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Abstract

Effective fusion of structural magnetic resonance imaging (sMRI) and functional magnetic 

resonance imaging (fMRI) data has the potential to boost the accuracy of infant age prediction 

thanks to the complementary information provided by different imaging modalities. However, 

functional connectivity measured by fMRI during infancy is largely immature and noisy compared 

to the morphological features from sMRI, thus making the sMRI and fMRI fusion for infant brain 

analysis extremely challenging. With the conventional multimodal fusion strategies, adding fMRI 

data for age prediction has a high risk of introducing more noises than useful features, which 

would lead to reduced accuracy than that merely using sMRI data. To address this issue, we 

develop a novel model termed as disentangled-multimodal adversarial autoencoder (DMM-AAE) 

for infant age prediction based on multimodal brain MRI. Specifically, we disentangle the latent 

variables of autoencoder into common and specific codes to represent the shared and 

complementary information among modalities, respectively. Then, cross-reconstruction 

requirement and common-specific distance ratio loss are designed as regularizations to ensure the 

effectiveness and thoroughness of the disentanglement. By arranging relatively independent 

autoencoders to separate the modalities and employing disentanglement under cross-

reconstruction requirement to integrate them, our DMM-AAE method effectively restrains the 

possible interference cross modalities, while realizing effective information fusion. Taking 

advantage of the latent variable disentanglement, a new strategy is further proposed and embedded 

into DMM-AAE to address the issue of incompleteness of the multimodal neuroimages, which can 

also be used as an independent algorithm for missing modality imputation. By taking six types of 

cortical morphometric features from sMRI and brain functional connectivity from fMRI as 

predictors, the superiority of the proposed DMM-AAE is validated on infant age (35 to 848 days 

after birth) prediction using incomplete multimodal neuroimages. The mean absolute error of the 

prediction based on DMM-AAE reaches 37.6 days, outperforming state-of-the-art methods. 

Generally, our proposed DMM-AAE can serve as a promising model for prediction with 

multimodal data.
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Index Terms—

Infant age prediction; autoencoder; multimodal machine learning; magnetic resonance imaging

I. Introduction

Neuroimaging-based age prediction is important for brain development analysis and early 

detection of neurodevelopmental disorders [1]. The discrepancy between the “chronological 

age” and the predicted “brain age” can be considered as an index of deviation from the 

normative developmental or aging trajectory. For example, the predicted age with 

neuroimaging data can be used to detect accelerated atrophy after traumatic brain injury [2] 

and accelerated brain aging due to schizophrenia [3], type-2 diabetes mellitus [4], and HIV 

disease [5]. Furthermore, prediction of brain age is also used to help discern possible 

environmental and lifestyle related influences on the human brain, e.g., younger brain age 

due to higher education, more self-reported physical activity [6], and long-term meditation 

practice [7], as well as increased brain age associated with midlife [8].

Since different modalities of neuroimages can provide complementary information to each 

other, researchers started to combine multimodal imaging to predict brain age. For example, 

to capture cognitive impairment, functional connectivity derived from rs-fMRI and cortical 

morphological features from sMRI were combined for brain age prediction [9]. In [10], T2-

weighted, T1-weighted, diffusion-weighted, and fluid-attenuate diversion recovery (FLAIR) 

scans were combined for age prediction, which highlighted the importance of using 

multimodal biomarkers to study normal aging.

Although many studies on age prediction based on unimodal or multimodal neuroimages 

have been carried out, little has been dedicated on predicting infant age due to the difficulties 

in image acquisition and processing. On the other hand, the first two years after birth witness 

the most critical and dynamic postnatal development in brain structure [11], [12] and 

function [13], which could largely shape later cognitive and behavioral development. Thus, 

understanding the underlying patterns and identification of essential biomarkers of brain 

development during the first two postnatal years are pivotal. Although some quantitative 

analyses of the development of the infant brain measures [11], [12], [14] have been 

conducted and many insightful results have been discovered, the traditional group-level 

comparisons they used are not adequate to precisely identify abnormal brain development at 

individual level [15]. Comparing to the group-level study, individualized age prediction is a 

better way to understand and model the subject-specific brain development. Although it has 

been found in older populations multimodal MRI data can boost age prediction accuracy [9], 

[10], it remains unclear whether it still holds in infants.

To the best of our knowledge, there is no study on multi-modal neuroimaging-based infant 

age prediction. To fill this critical gap and identify potential biomarkers of infant brain 

development with multiple imaging modalities, this paper focuses on age prediction for 

subjects from birth to two years of age using both sMRI and fMRI data.
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However, considering the relatively low spatial resolution and high noise level of fMRI, as 

well as the immature and dramatically changing functional connectivity derived from it, it is 

infeasible or ineffective to directly fuse fMRI and sMRI data by conventional multimodal 

fusion strategies [10][16]. These strategies may even reduce the accuracy of only using 

features derived from sMRI, which have been verified as robust biomarkers for predicting 

infant age [17].

As one of the most popular model-based methods of multimodal data fusion, autoencoder 

(AE) [18] employs latent variables to achieve information combination. However, traditional 

autoencoders always mix shared information and complementary information from different 

modalities into a single latent variable, where the information from one modality may act as 

the noise obstructing the reconstruction of the other. Thus, the main challenge for an 

effective fusion of sMRI and fMRI data is to reduce the negative impact from one modality 

to the other in the fusion process. To address this problem, we propose a disentangled 

multimodal adversarial autoencoder (DMM-AAE) model to perform multimodal latent 

variable learning and age predictor building jointly. The key idea of this model is to 

disentangle the latent variable of each modality into common and specific codes to represent 

shared and complementary information of modalities separately. To realize the 

disentanglement, it requires that the common codes obtained from different modalities 

should be as similar as possible, while the specific codes differs from each other as much as 

possible. Thus, we define cross-reconstruction requirement enforcing each modality to be 

reconstructed by its own specific code and any common code of the modalities, which 

ensures the similarity of the common codes obtained from different modalities. Furthermore, 

the ratio of the distance between common codes to the distance between specific codes is 

defined and introduced to the model as common-specific distance ratio loss, which 

reinforces the difference between specific codes and the commonalities between common 

codes. Finally, the common codes and specific codes obtained from the two modalities are 

combined to predict age, and this process is integrated with latent representation learning as 

a unified framework. Moreover, to handle the missing modalities, the common and specific 

code of the existing modality is adopted to impute the latent variable of the missing modality 

iteratively. This imputation strategy is embedded into DMM-AAE, but can also be used as 

an independent algorithm for missing modality imputation.

In summary, 1) we built a deep DMM-AAE model using a latent variable disentanglement 

strategy to not only restrains the possible interference across the modalities effectively, but 
also acquires the fused information from sMRI and fMRI data; 2) we designed a cross-

reconstruction requirement and a common-specific distance ratio as regularizations to 

guarantee the effectiveness of the disentanglement and the integrity of the combined 

information; 3) we integrated multimodal neuroimaging data fusion and age prediction into 

a unified framework to ensure learning age-related latent representation;4) we proposed an 

imputation algorithm for missing modality data by employing the shared information and 

specific information represented by the disentangled latent variable.
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II. Related Work

A. Infant age prediction

There are two studies on predicting infant age with neuroimaging data. The first study 

involved subjects from 5 to 590 days of age [19]. It relied on features obtained by difference-

of-Gaussian scale-space transformation of sMRI, which are less feasible on explaining the 

neurobiological changes of the infant brain. The other work [17] focused on subjects from 

birth to 2 years of age with sMRI. The scans in [17] were acquired at discrete time points (1, 

3, 6, 9, 12, 18, and 24 months). This specific sampling strategy may introduce distortion on 

sample distribution and lead to bias when modeling a continuous mapping from brain MRI 

features to chronological age. Comparing to [19] and [17], our work 1) predicts infant age 

with multimodal neuroimages, i.e., sMRI and fMRI; 2) uses subjects with relatively 

continuous age distribution, thus leading to a model with higher generalization ability; 3) 

provides explainable multimodal biomarkers of infant brain development; 4) designs a new 

model for multimodal fusion, which can be generalized to other studies.

B. Multimodal data fusion

Available strategies for multimodal data fusion can be summarized in two categories: model-

agnostic and model-based [20]. Model-agnostic fusion does not depend on a specific 

machine learning method and is usually classified into: early fusion and late fusion [18]. 

Early fusion is the most common approach to concatenate the features from different 

modalities as the input and followed by any regression model. Late fusion uses unimodal 

decision values and integrates them with certain fusion mechanisms, such as averaging, 

voting, or weighting [18]. Most of the multimodal neuroimaging-based age prediction 

researches employed such a model-agnostic fusion [10][16][21], which, however, cannot 

effectively exploit correlated information among multi-modalities. This issue turns us to 

model-based fusion that addresses modalities fusion through specific model construction. 

Amongst the model-based methods (e.g., multiple kernel learning, graphical model, and 

neural network [20]), autoencoder is one of the most popular multimodal data fusion 

models. It can also be categorized into early and late fusion strategies. The early fusion AE, 

as shown in Fig. 1(a), concatenates modality 1 and modality 2 to implement encoding and 

decoding, which mixes the information at the input stage. The late fusion AE is shown as 

Fig. 1(b), where each modality has its own encoder and decoder and the unimodal latent 

variables are concatenated together for reconstructing the two modalities and prediction. 

While being able to learn the complementary information, both early and late fusion AE do 

not distinguish complementary from shared information between the two modalities. If one 

modality contains heavy noise, the latent variable derived from it may obstruct accurate 

reconstruction and latent variable learning of the other modality. Different from these 

existing multimodal fusion method, Our model realizes fusion through disentangling and 

representing complementary and common information between two modalities.

C. Disentangled representation learning

Disentangled representation is a technique that encodes features into factors with separate 

meanings. The generative models for disentangled representation learning have shown great 

promise in the field of computer vision [22]. Semi-supervised disentangling approaches 
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require explicit knowledge about the underlying factors and real factor label as guidance 

[23], which have superior performance but suffer difficulties in practical implementation. 

Unsupervised disentangling approaches take variational autoencoder (VAE) framework as 

the mainstream and learn disentangled representations by using extra penalties on the 

Kullback-Leibler (KL) divergence between the variational posterior and the prior [24]. 

Although VAE-based disentangled representation learning is effective, it aims to decompose 

the features into independent factors, which does not fit our requirement for representing 

shared and complementary information among modalities. Disentangling the latent variable 

by assigning specific meanings to decomposed factors is another kind of disentangled 

representation learning. The study in [25] belongs to such type and is most relevant to our 

work, which proposed an autoencoder model to explore the shared content and unique 

content of two domains. Our DMM-AAE model differs from [25] in three aspects. 1) The 

goals and the represented information by the disentanglement are totally different. The work 

in [25] focuses on image to image translation and emphasizes on removing the specific 

content of the first domain while importing the specific content of the second domain. Thus, 

shared content and unique content described in [25] are domain-based. However, our study 

focuses on individualized multimodal fusion, the shared and complementary information we 

modeled are subject-specific. 2) The characteristics of the respectively concerned data lead 

to different architectures of the autoencoder in [25] and our study. 3) The constraints 

designed to ensure the disentanglement are totally different. Compared with Zero loss and 

adversarial loss in [25], common-specific distance ratio loss and cross-reconstruction loss 

designed in our model are subject-based and better for multimodal fusion.

III. Materials

We verified the effectiveness of our proposed DMM-AAE model on infant age prediction 

using a high-quality MRI dataset from the UNC/UMN Baby Connectome Project [26]. We 

used 178 term born subjects with 326 structural MRI scans and 171 functional MRI scans 

acquired at different ages ranging from 35 to 848 days. The demographic information of 

these scans is illustrated in Table I.

T1-weighted images were acquired with the following parameters: 208 sagittal slices, 

TR/TE = 2400/2.24 ms, acquisition matrix = 320 × 320, and resolution = 0.8 × 0.8 × 0.8 

mm3. T2-weighted images were acquired with the following parameters: 208 sagittal slices, 

TR/TE = 3200/564 ms, acquisition matrix = 320 × 320, and resolution = 0.8 × 0.8 × 0.8 

mm3. All structural images were preprocessed by a well-established infant-dedicated 

computational pipeline [27][28][29], including co-registration, intensity inhomogeneity 

correction, skull stripping, cerebellum removal, tissue segmentation, hemispheres separation, 

topological correction, and inner/middle/outer surface reconstruction. Each individual 

cortical surface was parcellated into 360 regions of interest (ROIs) [30] by aligning them 

onto the UNC 4D Infant Cortical Surface Atlas (https://www.nitrc.org/projects/

infantsurfatlas/) [31]. Four types of morphological features, i.e., local gyrification index 

(LGI), average convexity, mean curvature, and cortical thickness, were obtained by 

averaging the corresponding values of all vertices inside each ROI. Other two types of 

features, i.e., surface area and cortical volume, were obtained by summing up the 

corresponding values over all vertices inside each ROI. High-resolution resting-state fMRI 

Hu et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/infantsurfatlas/
https://www.nitrc.org/projects/infantsurfatlas/


data (rs-fMRI, temporal resolution = 0.8s, and spatial resolution = 2 mm isotropic) were 

acquired during natural sleeping. Besides the traditional processing steps in the Human 

Connectome Project pipeline, we especially used the following strategies.(1) One-time re-

sampling and denoising of functional signals were completed in the native image space. This 

approach avoids interpolation and smoothing of functional signals for multiple times, which 

typically cause ambiguities in capturing detailed functional patterns. (2)Deep learning-based 

noisy component removal for fast and robust fMRI denoising. All fMRI time series of 

vertices on the middle surface were extracted. After that, the same 360 ROIs were chosen to 

construct the functional connectivity map by calculating the Pearson’s correlation coefficient 

between time series of each pair of ROIs. Fishers r-to-z transformation was conducted to 

improve the normality of the functional connectivity.

IV. Method

A. Disentangled-Multimodal Adversarial autoencoder

The framework of DMM-AAE is depicted in Fig. 2 and detailed below.

Feature selection.—For a small dataset in practice, the dimension of 2,160 structural 

features (6 types of features on 360 ROIs) and 64,620 functional features (upper triangle 

elements of the 360×360 functional connectivity matrix) is extremely high, which is 

inefficient for training and vulnerable to overfitting. Thus, feature selection is requisite 

before the training of a neural network model. Based on their relationship with the induction 

model, feature selection methods can be distinguished into filter methods, wrapper methods, 

and embedded methods [32]. Since filter method is independent of the induction algorithm 

and generally much faster, it is chosen as our feature selection strategy. Herein, random 

forest is chosen as the feature selection method due to its superior performance on feature 

selection even for highly correlated high-dimensional data [33]. After feature selection, m1 

and m2 features of the two modalities are selected for prediction, respectively. Our data 

appear as (X1, X2, Y) = {(x11, x21, y1), …, (x1n, x2n, yn), …, (x1N, x2N, yN))}, x1n ∈ ℝm1 and 

x2n ∈ ℝm2 are the n-th feature vector of the first modality and the second modality, 

respectively; yn ∈ ℝ is the corresponding output value (in our study, age). N is the number of 

instances.

Encoding.—For each modality, we employ a multi-layer perceptron neural network as its 

respective encoder Ei. The output of the encoder is called the latent variable, denoted as zin, i 
= 1, 2, n = 1, 2, …, N. Index n will be omitted when we are referring to terms associated 

with a single data point.

Latent variable disentanglement.—Ei generates the latent vector zi conditioned on the 

input feature vector of ith modality, zi = Ei(xi). To better learn the combined information 

from the two modalities, shared and complementary information should be separated. Here, 

zi is disentangled into two parts: Com(zi) and Spec(zi). Com(zi) is the common code 

representing the shared information amongst modalities, while Spec(zi) is the specific code 

representing the complementary information that differentiates one modality from the other. 

The basic requirements of the disentanglement are:
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• The concatenation of Com(zi) and Spec(zi) equals zi;

• Com(z1) and Com(z2) should be as similar as possible;

• Spec(z1) differs from Spec(z2) as much as possible.

Cross reconstruction.—For each modality, we employ a multi-layer perceptron neural 

network as its respective decoder Gi. Conventionally, since zi = [Com(zi), Spec(zi)] is the 

latent variable for xi, a direct requirement is the reconstruction of xi from zi, which signifies 

the similarity between the original input xi and the consequent reconstruction obtained by 

Gi(Com(zi), Spec(zi)). On the other side, since Com(zi) is the shared information among 

modalities, it should also provide information to reconstruct the other modality. Thus, to 

further elevate the effectiveness of the disentanglement, we introduce a cross-modality 

reconstruction requirement: each Spec(zi) is enforced to reconstruct xi together with any of 

the Com(zj), i, j = 1, 2. That is, the similarity of xi and Gi(Com(zj), Spec(zi)) is also 

required.

Age prediction.—Since the latent variable of each modality has been disentangled into the 

common code Com(Ei(xi)) and the specific code Spec(Ei(xi)), the combined information is 

formed as M(x1, x2),

M(x1, x2) = (Common1, 2, Spec(E1(x1)), Spec(E2(x2))),

where Common1, 2 = ∑i = 1
2 ωiCom Ei xi , μi determines the ratio of the combined common 

code from the two unimodal common codes. ω1 = ω2 = 0.5 in our experiment. A multi-layer 

perceptron neural network is then designed as a regressor P to predict infant age from M(x1, 

x2).

In our method, the two modalities employ their respective Adversarial autoencoder (AAE) 

[34] to isolate any possible interference and adopt disentanglement under cross-

reconstruction requirement to realize information fusion. As an important element in AAE, a 

multi-layer perceptron neural network is taken as the shared discriminator D to impose the 

adversarial regularization on the latent vector zi, which tries to distinguish if zi follows a 

preassigned prior distribution. Ei, Gi, D, and P are all parameterized with weights and 

learned together with the following losses.

Adversarial loss.—Let p(zi) be the prior distribution imposing on the latent variable, q(zi|

xi) be the encoding distribution and p(xi|zi) be the decoding distribution. AAE is a generative 

model that learns the data distribution pd(xi) by training an autoencoder with regularized 

latent space, which requires the aggregated posterior distribution q(zi) = ∫xi q(zi|xi)pd(xi)dxi 

matching the predefined prior p(zi). This regularization on the latent space is realized by an 

adversarial procedure with the discriminator D, which leads to a minEi maxD ℒadv
i  problem, 

where

ℒadv
i = Exi pd xi log 1 − D Ei xi + Ezi p zi log D zi . (1)
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The whole adversarial loss is the sum of the individual adversarial losses from the two 

modalities,

ℒadv = ℒadv
1 + ℒadv

2 . (2)

The encoder ensures the aggregated posterior distribution fool the discriminative adversarial 

network D into thinking that the latent vector zi comes from the prior distribution of latent 

vector p(zi), while D tries to distinguish between q(zi) and p(zi). Although p(zi) could be an 

arbitrary prior, a traditional Gaussian prior distribution was imposed on the latent variable zi 

in this study, i.e., p(zi) = N (zi|μi(xi), σi(xi)). The same re-parameterization trick in [35] was 

also used for back-propagation through the encoder network. Since Gaussian prior 

distribution is chosen for the latent variable of the two different modalities, they share the 

same discriminator D.

Except AAE, VAE is also capable of imposing prior distribution on the latent variable. VAE 

uses KL divergence penalty to enforce the aggregated posterior of the latent variable to 

simulate the prior distribution, while AAE uses an adversarial discriminator to do so. 

Compare with VAE, AAE may be superior on capturing the data manifold and imposing 

complicated prior distribution without exact functional form. AAE is possibly more general 

in various application scenarios. Thus, in our work, AAE is chosen to impose a prior 

distribution on the latent variable.

Common-specific distance ratio loss.—ℒDisen is defined following the basic 

requirements of latent variable disentanglement:

ℒDisen = ℒDisen
Com /ℒDisen

Spec , (3)

ℒDisen 
Com = Ex1, x2 Com E1 x1 − Com E2 x2 2, (4)

ℒDisen 
Spec = Ex1, x2 Spec E1 x1 − Spec E2 x2 2 . (5)

Regression loss.—L2 norm is adopted as our regression loss:

ℒreg = Ex1, x2 y − P M x1, x2 2 . (6)

Reconstruction loss.—The reconstruction loss is defined based on the cross-

reconstruction requirement. Since the neuroimage data can be incomplete, the reconstruction 

loss will not be calculated from the missing data.
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ℒrecon = ∑
i = 1

2
∑
j = 1

2
Exi pd xi

xi − Gi Com Ej xj , Spec Ei xi 2 .
(7)

Full Objective.—Finally, the objective functions to optimize Ei, Gi, D, and P are written 

as:

ℒD = ℒadv, (8)

ℒEi, Gi, P = λ1ℒreg + λ2ℒdisen + ℒrecon + λ3ℒadvE (9)

where λ1, λ2, and λ3 were trade-off parameters, and 

ℒadvE = ∑i = 1
2 Exi pd xi log 1 − D Ei xi . The whole model together with the 

regularizations is named as a disentangled-multimodal adversarial autoencoder (DMM-

AAE). DMM-AAE first updates its discriminative network D to tell apart the true samples 

(generated using the prior) from the generated samples (the latent vector computed by the 

encoder Ei) with ℒD, and then updates its encoder Ei, decoder Gi, and predictor P with 

ℒE, G, P, i = 1, 2.

B. Data Imputation for Missing Modality

Our DMM-AAE is also capable of working in the missing modality scenario. When the 

multimodal data are incomplete, DMM-AAE can impute the missing modality by an 

embedded strategy described below. Supposing that modality M1 is missing for some 

instances, Comi and Speci are the common code and specific code of Mi, i = 1, 2. Com2 = 

Com(E2(x2)) can be directly used to impute Com1, because the objective of the training is to 

maximize the similarity between the common codes obtained from the two modalities. A 

time index is introduced into the imputation, which serves as the variable to adjust the 

involvement of Spec2 into the imputation of Spec1. At the early stage of training, Spec2 = 

Spec(E2(x2)) is taken as the source of subject-specific information for the missing modality 

and is used as the major source for the imputation of Spec1. As the training going on, when 

the decoder of the modality 1, G1, can generate more reliable reconstructed data, Spec2 will 

be less involved in the imputation. In the training of DMM-AAE, the time index t can be 

chosen as the training epoch index and changes along with the training epoch of DMM-

AAE, i.e., t0 = 1, and MaxIter equals to the number of training epochs of DMM-AAE. In the 

test stage, t0 is always set as a fixed value, like 100 in our experiment, and x1 in step 6 is the 

final imputed value without further iteration, i.e., MaxIter = t0. Thus, during the testing 

process, Spec2 is only kept at a small portion to preserve some subject-specific information. 

The imputation process is depicted in Fig. 3 and also detailed in Algorithm 1.

Hu et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Evaluation of Age Prediction

To evaluate the effectiveness of the proposed DMM-AAE model and analyze the relative 

importance of the features, a nested 10-fold cross validation was implemented 20 times. The 

trade-off parameters in the loss function defined in Eq. (9) were optimized from the inner 

cross validation by minimizing the mean absolute error (MAE) of the prediction with the 

range of λ1 ∈ {0.04, 0.05, 0.06}, λ2 ∈ {2, 4}, and λ3 ∈ {0.02, 0.03}. The ranges were 

determined by empirical results, which can be found in the supplementary material. The 

prediction results were evaluated by the outer cross validation to remain the training stage 

blind to the testing data. During the cross validation, for the longitudinal scans from the 

same subject, we guaranteed that the scans in the training data were acquired in earlier ages 

than those in the testing data. The age prediction model was assessed by three metrics, i.e., 

MAE, mean relative absolute error (MRAE), and the correlation coefficient (r) between the 

predicted ages and the chronological ages. Of note, MRAE is the mean of the absolute error 

divided by the corresponding chronological age and expressed in terms of percentage. For r, 

the 95% confidence interval was computed by the 2.5 and 97.5 percentiles of correlation 

values obtained from a bootstrap method with 1,000 samples. The same bootstrap samples 

were adopted for the 20 times of 10-fold cross validation when computing the confidence 

interval of r, which guarantees the bootstrapping is not biased to any certain cross validation.

D. Analysis of Features Importance in Age Prediction

The most contributive features for age prediction could be regarded as the infant brain 

development biomarkers. In our proposed model, RF selects feature subsets for prediction in 

a process independent of the chosen predictor. Thus, the importance analysis of the features 
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consists of two parts: the frequency of being selected by RF and the permutation importance 

in the DMM-AAE neural network.

1) Selection frequency by RF: As the feature selection method, RF estimates the 

importance of the features by outof-bag (OOB) estimates [33]. To evaluate the importance of 

each variable, the values of each variable in the OOB samples are allowed to permute. The 

difference between the accuracies of the original and perturbed OOB samples over all trees 

in RF are averaged as importance estimation. In each fold, a RF model will be trained, and 

the importance of each feature will be estimated on the training set. Then, the feature with 

an estimated importance higher than the threshold (setting as 10−6 in our experiment after 

some empirical tests) is selected to train the DMM-AAE model, which will be used for age 

prediction in the testing data of this fold. The frequency of each feature being selected in the 

20 times 10-fold cross validation iterations represents the relative importance of the features. 

A morphological feature and a functional connectivity feature are regarded as the 

contributive features if their selection frequencies are higher than 90% and 50%, 

respectively. The different frequency thresholds set for the importance analysis of a 

morphological feature and a functional connectivity feature are based on the different 

distribution of their selection frequencies, which is shown in Fig. 7(a).

2) Permutation importance with DMM-AAE: Based on a well-trained DMM-AAE 

model, permutation importance [36] was used for measuring the contribution of each feature 

to age prediction due to its simplicity of being model agnostic. The permutation importance 

(PI) of a feature f is defined as

PI(f) = Errororig/Errorperm, (10)

where Errororig and Errorperm are the prediction errors (evaluated by MAE in our study) 

based on the original data set and the new data set with the values of feature f shuffled. 

Shuffling the feature f means randomly reorganize the order of the values of f in the data set 

with other features fixed. Since this procedure breaks the relationship between f and the age, 

the increase of the model error is indicative of the dependency of the model on the feature. 

As a result, the feature f is “important” if shuffling its values leads to PI(f) > 1.

In each fold, the permutation importance of every selected feature was measured by equation 

(10) on the testing data and repeated five times. Thus, 1000 PI values were obtained for each 

feature after 20 times of 10-fold cross validation. A one-tailed one-sample t-test was 

implemented on the 1000 PI values to determine if the mean PI value of each feature is 

significantly bigger than 1. The threshold was chosen as p < 0.05 after Bonferroni correction 

(i.e., the uncorrected p < 0.05/66780) [37].

V. Results

A. Comparison with the State-of-the-art Methods

We compared the proposed DMM-AAE model with seven model-agnostic, two model-

based, and two AAE-based multimodal regression methods: 1) random forest (RF (Early)), 

where “Early” means early fusion that concatenates sMRI and fMRI features into a vector as 

Hu et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



input; 2) Support vector regression (SVR (Early)); 3) Gaussian process regression (GPR 

(Early)); 4) Partial least squares regression (PLSR (Early)); 5) PLSR (Late 1), where “Late 

1” means that the unimodal predicted ages based on PLSR models are fused by a GPR 

model;6) PLSR (Late 2), where “Late 2” means that the unimodal predicted ages based on 

PLSR models are fused by average;7) PLSR (Hybrid), where “Hybrid” means that predicted 

ages obtained from PLSR (Early) and PLSR (Late 1) are fused with average mechanism; 8) 

multiple kernel learning (MKL) [38], where two different kernels are respectively 

implemented on sMRI features and fMRI features before an optimal combined kernel is 

learnt for regression; 9) Incomplete Multi-Source Fusion (iMSF) [39], which divides 

samples according to the availability of data sources and learns shared sets of features with 

sparse regression; 10) Adversarial autoencoder (AAE (Early)), where sMRI and fMRI 

features are concatenated as the input of the encoder and the latent variable is used for age 

prediction; 11) Adversarial autoencoder with latent variable fusion (AAE (Late)), where 

unimodal latent variables are pooled together for age prediction. To keep the comparison 

fair, we integrate the multimodal fusion and age prediction into a unified framework for the 

AAE (Early) and AAE (Late), as same as the design of DMM-AAE. The values of the 

missing modality were completed by zero-imputation.

The architecture of the DMM-AAE used in our experiments is shown in Fig. 4. DMM-AAE 

was implemented with Pytorch and optimized with Adamax by a fixed learning rate of 

0.001. The batch size was set as 150. The dimension of the latent variable was 120, while the 

dimensions of common code and specific code were set as 50 and 70, respectively. The 

dimension of the latent space, common code, and specific code were set based on some 

empirical tests. How the setting of these dimensions affects the final prediction accuracy can 

be found in the supplementary material. AAE (Early) and AAE (Late) share the same 

architecture as DMM-AAE for the fairness of the comparison.

The comparison results are summarized in Table II. Scatter plots of the predicted ages 

against the chronological ages are shown in Fig. 5 based on four representative methods: 

SVR (Early), AAE (Late), MKL, and DMM-AAE.

Model-agnostic fusion and traditional model-based fusion perform similarly on age 

prediction. The MAE obtained by the nine methods ranged from 50.9 to 78.5 days; the 

MRAE is around 19% to 34%; and the average correlation r ranged from 0.932 to 0.944. 

AAE-based methods showed improved performance, which reveals the benefit from the age-

related latent variable learning. Our model DMM-AAE outperforms all the baseline methods 

by reducing the MAE and MRAE to37.6 days and 11%, respectively, while increasing the 

midpoint of the 95% confidence interval of r to 0.964.

The performance of PLSR varies with the fusion type. There is a 24.9 days difference in 

MAE between PLSR (Early) and PLSR (Late 2). Since “Late 2” means that the unimodal 

predicted ages based on PLSR models are fused by average, it can be inferred that the worse 

performance of PLSR (Late2) compared with PLSR (Early) could come from the bad 

performance of fMRI data, due to the high noises in fMRI.
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To further show the detailed prediction performance, the evaluation based on MAE from 

DMM-AAE and all the competing methods were broken down into different age periods and 

shown in Table III. These methods perform differently at different age periods, especially in 

the age periods within the first year after birth. SVR (Early) performs consistently in all age 

periods of the first two years and turns as the best regressor at the time period of “18~24M”. 

Except “18~24M”, DMM-AAE always leads to better performance on all the age periods. In 

particular, the superiority of our proposed DMM-AAE is more obvious in the first two time 

periods: “<3M” and “3~6M”. DMM-AAE respectively reduces the MAE at “<3M” and 

“3~6M” to 19.1 and 20.9 days, while the average MAE of other methods at these two time 

points are 44.6 days and 39.3 days, respectively. It can be found that the prediction error 

obtained by DMM-AAE is getting bigger along the time, especially at the age periods after 1 

year old. This prediction error pattern is possibly due to a relatively stationary brain 

structural development [17], higher individual variability, and more vulnerable to 

environmental influences during the second year, which makes the distinguishability of the 

brain age harder.

B. Comparison between multi-modality and uni-modality

To analyze the effect of multi-modality fusion, Fig. 6 shows the performance comparison of 

different models using unimodal (i.e., sMRI or fMRI) and multimodal data (i.e., sMRI

+fMRI). For the multimodal regression methods PLSR (Early), PLSR (Late 1), PLSR (Late 

2), and PLSR (Hybrid), their corresponding unimodal regression models are the same, i.e., 

the original unimodal PLSR. The corresponding unimodal regression model for DDM-AAE 

is the classical AAE because the disentanglement strategy, cross-construction loss, and 

common-specific distance ratio loss are all disabled when there is only one modality. 

Therefore, the unimodal regression modal compared with DDM-AAE, AAE (Early), and 

AAE (Late) are the same. From Fig. 6, the MAEs of the prediction obtained from sMRI 

alone are around 42.4~70.8 days, while those obtained by fMRI data are as big as 

75.4~110.7 days. With SVR, PLSR (Early), PLSR (Late 2), AAE (Early), and AAE (Late), 

sMRI+fMRI obtain lower accuracy than sMRI. Even with RF (Early), GPR (Early), PLSR 

(Late 1), and PLSR (Hybrid), sMRI+fMRI only get a little improvement on the performance 

comparing with using sMRI data only. It shows that, in conventional multimodal fusion 

methods, fMRI data tend to introduce more noises than useful signals into the age prediction 

and lead to lower accuracy than that merely using sMRI data. With DMM-AAE, the MAE 

obtained by sMRI data is reduced from 42.4 to 37.6 days.

C. Comparison related to imputing the missing modality

Imputation is a class of procedures that aims to fill in the missing values with estimated 

ones. We verify the advantage of our proposed Algorithm 1, as an independent imputation 

method, for missing modality completion by comparison with the following state-of-the-art 

methods

1. Zero imputation. The missing values are filled with zeros. Since all the features 

are normalized as z-score (i.e., subtract the mean and divide by the standard 

deviation) before the imputation process, this method is equivalent to filling the 

missing feature values with average of the observed values.
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2. k-nearest neighbor (KNN) imputation [40]. The missing values are filled with a 

weighted mean of the k nearest-neighbor samples, where the weights are 

determined by the mean squared difference from the neighboring samples. We 

set k = 3 after several empirical tests.

3. IterativeSVD [41]. The missing values are filled with the linear combination of a 

set of mutually orthogonal expression patterns obtained by iterative low-rank 

SVD decomposition.

4. BiScaler [42]. Imputation of missing value is taken as the matrix completion 

problem and realized by cooperating nuclear-norm-regularized matrix 

approximation and maximum-margin matrix factorization. The related matrix 

factorization problem is solved by the fast alternating least squares algorithm.

Herein, KNN, IterativeSVD, and BiScaler were all implemented by Fancyimpute (https://

pypi.org/project/fancyimpute/) with default parameter values. After missing modality 

imputation, PLSR was chosen as the age prediction method because of its superior 

performance compared to other regression algorithms (as shown in Table II). With 20 times 

of 10-fold cross validation implemented on the data, the comparison results of the age 

prediction based on five types of imputation and PLSR regression are shown in Table IV. 

Our proposed imputation algorithm outperforms other baseline methods, which further 

proves the effectiveness of disentangling the latent variables.

D. Importance analysis of the features

Fig. 7(a) shows the distribution of the features’ selection frequencies. For sMRI features, the 

mean of their selection frequencies is nearly 0.6. However, the mean selection frequency of 

the functional connectivity is as low as 0.02. Since sMRI and fMRI features were selected 

independently, the low selection frequency of functional connectivity does not result from 

the interference of sMRI data but its own instability. As for the permutation importance of 

the selected features shown in Fig. 7(b), there is no significant difference between the PI 

value distributions of structural features and functional connectivity features. The means of 

the PI values of structural features and functional connectivity features are similar and 

bigger than 1.

Fig. 8 summarizes the importance of the features and the most contributing ROIs from the 

viewpoints of morphology and functional connectivity. As for the selection frequency, the 

top 3 important morphological feature types are “cortical thickness”, “cortical volume”, and 

“surface area”. The most contributing ROIs induced from structural features are bilaterally 

distributed on the brain. “Cortical thickness” of the orbitofrontal cortex and temporopolar, 

and “surface area” of the prefrontal cortex and orbitofrontal cortex are 100% selected. 

Although the average selection frequency of functional connectivity features is as low as 

0.02, two functional connections (one is between the left primary sensory cortex and the 

right inferior parietal cortex, the other is between right mid-cingulate cortex and right 

opercula) still get involved into predicting age with a high frequency of 90%. The 

importance of features is further discussed together with the permutation importance. From 

the perspective of morphology, the most contributing ROIs are those satisfying the 

requirements: 1) the selection frequency is higher than 90%; 2) the p-value of the one-tailed 
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t-test for PI > 1 is smaller than 0.05 after Bonferroni correction. As shown in Fig. 8(a), the 

most contributing ROIs are the left area trigeminal ganglion dorsal, primary visual cortex, 

second visual area, right Orbitofrontal cortex, and left prefrontal cortex. From the functional 

perspective, the most contributing ROIs and functional connectivity features are those satisfy 

the requirements: 1) the selection frequency is higher than 50%; 2) PI > 1. The p-value of 

the one-tailed t-test for PI > 1 is not taken into consideration because all of the p-values 

obtained from function connectivity are bigger than 0.05 after Bonferroni correction. As 

shown in Fig. 8(b), the right opercular, right primary sensory cortex, right primary motor 

cortex, and bilateral mid-cingulate cortex are discovered as the most important ROIs.

VI. Discussion

A. The performance of DMM-AAE on infant age prediction with incomplete multimodal 
neuroimages

1) The disentanglement of the latent variables solves the problem of 
possible noises introduced by fMRI data: As the results shown in Fig. 6, using 

multimodal data does not always guarantee to outperform their counterparts using unimodal 

data only. Inappropriate fusion could lead to even worse performance compared to the model 

only using sMRI. Our proposed DMM-AAE arranges relatively independent autoencoders to 

separate the modalities and employs disentanglement under cross-reconstruction 

requirement to integrate them. With common codes building the connection between 

modalities and specific codes differentiating them, our DMM-AAE method effectively 

combines the information and restrains the possible interference between the modalities.

2) The disentanglement of the latent variable is ensured based on the 
proposed losses: Fig. 10 shows how the losses change over iterations in the training and 

testing processes of DMM-AAE. It is shown that the common-similarity loss (the distance 

between common codes) decreases while the specific-similarity loss (the distance between 

specific codes) increases as expected, which suggests that the common codes of the two 

modalities become more similar while their specific codes increasingly differentiate each 

other over iterations. This result verifies the feasibility of common-specific ratio loss in 

administrating the disentanglement of the latent variable. The validity of the 

disentanglement is further ensured with the decreases of cross-reconstruction loss. 

Moreover, AAE (Late) is a version of DMM-AAE without both latent variable 

disentanglement and the restriction of common-specific ratio loss and cross-reconstruction 

loss. As shown in Table II, the fact that DMM-AAE outperforms the AAE (Late) 

demonstrates the superiority of the latent variable disentanglement and our new 

regularizations combined with it.

3) The incompleteness of the multi-modality neuroimages is well handled by 
the imputation strategy embedded in DMM-AAE: Since the missing modality 

imputation algorithm is embedded into DMM-AAE to handle the incomplete neuroimaging 

data, a comparison was implemented to show its effectiveness. The original dataset was 

divided into a complete part with no modality missing and an incomplete part with one 

modality missing. Then, the performances of age prediction obtained by AAE (Early), AAE 
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(Late), and DMM-AAE were broken down into the complete and incomplete parts. The 

mean, standard deviation, and median of the absolute error on the two data parts were 

recorded and averaged on the 20 times of 10-fold cross validation. The comparison results 

are shown in Table V. For AAE (Early) and AAE (Late), the MAE on the incomplete data is 

four days larger than that on the complete data. However, the performance of DMM-AAE on 

the incomplete data is as well as, sometimes even better than, that of the complete data, 

which verifies that the imputation strategy embedded in DMM-AAE well handles the 

missing modality problem.

To further analyze the imputed data based on DMM-AAE, we generated synthetic data set 

by randomly deleting 5% sMRI from the original data set. MRAE and RMSE (Root Mean 

Square Error) between the original and imputed features obtained from five times of 10-fold 

cross validation were reported in Table VI. It shows that DMM-AAE is still superior to the 

other four state-of-the-art methods on missing data imputation.

4) Age-related latent variable is learned by integrating age prediction with 
latent variable learning: As a popular unsupervised, non-linear technique used for 

visualizing high-dimensional data, t-distributed stochastic neighbor embedding (t-SNE) [43] 

intuitively shows how the data is arranged in a high-dimensional space and if it is well 

separated. In our study, since the multimodal neuroimaging data fusion and age prediction 

have been integrated into a unified framework, t-SNE was used to evaluate if the latent 

variable obtained by DMM-AAE is age-related. The original data and latent variables 

obtained by DMM-AAE or by DMM-AAE without age prediction module were visualized 

by using t-SNE (initialization = PCA, random-state = 500, perplexity = 5) and shown in Fig. 

9. DMM-AAE without age prediction module means that the predictor is excluded from the 

basic model, and thus the age regression loss is removed from the full objective of DMM-

AAE. It shows that the latent variables obtained by DMM-AAE are well arranged by age, 

while the ones obtained by DMM-AAE without embedding age prediction are scattered on 

the plot and totally age-irrelevant. Thus, DMM-AAE realizes the learning of age-related 

latent variables in the unified framework and has the potential to provide age-correlated 

brain development index.

B. Important biomarkers of early brain development

1) Cortical thickness is identified as an important biomarker for brain 
development: Cortical thickness is identified as an important biomarker for brain 

development: Six types of morphological features (LGI, average convexity, mean curvature, 

cortical thickness, surface area, and cortical volume) were included in the prediction model, 

while cortical thickness appears as the most important predictor for age prediction with the 

highest selection frequency. Because the thickness of the cerebral cortex in a given location 

likely reflect how cortical neurons are organized rather than simply indicating the density of 

gray matter tissue within a Cartesian search space, cortical thickness may offer more insights 

into how the brain structure is related to intelligence [44], normal development, aging, and 

brain disorders [45] than other measures. Our results further support the superiority of 

cortical thickness in brain development monitoring.
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2) The discovery of the important ROIs and functional connections may 
reveal the brain development pattern in the first two years after birth: In age 

prediction, the importance of early visual cortex represented by cortical thickness reveals its 

capability on distinguishing brain development status, which is consistent with the notable 

changes of the relative distribution of cortical thickness presented in the cuneus cortex 

(converting from a relatively thick region at birth to a relatively thin region at 1 year of age) 

and lingual gyrus (converting from a relatively thick region at birth to a nonsignificant 

region at 1 year of age) [46]. The most contributing morphology-related ROIs are bilaterally 

distributed on the brain, while rightward asymmetry is shown in the most contributing 

functional connectivity-related ROIs. This fact may indicate the difference lies in the 

structural and functional developmental trajectories at the early ages of the brain. 

Furthermore, the importance of the connections between the primary functional regions and 

high-order functional regions possibly specifies that the increasingly efficient connection 

between these areas may be significantly strengthened in the first two years.

C. Limitation and future work

Although AAE has been verified as an effective model for multimodal neuroimage fusion, 

some popular types of autoencoder, e.g., variational autoencoder (VAE), may be useful for 

our study. Especially the disentangled representation study of VAE [47], which tries to 

separate the latent units being sensitive to variations in different generative factors, has high 

potential to extend our current work. Furthermore, different parcellations of the brain, 

different features from sMRI (e.g., cortical myelination, T1 white/gray contrast), different 

functional features (e.g., amplitude of low frequency fluctuations, regional homogeneity), 

and more modalities (e.g., diffusion MRI) can be considered to boost the accuracy of infant 

age prediction. Moreover, the main framework of our proposed DMM-AAE focuses on the 

fusion of two modalities. Although it is not difficult to generalize the concepts of common 

code and specific code to three or more modalities, more specific designs should be done in 

our future work. Finally, the embedded feature selection method will also be studied in the 

future, because it simultaneously integrates modeling with feature selection and tends to 

have better coordination between feature selection and model induction.

VII. Conclusion

In this paper, we proposed a disentangled-multimodal adversarial autoencoder to address the 

ineffective information fusion in multimodal neuroimaging-based infant age prediction. 

Together with cross-reconstruction and common-specific ratio regulations, a latent variable 

disentanglement strategy was introduced, by which the correlation among multiple 

modalities is exploited and the possible noise from the entanglement of the modalities is 

avoided. Experimental results on infant age prediction with both sMRI and fMRI data 

validate the superiority of our model over several state-of-the-art methods. Our proposed 

DMM-AAE serves as a promising model for prediction with multimodal data and a potential 

means of studying normal and abnormal brain development.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Different types of bimodal deep autoencoder (AE) for prediction with modalities fusion. (a) 

Early fusion AE: concatenating the features of modality 1 and modality 2 as a single input 

for the encoder, and the obtained latent variable will be used for prediction. (b) Late fusion 

AE: the modalities have their individual AEs while concatenating their latent variables 

together for prediction. E, E1, and E2 are encoders. G, G1, and G2 are decoders. P is a 

predictor.
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Fig. 2. 
The framework of the proposed method: DMM-AAE.
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Fig. 3. 
The imputation process of the missing modality.
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Fig. 4. 
The architecture of the DMM-AAE used in our experiments.
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Fig. 5. 
The scatter plots of the predicted ages and chronological ages based on DMM-AAE, PLSR 

(Early), MKL, and AAE (Late).

Hu et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
The comparison between multimodal methods and unimodal methods.
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Fig. 7. 
(a) The distribution of the feature’s selection frequency and (b) The distribution of the 

permutation importance of the selected features.
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Fig. 8. 
The importance of the features. The percentage of the features in its feature type with the 

selected frequency higher than the thresholds (0.7, 0.75, 0.80, 0.85, 0.90, and 0.95) are 

shown in (a) by grouped histograms. The morphological contributing ROIs that satisfy the 

requirements, 1) selection frequency is bigger than 0.90, and 2) the p-value of the test 

“PI>1” is smaller than 0.05, are shown in (a). The most contributing functional connectivity 

and ROIs that satisfy the requirements, 1) selection frequency is bigger than 0.50, and 2) its 

permutation importance bigger than 1, are shown in (b). For simplicity, of the connectivity 

figure in sub-figure (b), 180 ROIs on each brain hemisphere were grouped to 22 sections 

based on geographic proximity and functional similarities [30], where L and R represent left 

and right hemisphere, respectively. The functional connectivity between two sections was 

measured as the maximum of the connectivity between the related ROIs.
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Fig. 9. 
The t-SNE based visualization of (a) the latent variables obtained by DMM-AAE without 

age prediction module, (b) the latent variables obtained by DMM-AAE, and (c) the original 

feature set.
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Fig. 10. 
Losses over iterations in the training and testing processes of DMM-AAE.
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TABLE I

Subject demographics (M: month; the distribution of Age is represented by Mean±Standard Deviation)

<3M 3~6M 6~9M 9~12M 12~18M 18~24M >24M

Scans (Male) 20 (11) 44 (24) 42 (17) 60 (25) 89 (44) 35 (15) 36 (22)

Age (days) 60± 9 137± 27 215± 27 314± 29 438± 50 630± 52 767± 30
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TABLE II

The comparison among DMM-AAE and some mult-modal regression methods (The performances are shown 

by Mean±Standard Deviation and the best one is in bold font)

Fusion type MAE (days) MRAE rL rR

Model-agnostic

RF (Early) 56.2±0.8 0.17±0.003 0.904±0.004 0.943±0.002

SVR (Early) 54.1±1.5 0.21±0.007 0.931±0.003 0.954±0.002

GPR (Early) 69.7±0.6 0.23±0.002 0.895±0.002 0.925±0.001

PLSR (Early) 53.6±1.4 0.20±0.007 0.932±0.003 0.954±0.002

PLSR (Late 1) 50.3±0.7 0.19±0.005 0.935±0.005 0.956±0.004

PLSR (Late 2) 78.5±0.9 0.34±0.009 0.921±0.021 0.943±0.018

PLSR (Hybrid) 50.9±0.7 0.19±0.006 0.932±0.005 0.956±0.003

Model-based

MKL 49.1±1.3 0.17±0.008 0.935±0.003 0.959±0.002

iMSF 59.6±1.2 0.21±0.007 0.916±0.003 0.943±0.002

AAE-based

AAE (Early) 43.0±1.7 0.15±0.009 0.944±0.004 0.968±0.003

AAE (Late) 43.8±1.8 0.15±0.010 0.949±0.005 0.965±0.003

DMM-AAE 37.6±1.3 0.11±0.004 0.953±0.003 0.975±0.002
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TABLE IV

The comparison among DMM-AAE based imputation and some baseline methods (The performances are 

shown by Mean±Standard Deviation and the best one is in bold font)

MAE (days) MRAE rL rR

Zero imputation 53.6±1.4 0.20±0.007 0.932±0.003 0.954±0.002

KNN 52.1±0.7 0.18±0.006 0.933±0.002 0.955±0.001

IterativeSVD 55.6±0.9 0.20±0.008 0.930±0.002 0.953±0.002

BiScaler 55.4±1.0 0.19±0.006 0.931±0.002 0.952±0.001

Proposed Algorithm 1 50.9±1.1 0.18±0.010 0.938±0.003 0.957±0.002
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TABLE V

The comparison of AAE (Early), AAE (Late), AND DMM-AAE on handling missing modality by separately 

calculating their prediction absolute error (days, Mean±Standard Deviation) on complete and incomplete parts 

of the original data

Method
Mean Standard Deviation Median

Complete Incomplete Complete Incomplete Complete Incomplete

AAE (Early) 41.1±1.1 46.2±1.7 36.5±2.7 48.2±3.6 26.7±0.7 31.3±2.3

AAE (Late) 43.9±0.9 47.9±2.1 35.6±2.3 46.4±3.1 35.6±1.5 36.7±2.9

DMM-AAE 39.2±0.5 36.3±0.7 36.3±1.8 40.3±2.8 26.8±0.3 25.3±1.9
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TABLE VI

The comparison among DMM-AAE and the baseline methods on imputing data. MRAE and RMSE (mean

±Standard Deviation) measure the distance between the original and imputed features

Zero Imputation IterativeSVD BiScaler DMM-AAE

MRAE 1.00±0.032 1.56±0.028 2.13±0.197 0.95±0.025

RMSE 0.956±0.004 0.998±0.004 1.040±0.006 0.677±0.001
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