we 

simply replace the full sum by a random element:

xt + 1 = xt − ηt∇fi xt , (IV.9)

where i is chosen uniformly at random from {1, …, N}. In expectation, the direction of each 

SGD step is the direction of the full gradient (IV.8). The main advantage of SGD is that each 

iteration is significantly cheaper to compute than the full gradient (IV.8). It is also easy to 
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modify the algorithm to sum over few random elements at each iteration, rather than just 

one, to improve robustness at the cost of higher computational load per iteration. In addition, 

it is commonly believed that the inherent randomness of SGD helps to escape local minima 

in some non-convex problems.

This strategy was proven to be effective to construct ab initio models using cryo-EM, 

achieving resolutions of up to 10Å [57]. The objective function is the negative log of the 

posterior distribution. As the log posterior involves a sum over the experimental images 

(IV.2), the SGD scheme chooses at each iteration one random image (or a subset of images) 

to approximate the gradient direction.

3) Estimating viewing directions using common-lines: If the orientations and 

locations of the particles in the ice are known (equivalently, the 3-D rotations and the 2-D 

translations in (II.2)), then recovering the 3-D structure is a linear problem that enjoys many 

solutions developed for CT imaging. In this section, we survey an analytical method to 

estimate the viewing directions using the common-lines property.

Due to the Fourier slice theorem, any pair of projection images has a pair of central lines 

(one in each image) on which their Fourier transforms agree. For generic molecular 

structures (with no symmetry), it is possible to uniquely identify this common-line, for 

example, by cross-correlating all possible central lines in one image with all possible central 

lines in the other image, and choosing the pair of lines with maximum cross-correlation.

The common-line pins down two out of the three Euler angles associated with the relative 

rotation Ri
−1Rj between images Ii and Ij. A third image is required to determine the third 

angle: the three common-line pairs between three images uniquely determine their relative 

rotations. This technique is called angular reconstitution, and it was suggested, 

independently, by Vainshtein and Goncharov [78] and Van Heel [79]. The main drawback of 

this procedure is its sensitivity to noise; it requires the three pairs of common lines to be 

accurately identified. Moreover, estimating the rotations of additional images sequentially 

(using their common-lines with the previously rotationally assigned images) can quickly 

accumulate errors.

As a robust alternative, it was proposed to estimate the rotations R1, …, RN from the 

common-lines of all pairs Ii, Ij simultaneously; this framework is called synchronization. 

Since this strategy takes all pair-wise information into account, it has better tolerance to 

noise. The rotation assignment can be done using a spectral algorithm or semidefinite 

programming [72] and enjoys some theoretical guarantees; see for instance [70]. 

Nevertheless, as discussed in Section III, in the low SNR regime any method for estimating 

the rotations would fail. Therefore, the method requires as input high SNR images that can 

be obtained using a procedure called 2-D classification; see further discussion in Section V-

D. 2-D classification, however, blurs the fine details of the images and therefore the attained 

resolution of the method is limited [34].

Three last comments are in order. First, if the structure possesses a nontrivial symmetry, 

there are multiple common-lines between pairs of images that should be considered [56]. 
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Second, interestingly, this technique cannot work when the underlying object is a 2-D image 

(rather than 3-D as in cryo-EM). In this case, the Fourier transform of the tomographic 

projection (which is a 1-D function in that case) is a line that goes through the origin of the 

2-D Fourier space of the underlying object. Therefore, the single common point of any two 

projections taken from different angles is the origin, and thus there is no way to find the 

relative angle between them. Finally, the common-lines method is effective for additional 

signal processing applications, such as the study of specimen populations [46].

4) The method of moments: Suppose that a set of parameters x characterizes a 

distribution p(y|x) of a random variable y with L entries. We observe N i.i.d. samples of y 
and wish to estimate x. In the method of moments, the underlying idea is to relate the 

moments of the observed data with x. Those moments can be estimated from the data by 

averaging over the observations:

1
N ∑

i = 1

N
yi ≈ E{p(y |x)} = M1(x)

1
N ∑

i = 1

N
yiyiT ≈ E p yyT x = M2(x)

⋮
1
N ∑

i = 1

N
yi

⊗ k ≈ E p y ⊗ k x = Mk(x),

(IV.10)

where y ⊗ k is a tensor with Lk entries and the entry indexed by n = n1, …, nk ∈ ℤL
k  is given 

by ∏i = 1
k y ni . By the law of large numbers, when N → ∞ the average converges almost 

surely to the expectation. The right-hand side underscores that the expectations are solely 

functions of x; the moment tensors M1, M2, …, Mk can be derived analytically. For instance, 

in cryo-EM, the expectation is taken against the random rotations, translations and the noise; 

the moments are functions of the 3-D volume, the 5-D distribution over the space of 3-D 

rotations and 2-D translations, and some parameters of the noise statistics (due to bias 

terms). The final step of the method of moments is to solve the system of equations (IV.10), 

which might be highly non-trivial. Importantly, since estimating the moments requires only 

one pass over the observations, it can be done potentially on the fly during data acquisition. 

This is especially important for cryo-EM in which hundreds of thousands of images need to 

be processed.

Computing the qth moment involves the product of q noisy terms and thus the variance of its 

estimation scales as σ2q/N. As a result, when invoking the method of moments it is crucial to 

determine the lowest-order moment that identifies the parameters x uniquely: this moment 

determines the estimation rate of the problem, that is, how many samples are required to 

accurately estimate the parameters. Remarkably, it was shown that under a general statistical 

model that is tightly-related to the cryo-EM problem (as will be described in Section VI-A), 

the first moment that distinguishes between different parameters determines the sample 
complexity of the problem (namely, how many observations are necessary to attain an 

accurate estimate) in the low SNR regime [4]. In addition, the number of equations in 
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(IV.10) increases with the order of moments. Thus, using lower-order moments reduces the 

computational complexity.

The first to suggest the method of moments for single particle reconstruction, 40 years ago, 

was Zvi Kam [42]. Under the simplifying assumptions that the particles are centered, the 

rotations are uniformly distributed and by ignoring the CTF, he showed that the second 

moment of the experimental images determines the 3-D structure, up to a set of orthogonal 

matrices. To determine those matrices, he suggested to compute a subset of the third-order 

moment. Recently, it was shown that under the same assumptions the structure is indeed 

determined uniquely from the third moment [9]. Remarkably, if the distribution of rotations 

is non-uniform, then the second moment suffices [66]. Therefore, in light of [4], the sample 

complexity of the cryo-EM problem in the low SNR regime, under the specified conditions, 

scales as σ4 and σ6 for non-uniform and uniform distribution of rotations, respectively. It is 

still an open question how many images are required to solve the full cryo-EM problem; see 

further discussion in Section VII.

Interest in the method of moments has been recently revived, largely due to its potential 

application to X-ray free electron lasers (XFEL) [48], [82]. We believe that the method of 

moments has been largely overlooked by the cryo-EM community since Kam’s paper for 

three main reasons. First, Kam’s original formulation required uniform distribution of 

viewing directions, an assumption that typically does not hold in practice; a recent paper 

extends the method to any distribution over SO(3) [66]. Second, estimating the second and 

third order statistics accurately requires a large amount of data that was not available until 

recent years. Third, accurate estimation of high-order moments for high-dimensional 

problems requires modern statistical techniques, such as eigenvalue shrinkage in the spiked 

covariance model, that have only been introduced in the last decade [26].

5) Frequency marching: Most of the cryo-EM reconstruction algorithms start with a 

low-resolution estimate of the structure, which is then gradually refined to higher 

resolutions. This process is dubbed frequency marching. Frequency marching can be done 

explicitly by constructing a low-resolution model using an ab initio technique that is later 

refined by ML-EM [57], or more implicitly by an iteration-dependent regularization [63].

In [13], a deterministic and mathematically rigorous method to gradually increase the 

resolution was proposed. The 3-D Fourier transform of the object is expanded by concentric 

shells. At each iteration, each experimental image is compared with many simulated 

projections of the current low-resolution estimate, and a viewing direction is assigned to 

each experimental image by template matching (hard angular assignment). Given the 

angular assignments, an updated structure with one more frequency shell is computed by 

solving a linear least squares problem, thus progressively increasing the resolution.

V. Building blocks in the computational pipeline

This section elaborates on some of the building blocks in the algorithmic pipeline of single 

particle reconstruction using cryo-EM. For each task, we introduce the problem and discuss 

the underlying principles behind some of the most commonly used solutions.
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A. Motion correction

During data collection, the electron beam induces sample motion that mitigates high-

resolution information. The modern detectors (direct electron detectors) acquire multiple 

frames per micrograph, allowing to partially correct the motion blur by aligning and 

averaging the frames. In essence, motion correction is an alignment problem (also referred 

to as registration or synchronization) that shares many similarities with classical tasks in 

signal processing and computer vision. The main challenge in alignment is the high noise 

levels that hamper precise estimation of relative shifts between frames.

Several solutions were proposed to the motion correction problem based on a variety of 

methods, such as pair-wise alignment of all frames and optical flow; see a survey on the 

subject in [58] and references therein. The first generation solutions aimed to estimate the 

movement of the entire micrograph, however, the drift is not homogeneous across the entire 

field of view, motivating the development of more accurate local techniques. One such 

strategy is implemented by the software MotionCor2 [88], which describes the motion as a 

block-based deformation that varies smoothly throughout the exposure. The micrograph is 

first divided into patches, and motions within each patch are estimated based on cross-

correlation. Then, the local motions are fitted to a time varying 2-D polynomial; the 

polynomial is quadratic in the 2-D frame coordinates and cubic in the time axis. Finally, the 

frames are summed, with or without dose weighting which was determined according to a 

radiation damage analysis. More recently, strategies for per-particle motion correction have 

been proposed that yield significant improvements in resolution [15], [92]. Figure 6 

demonstrates examples of different motion correction strategies.

B. CTF estimation and correction

Each cryo-EM image is affected by the PSF of the microscope through convolution with a 

kernel hi; see (II.2). The Fourier transform of the PSF—the CTF—suffers from multiple 

zero-crossings, making its inversion (i.e., deconvolution) challenging. To compensate for the 

missing frequencies, the standard routine is to apply different PSFs to different micrographs. 

Thus, spectral information that was suppressed in one micrograph may appear in another.

The CTF cannot be specified precisely by the user. Instead, the number and location of the 

zero-crossings is given by the specific experimental parameters of the microscope, which are 

hard to control. Thus, a preceding step entails estimating the CTF from the acquired data. 

Specifically, the CTF is modeled as

CTF k, λ, Δf, Cs = − sin πλ |k |2Δf −
πλ3 k 4Cs

2 + α ⋅ E( |k | ), (V.1)

where k is the frequency index, α is a small phase shift term, λ is the electron wavelength, 

Δf is the objective defocus, Cs is the spherical aberration, and E(|k|) is an exponentially 

decaying envelope function—specified by a parameter called B-factor—due to the beam 

energy spread, the beam coherence, and the sample drift [59]. The CTF mitigates the very 

low frequencies, and therefore centering projection images (that is, finding their center of 

mass) is challenging. In fact, the center of mass depends on the CTF, and thus two projection 
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images with the same viewing angles but different CTFs (e.g., different defocus values) will 

have different centers in real space. The CTF is approximately constant along concentric 

rings, although in practice those rings might be slightly deformed; this deformation can be 

modeled by an additional parameter called astigmatism). The defocus value of the 

microscope has a pivotal role: high defocus values enhance low-resolution features and 

improve the contrast of the image (increase the SNR), whereas low defocus values enhance 

high-resolution features (fine details) at the cost of lower contrast (lower SNR).

CTF estimation begins by computing the power spectrum of the whole micrograph. The 

power spectrum exhibits “rings”, called Thon rings, that correspond to the oscillations of the 

sine function (V.1); those rings are used to fit the CTF’s parameters (see Figure 2B). Two 

popular software packages CTFFIND4 [59] and Gctf [85] estimate those parameters by 

generating multiple templates according to the postulated model (V.1). The template that 

best fits the measured Thon rings is used as the estimated CTF.

Once the CTF was estimated, the goal it to invert its action. The challenge stems from the 

structure of the CTF (V.1) because it has many small values and thus direct inversion is 

impossible. The most popular technique for CTF correction, “phase flipping”, is 

embarrassingly simple: it disregards the information about amplitude changes and corrects 

the data only for the sign of the CTF, and thus obtains the correct phases in Fourier space. 

Namely, if a micrograph is represented in Fourier domain by

Imicrograph (k) = CTF(k)I(k), (V.2)

where I(k) is the micrograph before the CTF action, then the corrected image would be

Icorrected (k) = sign(CTF(k))Imicrograph (k) = CTF(k) I(k) . (V.3)

Another approach is to apply Wiener filtering that attempts to correct both the amplitudes 

and the phases [29], [69]. However, this approach requires the knowledge of the SNR (which 

is not trivial to estimate in a low SNR environment) and cannot correct for missing 

frequencies.

Instead of inverting the CTF explicitly, an attractive alternative is to incorporate the CTF into 

the forward model of the reconstruction algorithm. This can be done naturally in the ML-

EM approach, the method of moments, and the SGD framework. Because different CTFs are 

applied to different micrographs, in principle, full CTF correction is feasible.

C. Particle picking

A micrograph consists of regions which contain only noise, regions with noisy 2-D 

projections, and regions with other contaminants, such as carbon film. In particle picking, 

the goal is to detect and extract the 2-D projections (particles) from the noisy micrographs. 

High-resolution reconstruction typically requires hundreds of thousands of particles, and 

thus manual picking is time consuming and tedious. In addition, it may introduce subjective 

bias into the procedure.
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Many solutions were proposed in the literature for the particle picking problem, based on 

standard edge detection techniques, machine learning [84], [91], [83], and template 

matching. For the latter, a popular strategy is the one implemented in RELION. In this 

framework, the user manually selects a few hundreds of particles. These particle images are 

then 2-D classified (see next section), and the 2-D classes are used as templates for an 

automatic particle picking based on template matching [64].

As discussed in Section IV-B1, a major concern of any particle picking algorithm is a 

systematic bias. To alleviate the risk for model bias, a fully automated technique was 

proposed in [37]. Rather than templates, the algorithm selects automatically a set of 

reference windows that include both particle and noise windows. The selection is based on 

the local mean and variance: regions with particles typically have lower mean and higher 

variance than regions without particles. Then, regions in the micrograph are correlated with 

the reference windows. The regions which are most likely to contain a particle (high 

correlation) and those which are least likely (low correlation with all reference windows) are 

used to train a support vector machine classifier. The output of this linear classifier is used to 

pick the particles.

In practice, a considerable number of picked particles are usually non-informative, 

containing adjacent particles that are too close to each other, only part of a particle, or just 

pure noise. Consequently, it is common to try and prune out these outliers. In [62], it was 

proposed to employ several particle pickers simultaneously and compute a consensus 

between them using a deep neural network. In [90], a simple pruning is devised by viewing 

the output of the particle picking algorithm as a mixture of Gaussians.

D. 2-D classification

As experimental images corresponding to similar viewing directions tend to be very much 

alike (due to the smoothness of the molecular structure), it is common to divide the images 

into several classes (i.e., clustering) and average them to increase the SNR. This process is 

called 2-D classification and the averaged images are referred to as “class averages.” Since 

the global in-plane rotation of each micrograph is arbitrary, the clustering should be invariant 

under in-plane rotations: two images from a similar viewing direction but with a different in-

plane rotation are supposed to be grouped together after appropriate alignment. The class 

averages are used for a variety of tasks: to construct ab initio models, as templates for 

particle picking, to provide a quick assessment of the particles, to remove picked particles 

which are associated with non-informative classes, and for symmetry detection.

There are three main computational aspects that make the 2-D classification task quite 

challenging. First, as already mentioned, low SNR impedes accurate clustering and 

alignment. Second, the high computational complexity of finding the optimal clustering 

among hundreds of thousands of images may be prohibitive unless designed carefully. Third, 

it is not clear what is the appropriate similarity metric to accurately compare images.

Many different strategies for 2-D classification were proposed; see for instance [80], [73]. A 

popular 2-D classification algorithm, implemented in RELION [65], is based on the ML-EM 
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scheme. In this algorithm, each observed image is modeled as a sample from the statistical 

model

yi = ℎi * T tiRθixki + εi, i = 1, …, N, (V.4)

where k is distributed uniformly over {1, …, K} (these are the K class averages to be 

estimated), θ is distributed uniformly over θ ∈ [0, 2π), t is drawn from an isotropic 2-D 

Gaussian, hi is the estimated PSF, and εi N 0, σ2I . Given this model, it is straight-forward 

to implement an ML-EM algorithm to estimate x1, …, xK following the guidelines of 

Section IV. This algorithm, albeit popular, suffers from three imperative weaknesses. First, 

the computational burden of running ML-EM is a major hurdle as the algorithm needs to go 

through all experimental images at each iteration. Second, it assumes that each experimental 

image is originated from only K possible class averages. However, this is an inaccurate 

model as the orientation of particles in the ice layer are distributed continuously over SO(3) 

(in addition to structural variability that may be present). Finally, ML-EM typically suffers 

from the “winner takes all” phenomenon: most experimental images would correlate well 

with, and thus be assigned to the class averages that enjoy higher SNR. As a result, ML-EM 

tends to output only a few, low-resolution classes. This phenomenon was already recognized 

by [73] and is also present for ML-EM based 3-D classification and refinement.

An alternative solution was proposed in [87]. In this framework, each image is averaged 

with its few nearest neighbors, after a proper in-plane alignment. The nearest neighbor 

search is executed efficiently over the bispectra of the images. The bispectrum is a 

rotationally-invariant feature of an image— that is, it remains unchanged under an in-plane 

rotation. To reduce the computational complexity and denoise the data, each image is first 

compressed using a dimensionality reduction technique—called steerable PCA—which is 

the main topic of the next section.

E. Denoising and dimensionally reduction techniques

Principal component analysis (PCA) is a widely used tool for linear dimensionality 

reduction and denoising, dating back to Pearson [54], [41]. PCA computes the best (in the 

least squares sense) low-dimensional affine space that approximates the data by projecting 

the images into the space spanned by the leading eigenvectors of their covariance matrix. In 

cryo-EM, covariance estimation was introduced by Kam [42] and used for dimensionality 

reduction and image classification for the first time by van Heel and Frank [80]. PCA is 

often used to denoise the experimental images and as part of the 2-D classification stage.

Cryo-EM images are equally likely to appear in any in-plane rotation. Consequently, when 

performing PCA, it makes sense to take all in-plane rotations of each image into account. 

Luckily, there is a simple way to account for all in-plane rotations without rotating the 

images explicitly. This can be done by expanding the images in a steerable basis: a basis 

formed as an outer product of radial functions with an angular Fourier basis; examples are 

Fourier Bessel, 2-D prolate spheroidal wave functions, and Zernike polynomials. When 

integrating over all possible in-plane rotations, the covariance matrix of the expansion 

coefficients enjoys a block-diagonal structure, reducing the computational load significantly: 
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while the covariance matrix of images of size L × L has L4 entries, the block diagonal 

structure guarantees that merely O(L3) entries are non-zero. This in turn reduces the 

computational complexity of steerable PCA from O(NL4+L6) to O(NL3 + L4): the first term 

is the cost of computing the sample covariance over N images, and the second term is the 

cost of the eigendecomposition over all blocks [86].

Classical covariance estimation techniques usually assume that the number of samples is 

considerably larger than the signal’s dimension. However, this is not the typical case in cryo-

EM in which the dimensionality of the molecule is of the same order as the number of 

measurements. In this regime, one can take advantage of recent developments in high-

dimensional statistics under the “spiked covariance model” [26]. These techniques, based on 

eigenvalue shrinkage, were recently applied successfully to denoise cryo-EM images [20].

VI. Mathematical frameworks for cryo-em data analysis

Inspired by the cryo-EM problem, a couple of abstract mathematical models were studied in 

recent years. These models provide a general framework for analyzing cryo-EM from 

theoretical and statistical perspectives, while removing some of its complications. In what 

follows, we introduce the models and succinctly describe some intriguing results.

A. Multi-reference alignment

The multi-reference alignment (MRA) model reads [10]:

yi = T i gio x + εi, gi ∈ G, (VI.1)

where G and Ti are, respectively, a known compact group and linear operators, and 

εi N 0, σ2I . The signal x ∈ ℝL is assumed to lie in a known space (say, the space of signals 

with a finite spectral expansion) that random elements of G act upon. The task is to estimate 

the signal x from the observations y1, …, yN, while the group elements g1, …, gN are 

unknown. Since the statistics of y are invariant under the action of a constant g on x, the 

recovery is possible up to left multiplication by some group element g ∈ G—namely, we 

wish to estimate the orbit of x under the group action. Figure 7 shows an example of three 

discrete 1-D MRA observations under the group of cyclic shifts ℤ/L at different noise levels. 

If we assume perfect particle picking, then the cryo-EM model (II.2) is a special case of 

(VI.1) when G is the group of 3-D rotations SO(3) and T is the linear operator that takes the 

rotated structure, integrates along the z-axis (tomographic projection), convolves with the 

PSF, and samples it on a Cartesian grid. The MRA model formulates many additional 

applications, including structure from motion in computer vision [5], localization and 

mapping in robotics [60], study of specimen populations [46], optical and acoustical 

trapping [28], and denoising of permuted data [53].

While surveying all recent results about the MRA model is beyond the scope of this article, 

we wish to present a remarkable information-theoretic result about the sample complexity of 

the problem (and therefore also for cryo-EM under the stated assumptions). In many cases, 

among them when T = I and the cryo-EM setup (without shifts so that G = SO(3)), one can 

estimate the group elements gi from the measurements yi in the high SNR regime using one 
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of many synchronization techniques (based on spectral methods, semidefinite programming, 

or non-convex programming) [70], [72]. Once the group elements were identified, one can 

estimate the signal by aligning all observations (undo the group actions) and averaging. The 

variance of averaging over i.i.d. Gaussian variables is proportional to 1/(N · SNR)—namely, 

the number of measurements should be proportional to 1/SNR to achieve an accurate 

estimate. In this case, we say that the sample complexity of the problem in the high SNR 

regime is 1/SNR: this is a common scenario in many data processing tasks. In the low SNR 

regime the situation is radically different. Specifically, it was shown that when σ → ∞, the 

sample complexity of the MRA problem is determined by the first moment q that 

distinguishes between different signals. More precisely, in the asymptotic regime where N 

and σ diverge, the estimation error of any method is bounded away from zero if N ⋅ SNRq is 

bounded from above. We then say that the sample complexity in the low SNR regime is 

proportional to 1/SNRq.

For the cryo-EM setup, assuming perfect particle picking and no CTF, it was shown that the 

sample complexity depends on the distribution of rotations: for uniform distribution the 

sample complexity scales as 1/SNR3 (that is, the structure is determined by the third 

moment), while for generic non-uniform distribution the second moment suffices, and thus 

the sample complexity scales as 1/SNR2 [9], [66]. Similar results were derived for simpler 

setups, for instance, when a discrete signal is acted upon by cyclic shifts (as shown in Figure 

7) [19], [3], [9].

The pivotal role of moments in sample complexity analysis led naturally to the design of 

algorithms based on the method of moments. Some of these algorithms hinge on the tightly-

related notion of invariant polynomials. A polynomial p is called invariant under the action 

of a group G if for any signal x in the specified space and any g ∈ G, it satisfies p(g ∘ x) = 

p(x). One particular important invariant is the third-order polynomial, the bispectrum—

originally proposed by John Tukey [77]—that was used for 2-D classification [87] and ab 
initio modeling [42]. We refer the readers to [71] and references therein for a more detailed 

account on the MRA problem.

B. Multi-target detection

Multi-target detection (MTD) is the problem of estimating a signal that occurs multiple 

times at unknown locations in a noisy measurement. In its simplest form, the MTD problem 

is an instance of the 1-D blind deconvolution problem and can be written as

y = x * s + ε, (VI.2)

where x ∈ ℝL is the target signal, s ∈ {0, 1}N−L+1 is a binary signal whose 1’s indicate the 

location of the signal copies in the measurement y ∈ ℝN, and ε N 0, σ2I ; see Figure 8. 

Detecting the signal occurrences in the data (that is, estimating the signal s) is the analog of 

particle picking in cryo-EM. Clearly, if the noise level is low, one can estimate s 
(analogously, detect the particle projections in the micrograph), extract the signal 

occurrences, and average them to suppress the noise. However, as aforementioned, low SNR 

precludes detection (and particle picking) and therefore one must estimate x directly, without 
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explicit estimation of s. In [18], it was shown that under certain generative models of s, the 

signal x can be estimated provably, at any noise level, from the bispectrum (third-order 

statistics). More ambitiously, numerical experiments suggest that the bispectrum suffices to 

estimate multiple signals x1, …, xK from a mix of blind deconvolution problems

y = ∑
i = 1

K
xi * si + ε, (VI.3)

without explicit estimation of the binary signals s1, …, sK that indicate the location of the 

corresponding signals.

The MTD model can be extended to formulate a generative model of a micrograph: the key 

is to treat x as a random signal that represents the tomographic projections of the molecule 

ϕ, rather than a deterministic signal as in (VI.2) and (VI.3). Specifically, locations are chosen 

in the 2-D plane: these are the positions of the embedded samples in the micrograph. For 

each location, a signal is drawn from a probability distribution described by the model

x = ℎ * PRωϕ, (VI.4)

where the 3-D rotation Rω is applied to the volume ϕ according to a (possibly unknown) 

distribution of ω over SO(3), P is a tomographic projection, and h is the microscope’s PSF; 

the goal is to estimate ϕ. Therefore, the MTD model paves the way to fully model the cryo-

EM problem, including most of its important features [18]. In particular, MTD provides a 

mathematical and computational framework for reconstructing ϕ directly from micrographs, 

without intermediate particle picking [17]. A full analysis of this model is still lacking.

VII. Remaining computational and theoretical challenges

To conclude the article, we would like to discuss some of the interesting and important 

computational and theoretical challenges ahead for single particle reconstruction using cryo-

EM.

A. Conformational heterogeneity: modeling and recovery

One of the important opportunities offered by cryo-EM is its ability to analyze different 

functional and conformational states of macromolecules. Mathematically, it entails 

estimating multiple 3-D structures simultaneously; we refer to this problem as the 

heterogeneity problem. There is no consensus about the proper way to model the 

heterogeneity problem and the computational tools are not well-established. We therefore 

believe that it offers an opportunity for researchers with strong mathematical and 

computational background to make a profound impact on the field of structural biology.

We now briefly survey different approaches to handle the heterogeneity problem. To this 

end, we extend the basic cryo-EM model (II.2) to account for conformational variability:

yi = ℎi * T tiPRωiϕi + “noise”, i=1, …, N, (VII.1)
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where the goal is to estimate the distribution from which the structures ϕi, …, ϕN are 

sampled from. Using this formulation, the problem is ill-posed: there is not enough 

information in N 2-D images to recover N 3-D structures. Hence, additional assumptions on 

the structures must be made. The different techniques in the field can be broadly classified 

into two categories: discrete and continuous models. The discrete heterogeneous model 

assumes that the measurements stem from a few independent volumes (that is, a discrete 

distribution). Under this model, each projection image can be written as

yi = ℎi * T tiPRωiϕki + “noise”, i=1, …, N, (VII.2)

where ϕk, k = 1, …, K, represent the K different volumes. The advantage of this approach is 

evident: it is easy to extend the ML-EM framework to incorporate several volumes 

simultaneously. Alternatively, some software packages apply a preliminary 3-D 

classification stage, in which the 2-D experimental images are being classified into different 

structures. CryoSPARC runs multiple trials of an SGD algorithm from different 

initializations. This procedure occasionally leads to multiple low-resolution estimates, and 

each of those is refined by an ML-EM algorithm [57]. While the simplicity of the discrete 

model is a big advantage, its drawbacks are apparent: it does not scale well for large K and 

ignores the correlation between different functional states of the molecule and thus 

overlooks important information.

The second approach, referred to as continuous heterogeneity, assumes that ϕ1, …, ϕN can 

be embedded in a low-dimensional space. For instance, one approach is to assume that the 

set of conformations lies in a linear subspace (that can be learned using PCA), or in more 

intricate low-dimensional manifolds (that could be learned by other spectral methods, such 

as diffusion maps). An alternative suggestion was to model the structure as a set of rigid 

domains that can move one with respect to the other. We refer the reader to a thorough 

survey on the subject in [74].

B. Verification

Given a 3-D reconstruction, how do we verify that it is a reliable and faithful representation 

of the underlying molecule? This is a question of crucial importance for any scientific field. 

Nevertheless, there are no agreed upon computational verification methods for cryo-EM. 

Several validation techniques were proposed in the cryo-EM literature. For example, it is 

possible to check the consistency of the 3-D map by recording pairs of images of the same 

particles at different tilt angles and comparing the relative angle between orientations 

assigned to each projection: ideally it should agree with the relative rotation angle of the 

microscope’s specimen holder used during the experiment. This approach is called the tilt-

pair validation technique and is useful only for intermediate resolution structures [40], [61]. 

In practice, structure validation is based on a set of heuristics and the experts’ knowledge 

and experience. For instance, it is common to initialize 3-D reconstruction algorithms from 

multiple random points; if all instances attain similar structures, it serves as a validation 

fidelity. If the same molecule was reconstituted by other technologies, such as X-ray 

crystallography and NMR, then structures can be compared. In addition, experimental data 
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is usually uploaded to public repositories and thus other researchers can process the same 

data, experiment with different computational techniques, and compare the results [61].

Verification is also related to the question of determining the resolution of a recovered 

structure. The current convention is to reconstruct two structures independently, each from 

one half of the data. The two subsets are chosen at random. The highest frequency for which 

the two structures agree (up to some tolerance) determines the resolution [75]. This process 

can be understood as an indication for the confidence we have in the structure at a given 

resolution. However, this method is susceptible to systematic flaws; if the same refinement 

procedure is applied to both halves of the data, it can induce correlated blunders (although 

the data is independent) and the resolution determination would be unsound. In [24], a 

simple computational procedure was proposed to validate a structure by assessing the 

amount of overfitting that is present in the 3-D map. Establishing computational tools that 

provide confidence intervals to estimated structures and are immunized against systematic 

errors is one of the remaining challenges in the field.

C. Theoretical foundations of cryo-EM

Many mathematical and statistical properties of the cryo-EM problem are still unexplained 

(and even unexplored). A prominent example is the sample complexity of the full cryo-EM 

problem: given a fixed SNR level (that might be very low) and a fixed setup, how many 

particles are required to achieve a desired resolution? An initial analysis was conducted in 

[9], [66]; see Section VI-A.

Another interesting question concerns computational complexity and information-

computational gaps [11]. The fact that there is enough information to solve a problem 

(sample complexity) does not immediately imply that there is an efficient (polynomial time) 

algorithm to solve it. For example, it might be that for non-uniform distribution of rotations 

the second moment would suffice to estimate a 3-D structure from an information-theoretic 

perspective [66], but at the same time it could be computationally hard in that regime. In that 

case, we might need to consider the third-order moment in order to design a computationally 

efficient algorithm. Information-computational gaps have been observed empirically in 

variants of the MRA and MTD models [22], [18]. Related questions—that might be even 

more challenging—deal with the properties of specific algorithms, such as ML-EM, the 

method of moments, and SGD that are not well-understood.

Another interesting research thread regards the size limit of molecular structures that can be 

elucidated by cryo-EM. The common belief in the community is that very small molecules 

cannot be visualized using cryo-EM. The logic is simple: small molecules induce low 

contrast, and thus low SNR on the micrograph, which in turn hinders detection (particle 

picking) [38]. A recent paper contends this belief and suggests that it is possible, at least in 

principle, to reconstruct structures directly from the micrograph, without particle picking 

and at any SNR level, given enough data [17].

D. Machine learning

The groundbreaking advances in machine learning in the last decade reshaped dramatically 

many computational fields and penetrated into some scientific applications. Naturally, 
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learning techniques based on deep neural networks have been applied to cryo-EM as well. 

Examples are particle picking [84], [91], [83] (as discussed in Section V-C), validation [7], 

3-D reconstruction [89], and particle pruning [62]. In addition, manifold learning techniques 

were designed for 3-D heterogeneity analysis [31], [51] and deniosing [45]. Modern learning 

techniques were also implemented to other cryo-EM applications that do not involve single 

particle reconstruction; see for instance an application to feature extraction in cellular 

electron cryotomography [23].

Deep learning gained its popularity in applications with low noise levels. The performance 

of these techniques in more challenging environments, such as highly contaminated data, is 

not clear yet. In addition, supervised learning techniques are susceptible to model bias—the 

reconstruction will depend heavily on the training data, rather than on the experimental 

images. This explains why the impact of deep learning on the cryo-EM field—especially on 

the more involved tasks, such as 3-D reconstruction and the heterogeneity problem—is 

limited at the moment. We expect that more efforts in this direction will be made in the 

coming years. In particular, it is still to be clarified whether this set of computational tools 

can outperform current tools in the field, which are based on more classical statistics.

VIII. Perspective

Single particle reconstruction using cryo-EM is an alluring research area for researchers 

interested in developing modern computational tools and sophisticated mathematical models 

to an emerging scientific field. In this article, we have introduced the problem of constituting 

3-D molecular structures using cryo-EM and described its unique computational 

characteristics and challenges. We have delineated relations between the cryo-EM inverse 

problem and a variety of disciplines at the core of signal processing, information theory, 

statistics, machine learning, and group theory. We believe that contributions from these areas 

have the potential to drive the field forward. New ideas and solutions can, and should, be 

tested on experimental cryo-EM datasets publicly available online [1], [2]. We have also 

reviewed two abstract frameworks to conveniently study the cryo-EM inverse problem from 

computational, statistical and theoretical perspectives.

We believe that the challenges arising in cryo-EM research provide an ample of 

opportunities to investigate and test novel algorithms and advanced mathematical techniques 

in order to impact a task of paramount importance: to broaden our understanding of 

fundamental mechanisms of life.
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Fig. 1: 
Gallery of important biomedical structures solved by single-particle cryo-EM at increasing 

resolutions. From left to right (lower to higher resolution): 4.5Å structure of the human 

rhodopsin receptor bound to an inhibitory G protein [43], a member of the family of G-

protein coupled receptors which are the target of ~ 35% of FDA-approved drugs; 3.3Å map 

of a voltage-activated potassium channel, an integral membrane protein responsible for 

potassium ion transport [49];2.9Å cryo-EM structure of a CRISPR-Cas Surveillance 

Complex implicated in gene editing [36];2.4Å map of the T20s proteasome, a complex that 

degrades unnecessary or damaged proteins by proteolysis (data available from 

EMPIAR-10025) [1]; 2.3Å structure of human p97 AAA-ATPase, a key mediator of several 

protein homeostasis processes and a target for cancer [12]; 1.9Å structure of β-galactosidase 

enzyme in complex with a cell-permeant inhibitor (EMPIAR-10061) [15];1.8Å structure of 

the conformationally dynamic enzyme glutamate dehydrogenase [50]; and 1.6Å map of 

human apoferritin, a critical intracellular iron-storage protein (EMPIAR-10200).
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Fig. 2: 
High-resolution cryo-EM imaging of the β-galactosidase enzyme in complex with a cell-

permeant inhibitor. A) Micrograph of β-galactosidase showing individual particle 

projections (indicated with white circle). B) Power spectra of image shown in panel A and 

estimated contrast transfer function (CTF) matching the characteristic Thon ring oscillations 

(see Section V-B). C) 1.9Å resolution map obtained from ~ 150, 000 individual particle 

projections extracted from the publicly available dataset EMPIAR-10061 [16], [15]. D) 

Close-up view of reconstruction shown in panel C highlighting high-resolution features of 

the map at the individual amino acid level.
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Fig. 3: 
Recent growth in the number of high-resolution structures produced by single-particle cryo-

EM. A) Cumulative number of structures solved by single-particle cryo-EM in the last 17 

years as recorded in the Electron Microscopy Data Bank (EMDB) public repository [2]. B) 

Corresponding values for the average resolution of maps deposited in the database showing 

an inflection point after the year 2013, coinciding with the introduction of direct electron 

detectors technology in the cryo-EM field.
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Fig. 4: 
Flowchart diagram showing the computational pipeline required to convert raw movie data 

into high-resolution structures by single-particle cryo-EM. Raw data is first pre-processed at 

the movie frame alignment (Section V-A) and CTF estimation (Section V-B) steps followed 

by particle picking to detect and extract the individual projections from micrographs. 

Occasionally, particle picking is followed by a particle pruning stage to remove non-

informative picked particles (Section V-C). The output of this stage is a set of 2-D images, 

each (ideally) contains a noisy tomographic projection taken from an unknown viewing 

direction. Particle images are then classified (Section V-D): the 2-D classes are used to 

construct ab initio models, as templates for particle picking, to provide a quick assessment 

of the particles, and for symmetry detection. Then, an initial, ab initio model is built using 

the 2-D classes or by alternative techniques (Section V-D). If the data contains structural 

variability or a mix of structures (see Sections II and VII-A), then a 3-D classification step is 

applied to cluster the projection images into the different structural conformations. Initial 

models are subjected to 3-D high-resolution refinement (Section IV-A) and an additional 

per-particle refinement may be applied. Finally, a post-processing stage is employed to 

facilitate interpretation of structures in terms of atomic models. Different software packages 

may use slightly different workflows and occasionally some of the steps are applied 

iteratively. For instance, one can use the 2-D classes to repeat particle picking with more 

reliable templates. This figure is adapted from [90].
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Fig. 5: 
A simulated 3-D structure and a dozen of its noise-free tomographic projections from 

different viewing directions. The most simplified version of the cryo-EM problem is 

estimating the 3-D structure from the 2-D projection images when the viewing directions are 

unknown. In practice, the projections are highly noisy, slightly shifted, and convolved with 

the microscope’s PSF. Image credit: [71].
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Fig. 6: 
Beam-induced motion correction. All movement trajectories in this figure are shown color 

coded, using cyan to represent the position of first frame and magenta to represent the 

position of the last frame in the sequence. A) Strategies for global motion correction 

compensate for movement of the specimen across the entire field of view containing 

multiple particles [32]. B) Semi-local strategies for motion correction align frames across 

sub-regions defined on a discrete grid [88]. C) Per-particle or local drift-correction allows 

accurate tracking of individual particles throughout the exposure to electrons [15].
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Fig. 7: 
An example of multi-reference alignment observations at different noise levels σ. Each 

column consists of three different cyclic shifts (the group actions) of a 1-D periodic discrete 

signal (the linear operator T is the identity operator). Clearly, if the noise level is low, 

estimating the signal is easy: one can align the observations (i.e., undo the group action) and 

average out the noise. The challenge is to estimate the signal when high noise levels hinder 

alignment (right column).

Bendory et al. Page 37

IEEE Signal Process Mag. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
An example of a multi-target detection observation with five signal occurrences at different 

noise levels (VI.2). From top to bottom: σ = 0, σ = 0.2, and σ = 1.2. When the noise level is 

low, it is easy to detect the signal occurrences and estimate the underlying signal by 

averaging out the noise. However, when the noise level is high (bottom), reliable detection is 

rendered challenging. The task is then to estimate the underlying signal directly, without 

intermediate detection of its occurrences.
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