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Abstract

Drug discovery faces a crisis. The industry has used up the “obvious” space in which to find novel 

drugs for biomedical applications, and productivity is declining. One strategy to combat this is 

rational approaches to expand the search space without relying on chemical intuition, to avoid 

rediscovery of similar spaces. In this work, we present proof-of-concept of an approach to 

rationally identify a “chemical vocabulary” related to a specific drug activity of interest without 

employing known rules. We focus on the pressing concern of multidrug resistance in 

Pseudomonas aeruginosa by searching for submolecules that promote compound entry into this 

bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain 

the molecular mechanism behind identified fragments promoting compound entry, and select 

candidate compounds from an external library that display good permeation ability.
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Supporting Information Available: We attach as supplementary files the training set of 595 compounds (file anc/training.xlsx), the 
topologies for the coarse-grained simulations (files in the anc/TOPOLOGIES folder), the full set of potential hits (file anc/
potential_hits.xlsx), the set of 48 fragments returned by any run of the Hunting FOX algorithm (file anc/top_fragments.xlsx). We note 
that we do not report the structures of 46/595 training compounds and 5/463 potential hit compounds due to IP concerns. In addition, 
we have attached a Supporting Information document containing a detailed description of the software employed for multinomial 
logistic regression and the theory of multinomial logistic regression, a section on the theory of parallel-tempered well-tempered 
metadynamics, and a section on future improvements to the algorithm. This document also contains Table S1 and Figure S1, which 
further illustrate the process of fragment identification, Figure S2, which shows the physicochemical properties of our different 
datasets, Figure S3, which illustrates class assignment for the MIC ratio response variables, Figure S4, which illustrates the 
metadynamics setup, Figs S5 and S6, which are ROC curves of different classifiers, and Figures S7 and S8, which are enrichment 
curves of different classifiers.
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1 Background

Gram-negative bacteria are notorious for their ability to evade antibiotic inhibition, partly 

because of the barrier presented by the highly-impermeable outer membrane (OM); that of 

the bacterium Pseudomonas aeruginosa presents one of the most impenetrable barriers1–6. 

Numerous high-throughput experimental studies have been performed to identify 

physicochemical properties of good antibiotics3,7–11, but a lack of holistic understanding of 

the microscopic mechanisms and methods for improving certain underlying aspects such as 

drug permeability, particularly in P. aeruginosa, is still stimulating development of novel 

algorithms and studies12–14. The problem of designing new drugs to permeate Gram 

negative bacteria is a microcosm of the problems faced by the drug design industry in 

general, in which dwindling of the “obvious” chemical space in which to search for new 

drugs has led to a concomitant dwindling of the drug discovery pipeline15–18. It is therefore 

important to use both well-tested and new ideas in combination; in particular, we must seek 

ways to move past chemical intuition for drug design19.

A well-established and primarily experimental technique in the field of drug discovery is 

“fragment-based drug design” (FBDD), in which libraries of small fragments are screened 

for activity against a target, followed by fragment growing, linking, or merging to optimize 

leads. FBDD demonstrates the advantage of a fragment-based approach through shrinking of 

the chemical space to be searched, as smaller fragments lead to a concomitantly lower 

number of possible atom combinations20. Much computational and experimental effort for 

FBDD has been focused on the definition of fragments for a fragment library21. Several 

software suites have been developed which seek to design a submolecular library through 

virtual fragmentation of a series of molecules22,23. Virtual similarity search of fragment 

libraries has allowed the design of GPCR ligands24. Training with fragments from large 

known fragment libraries was used to perform transfer learning with long short-term 

memory neural networks to generate new drug-like molecules25. It has been shown that 

linear models of molecular activity-a subset of quantitative structure-activity relation 

(QSAR) models-may also be predictive of the activity of submolecular fragments residing in 

those molecules26–31.
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Inspired in particular by the recent use of a “pseudolinear” approach to manually identify a 

set of 35 fragments for in silico design of heat shot protein 90 inhibitors32, we develop an 

algorithm to automatically identify a set of relevant fragments for hybrid fragment-based 

design of molecules with the ability to permeate P. aeruginosa. Instead of, as previously 

done, relying on a linear or pseudolinear molecular model to generalize to the fragments 

contained in the molecule, we directly employ a fragment-based representation to train a 

linear model and use it to identify and validate predictive fragments. In specific, we define 

and exploit a chemical vocabulary–in spirit akin to the “n-grams” employed in natural 

language processing applications33 from a set of known drugs with accompanying activity 

data. We call our algorithm “Hunting FOX” for “Hunting Fragments Of X” and focus on 

extracting fragments within compounds that can be incorporated into new hybrids to impart 

the desired experimental activity. Unlike the conventional FBDD approach, which relies on 

pre-defined fragments, this algorithm considers all possible unique fragments within a set of 

compounds, from a single bond length in radius about a central atom up to 10 bond lengths 

in radius. Although the focus of this work is computational, we note that from a medicinal 

chemistry perspective, such an approach potentially provides a pragmatic way to bring 

together diverse sub-molecular spaces in a rational ML-directed manner as building blocks34 

for novel hybrid drugs35.

In this article, we apply Hunting FOX to automatically identify a chemical vocabulary 

relevant to compound permeation into the Gram-negative bacterium P. aeruginosa without 

any a priori chemical intuition. We validate the informational content of this chemical 

vocabulary through (i) a posteriori assessment and comparison with previous studies, and (ii) 

demonstrating that models trained with the fragment-based description are both predictive 
and enriching-i.e., they are able to narrow the search space for new drugs. In addition, using 

a biased coarse-grained molecular dynamics (CGMD) procedure to study a molecule rich in 

predictive fragments, we explore the molecular mechanism of permeation and the potential 

contributions of these fragments. Finally, we experimentally validate the identified 

vocabulary through showing that models trained on the fragment-based description are 

capable of identifying good permeators from an external library.

2 Experimental Methods

The overall workflow of the Hunting FOX algorithm is shown in Fig. 1 and consists of four 

major steps: (i) defining a representation for the compounds (Sec. 2.1); (ii) performing 

experimental measurements and data cleaning on a select subset of a curated dataset (Sec. 

2.2) to set up the drug activity input to the algorithm; (iii) performing feature selection to 

identify a vocabulary of relevant submolecular fragments (Sec. 2.3); and (iv) fitting a 

predictive model based on the identified vocabulary (Sec. 2.4).

2.1 Representation of compounds

To define a representation for each compound from which we may extract a chemical 

vocabulary, we begin with the two-dimensional representation of a molecule as a set of 

atoms and bonds connecting the atoms. Using a sliding window and considering every atom 

in the molecule (see Fig. S1 for an example), we identify all fragments consisting of that 
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atom plus the atoms that lie within k bonds of it for all 1 ≤ k ≤ 10 (see Fig. 2). In total, there 

are 22,139 different fragments comprising the training set of 595 molecules. We represent 

each molecule M as a Nf = 22, 139-length vector of frequencies, 

l (M) = f x1, M , …, f xN, M , where every entry is the number of times a particular 

fragment appears (may be 0), normalized by the number of atoms in molecule M, L(M), 

such that,

f xi, M = n xi, M /L M , (1)

in which n(xi, M) represents the number of times fragment xi appears in molecule M. 

Intuitively, containing larger numbers of relevant fragments should be correlated with 

increased activity; however, we wanted a metric that was independent of molecular size, thus 

our division by L(M). Although this is a somewhat naive representation akin to one-hot 

encoding in traditional ML36, we employ it as the simplest way to test whether information 

about permeation ability is contained within the fragments, although greater sophistication 

could be achieved through the use of more complex representations37,38.

2.2 Compound activity data

The two major contributers to the impermeability of Gram-negative bacteria in general and 

P. aeruginosa in specific are the OM and the efflux pumps that actively remove molecules 

from the periplasm and cytoplasm2,40. To separate the effects of the efflux pumps from the 

effects of the OM, we have recently created different mutant strains of Gram-negative 

bacteria41. In this study, we focused on the effects of the OM alone by using two 

strategically designed mutant strains lacking the effects of efflux. In the first strain, 

compounds are impeded by the OM barrier, while in the second strain, they are not. 

Specifically, we studied mutants of the P. aeruginosa PAO1 strain. The “PΔ6” mutant is a 

variant of P. aeruginosa in which the genes encoding for the six best characterized efflux 

pumps have been deleted, which essentially removes the contribution of active efflux in 

antibacterial activities of antibiotics. It has no other effects; indeed, we have recently shown 

that there is no significant membrane disorganization introduced by deletions8,14. The 

“Pore” mutant is a variant-not studied in the work-modified to contain large (~2.4 nm in 

diameter) pores that allow nondiscriminate entry of drugs, which essentially removes the 

effects of the impermeable outer membrane with no other effects on cell physiology. The 

“PΔ6-Pore” mutant is a variant combining both previous modifications. In this study, we 

focus on the PΔ6 and PΔ6-Pore mutants, which both lack efflux pumps. For the drug 

property input to the algorithm, we experimentally measured the MICs of over 500 

compounds exhibiting antibacterial activities in at least one out of the two different mutant 

strains of P. aeruginosa PAO1 (see Sec. 2.2.1 for a complete description of the curated 

dataset). We then computed the ratio of compound MIC values in the PΔ6-Pore mutant of P. 

aeruginosa PAO1 to their MIC values in the PΔ6 mutant of P. aeruginosa PAO1 
μPΔ6 − Pore

μPΔ6
. 

When this ratio goes to one, the drug’s efficacy is the same whether or not the outer 

membrane is intact, because the main difference between the strains is whether or not the 

outer membrane has been hyperporinated. We define a drug possessing this property as 

being a “good permeator” or saying that it “permeates well.” More specifically, we define a 
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set of five compound classes based on the ratio 
μPΔ6 − Pore

μPΔ6
, where μPΔ6-Pore is the MIC of 

the compound in the PΔ6-Pore mutant and μPΔ6 is the MIC of the compound in the PΔ6 

mutant. If 
μPΔ6 − Pore

μPΔ6
< 0.2, Class

μPΔ6 − Pore
μPΔ6

= 0 (“non-permeators”); if 

0.2 ≤
μPΔ6 − Pore

μPΔ6
< 0.4, Class

μPΔ6 − Pore
μPΔ6

= 1; if 0.4 ≤
μPΔ6 − Pore

μPΔ6
< 0.6, 

Class
μPΔ6 − Pore

μPΔ6
= 2; if 0.6 ≤

μPΔ6 − Pore
μPΔ6

< 0.8, Class
μPΔ6 − Pore

μPΔ6
= 3; and if 

μPΔ6 − Pore
μPΔ6

> 0.8, Class
μPΔ6 − Pore

μPΔ6
= 4 (“good permeators”). The class breakdown is as 

follows: ≈ 48% of MIC ratios fall into class 0, 10% into class 1, 9% into class 2, 10% into 

class 4, and 22% into class 4.

P. aeruginosa cells were grown in Luria Bertani Broth (LB) (10 g tryptone, 5 g yeast extract, 

5 g NaCl per liter, pH 7.0) at 37°C with shaking. Minimum inhibitory concentration (MIC) 

determination was carried out using the 2-fold broth dilution method as described 

previously8. Two independent experiments were carried out, giving precision =/-two fold. 

The expression of the Pore was induced at OD600 ~0.3–0.4 by addition of 0.1 mM IPTG.

In practice, due to experimental limitations, the data must be cleaned. We set any ratios 

wherein the denominator was too high to measure to zero, assuming that such molecules will 

not contain substantial desirable fragments. Due to the 2-fold error in the MIC 

measurements, it was possible to compute ratios greater than one, which were set to one to 

avoid inclusion of erroneous information. Finally, certain measurements were given as 

ranges of MIC values and, in each of those cases, we chose the mean of the range.

2.2.1 Datasets—Because one of the benefits of ML algorithms such as Hunting FOX is 

their ability to narrow the search space for experiment, we initially curated a rather large 

database of 31,524 molecules of interest, which were organized with the CDD Vault from 

Collaborative Drug Discovery (Burlingame, CA. www.collaborativedrug.com)39. The bulk 

of compounds are from a commercially available library with diverse chemical structures 

(Chem-Bridge 30,000 Diversity Library) and others are known antibiotics and compound 

series generated by medicinal chemistry campaigns to optimize efflux pump inhibitors 

(EPIs)42,43. Of a representative set with known or predicted antibacterial activities, we 

selected a subset that could be reasonably screened in two strategically designed mutant 

strains of P. aeruginosa for growth inhibitory activities. From initial experimental screening, 

we further subsampled to identify 595 molecules (cf. Supplementary File anc/training.xlsx), 

for which MICs in both the PΔ6 and PΔ6-Pore mutants were measurable. In Fig. S2, we 

show several representative physicochemical characteristics (molecular weight, pKa, and 

logD), to emphasize that the chosen 595 are a reasonable microcosm of the full library in a 

broad sense. We do note that the test group is enriched with compounds that are known for 

their efflux pump inhibitory activities. Although we do not study the effects of efflux pumps, 

these EPIs display growth inhibitory activity as well even in mutants without efflux pumps. 

In addition, in order to reach the pumps they inhibit, it is necessary for EPIs, like more 

traditional antibiotics, to permeate the OM.
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We employed the 595 as training/validation molecules for the Hunting FOX algorithm. In 

specific, on each iteration of the algorithm, we split the 595 molecules into five disjoint 

random groups with the same class distribution as the overall 595, and we used each of these 

five groups as the reserved validation set for a model trained on the remaining 4/5 (5-fold 

cross validation). Additionally, we used the remaining 30,929 on which we have no data 

concerning their ability to permeate P. aeruginosa for external experimental testing to show 

that Hunting FOX is capable of narrowing the search space of a large, chemically diverse 

library and identifying good molecules for experimental testing.

2.3 Feature selection

The feature selection portion of the Hunting FOX algorithm consists of two steps: (i) 

permissive LASSO regularization to eliminate non-predictive variables and (ii) hierarchical 

cleansing to eliminate remaining redundancies. First, we split the data into five disjoint 

subsets and fit a sparse multinomial classifier with the LASSO penalty44 five times, each 

time reserving one of the five subsets for testing (5-fold cross-validation). We choose to 

employ multinomial classification due to the natural spread of the data (cf. Fig. S3), and we 

employ the LASSO penalty as a simple, well-verified way of discarding non-predictive 

features in the data. Step (i) results in five (overlapping) sets of relevant fragments with 

associated coefficients from the multinomial fit (see Sec. S1.1) for software details).

From the set of fragments that result in nonzero coefficients in the model, we retain only 

fragments that have positive coefficients for prediction of class 4 occupancy-that is, 

fragments whose existence imply a compound will have a high permeating ability-or 

negative coefficients for prediction of class 0 occupancy-that is, fragments whose existence 

will decrease the probability of being in the least-permeating class and therefore may be 

predictive of non-zero permeation. Due to class 0’s higher heterogeneity, no fragments were 

found with positive coefficients for prediction of class 0 occupancy, so we are not able to 

present a set of fragments to avoid in addition to a set of fragments to include. We do not 

retain fragments with coefficients solely pertaining to the middle three classes because the 

interpretation of such fragments is less clear. We further sparsify the retained fragments by 

finding a subset that are not hierarchically related (step ii).

Our procedure in step ii is as follows: first, consider only fragments with non-zero 

coefficients in at least one classifier. Then, find the subset ℋ  that are hierarchically related 

within all classifiers, meaning that for any given fragment xi ∈ ℋ  appearing in one 

classifier, either that same fragment or a fragment that it contains or that it is contained by 

appears in every other classifier. Next, consider fragments in order of increasing coefficient 

magnitude, where we consider the maximum coefficient magnitude of all the coefficients in 

all classifiers in which the fragment appears. Each time such a fragment is part of a 

hierarchical relationship with another fragment, remove it from consideration. Continue 

doing so until all that remains are fragments that are not hierarchically related to one 

another. This whole procedure preferentially retains fragments that are ranked as important 

to at least one classifier and also ensures that all retained fragments contain information 

present in all classifiers.
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2.4 Non-sparse regression model

Having identified a set of likely active fragments, we train a new set of non-sparse 

classifiers, using only the non-hierarchically-related subset, that may be used to identify 

molecules from an external library. We employ the same train/test split as before to avoid 

cross-contamination and fit five multinomial classifiers with a ridge penalty. We run this set 

of five classifiers on an external testing set; any molecule that is predicted to have an MIC 

ratio 
μPΔ6 − Pore

μPΔ6
> 0.8 by all five classifiers is returned as a hit by this run of the Hunting 

FOX algorithm. We employ five different classifiers to leverage the power of ensemble 

methods45.

2.5 Coarse-grained molecular dynamics

To study the possible molecular contributions of the fragments, we performed biased coarse-

grained molecular dynamics simulations employing the MARTINI force field to calculate 

the two-dimensional potentials of mean force of five molecules crossing a membrane mimic. 

The molecules we studied were amoxicillin, difloxacin, sarafloxacin, and two molecules 

from our curated database we refer to as OU-315 and OU-314 (cf. Fig. 4a–b). The 

parametrization of all molecules studied follows the general MARTINI philosophy, which 

consists of reproducing the partition coefficient between an organic solvent and water. In our 

case, the parameters of all drugs were tuned in order to match predicted octanol-water LogP 

values. (We have attached the itp files as part of the Supporting Material in the folder anc/

TOPOLOGIES). In order to retain internal dynamics at the coarse-grained (CG) level, we 

have employed atomistic generated data using the General Amber force field (GAFF) with 

charges obtained using the RESP approach46. Such simulations were later used to 

incorporate the necessary bonded terms into the CG geometry as previously performed for 

similar molecules47.

The simulated system consisted of a charge-neutralized outer membrane patch solvated with 

the polarizable water version of the MARTINI force field. We represented the OM using 

inhouse developed parameters48, based on the GROMOS 53a6 GLYC. The outer leaflet is 

composed of a homogenous mixture of pure LPS derived from the P. aeruginosa PAO1 

BandA strain, which was neutralized using CA++ cations. The inner leaflet is composed 

purely of DPPE lipids. Although it is possible in general for other lipids to be present in 

small amounts, this particular composition allows rapid equilibration and has previously 

been shown to be a good mimic of the P. aeruginosa outer membrane49. The system was 

simulated under constant ionic concentration of 150mM Na-Cl. The final membrane 

consisted of 12 LPS molecules and 36 DPPE lipids in the inner leaflet. Each compound was 

placed separately in the water-membrane interface and equilibrated at 310 K under semi-

isotropic pressure coupling using a velocity-rescaling thermostat50 and a Berendsen 

barostat51 respectively for 1 μs before production simulations.

All simulations were carried out with GROMACS 5.1.252, compiled with the PLUMED v 

2.5 software53 in order to compute the membrane translocation free energy. Simulations 

used a 25 fs time-step. Particle Mesh Ewald electrostatics were used with a Coulomb cut-off 

of 1.1 nm and dielectric constant adjusted to ϵ = 2.5 in order to maintain consistency with 
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the MARTINI polarizable water model54. A cut-off of 1.1 nm was used for calculating 

Lennard Jones interactions, and the Van der Waals potential was shifted to zero at the cut-

off. The OM leaflets were coupled to a constant thermal bath maintained at 310 K using a 

velocity-rescaling thermostat50 with a relaxation time of 1.0 ps. Compounds and solvents 

were coupled separately, due to the needs of the biasing algorithm (see below).

The free energy for membrane translocation was computed using parallel well-tempered 

metadynamics (PtWtMET)55,56 (see Sec. S3 for details), requiring a set of four coupled 

different temperatures. For each drug, four simulations running at 310, 410, 610 and 1010 K 

were necessary in order to properly converge and overcome the energetic barriers. 

Production runs were adjusted to one of the coupling temperatures using a NVT ensemble. 

In order to prevent membrane disruption at higher temperatures, the phosphates of both the 

Lipid-A region and the DPPE inner leaflet lipids were position-restrained along the δ vector 

after equilibration.

In our free energy calculations, we chose to bias two specific reaction coordinates: (i) the 

center of mass (COM) of the drug with respect to the COM of the membrane and (ii) an 

angle defining the relative orientation of the drug with respect to the membrane (see Fig. 

S4). Specifically, in the case of amoxicillin, we bias the angle formed between the carbonyl 

group, the hydroxyl group in the aromatic ring and the COM of the membrane. For both 

fluoroquinolones, we bias the angle formed between the carbonyl, the distal nitrogen in the 

piperazine group and the COM of the membrane. Lastly, for OU-315 and OU-314, we bias 

the angle formed by the nitrogen in the leucoline ring, the central nitrogen in the distal di-

amine groups and the COM of the membrane. In all cases, sigma values of 0.1 nm and 0.35 

rads were applied to the COM-COM distance and the angle respectively. We find that a bias 

factor of k = 15 kJ/mol was enough to converge the simulations. We find that a combination 

of a CG model with the PtWtMET approach allows good convergence at ranges between 

12–15 μs of MARTINI time scales.

3 Results and Discussion

In designing the Hunting FOX algorithm and the overall approach described in this article, 

our objectives were (i) to develop a vocabulary of submolecular fragments, similar to n-

grams in natural language processing33 that predict drug efficacy in permeating the outer 

membrane, and (ii) to validate our approach theoretically and experimentally. In the 

following section, we demonstrate the identification of promising submolecular fragments 

that specifically track the drug activity. We show a biochemical rationalization for why such 

fragments would be identified and then perform coarse-grained metadynamics to assess 

permeation of two compounds containing a relatively high number of important fragments. 

Finally, we theoretically and experimentally validate that classifiers trained on the relevant 

fragments possess significant predictive power and the ability to identify hits from an 

external library of drug compounds not contained in the original data set.

3.1 Hunting FOX discovers active submolecular fragments

We run the Hunting FOX algorithm twenty-eight times starting from a different random seed 

each time, which corresponds to a different disjoint split for the 5-fold testing data, and each 
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time identify a set of important molecular fragments (our “chemical vocabulary”), which we 

employ to train a second set of non-sparse classifiers. We believe this number of repetitions 

is sufficient to observe the statistics of the algorithm’s behavior. In Fig. 3, we report the 

number of fragments out of forty-eight that appear between one and twenty-eight times, 

while in Supporting File anc/top_fragments.xlsx we report all identified fragments and their 

frequency of appearance. We note a decent level of robustness in the algorithm: although no 

fragments are reported by every run, one out of forty-eight does appear in twenty-six runs, 

and twenty-nine fragments appear in more than one run. Although the lack of more 

fragments appearing repeatedly indicates some dependence on the training data, considering 

every fragment separately allows for a clear interpretation of the importance of each 

fragment individually. It might be possible to ameliorate this dependence by employing a 

representation that considers fragment similarity explicitly (cf. Sec. S4 in the Supporting 

Information); however such work is outside the scope of the current study.

There are several notable chemical features of the fragments that provide a posteriori 
empirical support for our procedure. First, twenty-six of forty-eight of all fragments and six 

of nine fragments appearing more than five times contain part of a benzene ring or one or 

more whole benzene rings. Such fragments have recently been demonstrated to improve 

permeability12, and this result also highlights that the predictive algorithm is able to 

discriminate 3-dimensional features that are not directly employed in our code. In fact, the 

presence of rigid benzene rings dramatically improves both rigidity and globularity, 

important for membrane translocation12. Second, a large number of the fragments identified 

contain primary and secondary amine groups. Such groups are expected to strongly interact 

with both the 2-Keto-3-deoxy-octonate (KDO) and lipid-A regions of the lipopolysaccharide 

(LPS), functioning as specific anchors for highly anionic membranes (e.g. bacterial OM)57. 

Indeed, there is external evidence that including such groups does improve intracellular 

accumulation12 and specificity for Gram-negative bacteria58. Third, we note the appearance 

of a trifluoromethyl fragment (Fig. 3, molecule at afreq = 9) in nine out of twenty-eight runs. 

Nowadays, fluorine containing compounds are synthesized in pharmaceutical research on a 

routine basis and about 10 percent of all marketed drugs contain a fluorine atom. The major 

rationale is that the presence of fluorine atoms in biologically active molecules can enhance 

their lipophilicity and thus their uptake and transport. In particular, the trifluoromethyl group 

(−CF3) confers increased stability and lipophilicity in addition to its high electronegativity. 

This enrichment with trifluoromethyl-containing fragments is somewhat to be expected, as 

our initial dataset contained a not-insubstantial number of compounds with this functional 

group. This provides an additional check of our algorithmic approach, and also points to a 

potential avenue for extension. It is remarkable that we were able to capture such behaviors 

without leveraging chemical expertise in the initial steps.

3.2 Molecular Dynamics simulations provide mechanistic rationale of fragment 
identification

We choose two representative molecules (OU-315, with an experimental MIC ratio of 
μPΔ6 − Pore

μPΔ6
  0.25 − 0.5, and OU-314, with an experimental MIC ratio of 

μPΔ6 − Pore
μPΔ6

  1.0) 

from the training set that summarize the different identified relevant fragments and probe 
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their mechanism of permeation in a relatively high-resolution manner to investigate possible 

molecular contributions of the fragments selected by the Hunting FOX algorithm in more 

than five iterations. In Fig. 4a–b we show the candidate molecules as well as highlighted 

fragments from the set of nine that were identified by the Hunting FOX algorithm. By using 

a coarse-grained two-dimensional metadynamics calculation in a previously-described 

membrane model59, we compute a potential of mean force (PMF) that suggests mechanistic 

details by which the fragments enhance the permeation of the selected candidate.

In addition, we choose three previously studied molecules with a range of MIC ratios for 

comparison: amoxicillin (MIC ratio 
μPΔ6 − Pore

μPΔ6
  0.015625), difloxacin, and sarafloxacin 

(MIC ratios 
μPΔ6 − Pore

μPΔ6
  0.25)14. Of these molecules, difloxacin contains a single one of the 

top nine fragments, whereas amoxicillin and sarafloxacin contain none. Amoxicillin 

exemplifies a very polar drug, while both difloxacin and sarafloxacin are fluoroquinolones 

containing aromatic rings in combination with halogen groups.

A one-dimensional projection of the permeation free energy of the studied compounds is 

provided in Fig. 4e. Comparison of OU-315 and OU-314 to the other three compounds 

illustrates two noteworthy features: i) a favorable energy basin in both the core region of the 

LPS and in the phosphate groups in the 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine 

(DPPE) lipids of the inner leaflet, and ii) the absence of an energy barrier within the 

hydrophobic region of the membrane: indeed, the PMF is approximately flat all the way 

from the outer leaflet to the inner leaflet. The first feature leads to the conclusion that the 

two compounds containing many favorable fragments are attracted by the anionic regions of 

the membrane, providing a direct advantage in terms of partitioning within the LPS leaflet. 

The second feature, the lack of a second energy well within the hydrophobic core of the 

membrane compared to the three compounds not containing many favorable fragments, 

provides a potential advantage in terms of permeation by reducing the number of barriers the 

drug must navigate. We note in addition the lack of these features in three non-permeating 

control molecules containing few or none of the chemical vocabulary.

The traced approximate lowest free energy paths (red lines) of OU-315 and OU-314 on two-

dimensional PMFs including orientation as the second variable (Fig. 4c–d), demonstrate 

weak zigzag patterns, which suggests that these compounds bypass the aliphatic region via 

an orientational rearrangement, somewhat resembling the flip-flop mechanism of lipids, and 

that this mechanism occurs, to within thermal fluctuations, at constant free energy. A 

plausible explanation for this observed property in the PMF is supported by visual 

inspection of the simulation of OU-315 (Fig. 4f), which shows water molecules forming a 

solvation shell within the proximity of the drug, which is expected to overall reduce the 

penalty of translocating charged groups across the aliphatic region.

3.3 Theoretical and experimental verification of Hunting FOX predictions

We now validate our algorithm theoretically and experimentally, through showing that it is 

capable of producing well-performing classifiers that can identify novel molecules with 

desired properties from a library of molecules with unknown properties using only its 
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identified predictive fragments. We train a set of non-sparse classifiers (cf. Sec. 2.4) over 28 

iterations of the Hunting FOX algorithm and employ them to make predictions on an 

external library.

3.3.1 Classifier performance—We assessed the performance of the non-sparse 

classifiers through the twin metrics of receiver operating characteristic (ROC) curves and 

enrichment curves on the accompanying test set. The ROC curve is an illustration of the true 

positive rate, TPR, versus the false positive rate, FPR. For a classifier whose performance is 

no better than random, the plot should lie along the line of equivalence, TPR = FPR. For a 

perfect classifier, the TPR would immediately rise to one. We define “enrichment,” ℰ, of a 

class at a level m as,

ℰ(m) ≡
1
m ∑j = 1

m yj* − 1
N ∑j = 1

N yj*
1
N ∑j = 1

N yj*
(2)

where yj* ∈ [0, 1] is the list of true occupancies for the samples in a class reordered in order 

of decreasing probability as predicted by the classifier, N is the total number of samples, and 
1
N ∑j = 1

N yj* is the total fraction of samples that belong to the class. The enrichment at a level 

m measures the difference between the percentage of hits identified by the classifier from 

the percentage of hits that would be found by random chance.

In Tables 1–2 and Figs S5 and S7, we report the average performance of five nonsparse 

classifiers per run trained in 28 iterations of Hunting FOX, where each set of five is trained 

on a different random stratified disjoint train/test split (see Secs. 2.2.1 and 2.3). We linearly 

interpolate the separate curves to assess performance at the same points and report the 

average and standard deviation of each set of 5 classifiers. To assess the predictivity of the 

best fragments, in Tables 1–2 and Figs S6 and S8, we also report the performance of 

classifiers trained on the same train/test split but employing only the top nine fragments 

identified by all 28 runs (cf. Fig. 3).

All classifiers perform well, which provides validation for our hypothesis that information is 

contained simply in the fragment composition of the molecules. Notably, employing only 

the top nine fragments results in a performance improvement in every metric other than 

enrichment of class 2, which demonstrates identical performance within error bars. Thus, we 

demonstrate that these are indeed the fragments to focus on for synthesizing new hybrids 

with greater ability to permeate P. aeruginosa.

In terms of specifics, all classifiers perform significantly better than random on all 

performance metrics, except for AUC for Class 1, which is quite poor. However, since we 

remove all fragments not pertaining directly to classes 0 and 4 during the feature selection 

step (cf. Sec. 2.3), it is encouraging that we are also able to train predictive classifiers for 

classes 2 and 3. The best performance in terms of ROCs is class 0 (non-permeating), with an 

AUC score of almost 90%, probably due to imbalance in the training data (almost 50% of 

training examples in class 0), but aside from the poor performance of class one, all AUC 

scores are at least 75% when trained on the top nine fragments and at least 73% when 
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trained on the top fragments returned by a single Hunting FOX run. The enrichment of class 

4, which is of particular interest since it corresponds to the best permeators, is on average 

nearly 150% for classifiers trained only on the top nine fragments, while the maximum 

enrichment of any single iteration is about 270%; it is nearly 110% for classifiers trained on 

the fragments returned by one run, while the maximum of any single iteration is about 

160%. In addition, the on-average monotonic decrease of the enrichment with m 
demonstrates that the probability rankings are sensible. Overall, the enrichment indicates 

that by taking the top ten percent most probable molecules as predicted by any given 

classifier, one should be able to on average find 2–2.5× as many hits as if one were to select 

compounds at random, which represents a significant shrinkage of the search space.

3.3.2 Experimental Validation—One of the potential strengths of an algorithm like 

Hunting FOX is its ability to narrow the search space for experiment by identifying and 

ranking possible compounds of interest. In order to both perform an experimental validation 

and demonstrate that this is indeed a strength of the algorithm, we employed a library of 

30,929 molecules comprising efflux substrates, efflux inhibitors, outer membrane 

permeators and non-permeators and known antibiotics that were not part of the training or 

testing set for any of the regression models and used the non-sparse regression models of 28 

repeated randomized iterations of the Hunting FOX algorithm to identify which of these 

molecules might be expected to display outer membrane permeation properties as measured 

by the MIC ratios 
μPΔ6 − Pore

μPΔ6
. In each iteration, we reported as potential “hits” those 

molecules that were predicted by all five non-sparse classifiers to have MIC ratios of 
μPΔ6 − Pore

μPΔ6
> 0.8 (class 4).

Nine compounds were identified as potential permeators by at least 50% of the repeated runs 

of the Hunting FOX algorithm (Fig. 5). (We report all 463 compounds identified by any run 

in the Supporting File anc/potential_hits.xlsx.) Among the top nine identified compounds, 

five possessed antibacterial activities and their permeation properties could be assessed by 

measuring MICs in PΔ6 and PΔ6-Pore strains. For all these compounds, the ratio of MICs 
μPΔ6 − Pore

μPΔ6
≈ 1.0, indicating that they are good permeators. Compounds OU-572 and 

OU-559 were unavailable, but belong to the same structural series as OU-457 and OU-466, 

sharing with them certain structural fragments, and are likely to have similar properties. The 

remaining compounds OU-1729 and OU-2015 are not expected to display measurable MICs 

and their permeation could not be assessed using growth inhibition assays. However, the fact 

that all the drugs that were assessable in this manner were hits demonstrates the use of the 

algorithm in narrowing experimental search space as well as more broadly providing 

experimental validation of our models and of our algorithm.

3.4 Conclusions

In this article, we provide proof of concept of the Hunting FOX algorithm, which combines 

traditional machine learning approaches with a chemical vocabulary-based molecular 

description inspired by natural language n-grams and FBDD. Despite employing no a priori 
expert input, it identifies the chemical submolecules that impart compounds with desirable 

Mansbach et al. Page 12

J Chem Inf Model. Author manuscript; available in PMC 2021 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



properties and identifies existing drugs with those properties from an external library whose 

size makes it experimentally intractable, leading to a unique avenue for rational hybrid drug 

design and drug reuse. Specifically, we have employed our algorithm to identify a set of 

fragments expected to confer on drugs the ability to permeate the OM of P. aeruginosa, as 

well as nine compounds expected to be good OM permeators, of which thus far five have 

been directly experimentally validated. We have also used biased MD simulations to 

determine the mechanism of permeation of two molecules containing many of the top 

reported fragments, thus uncovering their molecular-level importance. Hunting FOX opens 

new portions of chemical space through new combinations of fragments, and also serves as 

useful tool to generate novel low-molecular weight fragments governing specific target or 

activity in fragment-based drug discovery. As demonstrated here, this work represents an 

important step forward for rational hybrid drug design, particularly for antibiotics against 

Gram-negative bacteria. This simple chemical vocabulary-based methodology generalizes 

easily to any response variable of interest: for example, one might classify drugs based on 

their ability to inhibit the growth of cancerous cells compared to that of normal cells and 

thus identify the reusable chemical vocabulary pertaining to preferential tumor-binding in a 

rational manner. In future, we plan to employ synthetic biology techniques to design unique 

hybrid antibiotics from a medicinal chemistry perspective based on the fragments identified 

herein.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic of the basic Hunting FOX algorithm. We compute a fragment-based 

representation of drugs and use a combination of sparse regression and a hierarchical 

cleansing procedure to select a subset of relevant fragments that define a learned chemical 

vocabulary. We use these fragments to train a non-sparse regression model, from which we 

may predict drug class for novel molecules. In this study, the drug activities (blue) employed 

were MIC ratios of compounds in two different mutant strains of P. aeruginosa PAO1. The 

algorithm used these MIC ratios to classify a set of compounds based on their ability to 

permeate the outer membrane.
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Figure 2: 
Example of fragment definition by radius. The figure shows an arbitrarily chosen compound 

(OU-31237) with an arbitrarily chosen central atom in red. We show both the fragment of 

radius 1 bond about the central atom (in blue) and the fragment of radius 2 bonds about the 

central atom (in green, also includes the blue bonds and atoms). In the legend we indicate 

the SMILES string associated with each fragment. In Table S1 in the Supplemental 

Information we list all fragments of radius 1 and 2 contained in this molecule. Visualization 

of molecule chemical structure was rendered employing tools from the CDD Vault from 

Collaborative Drug Discovery (Burlingame, CA. www.collaborativedrug.com)39
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Figure 3: 
Histogram showing the number of fragments Nfrag identified by afreq/28 runs of Hunting 

FOX with randomly shuffled training/testing data. We render the 9 fragments that are 

reported by more than five runs and identify which bin they fall into. The fragments were 

rendered using Marvin 19.16.0, 2019, ChemAxon (http://www.chemaxon.com). We do not 

show hydrogen occupancy as it may change depending on how a fragment is connected to a 

molecule. Different colored dotted lines indicate fragments lying in different bins. Note that 

although we remove hierarchy in each iteration, we do not remove it between separate 

iterations, so there may be some hierarchically-related molecules in the final reported forty-

eight.
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Figure 4: 
Proposed mechanism of membrane translocation for compounds OU-315 and OU-314. a-b) 

Chemical structure of the target compounds, highlighting chemical fragments that were 

identified by more than five iterations of the Hunting FOX algorithm. Fragments with the 

same chemical identity are given the same color. c-d) 2D projection of the translocation free 

energy onto the biasing variables θ (orientation with respect to the membrane) and δ 
(perpendicular distance across the membrane) for c) OU-315 and d) OU-314. Red dashed 

lines indicate approximate path of lowest free energy. e) 1-D projection of the translocation 

onto δ potential of mean force (PMF) for Amoxicillin (black line), Difloxacin (blue line), 

Sarafloxacin (thin dark green line), OU-315 (thick magenta line), and OU-314 (thick bright 

green line). The PMF is projected based on the relative distance of the center of mass 
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(COM) of the drug with respect to the COM of the bacterial membrane. Different regions of 

the membrane are delimited by red dashed lines. f) Close-up view of the membrane 

translocation for OU-315. Note the presence of water molecules around the drug that 

enhance the permeation process. Image rendered with VMD60.
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Figure 5: 
Molecules selected as hits by at least 14/28 repeated runs of the Hunting Fox algorithm. We 

note the experimental measurements above the chemical structures of the molecules and the 

molecule name below. Visualizations of molecule chemical structure were rendered 

employing tools from the CDD Vault from Collaborative Drug Discovery (Burlingame, CA. 

www.collaborativedrug.com)39.
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Table 1:

Average area under the ROC curve for classifiers. We consider both the performance of classifiers trained on 

the fragments selected in a single run (AUCsing) and the performance of classifiers trained on the top nine 

fragments returned in at least 5 runs of the algorithm (AUCtop9). We report the average performance as the 

mean of the 28 means of the 5 classifiers along with the standard error in the mean.

Class 〈AUC〉sing 〈AUC〉top9

0 0.842 ± 0.007 0.8819 ± 0.0005

1 0.51 ± 0.1 0.600 ± 0.003

2 0.764 ± 0.005 0.797 ± 0.001

3 0.804 ± 0.005 0.847 ± 0.001

4 0.735 ± 0.006 0.768 ± 0.001
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Table 2:

Average percent enrichment at a ranking of 10% for classifiers. We consider both the performance of 

classifiers trained on the fragments selected in a single run (〈ϵ(10%)〉sing) and the performance of classifiers 

trained on the top nine fragments returned in at least 5 runs of the algorithm (〈ϵ(10%)〉top9). We report the 

average performance as the mean of the 28 means of the 5 classifiers along with the standard error in the 

mean.

Class 〈ϵ(10%)〉sing (%) 〈ϵ(10%)〉top9 (%)

0 65 ± 1 82.0 ± 0.5

1 32 ± 8 154 ± 2

2 134 ± 4 133 ± 2

3 126 ± 3 173 ± 3

4 107 ± 3 141 ± 2
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