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ABSTRACT

Objective: Coordination ellipsis is a linguistic phenomenon abound in medical text and is challenging for con-

cept normalization because of difficulty in recognizing elliptical expressions referencing 2 or more entities accu-

rately. To resolve this bottleneck, we aim to contribute a generalizable method to reconstruct concepts from

medical coordinated elliptical expressions in a variety of biomedical corpora.

Materials and Methods: We proposed a graph-based representation model and built a pipeline to reconstruct

concepts from coordinated elliptical expressions in medical text (RECEEM). There are 4 modules: (1) identify all

possible candidate conjunct pairs from original coordinated elliptical expressions, (2) calculate coefficients for

candidate conjuncts using the embedding model, (3) select the most appropriate decompositions by global op-

timization, and (4) rebuild concepts based on a pathfinding algorithm. We evaluated the pipeline’s performance

on 2658 coordinated elliptical expressions from 3 different medical corpora (ie, biomedical literature, clinical

narratives, and eligibility criteria from clinical trials). Precision, recall, and F1 score were calculated.

Results: The F1 scores for biomedical publications, clinical narratives, and research eligibility criteria were

0.862, 0.721, and 0.870, respectively. RECEEM outperformed 2 previously released methods. By incorporating

RECEEM into 2 existing NLP tools, the F1 scores increased from 0.248 to 0.460 and from 0.287 to 0.630 on con-

cept mapping of 1125 coordination ellipses.

Conclusions: RECEEM improves concept normalization for medical coordinated elliptical expressions in a vari-

ety of biomedical corpora. It outperformed existing methods and significantly enhanced the performance of 2

notable NLP systems for mapping coordination ellipses in the evaluation. The algorithm is open sourced online

(https://github.com/chiyuan1126/RECEEM).
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INTRODUCTION

A wealth of reusable medical information and knowledge is accumu-

lating as free text in clinical narratives, biomedical literature, or clin-

ical trials.1,2 Information extraction and knowledge engineering

from these data hinges on accurate and efficient concept recognition

and concept mapping to specific terminologies and ontologies. The

latter task (concept normalization) is often significantly impaired by

inaccurate concept recognition of coordinated elliptical expres-

sions.3 In linguistics, ellipsis is a grammatical device that achieves

textual concision by omitting repeated words. For instance, the

phrase “breast and squamous cell neoplasms” expresses “breast

neoplasms” and “squamous cell neoplasms” by sharing

“neoplasms” between “breast” and “squamous cell.” Commonly

used medical or clinical natural language processing (NLP) tools are

capable of recognizing elliptical expressions as entities, but they
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have difficulty in mapping the expressions to the correct set of con-

cepts. For example, CLAMP (Clinical Language Annotation, Model-

ing, and Processing) did not decompose the expression, mapping the

whole expression to the concept “squamous cell neoplasms” and

missing “breast neoplasm” (Table 1). cTAKES (clinical Text Analy-

sis and Knowledge Extraction System) produced “breast” and

“squamous cell neoplasms” instead of reconstructing “breast neo-

plasm,” resulting in partially inaccurate, misrepresented mappings.

MetaMap with conjunction processing enabled maps the phrase to

“breast neoplasms” and “squamous cell” (instead of “squamous cell

neoplasms”). On the one hand, considering that specialized concepts

are common in technical languages, coordination ellipses are more

frequently used in medical language than in the general domain.3

On the other hand, more granular results are required for medical

downstream tasks such as free-text based phenotyping and cohort

identification.8 To tackle such mapping issues, current NLP pipe-

lines mainly utilize complete or partial rule-based or ad hoc meth-

ods. Such methods lack generalizability to different types of

biomedical text and may require extensive customization to design

corpus-specific patterns.

To bridge this knowledge gap, we contributed an unsuper-

vised method to reconstruct concepts from coordinated elliptical

expressions in medical text (RECEEM) using a graph-based

model. A large-scale phrase set (ie, PubMed Phrases)9 was used

to train an embedding model using word2vec to measure paral-

lelism between candidate conjuncts.10 All candidate conjuncts

are enumerated, and the most appropriate decomposing con-

juncts are selected based on parallelism. A generalizability evalu-

ation was conducted on elliptical entities identified from 3

medical corpora: biomedical literature, clinical narratives, and

eligibility criteria in clinical trials. RECEEM can be added to

existing medical NLP tools to facilitate concept normalization of

elliptical expression in medical texts. We released the benchmark

data, source code, and pretrained model online (https://github.

com/chiyuan1126/RECEEM).

Related work
Approaches to reconstruct conjunction ellipses in concept normali-

zation can be pattern or rule-based, statistics-based, or hybrid meth-

ods. Different methods are conducted at different granularities from

the phrase level to the sentence level. Among pattern-based methods

for identifying conjuncts, Nhan et al11 designed a transformation

component to parse verb phrase ellipses by expanding conjunctions

and reconstructing full sentences by filling in gapped information.

Okumura and Muraki12 proposed a symmetric pattern to expand

English coordination structures for improving English-Japanese

translation. Klavans and Jacquemin13 presented a corpus-based sys-

tem to expand multiword index terms using linguistic part of speech

rules and morphological analysis results. Goldberg14 proposed an

unsupervised model for statistically determining prepositional

phrase attachment; the model was trained with unannotated 1988

Wall Street Journal text and achieved 72% accuracy. Teranishi et

al15 developed a deep neural network model incorporating 2 con-

junct properties (similarity and replaceability), improving clause-

level coordination identification. The model identifies the boundary

of the entire coordinate structure, identifying the italicized section in

the following example: “the tender offer for a combination of cash,

Memotec stock and debentures.”

Coordination resolution research has also attracted attention in

the biomedical domain. A conjunction resolving function was added

to MetaMap 2016v2 (“–conj” configuration option), combining the

enumeration method and the dictionary look-up method to recom-

bine concepts from conjunctions.7 Buyko et al16 employed a condi-

tional random field (CRF)–based method extending the feature set

to extract named entities. Subsequently, coordinated compound en-

tities are screened out according to a set of conjunctions generated

by statistical results. Chae et al17 also adopted a CRF model and

predefined forward, backward, and complex coordination ellipses

and developed a pattern-based method using lexicons to identify

regions of different components (ie, conjunction, conjuncts, ellipsis

antecedent). Wei et al3 proposed SimConcept, integrating a CRF

Table 1. Examples of a coordinated elliptical expression processed by widely used medical NLP tools

Text: “this highly conserved putative oncogene, which encodes a novel cyclin, has been linked to BCL1 and implicated also in subsets of breast and

squamous cell neoplasms with 11q13 amplification.” (PMID : 1682919)

Method Named Entity Recognition results Concept Mapping Results

CLAMP4 <problem>

breast and squamous cell neoplasms

</problem>

squamous cell neoplasms (C0206720)

cTAKES5 <AnatomicalSiteMention>

Breast

</AnatomicalSiteMention>and

<DiseaseDisorderMention>

squamous cell neoplasms

</DiseaseDisorderMention>

breast (C0006141)

squamous cell neoplasms (C0206720)

MetaMap6 (w/o–conj) 760 C0006141: BREAST (Breast) [Body Part, Organ, or Organ Component]

833 C0206720: Cell Neoplasms, Squamous (Squamous Cell Neoplasms) [Neoplastic Process]

MetaMap7 (w–conj) 598 C0221910: Squamous Cell (Squamous Epithelial Cells) [Cell]

773 C1458155: Neoplasm of Breast (Mammary Neoplasms) [Neoplastic Process]

“MetaMap w/o –conj” refers to MetaMap without turning on conjunction processing; “MetaMap w–conj” refers to MetaMap with conjunction processing

turned on.

CLAMP: Clinical Language Annotation, Modeling, and Processing; cTAKES: clinical Text Analysis and Knowledge Extraction System; NLP: natural lan-

guage processing; RECEEM: reconstruct concepts from coordinated elliptical expressions in medical text.
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model with pattern identification in a pattern-abundant pipeline.

SimConcept designed 4 patterns in token reassembly and 2 heuristic

methods in postprocessing. Overall, SimConcept achieved high per-

formance on 5 biological corpora for genes (BioCreative 2 GN task

train/test corpus and National Library of Medicine GIA corpus), dis-

eases (National Center for Biotechnology Information [NCBI] Dis-

ease corpus), and chemicals (BioCreative IV ChemDNER task

corpus). Of note, SimConcept can parse ellipses within a word

boundary; for example, “BRCA1/2” is parsed as “BRCA1” and

“BRCA2,” “T1-4 breast cancer” is annotated as “T1 breast cancer,”

“T2 breast cancer,” “T3 breast cancer,” and “T4 breast cancer.” In

contrast, our method focuses exclusively on token level reconstruc-

tion and does not parse character-level ellipses or ellipses within a

word boundary. Jiang18 trained a clinical syntax parser with a large

clinical Treebank (MiPACQ) and integrated a rule-based method us-

ing semantic information to solve coordination ambiguity issues

based on syntax parsing results. The relation between coordinated

elliptical expressions and their attributes was disambiguated. How-

ever, the coordination disambiguation method was developed to

solve the ambiguity in relation extraction and did not conduct ellip-

sis expansion for the original coordinated elliptical expressions.

Blake Rindflesch19 employed syntactic dependencies to extract for-

ward, backward and complex ellipses from PubMed literature. De-

pendencies were adopted in building a dictionary of noncoordinated

noun phrases to test new generated phrases. Shimbo and Hara20

proposed a discriminative learning model that only required a small

training set and minimal features to detect and disambiguate coordi-

nated noun phrases in the GENIA corpus.

In contrast to the previously mentioned studies, RECEEM is an

unsupervised approach to reconstructing concepts from coordinated

elliptical expressions that generalizes well across biomedical cor-

pora, obviating laborious corpora-specific pattern design. RECEEM

operates directly on the entities identified by existing named entity

recognition (NER) modules (example provided in the Materials and

Methods), allowing it to be easily incorporated into established

medical or clinical information extraction pipelines.

MATERIALS AND METHODS

The RECEEM pipeline consists of 4 steps: candidate conjunct pair

generation, parallelism coefficient calculation, decomposing path se-

lection, and phrase reconstruction (Figure 1). The input includes en-

tities with conjunctions identified from existing NLP systems’ NER

modules. Similar to Buyko et al’s work,16 all NER output are con-

sidered, but entities without conjunctions are screened out. Then,

any named entity containing conjunctions are decomposed and

reconstructed into multiple entities. Continuing with the examples

from Table 1, from CLAMP’s output (“breast and squamous cell

neoplasm”), RECEEM detects the conjunction and decomposes the

entity into “breast neoplasm” and “squamous cell neoplasm.” From

cTAKES’ output (“breast” and “squamous cell neoplasm”),

RECEEM processes each entity individually and returns both enti-

ties unaltered because neither contains a conjunction.

Task statement
In general, coordination ellipses mainly have 4 categories17: forward

ellipsis (eg, “abnormalities of eyes, nervous system, and kidneys”),

backward ellipsis (eg, “breast and ovarian cancer”), complex ellipsis

(eg, “familial breast and ovarian cancers”), and nested coordination

(eg, “control, E2-treated, and TAM-treated ERþ and ER- cells”).

Figure 2 illustrates these examples.

In this article, we use the following terminology consistent with

previous works to describe coordinated elliptical expressions.16 A

conjunction (eg, “,” [comma] and “and” in Figure 2) is a word or

symbol that connects 2 or more conjuncts (eg, “eyes,” “nervous sys-

tem,” “kidneys”) in the phrase. An antecedent (eg, “abnormalities

of” and “carcinomas”) is the part of an elliptical mention shared by

all conjuncts. The phrases reconstructed by combining the anteced-

ent with each of the conjuncts are called resolved conjuncts. In for-

ward, backward, and complex ellipses, a conjunct does not include

the antecedent, but in nested coordination, each word could have

more than 1 role. For example, in the nested elliptical expression

“control, E2-treated, and TAM-treated ERþ and ER- cells,”

“control” and “ERþ” (among others) can act as antecedent or con-

junct for different resolved conjuncts.

To build a unified processing pipeline for all 4 categories of coor-

dinated elliptical expressions, we propose a graph-based representa-

tion model. All words and symbols in the expression are vertices

sequentially connected in their original order (Figure 2). We add a

starting vertex before the first word and an ending vertex after the

last word. The edges between vertices are updated according to the

“parallelism principle, which states that all conjuncts in an elliptical

expression must exhibit parallelism with each other.21 In our repre-

sentation model, all paths from starting vertex to ending vertex are

resolved conjuncts. Using this graph representation model, the coor-

dination resolution problem is transformed into a path-finding prob-

lem. The details of our method are described subsequently.

Candidate conjunct pair generation
The key task in reconstructing concepts from coordinated elliptical

expressions is to determine the boundaries of conjuncts. Coordi-

nated elliptical expressions can contain more than 1 conjunction,

such as “, (comma), (comma) and” in the phrase “pancreatic, basal

cell, and cervical carcinomas.” To unify the process for various ellip-

ses, we tackled conjunctions individually, allowing nested coordina-

tion and multiconjunction cases to be resolved with the same

pipeline. A candidate conjunct pair generation module was designed

to enumerate candidate conjunct pairs from coordinated elliptical

expressions (Figure 3). First, elliptical expressions are tokenized. All

conjunctions are identified and replaced by a uniform conjunction

mark <conj>, with multiple continuous conjunctions converted to a

single conjunction mark. Then, rechunking is conducted to split the

original expression into multiple conjunct chunks such that each

conjunct chunk only keeps 1 conjunction mark. In each conjunct

chunk, all possible conjuncts are enumerated. For example,

“pancreatic <conj> basal cell” is decomposed into “pancreatic vs.

basal” and “pancreatic vs. basal cell” for the following module to

select the most appropriate conjunct pair by comparing parallelism.

Parallelism coefficient calculation
Given the parallel structure of coordinated elliptical expressions,21

quantitative measurements of parallelism between candidate con-

juncts is critical for determining the most appropriate conjunct pairs

for entity decomposition and reconstruction. Correspondingly, we

propose an embedding model to calculate the parallelism coefficient

which reflects the parallelism among candidate conjuncts.
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Parallelism coefficient definition

In all 4 forms of coordination ellipses, conjuncts are formed by con-

tinuous sequences of words, and conjunct resolution always pro-

ceeds by combining antecedents and conjuncts in a forward-moving

direction. Hence, potential complemented concepts are enumerated

unidirectionally, evaluating continuous blocks of words for each

candidate conjunct (Figure 3). Specifically, the parallelism coeffi-

cient of a candidate conjunct pair is defined in equation 1.

P i; jð Þ ¼ calParal C i; z� 1ð Þ;C zþ 1; jð Þð Þ Eq. 1

Here, z is the index for <conj> in the chunk; C i; z� 1ð Þ is the

candidate conjunct starting from index i to z� 1; and C zþ 1; jð Þ is

the conjunct candidate starting from index zþ 1 to j. The range of i

is from 0 to z� 1 and the range of j is from zþ 1 to the last index of

the conjunct chunk. The complexity of generating all possible candi-

date conjunct pairs is C(n*m), where n is the number of tokens

ahead of the conjunction and m is the number of tokens after the

conjunction. The parallelism is measured by the absolute value of

the cosine distance between the vectors of the 2 conjuncts generated

from our embedding model, described below.

Figure 1. RECEEM (reconstruct concepts from coordinated elliptical expressions in medical text) pipeline for reconstructing concepts from coordinated elliptical

expressions.

Figure 2. A unified representation model for coordination resolution. Each distinct color identifies a resolved conjunct.
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Embedding model for measuring parallelism coefficient

To measure the parallelism between candidate conjuncts in each

candidate conjunct pair, a concept embedding model was trained

with all PubMed abstracts published before November 2017. To in-

clude a large phrase vocabulary, we employed an open set of coher-

ent medical phrases—PubMed Phrase,9 including all phrase types

(eg, adjective, prepositional, or noun phrases). PubMed Phrase con-

tains 705 915 phrases and was collected by the hypergeometric test

and filtered by the BM25 ranking function. The efficient Aho–Cora-

sick string-searching algorithm22 was used as a fast pattern-

matching method to find instances of these biomedical phrases in

the abstracts. Multiword expressions were formatted as hyphen-

connected words (eg, word1-word2-. . .-wordi) in the embedding

model’s training corpus. With hyphenation, the training model

treats a multiword concept like a single word concept, allowing

comparison of single and multiword concepts in parallelism coeffi-

cient measurement. Additionally, the hyphenation expands the effec-

tive vocabulary from 1 828 643 to 2 489 984 terms. We utilized the

word2vec algorithm to prepare the PubMed phrase2vec model. A

Skip-Gram model with 5-length window size was configured for the

PubMed phrase2vec training. The PubMed phrase2vec model was

used as a dictionary to support phrase vector lookup in calculating

parallelism coefficients. If some candidate conjunct is not in the ex-

panded vocabularies, the coefficient for the relevant phrase will be

zero. For example, “II diabetes” from “Type I or II diabetes

mellitus,” is not in the vocabularies, so the parallelism coefficient

between “I” and “II diabetes” is zero.

Decomposing path selection
When elliptical entity expressions have a single conjunction, select-

ing the optimal candidate conjunct pair is trivial. All candidate con-

junct pairs are enumerated along with their parallelism coefficients,

and the pair with the greatest parallelism is selected to expand with

the antecedent. For example, in “breast and squamous cell neo-

plasms, the parallelism coefficient between “breast” and “squamous

cell” is greater than that between “breast” and “squamous” or

“breast” and “squamous cell neoplasms,” thus “breast” and

“squamous cell” are selected.

However, when multiple conjunctions are present, multiple

paths through the graph model exist (Figure 4), and more than 1

decomposed result should be included during resolution of the entire

coordinated elliptical expression. We reuse the parallelism coeffi-

cient calculated for each local candidate conjunct pair for global op-

timization of the decomposition. We defined an overall

decomposing probability (P) to evaluate overall decomposing per-

formance according to the parallelism principle (equation 2). The

path with the maximum overall decomposition probability is chosen

to optimize overall performance and balance the loss and gain in

each subdecomposition.

P ¼
Yn

i; j¼1

Pij Eq. 2

Phrase reconstruction
After identifying the globally optimal decomposed path, we reas-

semble the words to resolve the conjuncts in accordance with the

graph-based model. The phrase reconstruction module comprises 3

steps: graph initialization, edge update, and path finding (Figure 5

and Supplementary Appendix 1.1). The graph is initialized as previ-

ously described (see Task Statement). The following edge update

procedures are executed in every conjunct chunk in sequence.

Within each conjunct chunk, the original incoming and outgoing

edge to and from <conj> will be updated as the selected candidate

conjunct pair. The edges with the source vertex of <conj> will be

updated to start from the same source vertex in the first word of the

first conjunct. The edges with the target vertex of <conj> will be

redirected to the same target vertex in the second word of the second

conjunct. In the path finding step, all paths from “<Start>” to

“<End>” are followed to generate the resolved conjuncts.

Figure 3. An example of candidate conjunct pair generation.
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Evaluation methods
Evaluation data and metrics

Our evaluation experiments were performed on 3 types of medical

corpora: biomedical literature, eligibility criteria from Clinical-

Trials.gov, and clinical narratives. Specifically, the biomedical liter-

ature data were from the NCBI Disease corpus23 and GENIA

dataset.24 The gold standard reconstructed concepts for these proj-

ects were already well annotated. Eligibility criteria data were from

the CHIA dataset’s8 gold standards and from NER results from

1000 additional trials using an NER model trained with CHIA

data. Clinical narratives data were collected from the 2010 i2b2

Challenge.25 Two annotators with clinical backgrounds provided

gold standard reconstructed results for clinical narratives and eligi-

bility criteria data above their original annotated NER data. The

annotators first made independent annotations, then met and dis-

cussed discrepancies, revised the annotation guideline as needed,

and iterated these processes until full consensus was reached. After

removing duplicate entities, there were 2658 coordinated elliptical

expressions in total, with 1553, 126, and 979 coordinated elliptical

expressions coming from biomedical literature, clinical narratives,

and eligibility criteria, respectively. RECEEM was evaluated based

on the number of true positives, false negatives, and false positives

in the reconstructed results. Exact matches between reconstructed

entities generated by RECEEM and the gold standards were

counted as true positives. False negatives represented reconstructed

entities provided by the gold standard but not predicted by

RECEEM. False positives represented reconstructed entities pre-

dicted by RECEEM but not provided by the gold standard. Preci-

sion, recall, and F1 measure were calculated for evaluating the

overall performance.

Figure 4. An example of decomposing path selection. All possible paths between the start and end vertices are evaluated. The algorithm selects the path with the

greatest overall decomposition probability (equation 2). In this example, the path including “pancreatic, “basal cell,” and “cervical” yields the greatest overall de-

composition probability.

Figure 5. Phrase reconstruction comprises 3 steps: (1) graph initialization, (2) edge update in accordance with the globally optimal decomposition, and (3) path

finding to generate all resolved conjuncts.
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Precision ¼ TP=ðTPþ FPÞ Recall ¼ TP=ðTPþ FNÞ

F1�Measure ¼ 2 � Precision � Recall=ðPrecisionþ RecallÞ

Comparison of different pretrained models and related systems

We evaluated alternative pretrained NLP models for calculating the

parallelism coefficient. We tested our pipeline integrated with other

pretrained language models—contextualized model BERT,26 Bio-

BERT,27 ClinicalBERT,28 and phrase2vec.29 We calculated the 95%

confidence intervals (CIs) for all performance metrics using the ad-

justed bootstrap percentile interval with 10 000 iterations. Statistical

significance tests were calculated from 10 000 iterations of paired

bootstrap30 on the combined dataset, sampling with replicates and

calculating P value as the percentage of iterations with positive per-

formance difference.

We also performed these evaluations using MetaMap and Sim-

Concept for comparison. We employed MetaMap version 2018v2

configured to process conjunctions. MetaMap’s conjunction proc-

essing does not attempt to identify a consistent set of reconstructed

concepts, but rather outputs a list of mapping candidates. To make

MetaMap’s results comparable with ours and reduce its false posi-

tives, we manually reviewed MetaMap’s results and removed dupli-

cated and subconcept mappings. SimConcept was run on “mentions

input” mode and was employed with its well-trained model and pre-

defined patterns.

Enhancement for current NLP tools

To evaluate the effectiveness of RECEEM on augmenting existing

medical NLP tools, we applied RECEEM in 2 widely used NLP

tools: CLAMP4 and Apache cTAKES.5 CLAMP is a toolkit for effi-

ciently building customized clinical NLP pipelines.4 cTAKES is an

NLP system for extracting information from clinical texts.5 The

DF_Dictionary_based_UMLS_encoder in CLAMP’s concept map-

ping module was employed during concept normalization. One do-

main expert manually mapped all medical free-text concepts from

the i2b2, NCBI Disease, and CHIA datasets to Unified Medical Lan-

guage System concept unique identifiers, which were used as gold

standards. After removing the duplicates and unmapped terms, there

were 1125 gold standard concepts in total.

RESULTS

Comparison of pretrained models
Table 2 shows the performance results comparing different pre-

trained models for calculating parallelism. RECEEM incorporating

the PubMed phrase2vec model earned the highest performance,

achieving an F1 score of 0.859 on all combined corpora, 0.862 for

biomedical literature, 0.721 for clinical narratives, and 0.870 for eli-

gibility criteria. The phrase2vec-based models outperformed the

BERT-based models with statistical significance. On the combined

corpora, PubMed phrase2vec and phrase2vec achieved F1 scores of

0.859 (95% CI: 0.845-0.872) and 0.850 (95% CI, 0.836-0.863), re-

spectively, whereas BioBERT, ClinicalBERT, and BERT achieved

0.752 (95% CI, 0.737-0.767), 0.751 (95% CI, 0.736-0.766), and

0.750 (95% CI, 0.735-0.766), respectively. From the paired boot-

strap test results, PubMed phrase2vec’s F1 scores were significantly

better than phrase2vec’s (P < .05), with an average improvement of

0.0092. T
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Comparison with related systems
We compared our pipeline against SimConcept3 and MetaMap.6 As

shown in Table 3, RECEEM achieved F1 measures of 0.862 (95%

CI, 0.846-0.878), 0.721 (95% CI, 0.642-0.799), 0.870 (95% CI,

0.847-0.892), and 0.859 (95% CI, 0.845-0.8729 on the biomedical

literature, clinical narrative, eligibility criteria, and combined cor-

pora, respectively. Compared with SimConcept (0.142 [95% CI,

0.127-0.157], 0.379 [95% CI, 0.313-0.447], 0.427 [95% CI, 0.396-

0.457], 0.266 [95% CI, 0.250-0.284]) and MetaMap (0.141 [95%

CI, 0.128-0.155], 0.119 [95% CI, 0.08-0.164], 0.328 [95% CI,

0.304-0.353], 0.211 [95% CI, 0.198-0.224]), RECEEM performed

significantly better on all tests.

Enhancement for current NLP tools
We compared the performance of CLAMP and cTAKES stand-alone

against their performance with RECEEM (Table 4). With the boost

from RECEEM, cTAKES and CLAMP achieved higher F1 perform-

ances of 0.460 (95% CI, 0.436-0.484) and 0.630 (95% CI, 0.605-

0.655), respectively, with a significant improvement over their

stand-alone versions (0.248 [95% CI, 0.232-0.264] and 0.287 [95%

CI, 0.269-0.305], respectively).

DISCUSSION

In this article, we presented RECEEM, a graph-based method to de-

compose coordinated elliptical expressions and construct nonellipti-

cal concepts from them. By employing word embedding models to

measure parallelism between candidate conjuncts, RECEEM per-

formed well resolving composite mentions with ellipses in medical

NLP without requiring handcrafted pattern designs or supervised

annotations. In this section, a detailed error analysis of our results is

discussed. Additionally, limitations and corresponding future

improvements are outlined.

Error analysis
The task-specific evaluations (F1¼0.859) indicate that our methods

still have room for improvement. We performed an error analysis on

all imperfect reconstructions of elliptical expressions, including par-

tially inaccurate reconstructions. There were 516 imperfect recon-

structions total. 19.2% (n ¼ 99 of 516) of errors were caused by

complex ellipses types that are out of the scope of our pipeline. For

instance, some ellipses occur within a word boundary, which

requires reconstruction on the character level, such as “hypo or

hyperglycemia” which should be normalized to “hypoglycemia”

and “hyperglycemia.” A total of 39.3% (n ¼ 203 of 516) of errors

were mainly due to poor results from the parallelism coefficient cal-

culation generated by the pretrained model. For example, in

“general and regional anesthesia, the cosine distance between the

“general” and “regional anesthesia” vectors was higher than that

between the “general” and “regional” vectors, hence an inaccurate

reconstruction was generated. A total of 27.9% (n ¼ 144 of 516) of

errors were caused by the modifiers used in candidate conjuncts,

which presents a challenge in parallelism comparison by embedding

methods because the modified forms are not captured in the embed-

ded vocabularies. For example, relevant phrases of a medical prob-

lem with body location are “left temporal lobe” and “right frontal

lobe.” The remaining 13.6% (n ¼ 70 of 516) of the errors occurred

because of the incomplete vocabulary of our pretrained model. For

example, “biliary system” was not included in the dictionary, result-

ing in a parallelism coefficient of 0 between “gastric” and “biliary T
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system.” In these cases, PubMed phrase2vec provided no advantage

for discriminating decomposing boundaries.

Limitations and future work
As an unsupervised method for decomposing and reconstructing

medical coordination ellipses, RECEEM has several limitations.

According to these limitations, we outline corresponding improve-

ments for future studies.

First, the parallelism coefficient calculation method can be im-

proved. Currently, the parallelism coefficient calculation relies

heavily on the quality of our embedding model. In our study,

PubMed phrase2vec worked well for most elliptical expressions

with clearly defined meanings. However, parallelism calculations

did not perform well for general terms such as “other” and “other

organ.” For example, in the decomposition of “cardiac, pulmonary,

hepatic, or other organ dysfunction,” the parallelism coefficients of

“hepatic vs. other” and “hepatic vs. other organ” were both low,

but “hepatic vs. other” was higher, leading to an incorrect decompo-

sition. Moreover, modifiers in conjunct candidates may cause paral-

lelism comparison to fail. For example, “susceptibility artifact in the

left temporal lobe, right frontal lobe, and the splenius of the corpus

callosum” has the modifiers, “left temporal,” “right frontal,” and

“splenius of.” More advanced methods for comparing the parallel-

ism of “left temporal lobe,” “right frontal lobe,” and “the splenius

of the corpus callosum” are required. In addition, the incomplete vo-

cabulary of the embedding model may also result in the failure of

parallelism comparison. A potential resolution is to assign more

weight in syntactic parsing results,19 enlarge the vocabulary used in

the pretrained model, and improve the representation of the embed-

ding model for adjectives.31

Second, possible gaps exist in the reconstruction process and

medical terminologies standardization. Sometimes, a reconstruction

that appears correct from a linguistic perspective can potentially

harm subsequent concept normalization or medical dictionary look-

up processes. Taking “waxing and waning sensorium” as an exam-

ple, “waxing” and “waning” with disorders are stored in biomedical

terminologies as entire concepts. In some cases, the entire elliptical

coordinated expression is a proper disease name, such as “hand,

foot and mouth disease,” and should not be decomposed into “hand

disease,” “foot disease,” and “mouth disease.” A dictionary look-up

model could be integrated with our current pipeline to check if the

original phrase exists in the target terminologies. If the entire coordi-

nated elliptical expression is an existing concept, reconstruction can

be skipped.

In addition, the decomposition method is conducted on the to-

ken level and cannot handle character-level ellipses or ellipses within

a word. In some numeric-related ellipses, a range of minimum and

maximum numbers are adapted to avoid listing all the intermediate

numbers. For example, “T1-4 breast cancer” should be recon-

structed to “T1 breast cancer,” “T2 breast cancer,” “T3 breast can-

cer” and “T4 breast cancer.” On the other hand, some long words

with the same suffix or postfix may have the ellipsis within the

word. For instance, “hypo or hyperglycemia” should be recombined

to “hypoglycemia” or “hyperglycemia.” The numeric ellipsis issue

could be potentially solved by a pattern-based recognition model

that is described in the SimConcept study.3 The character level ellip-

sis issue requires a vocabulary of common suffixes and postfixes,

which can be generated using a clustering algorithm to execute

against existing medical terminologies and vocabularies in the

future.

Finally, our pure unsupervised method still has some shortcom-

ings. No detailed patterns for coordination rules (eg, “prefix” þ “A,

B, C and D” or “A and B” þ postfix) are used in our pipeline. As we

described in the error analysis, the unsupervised method has some

disadvantages when comparing modified phrases. This project is an

early exploration of unsupervised methods for medical ellipsis re-

construction. More robust models may benefit from integrating di-

versified medical terminologies or dictionaries. A hybrid method

combining our methods and inductive patterns from Wei et al’s

work3 may perform better than our stand-alone methods, and is

worth investigating in the future.

CONCLUSION

RECEEM is an early successful attempt to adopt pure unsupervised

methods for resolving composite mentions with ellipses in medical

text and does not require predefined patterns or training data.

RECEEM can be generalized to different types of medical text and

integrated with existing NLP pipelines to benefit end-to-end infor-

mation extraction tasks.

FUNDING

This research was supported by the National Natural Science Foun-

dation of China (nos. 61170035 and 61941113) (to YW), Funda-

mental Research Fund for the Central Universities (nos.

30918015103 and 30918012204) (to YW), and Nanjing Science

Table 4. Concept normalization performance of existing NLP pipelines stand-alone and combined with RECEEM

Methods Precision Recall F1

CLAMP 0.477(597/1251) 0.205(597/2906) 0.287

0.449-0.505 0.191-0.22 0.269-0.305

CLAMPþRECEEM 0.687(1693/2465) 0.583(1693/2906) 0.630a

0.661-0.712 0.555-0.609 0.605-0.655

cTAKES 0.286(636/2226) 0.219(636/2906) 0.248

0.266-0.305 0.204-0.233 0.232-0.264

cTAKES þ RECEEM 0.469(1312/2800) 0.451(1312/2906) 0.460a

0.444-0.492 0.426-0.477 0.436-0.484

CLAMP: Clinical Language Annotation, Modeling, and Processing; cTAKES: clinical Text Analysis and Knowledge Extraction System; RECEEM: reconstruct

concepts from coordinated elliptical expressions in medical text.
a The best performing result in the respective task.

1372 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 9



and Technology Development Plan Project (no. 201805036) (to

YW).

AUTHOR CONTRIBUTIONS

CY and YW conceived the methodology design together. CY

designed and implemented the method. NS and CW helped identify

and define the problem, discussed solutions, and edited the manu-

script critically. CY, ZL, and RZ contributed to the design and eval-

uation of the system. All authors edited and approved the

manuscript.

ACKNOWLEDGMENTS

We acknowledge Xiangwei Guo from Dr. Wang’s lab for his kind

help in data cleaning and data preprocessing. We also thank Alex

Butler and Casey Ta from Dr. Weng’s lab for their help with the

name selection for our tool and for editing the manuscript.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical

research and health care: a literature review. Biomed Inform Insights

2016; 8: 1–10.

2. Meystre SM, Lovis C, Bürkle T, Tognola G, Budrionis A, Lehmann CU.

Clinical data reuse or secondary use: current status and potential future

progress. Yearb Med Inform 2017; 26 (1): 38–52.

3. Wei C, Leaman R, Lu Z. SimConcept: a hybrid approach for simplifying

composite named entities in biomedical text. IEEE J Biomed Health In-

form 2015; 19 (4): 1385–91.

4. Soysal E, Wang J, Jiang M, et al. CLAMP—a toolkit for efficiently build-

ing customized clinical natural language processing pipelines. J Am Med

Inform Assoc 2018; 25 (3): 331–6.

5. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and

Knowledge Extraction System (cTAKES): architecture, component evalu-

ation and applications. J Am Med Inform Assoc 2010; 17 (5): 507–13.

6. Aronson AR. Effective mapping of biomedical text to the UMLS Metathe-

saurus: the MetaMap program. Proc AMIA Symp 2001; 17–21.

7. MetaMap. Processing conjuncts with –conj. https://metamap.nlm.nih.

gov/Docs/FAQ/Conjunction.pdf Accessed June 13, 2019.

8. Kury FS, Fu L-H, Yuan C, Sim I, Carini S, Weng C. Hidden gaps in using

common data models to achieve interoperability between electronic phe-

notypes and clinical data. In: AMIA 2019 Annual Symposium; November

18, 2019; Washington, DC.

9. Kim S, Yeganova L, Comeau DC, Wilbur WJ, Lu Z. PubMed Phrases, an

open set of coherent phrases for searching biomedical literature. Sci Data

2018; 5: 180104.

10. Blake G, Bly RW. The Elements of Technical Writing. New York, NY:

Macmillan; 1993.

11. Nhan NT, Sager M, Lyman M, Tick LJ, Borst F, Su Y. A medical language

processor for two Indo-European languages. Proc Annu Symp Comput

Appl Med Care 1989; 554–8.

12. Okumura AMuraki K. Symmetric pattern matching analysis for English

coordinate structures. In: proceedings of the Fourth Conference on Ap-

plied Natural Language Processing; 1994: 41–6.

13. Klavans J. Jacquemin C. A natural language approach to multi-word term

conflation. In: proceedings of the DELOS conference; 1997. https://www.

ercim.eu/publication/ws-proceedings/DELOS3/Jacquemin.pdf. Accessed

April 11, 2019.

14. Goldberg M. An unsupervised model for statistically determining coordi-

nate phrase attachment. In: proceedings of the 37th Annual Meeting of

the Association for Computational Linguistics on Computational Linguis-

tics; 1999: 610–4.

15. Teranishi H, Shindo H, Matsumoto Y. Coordination boundary identifica-

tion with similarity and replaceability. In: proceedings of the Eighth Inter-

national Joint Conference on Natural Language Processing (Volume 1:

Long Papers); 2017: 264–72.

16. Buyko E, Tomanek K, Hahn U. Resolution of coordination ellipses in bio-

logical named entities using conditional random fields. In: proceedings of

the 10th Conference of the Pacific Association for Computational Linguis-

tics; 2007: 163–71.

17. Chae J, Jung Y, Lee T, et al. Identifying non-elliptical entity mentions in a

coordinated NP with ellipses. J Biomed Inform 2014; 47: 139–52.

18. Jiang M. Improving Syntactic Parsing of Clinical Text Using Domain

Knowledge [dissertation]. Houston, Texas, University of Texas Health

Science Center at Houston, School of Biomedical Informatics; 2017.

19. Blake C, Rindflesch T. Leveraging syntax to better capture the semantics

of elliptical coordinated compound noun phrases. J Biomed Inform 2017;

72: 120–31.

20. Shimbo M, Hara K. A discriminative learning model for coordinate con-

junctions. In: proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL); 2007: 610–9.

21. De Beaugrande R, Dressler WU. Introduction to Text Linguistics. Abing-

don, United Kingdom: Routledge; 1981.

22. hankcs/AhoCorasickDoubleArrayTrie: An extremely fast implementation

of Aho Corasick algorithm based on Double Array Trie. https://github.

com/hankcs/AhoCorasickDoubleArrayTrie Accessed May 4, 2019.

23. Dogan RI, Leaman R, Lu Z. NCBI disease corpus: a resource for disease

name recognition and concept normalization. J Biomed Inform 2014; 47:

1–10.

24. Kim J-D, Ohta T, Tateisi Y, Tsujii J. GENIA corpus—a semantically an-

notated corpus for bio-textmining. Bioinformatics 2003; 19 (suppl_1):

i180–2.

25. Uzuner €O, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on con-

cepts, assertions, and relations in clinical text. J Am Med Inform Assoc

2011; 18 (5): 552–6.

26. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding.

arXiv:1810.04805v2; 2018.

27. Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical language

representation model for biomedical text mining. arXiv:1901.08746v4;

2019.

28. Alsentzer E, Murphy JR, Boag W, et al. Publicly Available Clinical BERT

Embeddings. arXiv:1904.03323v3; 2019.

29. Mikolov T, Sutskever I, Chen K, Dean J. Distributed representations of

words and phrases and their compositionality. In: proceedings of Advan-

ces in Neural Information Processing Systems 26 (NIPS 2013); 2013:

3111–9.

30. Yeh A. More accurate tests for the statistical significance of result differen-

ces. In: proceedings of the 18th conference on Computational Linguistics.

2000; 2: 947–53.

31. Schwartz R, Reichart R, Rappoport A. Symmetric patterns and coordina-

tions: fast and enhanced representations of verbs and adjectives. In: pro-

ceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies; 2016: 499–505.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 9 1373

https://metamap.nlm.nih.gov/Docs/FAQ/Conjunction.pdf
https://metamap.nlm.nih.gov/Docs/FAQ/Conjunction.pdf
https://www.ercim.eu/publication/ws-proceedings/DELOS3/Jacquemin.pdf
https://www.ercim.eu/publication/ws-proceedings/DELOS3/Jacquemin.pdf
https://github.com/hankcs/AhoCorasickDoubleArrayTrie Accessed May 4
https://github.com/hankcs/AhoCorasickDoubleArrayTrie Accessed May 4

