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Abstract

Genome-wide DNA methylation studies have quickly expanded due to advances in next-

generation sequencing techniques along with a wealth of computational tools to analyze the 

data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the 

function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There 

are increasingly many studies on DNA methylation in plants—uncovering methylation profiles 

and explaining variations in different plant tissues. Additionally, DNA methylation comparisons 

of different plant tissue types and dynamics during development processes are only slowly 

emerging but are crucial for understanding developmental and regulatory decisions. Translating 

this knowledge from plant model species to commercial crops could allow the establishment of 

new varieties with increased stress resilience and improved yield. In this review, we provide an 

overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation 

data (particularly bisulfite sequencing data). The performances of a selection of the tools are 

analyzed for computational time and agreement in predicted methylated sites for A. thaliana, 
which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools 
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was benchmarked on five plant genomes. We give examples of applications of DNA methylation 

data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA 

methylation status manipulations and data integration.
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Introduction

Methylation of cytosine at carbon position 5 (also termed 5-meC) is a hallmark of an 

epigenetic modification, and 5-meC has been described as the fifth base of DNA [1]. 

Although the extent and context of 5-meC vary considerably between different plant 

lineages, all plants whose genomes have been sequenced and analyzed so far show 

substantial DNA methylation [2, 3]. Two major genomic contexts can be distinguished: 

(i) methylation on gene bodies and (ii) methylation on repeat sequences and transposons. 

Gene body methylation typically peaks on exons of moderately transcribed genes and, 

despite a comprehensive body of publications [3–5], its function remains mysterious [6]. 

Methylation on repeat sequences and transposons is crucial for suppressing transcription 

and is necessary for establishing heterochromatic domains. Consequently, mutations that 

abolish most DNA methylation lead to transposon activation and genomic meltdown after 

several generations in Arabidopsis thaliana. However, in early generations, the mutation can 

be outcrossed, and selfed offspring will be isogenic but with different DNA methylation 

states [7–9]. Experiments along these lines have established that these differences in DNA 

methylation can be stably inherited over many generations and influence ecologically 

relevant phenotypic traits [10–15].

In contrast to animals, which only maintain CG methylation, in most plants 5-meC occurs 

also in several sequence contexts (CG, CHG and CHH, where H is any of the bases 

A, T or C) and is catalyzed by different methyltransferases acting on different DNA 

methylation pathways. In A. thaliana, CG methylation is maintained by MET1, CHG 

methylation by CMT3 and CHH by CMT2 and the RNA-induced DNA methylation 

pathway. CG methylation occurs in euchromatin and heterochromatin whereas CHG 

and CHH methylation decorate repeats and transposons [16]. The cross-functioning and 

redundant DNA methylation pathways form a nuclear/DNA protection system that aids in 

identifying invading transposons and permanently shutting off their expression (see review 

by Kim et al. [17]).

Lister and Ecker [18] argued that 5-meC should be used as a dynamic fifth letter of the 

genomic code because of the important implications of methylation. It has become tractable 

to analyze genome-wide DNA methylation states in populations or across different plant 

species because of advances in next-generation sequencing (NGS) technologies. Much effort 

has been undertaken to determine the landscape of DNA methylation changes especially in 

A. thaliana and other land plants such as rice and tomato, which have had reference genomes 

available for several years [19, 20]. DNA methylation patterns vary widely among animals; 

Omony et al. Page 2

Brief Bioinform. Author manuscript; available in PMC 2022 April 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Drosophila completely lacks CG methylation while the human genome is highly methylated 

(~75% of the cytosines). In A. thaliana, ~24% of the CGs, ~ 6.7% of the CHGs and ~1.7% 

of the CHHs are methylated [21, 22].

Plants have varying levels of repeat content, which might be the result of bursts of 

single-repeat retroelements, which can amplify rapidly using a reverse transcription step 

to make multiple copies, or DNA transposons, which use a copy-and-paste strategy [23, 

24] and thus can amplify during DNA replication. While the repeat content is only ~20% 

in Arabidopsis, in cereals such as barley and wheat the repeat content can be up to 90%. 

Together with the presence of three subgenomes in hexaploid wheat, these repeats require 

tightly regulated epigenetic mechanisms [25]. Genes have evolved different mechanisms 

for tolerating transposable elements (TEs) in their vicinity [26, 27]. Hirsch and Springer 

[28] provide a review of the interactions between TEs and gene expression in plants. They 

discuss three mechanisms by which transposons influence gene expression, namely (i) the 

prevailing evidence that TE insertions within introns or untranslated regions of genes are 

often tolerated and have minimal impact on gene expression levels or splicing. Conversely, 

TE insertions within genes lead to aberrant or novel transcripts; (ii) TEs act as novel 

alternative promoters—with the potential to result in different expression patterns; and (iii) 

TE insertions near genes can influence gene regulation. In Arabidopsis, two genes (IBM1 

and IBM2) have been identified that prevent spreading of CHG and CHH methylation from 

transposons into gene bodies or promoters.

Interestingly, DNA methylation levels can also affect how plants respond to stress. 

Arabidopsis mutants with reduced global DNA methylation show increased expression of 

defense-related genes and enhanced resistance to pathogens [29]. Polymorphisms of CMT2 

correlate with DNA methylation variation along a longitudinal temperature gradient in 

natural populations [30], and cmt2 plants are more heat tolerant [31]. Isogenic lines with 

different DNA methylation states show differences in their ability to compete in synthetic 

plant communities [32]. Similar influences on stress tolerance have also been observed in 

monocots, and wheat with experimentally reduced DNA methylation shows resilience to 

salt and oxidative stress. The dynamics of the methylation state of genomic elements are 

tissue-specific (for instance, in A. thaliana seedlings [33–35]) and differ between juvenile 

and mature plants (e.g. in a study of Acacia mangium [36]). Reduced DNA methylation also 

results in abnormal plant development in A. thaliana [37]; hence, an optimally regulated 

level of methylation is vital for normal plant growth and development.

Plant pathogen invasion can also influence methylation levels in different ways. For 

instance, genome-wide hypomethylation and hypermethylation influence resistance-related 

genes [38] and alter gene expression profiles, resulting in plant adaptation to stress. Wang 

et al. [39] showed that drought-induced alterations to DNA methylation in rice influence 

an epigenetic mechanism that regulates gene expression. As a major modification of the 

eukaryotic genome, DNA methylation significantly influences gene expression. Methylation 

of genomic features can lead to different gene regulatory effects. For instance, alteration of a 

gene’s expression potential is a result of DNA methylation affecting the interaction between 

transcription factors and DNA with chromatin proteins [40]. Additionally, methylation of the 

promoter region results in repression of gene expression, and gene body methylation leads 
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to the opposite effect [41, 42]. Studies have shown that gene body-methylated genes are 

constitutively expressed in a wide range of conditions and tissues [6].

Chemistry of bisulfite conversion and sequencing

Bisulfite sequencing is generally done in three main steps, namely (i) denaturing, (ii) 

bisulfite treatment and (iii) polymerase chain reaction (PCR) amplification. In bisulfite 

conversion, DNA is denatured in a process that separates the forward and reverse strands. 

This is followed by treatment with sodium bisulfite, which converts unmethylated cytosine 

into uracil—which is then converted to thymine during PCR [43]. Quantification of 

the abundance of each cytosine can be achieved via Sanger sequencing [44] or NGS 

technologies [45]. The DNA strands cease to be complementary after bisulfite conversion. 

Treatment of genomic DNA with sodium bisulfite [46] enables us to distinguish between 

highly similar (and yet different) methylated cytosine, which has the same base-pairing 

features as unmethylated cytosine. Mapping read sequences to a reference genome enables 

the determination of positions with matching and mismatching bases. This process enables 

identification of methylated and unmethylated bases.

Bisulfite sequencing can be accomplished with different sequencing kits depending 

on whether whole-genome bisulfite sequencing (WGBS) [18] or reduced-representation 

bisulfite sequencing (RRBS) [47, 48] is performed. Currently, WGBS remains the most 

informative method for generating DNA methylation data. It provides a huge wealth of 

data and requires no prior targeting. Unlike WGBS, which is expensive, RRBS can be 

performed more economically because it is restricted to CpG-enriched regions that make 

up a smaller portion of the genome. The restriction enzyme Msp1 cleaves at 5’-C*CGG-3’ 

targets (base preceding * is methylated), thereby, mainly CpG-rich regions are targeted—

which is advantageous for large genomes.

Typical workflow for processing bisulfite sequencing data

Before reads are mapped to a reference genome, the sequencing quality of reads can be 

checked with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) or NGS 

QC Toolkit [49], followed by removing low-quality bases and adapters with, among others, 

Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore), cutadapt [50] 

or Trimmomatic [51]. However, some WGBS data processing tools integrate various 

analytic steps—enabling data preprocessing, read alignment, a more robust statistical 

analysis that output statistics such as read coverage, the percentage of uniquely aligned reads 

and statistics on the three methylation contexts (CpG/CHG/CHH). One such tool is gemBS 

[52], which is a recently published pipeline for processing and analysis of WGBS data. 

The pipeline integrates data preprocessing and analysis steps from adaptor trimming through 

downstream statistical analysis of mapping results. gemBS uses the high-performance read 

aligner GEM3 [53] as a dependency and BScall (embedded in samtools, bcftools; http://

samtools.sourceforge.net), which is a variant caller for bisulfite sequencing data. Both 

GEM3 and BScall support single and paired-end reads. Further reading on the generic 

workflow of analyzing WGBS is found in the work of Liang et al. [54] and Wrecyzcka et al. 
[55].
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Non-bisulfite-based methods and related bioinformatics tools

While bisulfite sequencing methods represent the most popular approaches for analyzing 

epigenomic data, there are other approaches within the field of DNA modification-based 

methods. These approaches include methylated DNA immunoprecipitation (MeDIP)-seq 

and MethylCap-seq (a robust procedure for genome-wide profiling of DNA methylation) 

in MeDIP analyses [56] where the genomic DNA is randomly sheared, sonicated and 

immunoprecipitated with an antibody recognizing 5-methylcytidine. Precipitated DNA can 

either be sequenced or hybridized to microarrays. MethylCap-seq uses the methyl-CpG-

binding domain of MeCP2 [57] while Oxidative bisulfite sequencing (oxBS) [58] is used 

to specifically detect 5-methylcysteine and 5-hydroxymethylcytosine (5hmC) that can be 

also done with ‘Tet’-assisted bisulfite sequencing [59]. CAB and fCAB are used for 

the recognition of 5caC [60]. Notably, the presence/absence of 5hmC in plants remains 

contentious. Some scholars claim that 5hmC is present in plants [61, 62] while others 

claim it’s absent [63]. A comprehensive overview of the various tools is given at https://

omictools.com/medip-seq-category.

Tools for analyzing epigenomics datasets

Bismark [64] and BSMap [65], as one of the 1st published tools for quantifying epigenomic 

datasets, had to address the challenge of attaining high-read mapping efficiency to enable 

a sensitive sequence search. Bowtie [66], Merman [67], SNAP (http://snap.cs.berkeley.edu) 

and Bowtie2 [68] have been used as dependencies in epigenomics tools, for instance, 

BS-Seeker [69], BS-Seeker2 [70], BS-Seeker3 [71], BRAT-nova [72], WALT [73] and 

Bismark, which are currently among the most commonly applied tools for mapping bisulfite 

methylation data. We outlined the most common tools for mapping bisulfite sequencing 

data along with tools that allow for the detection and analysis of differentially methylated 

regions (DMRs). The program parameters as well as input and output data formats are 

specified in Table S1. This table provides an overview of the main tools for mapping 

and analysis of epigenomic data—particularly for bisulfite sequencing data. Additionally, 

we also categorized the tools into three major classes, namely (i) mapping, (ii) statistical 

analysis and (iii) complete pipelines (Table S1). The defining features for each tool, such 

as their ability to handle single or double-stranded sequence data as well as their ability 

to process data and perform downstream statistical analysis, are also provided. Reviews by 

Adusulalli et al. [74], Shafi et al. [75] and Wrecyzcka et al. [55] complement our overview 

Table S1. The most frequently applied computational epigenetics methods were applied 

and tested using DNA methylation data, particularly with data acquired from bisulfite 

sequencing experiments. Therefore, there are many statistical procedures available for 

analyzing methylome data—categorized into the parametric and non-parametric approach. 

Both approaches are widely used in the literature [76]. For instance, MethylMix [77] 

is an excellent example of a parametric approach that uses Bayesian mixture models to 

identify DNA methylation states of genes as either hypo- or hypermethylated. The method 

entails fitting a distribution function onto the frequencies of DNA methylation counts. 

The advantage of using non-parametric models is that no prior knowledge of the data 

distribution is required. However, when such knowledge is available, then parametric models 

are the preferred choice for modeling such data. MethylMix quantifies the effect of DNA 

methylation on genes, which is interesting for integrative studies that aim at establishing 
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the association between the methylation states of the individual genes and their expression 

profiles. Investigating such associations unravels any hidden variations within and between 

samples (or tissues) as illustrated in [78–80]. Lea et al. [81] discussed the applications 

of mixed models on DNA methylation in plant epigenetics. They specifically focused on 

the binomial mixed model with the sampling-based algorithm (MACAU, mixed model 

association for count data via data augmentation) for the approximation of parameters 

and computation of P-values.Other modeling frameworks are based on algorithms that 

integrate various analytical steps resulting in the detection of DMRs across the entire 

genome, for instance, (i) the weighted optimization algorithm proposed in [82] (which is 

an extension of MethylKit [83]) and (ii) ChAMP.DMR [84], which applies the Bumphunter 

[85] or ProbeLasso Algorithm [86]. An example of a non-parametric model is the Bayesian 

approach based on the Dirichlet process beta mixture model—which is used for clustering 

methylation profiles [76]. The model considers the DNA methylation expressions consisting 

of an infinite number of beta mixturex distributions [87, 88].

DNA methylation: plant physiology and pathophysiology

Investigating the dynamics of DNA methylation in plant growth and development requires 

the analysis of samples from different plant tissues (e.g. [34]). To our knowledge, no 

existing software has been developed specifically for the analysis of plant physiology and 

pathophysiology. However, there are many studies analyzing bisulfite data using samples 

from different plant developmental stages (from seedlings to mature plants). For instance, 

Bismark—in leaf tissues from bread wheat seedlings [89], BSMap—for various datasets 

from different tissues in A. thaliana [90] and BS-Seeker2—for young Zea mays leaves [91]. 

With rapid advancements in the development of software/tools for analysis of epigenomes, 

we are optimistic such tools will soon be available to the public.

DMRs and their significance

Genomic regions (or bases) with different methylation profiles between samples are known 

as DMRs. This is also referred to as differentially methylated CpG sites since the CpG-

methylated sites occur in much larger numbers compared to the non-CpG contexts (CHG 

and CHH) [92, 93]. Peak detection enables the identification of CpG islands—which 

are essential for differentiating methylation profiles between samples (typically between 

controls and test samples). CpG islands are not randomly distributed in the genome but 

are instead grouped close together [94]. Long stretches of non-dense CpG sites, known as 

CpG shores, can also be detected. Combining the methylation profiles of both CpG-islands 

and CpG-shores enables more efficient comparative analysis of DNA methylation profiles 

between samples.

Various statistical algorithms have been proposed for identifying DMRs—the most popular 

ones being methylKit [83], metilene [95], DMRcaller [96] and Bumphunter [85]. For 

elaborate discussions on the DMR detection methods and a discussion on choosing the 

right method for DMR detection, see [97, 98]. The tools are written and compiled in 

different programming languages (e.g. R, Python, Perl, Java, C and C++; Table S1). 

Essentially, such tools are used to identify DMRs from either targeted regions of the genome 

or from the whole genome. Critical considerations have to be made, e.g. the choice of 
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experimental designs for experiments and statistical methods for data analysis [99]. DMRs 

are intricately linked to transcription and the abundance of CpG sites (CpG islands). A high 

concentration of CpG sites is often found within the promoter regions of genes—so it is 

essential to accurately identify such sites. Methylation of promoter regions influences the 

level of transcription—heavy methylation disrupts transcription, and de-methylation leads to 

transcription reactivation [100–102].

Peak identification and normalization are crucial initial steps in analyzing DNA methylation 

data and visualization and can be useful for comparing datasets and judging the performance 

and agreement between tools. Post-processing and visualization of (differentially) 

methylated sites enable high-resolution exploration and comparison of regions in the 

genome for variations in methylation profiles. Therefore, tools like BiQ [103] and BSeQC 

[104] have aided quality control and visualization of methylation data, thereby enabling 

researchers to explore data attributes and perform data quality control before analysis. 

There are many methods for clustering methylation marks such as the dynamic genome 

warping [105] approach that uses hierarchical clustering and the combination of different 

epigenomics analytic platforms and data integrative modules. Dynamic genome warping has 

been demonstrated to be a reliable way to get more meaningful results from datasets (for 

instance, [106]). To utilize this method, Liang et al. [54] developed a webserver to analyze 

WGBS data and their platform includes major steps for detection and mapping of the 

conversion rate, detection of DMRs and their association with gene expression. Wreczycka 

et al. [55] discussed data requirements and computational attributes for specific software and 

assess bisulfite sequencing data analysis methods, alignment and data processing, detection 

of differential methylation and assess strategies for handling large epigenetic datasets. In 

contrast, our work highlights existing asymmetries between mapping tools and contrasts 

their computational capabilities.

Another important aspect in plant epigenetics is how hypomethylation and hypermethylation 

affects gene expression. The concept of hypomethylation and hypermethylation is not 

limited to plants as they have also been extensively studied in cancer progression in humans 

[107], coronary heart disease [108] and eukaryotes in general [109]. The division of DMRs 

into hypo- and hypermethylated enables investigations into the influence of both types of 

methylation on gene expression. Many computational tools have integrated modules that 

enable the extraction and quantification of the extent of hypo- and hypermethylation in 

genes. One such tool is MethylMix, which requires that changes in a gene’s methylation 

state must also agree with its expression profile. Additionally, it requires a treatment and 

control sample (for agricultural studies) or healthy and disease conditions (for clinical 

studies).

Downstream analyses of bisulfite methylome data

After data processing and calling of methylation sites, down-stream analysis can be 

performed—including the functional annotation of DMRs and analysis of the associated 

pathways influenced by the targeted genes. Such analysis enables the assignment of 

functions and gene annotation as seen in the overviews of Bioinformatics omicX tools 
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(https://omictools.com/epigenomics-category). Examples of tools for performing down-

stream analysis are given in Table 1.

Technical challenges: conversion rate, repetitive regions and DMRs

The main challenges in the analysis of DNA methylation data include incomplete 

methylation patterns and overdispersion of read mappings [110–112]. Here, overdispersion 

means the presence of variability in the reads compared to the expected read distributions 

based on a given model structure. When epigenomics marks coincide with repetitive regions 

in the genome, mapping tools need to keep reads that map to multiple genomic locations

—making these tools slower and computationally memory-intensive. This problem can be 

partly circumvented through parallel computing using multiple threads, especially for larger 

repetitive plant genomes.

Conversion rates

As a method for studying DNA methylation, bisulfite conversion involves the conversion of 

cytosine to uracil (while 5-methylcytosine, 5-mC remains unchanged). Bisulfite sequence 

conversion rates vary for different datasets. It is essential for conversion rates to be 

determined accurately to ensure the reliability of downstream data analysis. Reliable results 

can be obtained from datasets with bisulfite conversion rates higher than ~0.999 (see, e.g. 

[113]—demonstrated using their tool MethQA). However, they urge caution for datasets 

with lower conversion rates. Modern commercially available bisulfite sequence conversion 

kits generally indicate conversion efficiencies of 90–100% [114]. An elaborate discussion on 

methods for estimating conversion rate from bisulfite DNA methylation data is provided in 

[115, 116].

Description of experiment: benchmarking selected tools

We aimed to determine how the well-established computational epigenomics methods 

perform on a small genome such as A. thaliana with ~130 Mbp (TAIR10) compared to 

a genome with a high repeat content and much larger genome size such as bread wheat

—taking chromosome 1A (Chr1A) for demonstration purpose [117]. We used bisulfite 

sequencing data from two studies (with accession numbers SRR429549 [118, 119] for 

A. thaliana and ERR1141918 [89] for Triticum aestivum; data from NCBI) and applied 

four methods: BSMap [65], Bismark [64], BS-Seeker3 and segemehl [120]. Our analysis 

focused on the speed and agreement of common methylated sites between the tools. BS-

Seeker3 was the fastest, followed by BSMap, while Bismark and segemehl were the slowest 

irrespective of genome size—especially for multiple threads (Figure 1A and B). When using 

a single thread, segemehl (keeping reads that mapped a maximum of three times) performed 

slowest compared with the other methods. Overall, the computation time required for the 

T. aestivum (Chr1A) dataset is significantly longer than those from A. thaliana (Figure 

1A and B). When comparing the reported sites, we found that, for A. thaliana, 562 051 

sites are shared among all four tools. While most sites were overlapping between BSMap, 

BS-Seeker3 and Bismark, likely because they use the same mapping software, segemehl 

reported only ~10% of these sites. However, for T. aestivum, ~101 944 sites were reported 

with most of them being reported in segemehl (Figure 1C and D). The existence of such 

asymmetries requires more attention and is certainly worth taking into consideration when 
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using the different computational tools. Other studies on comparisons of the performance 

of epigenetics analysis tools, specifically focusing on mapping short reads for bisulfite 

sequencing data, can be found in the work of Tran et al. [121]. Several studies have also 

compared runtime and memory consumption of different epigenomics tools, such as Tran 

et al. [121] who compared the five bisulfite short read-mapping tools BSMap, Bismark, 

BS-Seeker, Bisulfite Sequencing Scorer (BiSS) and BRAT-BW and Bismark performed best 

on real data, followed by BiSS, BSMap and BRAT-BW and BS-Seeker. Recently, Huang 

et al. [71] proposed BS-Seeker3—a fast mapping tool for bisulfite data and compared 

it performance for runtime and sensitivity to sister tools like Bismark, BRAT-nova and 

BSMap. Additional to being accurate and versatile, Huang et al. concluded that BS-Seeker3 

is an ultra-fast pipeline to process bisulfite-converted reads. The tool also aids visualization 

of methylation data, hence justifying its comparability to the other three tools (Bismark, 

BRAT-nova and BSMap).

We simulated reads from A. thaliana and bread wheat using the tool by Sherman (https://

www.bioinformatics.babraham.ac.uk/projects/sherman) to test the performances of the four 

tools by comparing the precision and sensitivity along all chromosomes (Figure 2). The 

sensitivity, also sometimes referred to as recall, is defined as TP/(TP + FN). The precision 

is defined as TP/(TP + FP), where TP—true positive, FN—false negative and FP—false 

positive. We observed best performances for the Bismark, followed by BSMap and 

segemehl, while BS-Seeker3 seemed to have a lower sensitivity in A. thaliana compared 

to the other tools. For bread wheat a similar order to performances of tools was observed 

when reads where simulated for each subgenomes of chromosome 1 with the three 

genome copies. All scripts were provided in GitHub (https://github.com/jomony/EPItools/

blob/master/README.md).

Feature comparison between the tools and related literature benchmarking

To further benchmark the performance of the tools, we used bisulfite sequencing data from 

five plant genomes. These genomes consist of the dicots: A. thaliana (genome size, ~0.13 

Gb; SRR4295494), Arabidopsis lyrata (~0.21 Gb; SRR3880297) and Glycine max (~1.2 

Gb, SRR5079790) and also the monocots: T. aestivum (chromosome 1A; size, ~0.67 Gb; 

ERR1141918) and Oryza sativa (~0.43Gb; SRR7265433). Figure 3A shows the results of a 

comparative analysis of the memory footprint analysis of the performance of the four tools 

benchmarked using data from five genomes. These results come from mapping the bisulfite 

reads data to their respective reference genomes. Association analysis was performed for 

each of the four tools as seen in the linear regression model fits (Figure 3B–E). The results 

show that the genome sizes for each of the five genomes are significantly correlated to the 

memory footprint analysis (P < 0.05).

The key attributes and parameters for the four tools are summarized in Table S2. This 

table presents a summary of the supported features in the four tools (BSMap, BS-Seeker3, 

Bismark and segemehl). Such features are essential for deciding on which tool to use for 

mapping reads and data analysis. Examples of such features can also be found in the work 

of Guo et al. [70] and Tran et al. [121]. Lee et al. [122] evaluated the mapping accuracy 

and mapping rates for Bismark, BSMap and BS-Seeker2 as a function of the error rates. 
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Using WGBS data, they assessed the influence of the error rates on the mapping rates and 

mapping accuracy and observed that at low error rates (<4%), BSMap had a higher mapping 

rate than Bismark and BS-Seeker2. On the contrary, BSMap had a lower mapping accuracy 

than Bismark and BS-Seeker2. They also showed that mapping accuracy is independent of 

the methylation level.

A discussion on benchmarking approaches with a focus on short sequence mapping tools 

is found in the work of Hatem et al. [123]. They assess the performance of various 

aligners for the read mapping tools and benchmark them using criteria such as mapping 

percentage, running time and memory footprint. Variations in parameters such as seed 

length, base quality and single- or paired-end reads on the mapping quality are also 

evaluated. Benchmarking of tools by comparing the performance of each tool based on 

multiple attributes can be achieved in various ways, for instance, by assessing (i) the effect 

of the read length and sequencing error, (ii) the effect of data processing and (iii) the 

effect of varying parameters in the tools. These are some of the approaches discussed by 

Tran et al. [121]. They compared the performance of epigenomic mapping tools such as 

BSMap, Bismark, BS-Seeker, BRAT-BW [124] and the BiSS [125]. Tran et al. primarily 

benchmarked the performance of the tools basing on mapping efficiency (as the percentage 

of reads that map uniquely to the genome) and the central processing unit (CPU) time.

Outlook

In the near future, there is a need for more comparative analyses to explore the 

epigenomes of diverse plants in different development stages together with various stress 

factors. This would enable the discovery of exclusive and common epigenetic regulatory 

mechanisms. Uncovering and exploiting such mechanisms could potentially promote 

adaptation to changing environmental conditions. Moreover, a large number of methylomes 

are required to study the effect of the environment and stress conditions on the epigenomic 

state of a single plant [126, 127]. Resources like the 1001 Epigenomes Project (https://

1001genomes.org) in A. thaliana are exciting datasets to aid in our understanding of the role 

of the epigenome. However, it remains unclear whether the observations in these studies are 

directly applicable to crops.

Computational tools are instrumental for bridging the gap between mapping of sequenced 

reads, the accurate prediction of methylated sites and their statistical analysis However, 

this effort is hampered by variations in the size of epigenomic marks and the complexity 

associated with normalizing peaks. The need to increase crop yield on the same amount, 

and in some cases dwindling, of arable land is another important aspect that requires 

advancements in epigenomics studies. Several studies have shown that during seed and grain 

development, the plant epigenome changes and leads to gene silencing. Therefore, a change 

in the epigenetic state of a plant would result in an increase in its likelihood of adapting from 

one geographical location to another or to different environmental conditions.

Lämke and Bäur [128] argued that such modifications have the potential to provide 

a mechanistic basis for stress memory in plants. This enables plants to respond more 

efficiently to recurring stress from the environment, for instance, drought and salinity stress 

[129], a topic that was reviewed by Golldack et al. [130] (and more recently by Yang and 
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Guo [131] and Abhinandan et al. [132]). This might enable plants to prepare their offspring 

for future attacks from stressors and to improve their adaptation to specific stress factors 

[130]. Plant adaptation to stress might enable us to explore new ways to improve yield, for 

instance, by shortening or prolonging the time for grain development, by finding ways to 

regulate the expression of the three homeologs in wheat or by interfering with fruit ripening 

(as seen in tomatoes [133–135] and other fruits like peach, apples and strawberries [136]). 

A more intriguing discussion on the epigenetic mechanisms of plant stress response and 

adaptation to different environmental conditions was reviewed in [137–139].

In this review, we have discussed the use of bioinformatics tools to study DNA methylation 

data in plants. Notably, several studies in humans and mouse were successfully performed 

using popular tools like BSMap, BS-Seeker/BS-Seeker2/BS-Seeker3, Bismark in mouse and 

segemehl in human cancer cell lines. For the analysis of bisulfite sequence data, most of the 

fundamentals of the chemical background and methylation principles are the same; however, 

the major difference between the use of such tools in plants and animals (specifically, in 

humans and mouse) is the genome structure organization and the presence of predominantly 

more CHG/CHH methylation contexts in plants. The most predominant context of DNA 

methylation in mammals is the symmetric CG—estimated to be at ~70−80% of CG 

dinucleotides genome-wide [140]. The mechanisms of regulation and function of DNA 

methylation vary in animals and plants [141, 142]. These variations in regulation and 

function mechanism, coupled with genome structure differences and complexity levels, is 

a motivating factor for integrating small subtle differences in mapping and analysis tools 

for epigenome data. Another important difference of plants and animals is how they are 

able to demethylate their genome. So far, enzymes removing directly the methyl group 

from cytosines have not been identified in plants, but they are important components 

of mammalian DNA methylation homeostasis. Plants use either passive mechanisms (not 

maintaining methylation during DNA replication) or base excision and subsequent repair 

for direct removal of methylated cytosines. Unlike with the human genome, the CHG/CHH 

contexts that are more abundant in plants [143] need to be integrated into the mapping 

and analysis of methylome data. Many plants have large and repetitive genomes compared 

to that of humans. Such large genomes are a limiting factor in the analysis since they 

require a lot of computational resources. The sequence mapping to references and statistical 

computational time for large genomes such that of bread wheat (~17 Gb) and barley (~5.3 

Gb) is likely to scale linearly.

Concluding remarks

In the last decade, there has been tremendous progress in the development of tools 

for analyzing epigenomic data; however, numerous challenges remain. For instance, the 

visualization capacity of many tools remains either inadequate or lacks essential modules for 

handling and displaying statistical outcomes from the resulting analysis. Additionally, the 

ability of these tools to scale-up and to handle large genomes remains an issue for further 

exploration. Technically, most computational tools for analyzing epigenomic data perform 

well for datasets from organisms with a genome size that is smaller than the human genome 

(~3 Gb). For much larger and complex genomes, more computational resources are required, 

and the genome structure (whether diploid, hexaploidy or tetraploid) and repetitive nature of 
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the genome have to be taken into consideration during mapping to a reference genome. This 

is demonstrated in our example where we compared the mapping efficiency for Arabidopsis 

and a wheat chromosome; however, the complexity in genome structure, the presence of 

TEs and the lack of consistent gene annotations for some plants remain a major obstacle to 

advancing epigenetic research.

In the next decade, there is likely to be a steady improvement in sequencing methods and 

performance of already existing computational algorithms. Recently, it was shown that even 

well-established sequencing methods might be prone to errors, leading to misleading results, 

e.g. DNA immunoprecipitation sequencing [144]. Discovering and amending such errors 

can lead to new findings from the previous studies and limit these errors’ damage to future 

studies. This will aid further epigenetic research not only in plants but also in life sciences 

in general. Additionally, a few tools have the capability to effectively get more information 

out of low-coverage data. Developing new tools or improving on existing ones to attain 

optimal results using low coverage data and fewer replicates would save experiment and 

sequencing costs. A high sequence coverage allows for good data quality and enables robust 

statistical analysis [145]. Achieving high sequence coverage can be quite expensive and 

the minimum desired coverage can depend on the research objectives at hand. Typically, 

a coverage value of 5–10 × is sufficient for many comparative studies and for achieving 

reliable methylation calls [145]. However, studies have demonstrated that coverage values as 

low as 2× is sufficient [146]. Accurate identification of DMRs in large samples, especially 

between multiple conditions, remains a challenge—despite tremendous progress already 

made in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• We introduce the concepts of epigenetics in plants and discuss commonly 

used tools—with a focus on their capabilities.

• Integration of bioinformatics tools needed to understand epigenomics datasets 

in crops.

• The presence of repetitive elements in the genome influences the prediction of 

methylated sites.

• We list the runtime and computational requirement for a small and large 

complex genome and demonstrate their overlaps in four most applied tools.

• Different tools have different levels of asymmetry with regards to their 

mapping and methylation call statistics.
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Figure 1. 
Selection of epigenomics tools. (A and B) Results of the calculation user times for four 

common tools, Bismark, BSMap, BS-Seeker3 and segemehl. We used data for A. thaliana 
and chromosome 1A in bread wheat (T. aestivum). n.a, values not available. (C and D) 

Overlap of detected sites in the two reference genomes for the four mapping tools.
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Figure 2. 
Precision and sensitivity analysis. Precision and sensitivity analysis for the A. thaliana 
data based on read mapping of simulated reads using the tool by Sherman (https://

www.bioinformatics.babraham.ac.uk/projects/sherman)—with the parameters (CG = 24, CH 
= 8, e = 0.5). (A) There is a large difference in the sensitivity of the four tools. BS-Seeker3 

was the least sensitive (sensitivity averaging ~48%)—Bismark was the most sensitive 

(sensitivity, ~99.9%). The sensitivity values for BSMap and segemehl averaged ~97% and 

90%, respectively. (B) For bread wheat (T. aestiuum), BSMap appears to be marginally less 

precise and less sensitive than segemehl. There is consistency in the precision and sensitivity 

values for the subgenomes A, B and D in chromosome 1 of T. aestivum. Overall, the results 

from both (A) and (B) are in agreement. Notably, BS-Seeker3 has a wide range of precision 

compared to the other three tools. Each data point represents the precision-sensitivity value 

based on a simulation run for an individual tool. The precision and sensitivity values for 

Bismark, BSMap, BS-Seeker3 and segemehl averaged ~(99%, 99%), (94%, 82%), (86%, 

38%) and (97%, 87%), respectively. Five simulation runs were performed for each tool—

one for each of the A. thaliana chromosomes. The elliptical rings around each set of data 

points represent the confidence bounds.
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Figure 3. 
Memory footprint analysis for the four tools—benchmarked on five genomes. (A) Barplots 

showing variation in attained memory footprint between the tools benchmarked on different 

genomes. (B−E) Correlation analysis of genome size and memory footprint analysis. A 

benchmark of the four tools, (B) BSMap, (C) BS-Seeker3, (D) Bismark and (E) segemehl. 

The genome sizes are all significantly correlated to the memory footprint analysis (P < 

0.05). Dotted line, fitted regression line; Dots, data points.
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Table 1
Examples of some downstream analysis software

Tool Citation and descriptions

ADMIRE: Analysis and visualization of 
differential methylation in genomic regions 
using the Infinium HumanMethylation450 
Assay

Preussner et al. [109]; online and offline. Adds experimental settings, quality control, automatic 
filtering, normalization, multiple testing and differential analyses genome browser tracks, table 
outputs and summary files.

BATMAN: Bayesian automated 
metabolite analyser for Nuclear magnetic 
resonance (NMR) spectra

Hao et al. [110]; uses Markov chain Monte Carlo algorithm for sampling. Bayesian-based 
approach.

KEGG: Gene Ontology Pathways It is a database for mining and analysis of high-level functions. KEGG enables analysis and 
data mining on different biological scales (e.g. cellular and molecular-level information, whole 
organism, at ecosystem level, etc—using data from high-throughput experiments; see https://
www.genome.jp/kegg).

IPA: Ingenuity Pathway Analysis Krämer et al. [111]; platform enables exploration and visualization of complex omics data (e.g. 
microarrays including miRNA, metabolomics, proteomics, Ribonucleic acid sequencing (RNA-
Seq), small RNA-Seq and single-nucleotide polymorphism (SNP) and small-scale experiments); 
see https://www.qiagenbioinformatics.com.

DAVID: Database for Annotation, 
Visualization and Integrated Discovery

Huang et al. [112]; DAVID enables pathway mining and gene function classification. Input is 
gene list from high-throughput genomic experiments; see https://david.ncifcrf.gov.
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