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Abstract

About 44.4 million people have been diagnosed with dementia worldwide, and it is estimated that 

this number will be almost tripled by 2050. Predicting mild cognitive impairment (MCI), an 

intermediate state between normal cognition and dementia and an important risk factor for the 

development of dementia is crucial in aging populations. MCI is formally determined by health 

professionals through a comprehensive cognitive evaluation, together with a clinical examination, 

medical history and often the input of an informant (an individual that know the patient very well). 

However, this is not routinely performed in primary care visits, and could result in a significant 

delay in diagnosis. In this study, we used deep learning and machine learning techniques to predict 

the progression from cognitively unimpaired to MCI and also to analyze the potential for patient 

clustering using routinely-collected electronic health records (EHRs). Our analysis of EHRs 

indicates that temporal characteristics of patient data incorporated in a deep learning model 

provides increased power in predicting MCI.
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I. INTRODUCTION

Dementia is one of the most prevalent health problems in the aging population. It is 

estimated that by 2030, 75.6 million people will suffer from various types of dementia 

worldwide, and that this number will increase to 135.5 million people in 2050 [1]. Such an 

increase will place a tremendous burden on patients, their families, society, and health care 

systems. Given that people with mild cognitive impairment (MCI) are at an increased risk 

for dementia, predicting MCI risk and understanding the progression from cognitively 

unimpaired (CU) to MCI and dementia is a crucial task to help the aging population with 

their health needs.

In general, MCI is formally determined by health professionals through a comprehensive 

cognitive evaluation, together with clinical examination, medical history and often the input 

of an informant (an individual that know the patient very well) to understand changes in 

cognition and daily function. However, this is not routinely performed in many primary care 

visits which results in a delay of timely diagnosis, misses opportunities for appropriate care 

plans, and leads to adverse clinical outcomes. Electronic health records (EHRs), especially 

clinical free text, contain valuable information that is routinely recorded as part of clinical 

care. This rich information may be used to identify patterns predicting the development of 

MCI and dementia. Previous studies have shown that some signals of cognitive decline exist 

in EHRs, years before the clinician diagnoses of cognitive impairment [2, 3].

Recently, deep learning models have demonstrated their capabilities in analyzing EHR data 

[4–8]. EHR data are a growing source of information that can be harnessed to provide an 

earlier diagnosis and to identify those at greatest risk for developing MCI. However, little is 

known about systematically analyzing patient data related to MCI in routinely-collected 

EHRs and how their temporal patterns are associated with the development of MCI. 

Although predicting MCI and understanding the progression from CU to MCI utilizing 

EHRs is a challenging and largely unexplored task, we believe deep learning models can be 

used to capture temporal characteristics of patient data in EHRs to predict early stages of 

MCI. In this study, we systematically investigated the application of EHR data analysis and 

deep learning models for predicting and clustering MCI patients.

II. RELATED WORKS

Multiple studies to understand the progression from CU to MCI has been conducted. In [9], 

demographic, clinical, and neuropsychological measures implemented in Cox proportional 

hazard models were applied to predict progression from CU to MCI. The authors showed 

that MCI risk factors presented in their previous studies [10–13] can be used to predict MCI 

using multivariate models. They used the Mayo Clinic Study of Aging (MCSA) cohort [14, 

15] and developed an augmented model capable of predicting progression from CU to MCI 

with AUC of 0.70. In [16], 224 CU participant were analyzed and followed up to detect 

measures or combination of measures that can be used to predict MCI. These researchers 

analyzed various MCI risk factors from different domains including cognitive, cerebrospinal 

fluid, magnetic resonance imaging (MRI), and genetic domain. They utilized time-
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dependent receiver operating characteristic and showed the feasibility of MCI prediction 

(best AUC using all variables > 0.83).

Another line of research is the prediction of dementia and understanding progression from 

MCI to dementia. Biomarkers, genetics, brain imaging as well as demographic and various 

variables related to individual’s lifestyle have been used in the literature to predict 

progression from MCI to dementia with AUC ranging from 0.48 to 0.91 [17]. In [18], [19] 

and [20] clinical variables were analyzed using logistic regression to predict progression of 

MCI to Alzheimer’s disease (AD) dementia. Researchers also utilized primary care data to 

predict dementia [21]. In [22], they used general practice data to create risk prediction 

models for dementia with sensitivity of 0.58 and specificity of 0.98 in the year before 

diagnosis.

With the availability of public databases related to AD dementia, such as the North 

American Alzheimer’s Disease Neuroimaging Initiative (ADNI) [23] and the European’s 

AddNeuroMed Study [24], big data has been utilized in AD research the past couple of 

years. Most of this research focused on diagnosing AD dementia, identify those at greatest 

risk of MCI, and predicting progression from MCI to AD dementia. Much of this work has 

utilized the non-community-based ADNI dataset and traditional machine learning models 

including support vector machines (SVMs), logistic regression and random forest [25]. SVM 

and linear models have been used in [26] to discriminate patients with AD from MCI and 

CU patients in ADNI dataset. Moreover, SVMs have been utilized in separating patients 

with AD dementia or MCI from CU patients using MRIs [27, 28], and predicting 

progression from MCI to AD dementia using AddNeuroMed dataset [29]. MRI images from 

ADNI has also been used in [30]. These results show that convolutional neural network 

based deep learning models can detect AD progression. In [31], neuroimaging, machine 

learning and deep learning has been used to predict conversion from MCI to AD in ADNI. 

XGBoost [32] showed the best performance in predicting MCI to AD progression in [31]. A 

comprehensive review of applying big data prospective and machine learning models to 

advance AD research is provided in [25].

Multiple studies examined the progression from CU or MCI to dementia. However, only a 

few studies considered progression from CU to MCI or MCI prediction using patients EHR 

data. Often, MCI is not well recorded in EHR data because it is not a clinical diagnosis per 

se, and thus there are not enough datasets suitable to train MCI predictive models. In 

addition, discriminating CU patients from patients with MCI is a very challenging task as 

MCI is the stage between the expected cognitive decline of normal aging and the more 

serious decline of dementia [33]. In this study, we addressed the above-mentioned 

challenges and demonstrated a potential of a deep learning model, coupled with natural 

language processing, to extract MCI risk factors and signals from unstructured EHRs and to 

predict onset of MCI. In addition, we utilized machine learning and deep learning techniques 

to visualize and cluster patients using EHR data and described a mechanism for EHR-based 

clustering.
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III. MATERIALS AND METHODS

In this section, we first describe the dataset to train and test our models. Then, we describe 

the deep learning methods used in this study. This study includes two main components: 

MCI prediction and patient clustering. In MCI prediction, we used a deep learning 

technique, long short term memory (LSTM) [34] architecture described in section III.C to 

predict onset of MCI. In patient clustering, we used the denoising autoencoder described in 

section III.D to better represent the patient data. The outputs of this denoising autoencoder 

were visualized and clustered using t-Stochastic Neighbor Embedding (t-SNE) [35] and K-

means algorithms [36].

A. Data

We used data obtain from the Mayo Clinic Study on Aging (n=5,923; 1,376 MCI) [15]. The 

MCSA is a prospective population-based cohort study with comprehensive periodic 

cognitive assessment (at baseline and repeated every 15 months), initiated in 2004 to 

investigate the epidemiology of MCI and dementia. Eligible subjects from the Olmsted 

County, Minn., population, were randomly selected and evaluated comprehensively in 

person using the clinical dementia rating scale, a neurological evaluation and 

neuropsychological testing. A consensus committee used previously published criteria to 

diagnose the participants with normal cognition, MCI or dementia.

MCSA participants have follow-up visits every 15 months and have accumulated more than 

23,000 visits to date. In the current analyses, we only included MCI patients who progressed 

from CU to MCI; i.e., we excluded the patients who were diagnosed with MCI in their first 

visit to make sure we are predicting initial MCI diagnosis. The MCSA cohort mainly 

encounters Mayo Clinic, Olmsted County Medical Center, and Mayo Clinic Health System 

for the regular healthcare. This study used clinical notes to automatically extract MCI risk 

factors and signals. To simplify the study, we used patients who have any notes at Mayo 

Clinic—i.e., excluded patients who do not have any clinical notes at Mayo Clinic during 

each visit interval. This reduced the size of cohort (n=3,265; 558 MCI). The patient data 

after being diagnosed with MCI in MCSA were disregarded as we are aiming to predict 

MCI.

Different types of data were used to predict MCI: demographic information, diseases/

disorders, and neuropsychiatric symptoms, and activity of daily living (ADL). Table I 

contains a complete list of variables and their EHR sources we used to train our models.

Total 783,090 clinical notes were used to extract diseases/disorders, neuropsychiatric 

symptoms, and other types of data (Table I). To extract variables from clinical notes, we 

used the MedTaggerIE module in MedTagger [37], which is the open-source clinical natural 

language pipeline developed by Mayo Clinic for pattern-based information extraction with a 

capability of assertion detection (i.e., negated, possible, hypothetical, associated with a 

patient). We only included non-negated variables associated with patients.
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B. Patient Representation

We represented patients both in a temporal and static mode and used them to train a 

temporal model (LSTM recurrent neural network) and a static model (random forest) for 

MCI prediction. To incorporate temporality, we converted the data into a visit-time format 

X(V, T), where V is patients’ visits and T is the visit dates, each visit vi includes all variables 

for a given visit listed in Table I, and each date ti is the relevant visit date. All of the patients’ 

visits for a period of 5 years before their first diagnosis dates for MCI patients and the latest 

visit for CU patients were used. We used a 15-month sliding window for the past 5 years of 

history of visits to make the temporal pattern asynchronous. Within each window an 

element-wise operation was used to combine the visits within the window.

We also represented patients in a static mode to train the static model. Instead of sliding a 

15-month wide window, we used a 5-years window to cover the entire visit history of 

patients. As a result, the longitudinal data was converted to a matrix Y(P, L), where P is the 

complete list of patients, each pi is a vector including variables described in Table I and li is 

clinical diagnosis of MCI or CU of the patient pi.

C. Long-Short Term Memory (LSTM) Models

The LSTM model is one of the most powerful recurrent neural networks (RNNs) in 

processing longitudinal data efficiently incorporating time-varying variables. Fig. 1 shows a 

full and unrolled structure of RNN in which circles represent the network layers and the 

solid lines represent the weighted connections [34]. In a LSTM model, nodes are replaced 

with a unit called memory cell as shown in Fig. 2 [38]. A memory cell includes the input 

gate, output gate, and forget gate. The input gate decides how to update the cell state using 

the new input and the output gate determines how to filter the output. The forget gate 

decides which information the LSTM is going to forget; it considers both it and ht and then, 

utilizing a sigmoid function to generate a matrix with elements between 0 and 1. The 

previous cell state will be element-wisely multiplied by the numbers generated by the forget 

gate to determine how much information the LSTM unit wants to keep.

In this study, we utilized a dynamic LSTM to make the final predictions. We unroll the 

LSTM based on the number of time steps. The outputs of the last cell are then fed to a fully 

connected layer defined in (1).

F = softmax W ot + b (1)

Where, W is a n by m weight matrix in which n is the number of hidden neurons and m is 

the number of classes (two classes in this project), ot is the last output in the unrolled 

network, and b is a bias matrix. A threshold is used to make the final predictions based on 

the values of F. We optimized this threshold using a validation set during training.

D. Denoising Autuencoders

Denoising autoencoders [40] showed strong performance in efficiently representing 

participants data [41]. A four-layer denoising autoencoder was used in this study: an input 

layer, two hidden layers (encoder and decoder layers) and an output layer. Fig. 3 shows the 
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architecture of the network used in this study. The first hidden layer encodes the input x 

using (2) and then the decoder decodes the encoded vector using (3).

y = σ W x + b (2)

z = σ W ′y + b′ (3)

We corrupted 20 percent of the patient’s information and plugged the corrupted information 

as x in (2). The loss function is a mean squared error of the output layer and the patient’s 

information before the corruption.

Adam optimizer [42] at a learning rate of 0.01 was performed for 300 epochs to optimize the 

loss function. After training the autoencoder, all the samples were fed to the network without 

corruption and the outputs of the first hidden layer (y) were considered as a new 

representation for patient data. The new representation of data has lower dimension (we used 

60 nodes for both of the hidden layers) and is less sparse. The dimensionality of trained 

autoencoder’s hidden nodes was further reduced using tSNE for visualization and clustering 

purpose. We used K-means clustering with k=5 as a default value because there are 5 

potential clinical subtypes: 1) CU patients, 2) MCI positive- amnestic, single domain, 3) 

MCI positive- amnestic, multiple domain, 4) MCI positive- non amnestic, single domain, 5) 

MCI positive- non amnestic, multiple domain.

IV. EXPERIMENTAL RESULTS

A. Prediction of MCI

The LSTM models were built under the Tensorflow platform [43] and were trained using 

two Tesla K80 GPUs. For systematic training and testing, we used a randomized cross 

validation method to find optimal parameters. We first randomly split the data into training 

(70 percent of data), validation (10 percent) and testing sets (20 percent). We used a 

stratified approach to split the data into train, validation and test sets; the patients were split 

based on their age at the study entry to make sure that different age groups are equally 

represented across training, validation and testing datasets.

Each time we randomly selected a set of parameters in a predefined data pool; train a LSTM 

model on the training set and determine model parameters on the validation set. We repeated 

this process 100 times and selected the best parameter set on the validation set. Then, we 

used the best model (based on their performance on the validation set) to evaluate prediction 

performance on the unseen test data.

Learning rates were randomly selected from [10−6, 10−5, 10−4, 10−3, 10−2, 5−2, 8−-2, 10−1]. 

The number of hidden neurons were selected from a wide range of integers which includes 

[10, 20, 40, 60, 80, 100, 140, 180, 200, 300, 600]. The batch size was set to be 2n where n is 

an integer number in [5, 9]. The dropout probability was a random one decimal float number 

(%.1f) ranging from 0.3 to 0.7 and the number of iterations were selected from [104, 105, 

106, 2 × 106, 5 × 106, 10 × 106, 15 × 106].
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Random forests [44] serve as a baseline. Parameters of the random forests model were tuned 

using 5-fold cross validation. To search the hypothesis space, we used a random selection of 

parameters in a predefined pool of possible parameters. Number of estimators was a random 

integer number n × 100 where n is an even number in [2, 20]. We used the same unseen test 

data as used in LSTM model to evaluate the performance. It should be noted that random 

forest models are trained on the static data and LSTM models are trained on the longitudinal 

temporal data (refer to section III.B).

Performance of the LSTM and the random forest models are in Table II. All the results 

reported are on the test set. In Table II, RF and LSTM respectively indicate a random forest 

model and a LSTM model trained and tested on the original data. RF over-sampled and 

LSTM over-sampled are the same models but trained using an over-sampled training data 

and tested on the original test data; we increased the population of MCI patients using a 

sampling with replacement approach (i.e., we randomly selected MCI cases and added them 

to the training set to balance between MCI and CU cases).

In Table II, the LSTM over-sampled produced both the highest F1-Score (0.46) and ROC 

AUC (0.75). Both LSTM and LSTM over-sampled performed better than the baselines in 

terms of F1 score. Both RF models produced higher accuracy than LSTM models but their 

recall were much lower than LSTM models, showing that random forest was biased due to 

the imbalanced class distribution (i.e., higher numbers of CU than MCI). These results 

indicate that LSTM models with temporal patterns of the data might have increased 

capability in predicting MCI compared to a traditional machine learning models using the 

static data.

In this study, we excluded the patients who were determined as MCI in their first visit to the 

MCSA. When including those MCI patients at the first visit (MCI=1,075), LSTM over-

sampled produced higher performance than using the original data; i.e., precision, recall, F1-

score and AUC were 0.53, 0.73, 0.61 and 0.74, respectively. This increased performance 

might be because there are more signals of patients who already had MCI before the first 

visit and/or the more data help create the more efficient deep learning models.

We also tested the random forests to investigate important risk factors for MCI. Random 

forests have a capability to identify the important variables based on impurity using 

information gain; i.e., how much each variable contributes to decreasing the impurity [44]. 

Table III shows the top 5 variables based on their effect in decreasing impurity.

As can be seen from Table III, age is the most important feature in discriminating between 

MCI and CU patients. Age, hypertension, education, depression and anxiety have also been 

reported as important risk factors in developing MCI in other literature [21, 45–47].

B. Clustering and Visualizing MCI Patients

We utilized a denoising autoencoder (section III.D) with four layers to efficiently represent 

the patient data addressing data sparsity and high dimensionality. Reduced dimensionality 

enables the patient data to map a more meaningful space for better clustering. The outputs of 

the first hidden layer were mapped to a 2D space for visualization and clustering using tSNE 
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and K-means. Fig. 4 visualizes the patient data. CU patients are indicated by blue dots and 

MCI patients are represented by red dots.

Fig. 5 shows the distribution of MCI versus CU patients. Notably, ratio of MCI patients is 

much larger than the ratio of CU patients in cluster 2 but it is opposite in cluster 4. This may 

indicate the potential of a deep learning model for clustering distinct patient groups.

Fig. 6 (a) shows the distribution of males versus females and (b) further zoomed into males 

versus females for both CU and MCI patients. As can be seen, cluster 0 mostly includes 

males; almost 50 percent of males are clustered in this group. On the other hand, cluster 1 

mostly includes females; half of the female population is clustered within this group.

V. DISCUSSION

Despite the urgent need for early detection of MCI and dementia, there is a lack of 

automated tool available to healthcare providers using routine EHR data. Given that MCI is 

a precursor of dementia and could be a critical step in the prevention and control of AD and 

other dementias, it is crucial to find a more efficient way to determine MCI in its very early 

stages. This study addresses this issue by using routinely-collected EHR data as part of 

patient care for predicting onset of MCI.

The LSTM RNN demonstrated its potential for MCI prediction incorporating temporal 

patterns of patient data that were automatically extracted from EHRs. Although this study 

used limited set of MCI risk factors compared with the previous study that used manually 

annotated variables [9], our models still produced comparable (even slightly higher) 

performance. The LSTM RNN using longitudinal temporal data seems to be more efficient 

in predicting MCI compared to using the traditional machine learning models with static 

data. Machine learning techniques such as denoising autoencoders, K-means, and tSNE to 

visualize and cluster the patients EHR data also showed a good potential to identify certain 

patient groups. The predictive model and patient clustering could (have the potential to) 

assist in the clinic to support early identification of MCI patients as well as better 

characterization, determining more granular subgroups of MCI patients. This can enable 

tailored care plan and open up new clinical practice opportunities using routine EHR data.

The limitation of this study includes the use of only Mayo clinical notes even though 

participants enrolled in the MCSA visit other healthcare institutions, and thus the patients 

might not be ideally represented by their comprehensive longitudinal data. Use of EHR data 

from other institutions requires significant effort and this is aligned with our future work. We 

plan to use the medical record linkage system, the Rochester Epidemiology Project [48–50] 

to access other EHR data to compile comprehensive EHR data.

VI. CONCLUSION

A deep learning based model, LSTM RNN demonstrated a good potential incorporating 

temporal EHR patterns to predict the conversion from CU to MCI. When we combine this 

model with natural language processing to automatically extract MCI risk factors from EHR 
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data, it could facilitate early detection of MCI addressing a current significant delay and thus 

improve treatment plans and health outcomes for patients.

The current model relies on a relatively small set of MCI patients and limited set of 

variables. In the future, we will use extended available and/or the entirety of patient EHR 

data instead of using known risk factors. We also plan to use publicly available data such as 

ADNI [23] for transfer learning or for testing the generalizability of the trained models. In 

addition, we will investigate multiple inputs multiple outputs models to enhance a prediction 

capability of MCI and dementia where the inputs are patient EHR data at different time steps 

and the outputs are MCI or dementia prediction at each time step.
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Fig 1. 
Unrolled structure of RNNs. The circles present hidden layers, it, ot and ht are respectively 

input, output and hidden state at time step t.

Fouladvand et al. Page 12

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2020 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. 
A LSTM memory cell. Each LSTM unit includes the input gate, the output gate and the 

forget gate[39].
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Fig 3. 
Artitecture of the denoising autoencoder to represent patients using HER
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Fig 4. 
Visualization of CU patients (blue dots) and patients with MCI (red dots).
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Fig 5. 
Distribution of MCI versus CU patients within each cluster. Y-axis shows the ratio of CU or 

MCI population within the relevant cluster.
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Fig 6. 
Distribution of male and female patients within each cluster.
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TABLE I.

LIST OF VARIABLES AND THEIR SOURCES.

Variable Category Variable Source

Demographics Age, Sex, Education MCSA

Diseases / disorders Hypertension, Atrial fibrillation, Angina, Congestive heart failure, Coronary artery 
disease, Myocardial infarction, Coronary artery bypass graft, Diabetes Clinical notes

Neuropsychiatric 
symptoms

Delusion, Hallucinations, Agitation, Depression, Anxiety, Euphoria, Apathy, 
Disinhibition, Irritability/lability, Motor behavior, Appetite/eating change Clinical notes

ADL Bathing, Dressing, Feeding, Housekeeping, Responsible for own medication, 
Transportation, Toileting, Transferring, preparing food

Patient provided 
information

Others Slow gait, cognitive complaint, impaired judgment/orientation, memory concern, 
difficulty for concentrating, difficulty for finance Clinical notes
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TABLE II.

PERFORMANCE OF MCI PREDICTION

Model Accuracy Precision Recall F1 Score AUC

RF 0.82 0.44 0.13 0.21 0.73

RF Over-sampled 0.79 0.33 0.25 0.28 0.69

LSTM 0.73 0.33 0.59 0.43 0.71

LSTM Over-sampled 0.71 0.33 0.76 0.46 0.75
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TABLE III.

TOP 5 MCI RISK FACTORS DETERMINED BY RANDOM FORESTS

Risk Factor Score

Age 0.16

Hypertension 0.08

Education 0.07

Depression 0.06

Anxiety 0.05
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