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Abstract

Detecting genetic variants associated with traits (quantitative trait loci, QTL) requires genotyped 

study individuals. Here we describe BaseQTL, a Bayesian method that exploits allele-specific 

expression to map molecular QTL from sequencing reads (eQTL for gene expression) even when 

no genotypes are available. When used with genotypes to map eQTL, BaseQTL has lower error 

rates and increased power compared with existing QTL mapping methods. Running without 

genotypes limits how many tests can be performed, but due to the proximity of QTL variants to 

gene bodies, the 2.8% of variants within a 100 kB window that could be tested contained 26% 

of eQTL detectable with genotypes. eQTL effect estimates were invariably consistent between 

analyses performed with and without genotypes. Often, sequencing data may be generated in the 

absence of genotypes on patients and controls in differential expression studies, and we identified 

an apparent psoriasis-specific eQTL for GSTP1 in one such dataset, providing new insights into 

disease-dependent gene regulation.

Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with human disease, but their individual mechanisms remain largely unknown. 

The majority of variants are located outside coding regions, and are presumed to have 

regulatory function1. Direct regulatory effects result when the genetic variant and the target 
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gene are located on the same chromosome, typically less than 1 MB apart, and the genetic 

variant affects only the expression of the gene copy on its same chromosome. These 

variants are referred to as cis-quantitative trait loci (cis-QTLs), for example, cis-eQTL for 

those which regulate gene expression. Although most gene proximal variants act in cis, 

some proximal variants may affect gene expression indirectly, commonly referred to as 

trans-eQTL. Most trans-eQTL are distant from their regulated gene.

Large studies have been established to map regulatory variants across a diverse range 

of tissues. Nonetheless, multiple studies have failed to enumerate more than a minority 

of genes regulated by disease-associated variants2–4. This is probably due to the highly 

context-specific effects of genetic variants on gene expression5,6 and that most eQTL 

studies so far have focused on healthy individuals and bulk tissues7. Gene expression data 

from specific cell types in disease contexts appear to be more informative for interpreting 

disease-associated variants8,9, but such datasets have often been generated in the context of 

biomarker studies or in efforts to understand the disease process rather than the genetics 

of gene expression. Therefore, such datasets are commonly small (<100 samples), may be 

designed to compare the same tissue in different contexts (for example, disease activity) 

and/or may have no genotype data available.

Standard eQTL studies estimate average fold change in expression according to allelic 

dose by comparing expression between genotyped individuals. eQTL methods are typically 

embedded within broader statistical analysis environments, so that custom analyses 

comparing fold-change estimates between sample contexts can be explored. The power 

to detect cis-eQTLs can be improved by approaches that additionally exploit imbalance 

in gene expression between chromosome pairs within heterozygous individuals, so-called 

allele-specific expression (ASE). However, ASE software is generally limited to detecting 

eQTLs, so it is difficult to extend to related questions such as comparing effects between 

conditions. Furthermore, to the best of our knowledge, all ASE methods so far also require 

study subjects to be genotyped.

Here we propose BaseQTL, for ASE analysis. By adopting a Bayesian approach, we can 

incorporate information from existing large eQTL studies, which allows us to shrink extreme 

fold-change estimates and improve accuracy in a way analogous to moderation of variance 

estimates in differential expression analyses10. We embed this within a standard Hamiltonian 

Monte Carlo environment11, allowing researchers to develop flexible analytic approaches 

appropriate to their data. The phase (assignment of alleles to one or other chromosomes 

within an individual) of regulatory single nucleotide polymorphisms (SNPs) and the genic 

SNPs at which allelic imbalance is measured is unknown, and standard ASE methods 

either infer phase from the individuals within each study or assume phase is known. Using 

a Bayesian approach, we also exploit external reference genotype panel data to improve 

phasing accuracy. Our model treats phase as latent (unknown), and we extend this latent 

structure to also treat candidate regulatory SNP (cis-SNP) genotypes as unknown, allowing 

us to analyze studies without separate genotype data.

As we are targeting sample sizes <100, we selected a subset of lymphoblastic cell line 

samples from Geuvadis12 for which genotypes and RNA-sequencing (RNA-seq) data are 
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publicly available (86 samples labeled GBR and EUR). These samples form part of a larger 

analysis that we use as a gold standard to compare BaseQTL against standard eQTL and 

ASE methods when run with genotypes, and to compare the results of BaseQTL run with 

genotypes either available or masked.

We then used our method to call eQTLs in a publicly available RNA-seq data from 94 

psoriasis and 82 normal skin samples13. The ability to call eQTLs in existing patient 

RNA-seq datasets, even when no genotypes are available, may help us better understand the 

mechanism underlying established GWAS signals for complex diseases.

Results

Basic model to detect cis-eQTL

To detect cis-QTL using RNA-seq data, standard methods test the association between 

a genotyped variant within a specific distance of a genome feature (gene, chromatin 

immunoprecipitation peak and so on) and the total count of short reads mapped to the 

feature. ASE models additionally exploit the knowledge that if the cis-SNP was associated 

with expression, we would expect this to result in imbalanced expression between the two 

chromosomes in individuals heterozygous at the cis-SNP. Phase-aware cis-QTL methods 

such as RASQUAL (Robust Allele Specific QUAntitation and quality controL)14, WASP15 

or TReCASE (Total Read Counts Allele Specific Expression)16,17 substantially improve 

the power of sequencing-based QTL mapping by jointly modeling the differences in total 

read counts mapping to the feature between individuals, and the allelic imbalance at phased 

heterozygous SNPs located in the feature (fSNPs) within individuals, as functions of the 

genotype at the candidate cis-SNP (Fig. 1a). RASQUAL models total gene read counts 

with a negative binomial distribution, WASP with a beta negative binomial distribution and 

TReCASE with a Poisson–negative binomial mixture. For allelespecific signals, RASQUAL, 

WASP and TReCASE all use a beta binomial model, with some differences, compared in 

ref. 14. We begin by describing the TReCASE model16,17, which expresses the likelihood 

as a product of between- and within-individual components, and on which we base our 

approach.

Here we summarize the key features, and assess each extension using a modest sample 

of RNA-seq lymphoblastoid cell lines from European individuals (GBR) generated by the 

Geuvadis project, for which genotypes are available12. We wanted to anticipate the scale 

of real-world datasets where sample sizes <100 are common and aimed to select the 91 

samples with EUR ancestry and GBR code from the 1000 Genomes Project phase 3. Of 

those, 86 were deposited on ArrayExpress (E-GEUV-1) and were used in our analysis 

(Supplementary Data 1). To limit computational load, we restricted our analysis to all 264 

expressed genes on chromosome 22 and cis-SNPs within 0.5 MB of each gene, thinned to r 
2 < 0.9. All steps required to produce the inputs for BaseQTL along with the filtering steps 

and thresholds are detailed in Supplementary Section 3.
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Accommodating unknown phase

With short-read data, phase cannot be known with certainty and our first extension was 

to treat phase as a discrete latent variable. The initial TReCASE model has previously 

been updated17 to assume that only the haplotypes formed by the fSNPs are observed, 

treating as latent the phase between the cis-SNP and the known haplotypes of the fSNPs, 

using a mixture model with likelihood maximized through an expectation maximization 

algorithm. TreCASE estimates haplotype probabilities on the basis of the ASE sample data. 

We employed a different strategy. We replaced the within-individual component of the initial 

TReCASE likelihood by a sum of beta binomial contributions conditional on haplotype 

phase, weighted by their respective probabilities conditional on the unphased genotypes 

at the fSNPs and cis-SNPs (Fig. 1b and Methods). We estimate these probabilities from 

5,008 phased haplotypes from the cosmopolitan 1000 Genomes Project phase 3 reference 

panel to identify possible phased haplotype pairs and estimate their relative probabilities. 

To reduce computational burden, we do not update these estimates, and thus ignore any 

information about haplotype frequencies that exist in the ASE sample data, in favor of 

the probably more accurate estimates in the larger reference data. Consistent with previous 

reports that cosmopolitan reference haplotype panels are preferred18, we found that our 

method is generally robust to perturbations in the reference panel but, when mismatches 

between samples and reference panel are extreme, there is loss of power rather than any 

increase in false positives (Supplementary Table 1).

Modeling reference sequence mapping bias

Reference sequence mapping bias—the tendency of reads to map more easily to the 

reference sequence allele—can cause allelic imbalance to be overestimated in favor 

of the reference allele, and hence false-positive ASE results15,19–21. As expected, raw 

estimates of allelic imbalance in our Geuvadis data subset were indeed skewed towards 

over-representation of the reference allele (Fig. 2b and Supplementary Fig. 2c).

Previous approaches to mitigate this phenomenon remove reads with evidence of mapping 

bias, while recognizing that discarding data is expected to reduce power15. Instead of 

discarding reads, we model bias explicitly using a random intercept per fSNP. We modified 

the procedure used by WASP15. WASP identifies reads that overlap known fSNPs. For 

each such read, a new pseudo read is generated in which the observed allele in the read is 

swapped to the unobserved allele and the pseudo read is remapped. If a pseudo read fails 

to map to the original location, the original read is discarded. In our approach, we create 

pseudo reads in a similar manner as WASP (Fig. 2a). The union of these observed and 

pseudo reads have exactly equal representation of reference and alternative alleles for each 

fSNP by design; any inequality in their realignment must reflect mapping biases.

We re-aligned this union of reads, and found estimated allelic imbalances showed similar 

skew towards the reference allele, but with much greater consistency between SNPs (Fig. 

2c). This is due to leveraging many more reads compared with raw estimates (twice the total 

mapped reads compared with the subset of reads mapped to heterozygous individuals) as 

well as removing random noise due to true ASE (Figs. 1a and 2b,c). We used these estimates 

of allelic imbalance in these union of reads to define the parameters of a prior distribution 
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for the random intercept, and found that adjusting for estimated reference mapping bias 

this way resulted in a small attenuation of eQTL effect estimates, with log fold changes on 

average 0.3% smaller (Fig. 2d).

Benchmarking of BaseQTL against standard methods

We validated BaseQTL against two other methods: standard linear regression, widely used 

in eQTL analysis, and RASQUAL14, representative of methods that jointly model between- 

and within-individual variation in a frequentist framework (Methods). BaseQTL shrinks 

eQTL effects via a prior distribution (Methods and Supplementary Section 2). We also 

ran BaseQTL modeling between-individual variation only to distinguish the effect of the 

prior from the ASE modeling. For the same gene–SNP associations within 100 kB (35,083 

over 259 genes of which 133 were eGenes in the gold standard), BaseQTL outperformed 

both other methods (Fig. 3a,c) achieving the highest positive predictive value (PPV) and 

sensitivity trade-off. For example, calling significant associations in BaseQTL using a 99% 

credible interval we identified 23 eGenes, of which 22 were also called in the gold standard. 

Expanding the cis-window to 0.5 MB allowed us to test 199,563 gene–SNP associations 

over 264 genes, showing a similar trend with BaseQTL outperforming the linear model (Fig. 

3b,d).

From now on, we refer to significant associations as those for which 0 was excluded from 

the posterior 99% credible interval, which corresponded to the highest PPV for BaseQTL 

in Fig. 3. Overall, using BaseQTL on chromosome 22 (264 genes), we detected 192 eQTLs 

associated with 30 genes. Of those, 172 (90%) were replicated in the analysis of our 

gold-standard Geuvadis dataset corresponding to 24 eGenes (80%).

Detecting cis-eQTLs in datasets with no genotypes

We called fSNP genotypes by mapping feature reads to the reference genome and extended 

our latent model structure to treat the genotype at the candidate cis-SNP as latent, inferred 

probabilistically from the fSNP genotypes at the same time as haplotypes (Fig. 1b and 

Methods).

Genotyping error could have a major impact if not adequately controlled. Homozygous 

fSNPs miscalled heterozygous may lead to false positives because those mis-typed fSNPs 

will show strong allelic imbalance. We took multiple approaches to controlling genotyping 

errors (Methods). Of the 498 fSNPs called in the 86 samples by DNA-seq (42,828 calls), 

we were able to call 17,268 genotypes over 279 fSNPs with a 0.7% mismatch error 

(Supplementary Figs. 1 and 2, Supplementary Table 2 and Methods). While small, the 

mismatch rate is slightly higher than the error rate reported for shortread DNA sequencing, 

0.1% to 0.6%, depending on the platform and the depth of coverage8.

We assessed the impact of using RNA-seq to call fSNPs by running BaseQTL with 

hidden genotypes for the cis-SNPs and the same fSNPs genotyped by either RNA-seq 

(RNA-fSNP) or by DNA-seq (DNA-fSNP). Estimated effects were strongly correlated (ρ = 

0.89, Supplementary Fig. 3a), and all the eGenes detected with RNA-fSNPs were also called 

using DNA-fSNPs. We expect loss of power due to missing calls, but overall these results 

indicate that our method is robust to genotyping errors from RNA-seq.
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Next, we examined the effect of cis-SNP imputation by running BaseQTL with ‘observed’ 

genotypes (measured by DNA-seq) for fSNPs and with observed or ‘hidden’ genotypes 

(inferred from RNA-seq) for the cis-SNP. We use a standard measure to assess imputation 

quality (Methods) and limited the analysis to cis-SNPs with imputation r 2 ≥ 0.5. The 

imputation of the cis-SNP produces more variability on the eQTL effects than genotype 

errors on the fSNPs (Supplementary Fig. 3b). We also assessed the effect of the quality of 

imputation on power by simulating typical scenarios for the magnitude of the true eQTL 

effect, a small sample size and common allele frequencies for the cis-SNP and fSNPs. 

As expected, without genotypes, power can decrease by nearly 100% when imputation 

quality is very low, and recovers with increasing imputation quality score (Methods and 

Supplementary Fig. 16).

Finally, we conducted parallel analyses by BaseQTL either with DNA-seq genotypes or 

RNA-seq only. Of the 264 genes on chromosome 22 tested with observed genotypes, we 

were able to impute genotypes for 75 (28%). We selected a smaller cis-window than before 

(100 kb) because our method for hidden genotypes strongly relies on accurate haplotype 

phasing, which decreases with distance. Thus, within 100 kb, we were able to assess only 

1,299 gene–SNP associations with hidden genotypes compared with 45,000 with observed 

genotypes (2.8%). However, both testable gene–SNP pairs with hidden genotypes and 

significant associations seen with observed genotypes tended to be closer to genes (Fig. 4a), 

in line with previous reports22, so that the proportion of significant associations discovered 

with hidden genotypes (48 significant out of 1,299 (3%)) was tenfold that with observed 

genotypes (153 significant out of 45,000 (0.3%)).

On some occasions, for a given gene, the selection of cis-SNPs run with hidden genotypes 

and with observed genotypes may differ due to the different selection criteria in each method 

(Fig. 4b and Supplementary Section 3). To maximize the number of comparisons, when 

a tagging SNP was not originally run in one or other condition, we ran it additionally 

to ease comparison. Thus, we compared the same 1,034 gene–SNP associations with or 

without genotypes over 75 genes. The direction of the estimates for the eQTL effect was 

invariably consistent with hidden or observed genotypes (correlation 0.3, Fig. 4b). With 

hidden genotypes, we detected 5 eGenes, a subset of the 12 with observed genotypes (Fig. 

4c). We also checked whether the significant associations detected with hidden genotypes 

were reported in our gold-standard Geuvadis dataset23. The power to detect eQTL effects 

without genotypes was 13% (35 significant associations both in the gold standard and with 

hidden genotypes out of 264 significant in the gold standard). To specifically assess the 

effect of missing genotypes on power, we compared the same gene–SNP associations with 

and without genotypes (as shown in Fig. 4b) and then calculated power relative to the 

Geuvadis eQTL analysis of the 462 samples. Of the common associations tested in both 

conditions, 215 were significant in the gold standard, 45 with genotypes and 25 with missing 

genotypes, which corresponds to 20% power with genotypes and 12% without. In this case, 

the smaller sample size has a stronger effect in power compared with the lack of genotypes. 

Moreover, we found 73% of the significant gene–SNP associations (35/48) detected with 

hidden genotypes (3/5 eGenes) were also significant in the gold standard. However, of the 

two genes not found in the gold standard, for APOL2 only one significant association out 

of 28 was detected with hidden genotypes and for NDUFA6 the same cis-SNP, rs55816780, 
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is an eQTL in larger studies (>2,000 individuals) in blood24, which may reflect gain of 

power from ASE. An example of an eQTL signal that was successfully captured with no 

previous knowledge of genotypes is shown in Fig. 4d. Imputation quality score had only 

limited influence on the PPV (Supplementary Fig. 4). However, we report results with an 

imputation quality score of at least 0.5 as a good trade-off between minimizing the chance of 

false positives and the number of associations tested.

Novel skin eQTL in psoriatic and normal skin

Finally, we used our method to find eQTLs in a publicly available RNA-seq dataset of 94 

psoriasis skin samples and 82 controls13. To maximize discoveries relevant to psoriasis, we 

selected genes upregulated in psoriasis versus normal skin (51 genes13 and Methods), and/or 

within 100 kB of a psoriasis GWAS hit25 (380 genes). From the 429 unique selected genes, 

we were able to test ASE for 138, with 118 tested in both skin types, 16 in psoriasis only 

and 4 in normal skin only. We found significant eQTLs for 21 genes: 8 in both conditions, 

9 in psoriasis and 4 in normal skin only (Fig. 5a). Associations across 10 genes for the 

same SNPs were previously described in healthy skin26 or were previously reported eQTLs 

in psoriasis27 (Fig. 5a and Supplementary Data 2), including ERAP1, FUT2 and RASIP1, 

which have eQTLs that are psoriasis GWAS hits (rs30187 for ERAP1, rs492602 for FUT2 
and RASIP1)25,26 (rs469758 and rs281379 proxies with r 2 = 1.0 and 0.8, respectively).

We exploited the flexibility available through using a standard statistical modeling language 

to jointly model eQTL effects in normal and psoriasis tissues to determine whether apparent 

psoriatic-specific effects reflected a lack of power in normal skin samples or were truly 

specific to psoriasis tissue (Methods). We considered the 23 genes that were run in both 

skin types with significant associations at least in one (Fig. 5a). Our joint model estimates 

two parameters: β a, which corresponds to the addition of the coefficients for the allelic 

fold change in each skin and β d, which corresponds to their difference (Methods). We are 

particularly interested in β d for assessing whether there is a difference in effects across 

conditions. We set our prior for β d that expects half of true eQTL signals to be shared 

in both tissues and half tissue specific (Methods). All of the eGenes with common signals 

across skin types assessed with separate models were also shared with the joint model (Fig. 

5b). For the nine psoriasis eGenes we detected with independent models, only two were 

specific for psoriatic skin in the joint model, GSTP1 and KRT14, while eQTLs for SPRR1A 
were no longer significant (Fig. 5b). The six genes not found to be specific may reflect 

shared effects missed in the single models, or a lack of power in the joint model when 

expression is low in one tissue. PI3 encodes an antiproteinase and antimicrobial molecule 

highly upregulated in psoriasis13,28,29. We detected an eQTL for PI3 in psoriasis when we 

ran separate models but the low expression in normal skin meant the joint model could not 

convincingly reject a common effect in both skin types (Fig. 6a). GSTP1, which appears 

specific for psoriasis skin, is moderately upregulated in psoriasis (fold change 1.7), so the 

psoriasis-specific effect is unlikely to reflect lack of power on control samples (Fig. 6b). Of 

the four eGenes identified in normal skin only when running in separate models, the joint 

model confirmed specific signals in healthy skin for SPRR1B (Fig. 6c) and DDR1 (Fig. 

5b). The SPRR1B eQTL was also found in healthy skin samples from the Genotype-Tissue 

Expression portal (GTEx). Its strong upregulation in psoriasis (fold change 12) is therefore 
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likely to be driven by an eQTL-independent mechanism. Plots for each gene can be found 

in Supplementary Figs. 5–10 and summary results from the joint model can be found in 

Supplementary Data 2. We noted that for SBSN, the between-individual signal did not 

visually match the effect of the within-individual signal (Supplementary Fig. 10). Further 

examination of the ASE signal (Supplementary Fig. 11) shows that the two fSNPs have 

very different profiles, which would correspond with a spliceQTL at this variant reported in 

normal skin in GTEx.

Discussion

BaseQTL can extract meaningful genetic signals from datasets of small sample size even 

without genotypes. However, it is computationally intensive; therefore, it is particularly 

suited for targeted genomic regions to identify eQTL or condition-specific eQTLs. If 

genotypes are available, and for genome-wide scans, users may prefer to use a faster method 

such as TreCASE first and then run BaseQTL in a targeted manner.

Though we expect most of the eQTLs in close proximity to the gene body to act in cis, 

there may be a minority acting in trans. Trans-eQTLs will be appropriately modeled by 

the between-individual component of the model, with the ASE component biasing the 

eQTL estimate towards the null. Users interested in investigating this type of regulation can 

select to run BaseQTL using the between-individual variation only. We do not have a test 

to determine whether the effect is likely to be cis or trans, but a difference in posterior 

estimates from the two models would be suggestive of this.

When BaseQTL was applied to skin data, some of the signals we detected both in 

normal and psoriasis skin, although not reported in normal skin, have been reported in 

blood24 (CAST, GAPDH), T cells30 (PPIF) or adipose tissue (KRT16, GTEx), composed 

of adipocytes, myeloid and lymphoid cells, among other cell types. Moreover, the specific 

psoriasis signal we observed for GSTP1 is strongly significant in blood31 and neutrophils30 

GSTP1 being highly expressed in monocytes, dendritic cells and peripheral blood 

mononuclear cells as a whole (https://www.proteinatlas.org/ENSG00000084207-GSTP1/

tissue). Psoriatic skin is characterized by the proliferation of activated keratinocytes and 

infiltration of lymphocytes and myeloid cells32. The fact that some of the eQTLs we 

observed were replicated in larger studies of blood but not in GTEx for normal skin could 

reflect gain of power from ASE modeling in our method, infiltration of immune cells driving 

psoriasis signals or a combination of both. Modeling allele-specific signals may also detect 

genetic variants associated with splicing events, if fSNPs are concentrated in particular 

exons. This is probably the case for SBSN, for which the signal we detected has been 

reported as splicing-QTL in normal skin (GTEx).

The flexibility offered by embedding our method within standard statistical software allowed 

us to disentangle condition-specific effects. Overall, although our eQTL search targeted 

psoriasisspecific effects through its gene selection, joint modeling did not generally support 

condition-specific effects identified by running psoriatic and normal skin samples separately, 

in agreement with recent studies showing substantial eQTL sharing among related cell 

types or tissues9,33. We expect our method will facilitate discovery of cell type and disease-
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dependent eQTLs hidden in a wealth of RNA-seq data to unravel molecular mechanisms that 

contribute to disease.

methods

RNA-seq preprocessing

For the psoriasis and normal skin RNA-seq data, quality control using FASTQC indicated 

a high number of reads with Ns (strings of nucleotides for which the read processing 

software was not able to call a base), which were filtered out using Prinseq34. All samples 

were aligned to the human genome assembly GRCh37 using STAR35 (Supplementary 

Section 3), but three of the normal samples failed alignment due to some reads starting 

with an unrecognized character. Those samples were excluded from downstream analysis. 

We calculated gene expression abundance by overlapping reads to an union of annotated 

Ensembl exons, excluding reads overlapping different genes as we did not have strand 

information.

Calling genotypes from RNA-seq

For calling SNPs, we fed the aligned files into bcftools version 8 using the ‘mpileup’ and 

‘call’ commands36 selecting uniquely mapping reads with a quality score of at least 20. 

We kept variants with read depth at least 10 that were also reported in the 1000 Genomes 

Project phase 3 (haplotypes from 2,504 individuals in NCBI build 37 (hg19) coordinates 

from mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html downloaded on 26 January 2018), 

with minor allelic frequency at least 0.05 in European individuals (Supplementary Section 

3).

We assessed genotype errors in the fSNPs by comparing the genotype frequency of each 

fSNP in the samples relative to samples of same ethnicity in the reference panel by Fisher’s 

exact test. We report the P value for each fSNP as part of BaseQTL outputs.

Mitigating genotype errors

To minimize genotype errors, we performed the following steps. First, we called variants 

using a base quality threshold above 20 and limiting the analysis to uniquely mapped reads. 

Second, we filtered out called variants not annotated in the external reference panel (1000 

Genomes Project phase 3). Third, we excluded variants according to a depth threshold. 

Ideally, we would be calling genotypes for the same fSNPs that were used for inference with 

observed genotypes, which were 498 fSNPs across 86 samples, adding to 42,828 calls. We 

have chosen to limit RNA-seq calls to those fSNPs with depth higher than 10 reads, as this 

value provided a good trade-off between error rate and missing calls (Supplementary Fig. 

1a). Fourth, we excluded fSNPs with different rates of heterozygosity across study samples 

compared with European samples from the 1000 Genomes Project when performing a Fisher 

exact test (Methods). We selected a P value of 0.01 as a good compromise to exclude fSNPs 

with a high proportion of errors (Supplementary Fig. 1b). Using this threshold, we excluded 

2 fSNPs with 33 errors out of 82 with 4 missing calls and 8 out of 20 with 66 missing calls. 

Last, we looked at whether fSNPs with a higher number of missing calls across samples 
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were associated with higher error rates. This was not the case (Supplementary Fig. 2a), so 

we did not exclude fSNPs based on the number of missing calls.

Effect of imputation quality on the power of BaseQTL without genotypes

In this section, we simulate some scenarios to provide some concrete examples of the 

differences in power for BaseQTL when genotypes are or are not available. The code 

describing the simulations is available at https://gitlab.com/evigorito/baseqtl_paper.

We considered a cis-SNP and 3 fSNPs and we simulated 20,000 haplotypes (details below) 

for a population of 10,000 individuals. From this population, we sampled with replacement 

2,000 haplotypes, which constituted our reference panel. In addition, we sampled with 

replacement 200 haplotypes from the population, which corresponded to our study sample of 

100 individuals.

Simulation of haplotypes—Haplotypes are a combination of correlated binary variables. 

We simulated unordered haplotypes (H*) from a multivariate normal distribution (N) with 

mean μ and variance σ2 using the R package ‘mvtnorm’ assuming:

H* ≈ N(μ, σ 2)

For scenarios with equal effector allele frequency (EAF):

μ = (–0.5, –0.5, –0.5, –0.5)

for different EAF:

μ = (–0.1, –0.8, –0.2, –0.4)

To simulate different linkage disequilibrium (LD) scenarios, we varied the between-variable 

covariance as follows: LD 1, 0.6; LD 2, 0.7, LD3, 0.8; LD 4, 0.9; LD 5, 1.0.

Finally, we defined haplotypes by transforming the sampled values to 1, if positive, and 

0 otherwise. This resulted in average allele frequencies ranging between 0.30 and 0.46 

(Supplementary Table 3). For each of these choices of allele frequencies, we considered 

five scenarios of LD across SNPs (labeled LD 1–5). The squared correlation across SNPs 

for each of these scenarios is presented in Supplementary Tables 4–13. This allowed us to 

achieve a wide range of imputation quality scores for the cis-SNP.

Simulation of the eQTL effect—For the simulation of the effect size, we consider three 

true eQTL effects of 0.60, 0.65 and 0.70 allelic fold change (π), which in logit scale (β aFC) 

corresponds to 0.41, 0.62 and 0.55. For each individual (i) in the study sample (100 in total), 

we simulated total counts (ci) conditional on the genotype (Gi) for the cis-SNP assuming a 

negative binomial (NB) distribution with the expected mean in individuals homozygous for 

the reference allele of the cis-SNP set to 500 and overdispersion to 20. g(β aFC, Gi) models 

the genetic effect:

c1 ∣ Gl ≈ fNB μt, 20
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log μi = log(500) + g βaFC , Gi

g βaFC, G1 =
0 ifGl = 0
log 1 + exp βaFC − log(2) if Gl = 1
βaFC if Gl = 2

Then, to simulate ASE, we only co nsider heterozygous fSNPs. If h 1 is the haplotype 

carrying the alternative allele of the cis-SNP and t 1f the total number of reads overlapping 

fSNP f, we modeled the number of reads overlapping the allele of fSNP f in phase with the 

alternative allele with the cis-SNP with a beta binomial (BB) distribution as follows:

s1fi ∣ tfi ℎ0i, ℎ1i ≈ BB s1fiπ, 5, tfi ∣ ℎ0i, ℎ1i tfi = ci/10

π =
exp βaFC

1 + exp βaFC
Gi heterozygous

0.5 Gi homozygous

We set the number of total reads overlapping each fSNP as 1/10 of the total gene counts and 

the overdispersion parameter of the beta binomial distribution to 5.

Assessing power—For each condition (2 different sets of allele frequencies, 5 LD 

scenarios and 3 effect sizes), we simulated a study sample of 100 individuals and estimated 

the eQTL effect using BaseQTL with genotypes. We repeated this process 100 times and 

calculated power as the proportion of simulations for which the eQTL effect was significant 

based on the null value excluded from the 99% posterior credible interval. To assess 

the effect of imputation quality on power, we masked the genotype for the cis-SNP and 

ran BaseQTL without genotypes and calculated power in the same way as for observed 

genotypes (Supplementary Fig. 16). Without genotypes, power can decrease by nearly 100% 

when imputation quality is very low, and recovers with increasing imputation quality score.

Quantifying the number of reads overlapping heterozygous fSNPs

We adapted phASER37 to count the number of reads overlapping heterozygous fSNP in 

each sample. We followed the guidelines for ASE quantification suggested by Castel et 

al.37, by restricting the analysis to uniquely mapped reads with base quality for fSNPs 

≥10 (Supplementary Section 3). We first used the ‘phaser.py’ command that counts reads 

overlapping SNPs. Phaser requires phased genotypes as input, so we used SHAPEIT238 

using the 1000 Genomes Project phase 3 reference panel of haplotypes. Next, we adapted 

phASER function ‘phaser_gene_ae.py’ so that reads overlapping two or more heterozygous 

variants are only counted once. Last, as no strand information was available from RNA-seq, 

we only considered fSNPs uniquely mapped to one gene.
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Statistical model

Our model maps QTLs for genetic variants (cis-SNPs) within a chosen distance of a feature 

(gene, isoform, ChIP peak). For each feature, we consider all SNPs within it (fSNPs) 

together with one potential regulatory SNP (cis-SNP). We jointly modeled the total read 

counts mapping the feature and the allelic imbalance between the chromosome pair carrying 

the cis-SNP and the fSNPs. Here we describe our model in full building from the basic 

model, which follows TrecASE17 adapted to account for reference panel bias then expanding 

by allowing phasing uncertainty and unobserved genotypes in a Bayesian framework.

Basic model for known phase and genotypes—We begin by summarizing our 

implementation of the TRecASE17 model with observed genotypes and fixed phasing 

(Fig. 1a). The likelihood can be decomposed into a product of contributions from between-

individual (L between) and within-individual (Lwithin) likelihoods.

Let ci be the total read counts at the specific feature for individual i (i = 1,…,N), Gi the 

number of alternative alleles at the cis-SNP (0, 1, 2) and xi a vector of p covariates. We used 

the same parametrization as in TRecASE. We modeled total gene counts ci by a negative 

binomial distribution (f NB) with mean μi and and dispersion parameter Φ, to allow for 

overdispersion of RNA-seq reads:

where γ 0 corresponds to the intercept term, γj to the regression parameter for covariate j 
and g(β aFC, Gi) models the genetic effect and β aFC corresponds to the expected log allelic 

fold change of individuals homozygous for the alternative allele to those homozygous for the 

reference allele for the tested cis-SNP, as defined by the TReCASE17 model:

g βaFC, Gi =
0 if Gi = 0
log 1 + exp βaFC − log(2) if Gi = 1
βaFC if Gi = 2

To model ASE, we assume initially that we observe for each individual i their complete 

haplotypes formed by the cis-SNP and fSNPs. We distinguish these as (h 0i, h 1i) according 

to the haplotype carrying the reference and alternative alleles at the cis-SNP, respectively, for 

individuals heterozygous at the cis-SNP, or arbitrarily for homozygous individuals. We count 

reads mapping to each haplotype by aggregating the counts across heterozygous fSNPs, 

according to their phase, in each individual. We denote mi as the aggregated counts mapping 

h 0i and h 1i. Of mi ≤ ci reads that overlap at least one heterozygous fSNP, we denote by n 1i 

the number that map to h 1i. We model n 1i|mi by a beta binomial distribution with π being 

the expected proportion of ASE and θ the overdispersion parameter as follows:

n1i ∣ mi, ℎ0i, ℎ1i ≈ BB n1i; πi, θ, mi ∣ ℎ0i, ℎ1i
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πi =

exp α0i + βaFC
1 + exp α0i + βaEC

Giheterozygous

exp α0i
1 + exp α0i

Gihomozygous
(1)

where α 0i is a random intercept parameter which depends on (h 0i, h 1i) (although we drop 

the dependence in the notation above for simplicity). α 0i is used to adjust for reference 

sequence mapping bias and would be 0 in the absence of bias. Homozygous individuals 

for the cis-SNP-carrying heterozygous fSNPs contribute information for estimating the 

overdispersion parameter θ. The within-individual likelihood can therefore be expressed as:

Lwithin = ∏
i = 1

N
fBB n1i; πi, θ, mi ∣ ℎ0i, ℎ1i

We put uninformative priors on the standard regression parameters and describe informative 

priors for α 0i and β aFC in the sections below. This basic model is described in 

Supplementary Fig. 13.

Extension 1 for modeling phasing uncertainty—We now relax the assumption that 

(h 0i, h 1i) are observed and known. We denote by Fi the unphased genotypes across the 

fSNPs for individual i, and by Gi their genotype at the cis-SNP.

We account for phasing uncertainty by averaging over the likelihood of n 1i|(h 0i, h 1i) 

over all Mi possible pairs of ℎ1i, ℎ0i = ℎ1
∗, ℎ0

∗ , weighted by a simple maximum likelihood 

estimate of P ℎ1i, ℎ0i = ℎ1
∗, ℎ0

∗ ∣ Gi, Fi  estimated from the 1000 Genomes Project phase 3 

reference panel. Note that n 1i, the number reads that overlap at least one heterozygous fSNP 

and map to h 1i, also varies with haplotype configuration. Thus, the likelihood contribution 

becomes

Lwithin = ∏
i = 1

N
∑

ℎ1*, ℎ0*
fBB n1i* ; πi, θ, mi ∣ ℎ0i, ℎ1i × P ℎ1i, ℎ0i = ℎ1*, ℎ0* ∣ Gi, Fi

This ‘known genotypes’ model is described in Supplementary Fig. 14.

Extension 2 for unknown cis-SNP genotypes—We use the same idea to consider Gi 

latent, deriving the haplotype pair probabilities conditional only on the observed Fi, since Gi 

is directly specified by any haplotype pair.

Lwithin = ∏
i = 1

N
∑

ℎ1*, ℎ0*
fBB n1i* ; πi, θ, mi ∣ ℎ0i, ℎ1i × P ℎ1i, ℎ0i = ℎ1*, ℎ0* ∣ Fi

but we also need to adjust
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Lbetween = ∏
i = 1

N
∑
g*

fNB ci; βaFC, γ, ϕ, X ∣ Gi = g* × P Gi = g* ∣ Fi

We use a standard measure of imputation quality (r 2) (ref. 39). Gi ∈ {0, 1, 2} and P(Gi = 

k|Fi) is the probability obtained by imputation that the genotype of the ith individual is k. 

The expected allele dosage for individual i is E(Gi) = P(Gi = 1|Fi) + 2P(Gi = 2|Fi) and the 

information metric is defined as

r2 =
V E Gi
V GRP

with G RP the genotype for the cis-SNP in the reference panel. We report this value in the 

summary output.

This ‘unknown genotypes’ model is described in Supplementary Fig. 15.

Extension 3 for jointly modeling different conditions in unpaired samples—We 

describe this in context of our application to psoriatic and normal skin, but the same method 

applies to compare unpaired data from any two conditions or cell types. We can write the 

between-individual component of independent models for normal (N) and psoriasis (P) skin 

as:

log μip = γ0p + ∑
j = 1

j = p
γjxij + g βaFCp, Gi

log μiN = γ0N + ∑
j = 1

j = p
γjxij + g βaFCN, Gi

with the suffixes N and P indicating normal and psoriasis skin, respectively. We can jointly 

model total gene counts from normal and psoriasis skin as follows:

log μi = γ0N × IN + γ0p × IP + ∑
j = 1

j = p
γjxij + g βaFCA, Gi + g βaFCD, Gi × I

with the addition of the log allelic fold change:

βaFCA = βaFCP + βaFCN

the difference of the log allelic fold change:

βaFCD = βaFCp − βaFCN
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and:

IN
1= Normal skin
0 = Psoriasis skin IP

0 = Normal skin
1 = Psoriasis skinI −1 = Normal skin

1 = Psoriasis skin

Rather than the more usual treatment contrasts, using zero/one dummy variables, we use 

sum-to-zero contrasts for the group variable. Mathematically, the models are identical, there 

is only a change in interpretation of the resulting coefficients. As a difference in conditions 

is our primary focus, the sum-to-zero contrast will directly assess whether there is any 

condition difference (regardless of direction/sign and interactions).

Prior specifications

Modeling reference mapping bias and prior on α 0i. Let be K the number of fSNPs for a 

given feature. To estimate expected reference panel bias at each fSNPk, we pooled observed 

and pseudo reads across all individuals. Let rk and tk be the number of reads re-aligned to 

the alternative allele and the total number of re-aligned reads, respectively. Thus, πk = rk/tk
is the proportion of reads mapping to the alternative allele. On rare occasions, we observed 

πk higher than 0.5. Often when this happened, two or more SNPs were close to each other 

and shared overlapping reads with some alleles being reference and other alternative in the 

original read. We apply a binomial test assessing whether the bias estimate is significantly 

higher than 0.5 and discard those fSNPs with P < 0.01 because this pattern was not observed 

in the distribution of bias estimated from the observed reads only.

For any given gene, when β aFC = 0, then logit(πi) = α 0i (equation (1)). Note that the 

effect of any bias in our likelihood will depend on how the alternative allele at the fSNPs are 

phased with the alternative allele at the cis-SNP. Let αk = logit πk , and define

αk ℎ1* =
αk fSNPk alternative allele is in ℎ1*

−αk fSNPk reference allele is in ℎ1*

We assume that log(α0i|(h0i,h1i)) is normally distributed, with expected value a weighted 

average of ãk over the fSNPs in the gene.

E log α0i ∣ ℎ1i, ℎ0i = ℎ1*, ℎ0* =
∑k = 1

k = Ksikαk ℎ1*

∑k = 1
k = Ksik

where sik is the number of reads in sample i overlapping fSNP k, and variance

V α = V log α0i =
∑k = 1

K sik 2 1
rk

+ 1
tk − rk

∑k = 1
K sik

2

We denote by E α the set of E log α0i ∣ ℎ1i, ℎ0i = ℎ1
∗, ℎ0

∗ .
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This is then an informative prior for α 0i that captures both local sequence effects and 

variable coverage between individuals and between SNPs, derived from observed data and 

its counterfactual alternative.

Informative prior on βaFC —We also use a data-derived prior on β aFC, building on 

information amassed from large eQTL studies. We used estimates of eQTL effects from 

cis-SNPs in GTEx, assuming true eQTL effects, νk at each SNPk, come from a mix of 

Gaussian distributions

νk ≈
N 0, σ0

2 with probability 1 − p1

N 0, σ1
2 with probability p1

where σ1
2 > σ0

2 and that estimated eQTL effects are unbiased, that is νk ≈ N νk, τk
2  where τk

2

is the standard error of the eQTL effect for SNP/gene pair k, νk. We took a sample of 8 × 

105, 4 × 105 and 7 × 104 νk, τk
2  values (summary statistics provided by GTEx, calculated 

using linear models) for unlinked SNPs within 1 Mb, 500 kB or 100 kB of the target gene’s 

transcription start site. Unlinked SNPs were selected genome wide by distance thinning, 

with a median distance between consecutive SNPs of 40 kB. We estimated σ0
2, σ1

2, p1 by 

Metropolis–Hastings (Supplementary Table 14), and the code to run this analysis is available 

at https://github.com/chr1swallace/fitmix. The parameters identified by the model are shown 

in Supplementary Table 14).

Informative priors on β aFCA and β aFCD —We can express the prior for β aFC as:

βaFC ≈ N 0, σ0
2 × 1 − p1 + N 0, σ1

2 × p1

When jointly modeling normal (N) and psoriasis (P) skin, we have:

βaFCA = βaFCp + βaFCN

βaFCD = βaFCp − βaFCN

β aFCA and β aFCD are independent by construction, so that

var βaFCA = var βaFCD = var βaFCp + var βaFCN

The priors for β aFCA and β aFCD can be expressed as a mixture of normal distributions with 

the components reported in Supplementary Table 15.

We assumed that probability of observing an eQTL effect in one tissue only would be 

similar to observing a shared eQTL given that the tissues are closely related.
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Running linear model RASQUAL and BaseQTL

We ran the linear model in R using the ‘lm’ function regressing the logarithm of total gene 

counts on genotypes.

For RASQUAL, we created a VCF file with allele-specific counts using the tools provided 

in https://github.com/kauralasoo/rasqual/. We run RASQUAL with normal settings or the 

permutating test.

BaseQTL inputs were prepared as detailed above and at https://gitlab.com/evigorito/

baseqtl_pipeline.

All three models were adjusted by GC-corrected library size as implemented in the library 

rasqualTools.

Calculation of false discovery rate (FDR)

For the linear model, we adjusted raw P values for multiple testing using the R function 

‘p.adjust’ with method ‘BH’. The adjusted P values were then used to define significant 

associations at selected thresholds.

For RASQUAL, we used the method provided by RASQUAL14 itself, namely to generate a 

single P value from permuted data, and defining

FDR(α) =
Number of Pperm < α

Number of (P < α)

where P perm corresponds to the permutation P values, P to observed data P values and α the 

significance threshold.

For BaseQTL, we calculated FDR as described in ref. 40. Briefly, they define FDR as:

FDR = ∑δi 1 − ri /D

where δi is an indicator for rejecting the ith eQTL comparison, D = ∑δi corresponds to the 

number of rejections and ri ∈ {0, 1} denotes the unknown truth for a SNP being (1) or not 

(0) a cis-eQTL. While ri is unknown, we can calculate vi = P(ri = 1|data) from our posterior 

samples by calculating the proportion of times that 0 was excluded from credible intervals 

of specific size (α′ = 85%, 90%, 95% and 99%). (To do this with a manageable number of 

samples, we used normal approximations to the marginal posterior distribution of the eQTL 

effect). Under those conditions using a cis-window of 0.5 MB or 0.1 MB we observed the 

following FDR:

FDR = E(FDR ∣ data ) = ∑ 1 − vi δi/D

The estimated FDR for each decision rule is presented in Supplementary Table 16.
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Benchmarking BaseQTL against standard methods

We compared BaseQTL against two other methods: standard linear regression and 

RASQUAL14. For the same gene–SNP associations, we compared eQTL calls against a 

‘gold standard’ analysis of 462 Geuvadis23 individuals. For each method, we calculated the 

‘sensitivity’ (proportion of gold-standard hits detected by each method) and the empirical 

PPV for eQTLs or eGenes (genes with at least one significant eQTL) across a range of 

significance thresholds. We selected the 86 samples (Supplementary Data 1) and genes 

expressed in chromosome 22 but decreased the cis-window to 100 kB as 54/264 genes 

could not be run by RASQUAL within a 0.5 MB window. Using the smaller cis-window, 

only five genes failed with RASQUAL. For each method, significant eQTLs were called 

for a range of significance thresholds. Then, at each significance threshold, the PPV (the 

proportion of ‘true’ discoveries relative to all discoveries made by a method) and sensitivity 

(the proportion of ‘true’ discoveries made by a method relative to the ‘true’ positives in 

the gold standard) were calculated. ‘True’ discoveries correspond to eQTL with the same 

direction of effect and significant both in the gold standard and method. eGenes correspond 

to genes with at least one significant association. For BaseQTL, significance thresholds 

were selected based on different sizes of the posterior credible interval (99%, 95%, 90% 

and 85%). To relate these thresholds to the frequentist methods, we estimated an expected 

FDR given model assumptions. Then, for the frequentist methods, we selected a range of 

FDR estimated through the Benjamini–Hochberg procedure that matched the number of 

discoveries made by BaseQTL to be able to compare all methods along a similar range of 

sensitivity and PPV. The empirical PPV also allows us to calculate an empirical FDR, and, 

under the assumption that everything not detected at 1% FDR in the gold standard is truly 

false, suggests that the estimated FDR for every method is optimistic, with RASQUAL the 

most optimistic and the linear model the least. Although this over-optimism is itself likely 

to be overstated (for example, because not all true signals will achieve 1% FDR in the 

gold-standard reference), this highlights that the BaseQTL FDR is estimated assuming the 

model is correct. For all methods, the theoretical FDR underestimated the empirical FDR 

highlighting the importance of comparing method’s performance empirically.

Definition of significant associations using BaseQTL

We defined significant associations as those for which 0 was excluded from the 99% 

credible intervals of the posterior distribution, unless otherwise stated. This threshold was a 

good compromise between positive predictive value and sensitivity (Fig. 3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Geuvadis samples were accessed from E-GEUV-1, ftp://ftp.sra.ebi.ac.uk/vol1/fastq, on 16 

April 2017 or 23 January 2018 as indicated in Supplementary Table 1. Psoriasis and 

normal skin samples were accessed from E-GEOD-54456, ftp://ftp.sra.ebi.ac.uk/vol1/fastq, 

on 2 November 2018. GTEx associations for skin, blood and lymphoblastic cell lines 

corresponding to Analysis V7 were downloaded from https://gtexportal.org/home/datasets 

on 21 June 2019. Differentially regulated genes between psoriasis and normal skin 

were downloaded from https://ars.els-cdn.com/content/image/1-s2.0-S0022202X15368834-

mmc2.xls on the 21 November 2018. We downloaded RNA-seq data from 86 Geuvadis 

samples with EUR ancestry (GBR code) from ArrayExpress (E-GEUV-1, Supplementary 

Table 1). We also analyzed 94 and 90 RNA-seq normal and psoriasis skin samples13 

obtained from ArrayExpress (E-GEOD-54456). For the analysis of psoriasis eQTL we 

selected 51 upregulated genes in psoriasis versus normal skin (P ≤ 10-6 corresponding 

to family-wise error rate <0.025) and with a median expression of at least 500 

RPKM in psoriasis samples (data extracted from https://ars.els-cdn.com/content/image/1-

s2.0-S0022202X15368834-mmc2.xls 13, and/or within 100 kB of a psoriasis GWAS hit 25 

(380 genes). Datasets to reproduce figures in this paper were uploaded into Zenodo 41.

Code availability

The source code and documentation for BaseQTL are available at https://gitlab.com/

evigorito/baseqtl. We also provide a pipeline to process RNA fastq files and genotypes, 

if available, to prepare for running BaseQTL at https://gitlab.com/evigorito/baseqtl_pipeline 

(Supplementary Fig. 12 and Supplementary Section 3). The code to reproduce the figures 

is available at https://gitlab.com/evigorito/baseqtl_paper. The three repositories have been 

uploaded to Zenodo41.
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Fig. 1. Schematic representation of BaseQTL.
RnA-seq reads overlapping the reference or the alternative allele for a SNP are depicted 

in blue or red, respectively; gray reads do not overlap SNPs. a, Illustration of the data 

observed for a ‘true’ haplotype pair formed by a cis-SNP and three fSNPs within a 

gene in a heterozygous individual for the cis-SNP. ASe is measured as the proportion 

of reads mapping fSNPs within the haplotype carrying the cis-SNP alternative allele 

=
n1j

n1i + nni
= 11

11 + 16 . The total counts mapped to the gene are indicated by ci. b, Model 

extension to account for unknown phase by assuming that β aFC follows a mixture 

distribution conditional on phase, which is treated as a latent variable. Phase probabilities 

are estimated from a large external reference panel conditional on the observed fSNP 

genotypes. c, In the joint model combining between-individual (left) and within-individual 

(right) variation, π is related to μ 0/0 and μ 1/1, which correspond to the expected total reads 

in homozygous individuals for the reference or alternative allele, respectively. The model 

estimates βaFC =
μ1/1
μ0/0

.
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Fig. 2. Reference mapping bias correction.
a, Schematic representation of BaseQTL correction for reference panel bias. For each read 

that maps to an fSNP, we create a new read in which the allele of the fSNP is swapped 

(represented as a blue dot in a red read (alt–> ref) or a red dot in a blue read (ref->alt). The 

pooled reads, which have a 50:50 ratio of reads carrying the reference (ref) or alternative 

(alt) alleles at each fSNP, are remapped, and the number of reads mapping to each allele 

stored. b, For each fSNP we calculated the proportion of reads overlapping the alternative 

allele across all heterozygous individuals, which we refer to as the raw estimate of allelic 

imbalance. The plot shows logit-transformed raw estimates for AI (y axis) against depth (x 
axis) for each fSNP. The horizontal line indicates no allelic imbalance, the gray vertical line 

is displayed to ease comparison with c. c, Same as b but the y axis corresponds to the logit 

allelic imbalance (AI) estimates obtained as described in a. The vertical line indicates the 

read threshold selected for including estimates for inference (100 reads across all samples). 

d, each symbol corresponds to a gene–SNP association comparing the eQTL estimates (log2 

allelic fold change) obtained with or without applying our reference bias panel correction.
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Fig. 3. Benchmarking BaseQTL with observed genotypes.
Analysis was performed with BaseQTL, BaseQTL modeling between-individual signals 

only (BaseQTL negative binomial (BaseQTL-nB)), a linear model (Lm) and when possible 

with RASQUAL using a subsample of 86 individuals from the Geuvadis project on genes 

expressed on chromosome 22. We used a published analysis of 462 individuals from 

Geuvadis dataset as a gold standard. For each method, significant eQTLs were called 

for a range of significance thresholds. Then, at each significance threshold, the PPV (the 

proportion of ‘true’ discoveries relative to all discoveries made by a method) and sensitivity 

(the proportion of ‘true’ discoveries made by a method relative to the ‘true’ positives in the 

gold standard) were calculated. eGenes correspond to genes with at least one significant 

association. For BaseQTL, significance thresholds correspond to different sizes of the 

posterior credible interval (99%, 95%, 90% and 85%) and we estimated an expected FDR 

given model assumptions (Methods). For the frequentist methods, we selected a range of 
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FDR that matched the number of discoveries made by BaseQTL (Methods) to compare 

all methods along a similar range of sensitivity and PPV. Here the expected FDR and the 

PPV are quantities not mathematically related, as the FDR corresponds to the expected 

proportion of false discoveries estimated using the discovery data. The number of significant 

associations or eGenes are shown at each point. a,c, We analyzed 35,083 cis-SNPs within 

100 kB of 259 genes (a), of which 1,477 (133 eGenes) (c) were significant in the gold 

standard. The expected FDRs for all methods were 0.1%, 1%, 5% and 10%. b,d, As in a 
and c except that a cis-window of 0.5 MB within 264 genes was used covering 199,563 

gene–SNP associations (b) of which 2,168 (140 eGenes) (d) were significant in the gold 

standard. RASQUAL was excluded from the analysis as 54 genes failed to run. The expected 

FDRs for the Bayesian methods were as in a and c and for the linear model 5%, 10%, 20%, 

30% and 50%.
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Fig. 4. eQTL effects estimated with BaseQTL with observed or hidden genotypes.
Only cis-SNPs with imputation score ≥0.5 were tested. a, For each cis-SNP, the distance 

to the gene was calculated as the closest to the start or end of the gene or 0 if within 

the gene. The left panel shows the cis-SNPs tested with hidden hidden genotypes (blue) 

or observed genotypes (yellow), whereas the right panel shows significant eQTLs. b, each 

symbol corresponds to a gene–SNP association tested with observed or hidden genotypes, 

respectively. For simplicity, only significant associations in at least one condition are shown, 

with the inset table summarizing all associations tested. Dashed lines show 99% credible 

intervals. c, Venn diagram showing the number of significant eGenes tested with or without 

genotypes. d, example of a signal detected from 462 Geuvadis individuals analyzed by linear 

model captured with 86 samples and observed genotypes (top) or hidden genotypes (middle) 

using BaseQTL. In each plot, each symbol corresponds to a MAPK1 cis-SNP within a 
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100 KB window. The x axis indicates the cís-SNP position and the y axis corresponds to 

the –log10 P reported for the 462 samples in Geuvadis. Points are colored by significance. 

Associations not reported in the analysis of 462 individuals in the Geuvadis study were 

considered not significant. To ease visualization, no significant associations in both datasets 

(‘none’) are plotted with a P value of 10-4 and those only called significant by BaseQTL 

with a P value of 5×10-5. Using a linear model on the 86 samples tested by BaseQTL would 

have detected no significant results (minimum P= 0.001). The bottom panel shows the genes 

within the cis-window for MAPK1.
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Fig. 5. eQTLs in skin.
a, Of 23 eGenes detected in analysis of either normal or psoriatic skin, 10 were significant in 

both. For genes in pink, the same gene–SNP associations were also significant in GTex for 

healthy skin (GTex analysis V7). Moreover, associations for ERAP1 and FUT2 have been 

observed in a previous study of eQTLs in psoriasis28. b, Sankey plot comparing results from 

running psoriasis and normal skin samples in separate models or jointly modeling eQTL 

effects. All the genes shown in a were run with the joint model except for CSTA, which 

was excluded because only one cis-SNP was tested with normal skin and the significant 

signal observed in psoriasis could not be assessed in control samples (Supplementary Data 

2). All 9 genes for which we observed signals in both tissues when run independently 

remained significant in both conditions with the joint model, and for 8 of the 13 genes with 

apparent condition-specific effects, the joint model favored a shared signal. Note that one 

psoriasis-specific gene in the individual models (SPRR1A) was no longer significant in the 

joint model (indicated as ‘none’).
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Fig. 6. Disentangling condition-specific eQTLs.
eQTL estimates obtained from the joint or single models in normal (left) or psoriasis (right) 

skin. For each skin type, we plotted the eQTL effect illustrating the two components of 

our likelihood: between-individual (top) and within-individual (bottom) variation. Between-

individual plots show the genotype of the cis-SNP (x axis) against the total gene counts 

per million reads, adjusted by GC content (Methods) in log2 scale (y axis). As genotypes 

are unobserved, for each individual we estimated the probability of each genotype and each 

point corresponds to the indicated genotype with the size and transparency indicating the 
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probability. To represent within-individual variation only heterozygotes are considered. The 

y axis corresponds to the logit of the proportion of aggregated reads across fSNPs mapping 

the haplotype containing the alternative allele of the eQTL (as represented in Fig. 1). The 

light and dark blue lines correspond to the mean effect obtained with the single or joint 

model, respectively. a, PI3. b, GSTP1. c, SPRR1B.
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