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Abstract

Image quality control (QC) is a critical and computationally intensive component of functional 

magnetic resonance imaging (fMRI). Artifacts caused by physiologic signals or hardware 

malfunctions are usually identified and removed during data processing offline, well after 

scanning sessions are complete. A system with the computational efficiency to identify and 

remove artifacts during image acquisition would permit rapid adjustment of protocols as issues 

arise during experiments. To improve the speed and accuracy of QC and functional image 

correction, we developed Fast Anatomy-Based Image Correction (Fast ANATICOR) with newly 

implemented nuisance models and an improved pipeline. We validated its performance on a 

dataset consisting of normal scans and scans containing known hardware-driven artifacts. Fast 

ANATICOR’s increased processing speed may make real-time QC and image correction feasible 

as compared with the existing offline method.
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1. Introduction

Time is a significant experimental consideration in fMRI studies for both of image quality 

monitoring and image data processing because one scanning session can create scores of 
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discrete images at a repetition time (TR) around 2-4 s for conventional scanning protocols. 

Comprehensive image quality control (QC) measures and nuisance models encompassing 

multiple sources of artifacts are also essential to effective experiments, but it is 

computationally time consuming, and necessitating QC processing offline when acquisition 

is finished.

Multiple distinct artifacts impact the quality of echo planar imaging (EPI) time series data. 

Head motion, physiologic interference (cardiac pulse and respiration), and hardware artifacts 

[1-4] can all be sources of error [5], and can be missed without a comprehensive approach to 

their identification [3]. Denoising methods have primarily focused on head motion and 

physiological inferences [6, 7], and head motion has been the only QC measure that can be 

identified during scanning [8], leaving hardware artifacts to be identified afterwards. Not all 

hardware artifacts are apparent upon visual inspection of standard EPI time series, but a 

hardware malfunction that has corrupted a dataset may be identified in correlation maps 

during image analysis, after multiple subjects have been scanned under non-ideal conditions 

[3]. Therefore, the various applications of fMRI would be best served by a monitoring 

system capable of data quality control during scanning and subsequently permitting rapid 

adjustments of experimental protocols [5, 9-11].

Here, we introduce a new model named Fast Anatomy-Based Image Correction (Fast 

ANATICOR) that can monitor image quality and detect and remove transient local artifacts 

within relatively shorter time than the traditional full-offline methods. Improving upon the 

anatomy-based image correction (ANATICOR), Fast ANATICOR uses nuisance derived 

signals, new metrics, and a new pipeline to demonstrate remarkably enhanced processing 

efficiency as compared with traditional approaches. In this model, we use a weighted white 

matter (WM) regressor to focus on a local transient artifact as the unique signature of coil 

instability or time series defects; artifacts which may be visually undetectable in EPI data 

and difficult to detect using existing QC metrics. This improved and experimentally 

validated denoising approach permits the removal of artifacts from EPI data during image 

acquisition. Based on our investigation, we further propose a denoising method for sliding-

time-windowed (30 TRs) connectivity applications [12-14].

2. Methods

2.1. Subjects

Fifteen right-handed males (mean age 20±2.14 years) without a known history of 

neurological or psychiatric disorders participated in this study. Written, informed assent and 

consent were obtained from all participants and/or their parent/guardian. The National 

Institutes of Health Institutional Review Board approved the study.

2.2. Image acquisition

Subjects were sequentially scanned using an 8-channel head coil array equipped GE 3 Tesla 

(3T) scanner. For six of the total fifteen scans, the scanner had a hardware system 

malfunction identified to be a defect in one channel of the head coil. Subjects N01-N09 

comprised the normal data set and were scanned in the absence of the head coil defect. 
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Subjects A01-A06 comprised the abnormal data set and were scanned using the same head 

coil, while the head coil defect was present. Subject order and scan dates are shown in Table 

1. During scanning sessions, all subjects were instructed to fixate on a cross in the center of 

the screen. Resting-state (RS) fMRI time series were acquired for 490 s (140 volumes) by a 

T2*-weighted gradient echo pulse sequence with high spatial resolution (1.72×1.72×3.00 

mm3, TR=3.5 s, TE=27 ms, flip angle = 90 °). Respiration volume and heart rhythm were 

monitored with a respiration belt and pulse oximeter. Belt diameter and pulse oximeter 

readings were sampled at 50 Hz during scanning. Two high-resolution (0.94×0.94×1.20 

mm3) T1-weighted anatomical images were also acquired with an MPRAGE sequence.

The data sets from the 15 subjects were assessed by three QC tests assessing local white 

matter signal: local white matter regressor (WMeLOCAL) [3], global correlation (GCOR) 

[15], and coefficients of variance of EPI data (CVAREPI) [16] (see Table 1). The GCOR 

measure is computed as the brain-wide average correlation over all possible combinations of 

voxel timeseries. The calculation of GCOR is simplified by calculating the average dot 

product of the average unit-variance time series. The CVAR measure is computed the 

coefficient of variation of input voxels, which is the standard deviation of timeseries divided 

by the absolute value of mean timeseries.

2.3. Defining the target artifact

Unlike head motion artifacts, which can be visualized in EPI data during scanning, hardware 

artifacts may be revealed when correlation maps show marked biases that violate 

neurophysiological norms. To target a hardware artifact, one might consider a persistent or 

transient, local, abnormal correlation between brain regions. In a previous study, we found 

that the temporal signature of a local artifact could be found across the time series of 

multiple tissue voxels within a region imaged by a defective array component, not 

exclusively in deep WM regions that could have less partial volume effect with gray matter 

voxels [3]. Consequently, there should be high correlations between the time series in a 

voxel in the artifact region and in the time series in the surrounding area, assuming no 

involvement of other, stronger artifacts such as large head motion [17].

All procedures in this study used AFNI packages (http://afni.nimh.nih.gov) [18]. The high-

resolution anatomical image was aligned to the fifth EPI volume of the EPI time series [19], 

and then processed with texture-based tissue classification to get the WM masks of 

individual subjects [20]. All WM masks were then resampled to EPI resolution. To reduce 

partial volume effects across different tissue types, we eroded WM masks by one voxel 

along each of the three axes. The first 4 volumes of the RS time series were removed to 

ensure that all remaining volumes in the time series were at magnetization steady state. 

Despiking was done to suppress the spiky artifact from rapid head motion and to enhance 

the accuracy of motion correction [17]. Rigid-body registration was used to estimate subject 

movement during RS EPI scans and to correct for slice timing [9]. All MRI images 

presented in this work were spatially normalized to the N27 brain template for ease of 

interpretation by brain region [21].

To precisely identify the target artifact, we began with a basic regression model for RS 

fMRI, defined as follows:
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yi = XMObMO
i + XRIbRI

i + r1
i (1:Model BASE)

Here, yi is the EPI time series vector at voxel i. XMO is the matrix of second order Legendre 

polynomials to fit quadratic temporal trends and six regressors containing rigid-body motion 

parameter estimates (three translations and three rotations) intended to model any residual 

effects of movement after motion correction. XRI is the matrix of eight slice-wise regressors 

for retrospective image correction (RETROICOR) that models the effect of respiration and 

heart cycle [1], and a respiration volume per time (RVT) regressor that models slow blood 

oxygenation level fluctuations [2]. In Eq. (1) and subsequent equations, r1
i  is the residual 

signal referring to the RS fMRI signal with unwanted nuisance components projected out.

The model for ANATICOR is defined in Eq. (2), where XW MeLOCAL
i  is the average local 

WM signal for each voxel i:

yi = XMObMO
i + XRIbRI

i + XW MeLOCAL
i bW MeLOCAL

i + r2
i (2:Model ANATICOR)

Using the spatial pattern of correlation maps with the seed point at right middle frontal gyrus 

(RMFG) and marginal explained variance (R2) maps for the regressor XW MeLOCAL
i , the 

subjects were categorized into two groups; normal cases (N01-N09) and cases with 

hardware artifacts (A01-A06).

2.4. Outlier tests

We used QC measures in the AFNI package with three criteria: the outlier test, head motion 

estimation, and GCOR [15]. In the outlier test, at each time point of EPI data, the inter-TR 

image differences were calculated as the number of outlier time points. In each time series, 

time points that differed from the trend were deemed outliers. The threshold level for the 

outlier time point (ethr) was defined by:

etℎr = π ∕ 2 ⋅ M ⋅ D−1(0.001 ∕ N) (Eq. 3)

Where, N is the length of time series, M is the median absolute deviation of the time series, 

and D−1 is the inverse of the reversed Gaussian cumulative distribution function. For all 

subjects, the number of outlier voxels was less than 1 percent of the number of voxels in the 

brain mask, and the Euclidean L2-norms (“enorm” in the AFNI package) of head movement 

were less than 0.25 (a.u.). Therefore all subjects met a practical threshold for minimizing 

artificial signal bias by head motion [17]. Additionally, GCOR of the whole brain was 

calculated to detect a concentrated correlation pattern that might be a signature of artifactual 

time courses [15], with the temporal noise-to-signal-ratio (tNSR) of EPI time series as a 

typical QC measure.
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2.5. Artifact removal for fast denoising

For fast denoising, the nuisance model utilizing WMeLOCAL (ANATICOR) has been limited 

by calculation time. For this data set, calculating the localized WM signal (WMeLOCAL) for 

a single volume took over fifty TRs on average. To secure fast processing within 1 TR time, 

we replaced the localized regressor with isotropic Gaussian-distribution weights by distance 

from the voxel i:

yi = XMObMO
i + XRIbRI

i

+ W iXW MeLOCAL
i bW MeLOCAL

i + r3
i (Eq. 4: Model Weighted ANATICOR)

Where, Wi is a vector for the distance weight by isotropic Gaussian kernel of full-width-at-

half-maximum (FWHM) of 30 mm at each voxel i. The processing time was remarkably 

reduced in this model, in part by replacing the voxel loop in the pipeline with a weighted 

white matter regressor (wWMeLOCAL). Diagrams of the kernel weighting methods are 

presented in Fig. 1.

The local WM regressor considers the strength of covarying artifacts from each head coil 

array, which will differ by distance from the voxel i (see Figs. 1-C1 and 1-C2).

We replaced XRI (9 components) with respiration volume per time XRVT (1 component) to 

decrease processing time and to secure degrees of freedom for residual time series at the 30-

TR time window.

yi = XMObMO
i + XRV TbRV T

i

+ W iXW MeLOCAL
i bW MeLOCAL

i + r4
i (Eq. 5: Model Fast ANATICOR; FANATICOR)

The models BASE, ANATICOR, Weighted ANATICOR, and Fast ANATICOR 

(FANATICOR) contain 18, 19, 19, and 11 regressors, respectively.

2.6. Artifact indicators for image quality control

To demonstrate the transient nature of the local artifact, we used the R2 and tNSR maps of 

the wWMeLOCAL regressor to visualize the spatial distribution of the hardware artifact over 

time. For time windows of 30 TRs, we calculated the tNSR for two seed points, one in the 

LMFG and one in the artifactual region, the RMFG. To evaluate fast QC in those windows, 

we directly compared R2 maps of the nuisance regressors used in the denoising regression 

models: NULL, MO, MO+RVT, and Fast ANATICOR.

2.7. Spatial patterns of captured artifact and seed-based correlation maps within the time 
window

To visually inspect the spatiotemporal characteristics of the transient artifact for the entire 

time-windowed series (105 sets of 30 TR time windows), we obtained the R2 maps of the 

nuisance regressor used in the denoising regression models (NULL, MO, MO+RVT, and 

Fast ANATICOR) for normal and abnormal scans. To determine if each nuisance model 

could appropriately remove the targeted transient artifact over the full time series, we 
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obtained the seed-based correlation maps for the RMFG seed point within the artifactual 

region for the artifactual group. The correlation and R2 maps from the artifactual subjects 

were compared with those of the normal subjects.

2.8. Variances of sliding-time-windowed correlations

Typically, real-time fMRI applications consider regions-of-interest (ROI) instead of 

individual voxels in order to shorten computation time and improve ease of interpretation 

(see [22], 2011, for review). To determine ROIs for each subject, EPI data were first split 

into 105 sets by 30-TR time windows. The residual time series were then obtained by the 

preprocessing pipeline (see Fig. 2) with the four denoising models (NULL, MO, MO+RVT, 

and Fast ANATICOR) and averaged within 90 ROIs using the 90-fROIs atlas from Shirer 

and colleagues [23]. For each denoising model and each individual subject, 105 time-

windowed Pearson correlation matrices (90×90 matrix size) were calculated, and then 

transformed to Fisher’s z scores. To observe variance changes in time-windowed 

correlations for the different denoising models, the CVAR of time-windowed correlation 

(CVARρ) was calculated.

2.9. Non-stationarity of sliding-time-windowed correlations

We also calculated the non-stationarity of the correlation matrices along the time axis by the 

augmented Dickey-Fuller unit root test [24]. Non-stationarity varied between the different 

preprocessing methods, with Fast ANATICOR showing the most non-stationarity. For 

individual time-windowed correlation matrices from an individual subject, we obtained a 

binary matrix representing significant non-stationarity at a threshold p < 0.05 from the unit 

root test. A frequency (the number of subjects) map showing significant non-stationary 

correlations was then calculated for the 15 individual subjects with each denoising model.

3. Results

3.1. Time costs of denoising and image quality control

The total elapsed time for nuisance regression by the Fast ANATICOR model was about 3.8 

s for a single central processing unit (CPU), which is a marked improvement upon the 

previous method requiring 161.9 s per CPU on average. The calculation of the wWMeLOCAL 

regressor in the Fast ANATICOR model was about 52 times faster than the typical 

WMeLOCAL calculation in the ANATICOR model (see Table 2 for details). For QC with the 

wWMeLOCAL regressor, mapping tNSRwWMe could be accomplished at about 1 s per CPU, 

but mapping R2 took much longer, 5.8 s for a single CPU, on average (see Table 2).

3.2. Transient artifacts detected by weighted local white matter regressor

We tested the ability of nuisance models BASE, ANATICOR, Weighted ANATICOR, and of 

Fast ANATICOR to capture patterns of hardware artifacts present in our dataset. Fig. 3 

shows how these indicators analyzed data from subject N01, who had a normal scan, and 

from subjects A01 and A06 whose scans had known hardware issues. In Fig. 3-A, there is no 

visual artifact pattern in the EPI data for both normal and abnormal scans, although 

abnormal scans did show abnormal correlation patterns between RMFG and other brain 
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areas (see Fig. 3-B). Interestingly, we found that the tNSR of wWMeLOCAL and WMeLOCAL 

could detect the hardware artifact (see Fig. 3-F).

In our dataset, the ANATICOR and Fast ANATICOR models differed significantly in 

processing time. The captured artifact patterns in R2 maps and in correlation maps with a 

seed point within the artifactual area (RMFG) were highly similar in the two models (see 

Fig. 4).

The tNSR changes in wWMeLOCAL regressors (tNSRwWMe) at two seed locations within 

and outside of the coil artifact area, at the right and left middle frontal gyri (RMFG and 

LMFG), respectively, are presented in Fig. 5-A. When the transient artifact occurred in the 

RMFG, the tNSRwWMe at the RMFG increased. The tNSRwWMe at the LMFG, which was 

outside the artifactual area, did not change. During the time window when the artifact was 

absent [5, 34], the tNSRwWMe map showed no artifactual spatial patterns and the correlation 

maps for the RMFG seed calculated by the four denoising models were nearly 

indistinguishable (see Fig. 5-B) (see Fig. 5-B). Notably, during the time window [51, 80] 

when the artifact was present, the artifactual pattern was detected in the tNSRwWMe map, 

and the Fast ANATICOR model could clearly reduce its effect on the correlation map (see 

Fig. 5-C).

3.3. Explained variances of nuisance regressors

We created R2 maps with a seed point in the RMFG for the normal and artifactual scans 

across the entire time series and compared them using each of the four denoising models. 

Fig. 6 shows this comparison for subject N01, who had no coil issues during scanning. As 

expected for the normal scan, no spatially concentrated signals were captured by the 

nuisance regressors of all the denoising models and the time-windowed correlation maps 

varied along time intervals with varying degrees and ranges in each model. Subjects N02-

N09 showed similar results to N01.

For the abnormal scan of subject A01, at time intervals with high tNSRwWMe values at the 

seed location, correlation patterns from the NULL, MO, and MO+RVT models showed the 

hardware artifact (see Figs. 7-A, B-1, and C-1), but R2 maps did not. Interestingly, R2 maps 

of wWMeLOCAL captured the hardware artifact at the appropriate time intervals (see Fig. 7-

D4). The Fast ANATICOR model not only consistently identified the artifact, but effectively 

removed it, showing correlation patterns similar to those of the normal subjects at all time 

intervals (see Fig. 7-D1).

3.4. Coefficients of variances for sliding-time-windowed correlations

For all subjects and nuisance models used in this study, CVARρ matrices of time-windowed 

correlation matrices across the functional ROIs are shown in Fig. 8. The NULL and Fast 

ANATICOR models showed the fewest and most CVARρ values, respectively.

3.5. Non-stationarity of sliding-time-windowed correlations

For all subjects and nuisance models in this study, the frequency matrices of subjects that 

showed significant non-stationary correlations are shown in Fig. 9. The NULL and Fast 
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ANATICOR models showed the least and most non-stationarity, respectively. In general, the 

non-stationarity of time-windowed correlations was greater in correlations related to specific 

functional networks: auditory, basal ganglia, sensorimotor, visuospatial, anterior salience, 

and primary visual.

4. Discussion

4.1. Possibility of real-time denoising for sub-second repetition time

Calculation time limits the application of correction methods in real-time fMRI. The 

bottleneck created by the voxel-loop in ANATICOR’s pipeline has contributed significantly 

to processing time. We demonstrated marked temporal improvements to the ANATICOR 

model by replacing the voxel-loop with a weighted white matter regressor and using tNSR 
as an QC measure, thereby creating Fast ANATICOR (see Table 2, Fig. S1). With 

calculation speeds that permit QC during image acquisition, real-time implementation of 

Fast ANATICOR will depend on the processing stream and data transfer speeds. Sub-second 

processing for denoising can be accomplished by multi-core computing systems containing 

more than 12 computing cores or CPUs with parallel computing frameworks such as 

OpenMP libraries (http://openmp.org). Regarding system integration for real-time fMRI 

applications, however, more computing power might be required to operate accurate QC by 

tNSRwWMe, with real-time denoising by Fast ANATICOR. Current data transferring 

methods may need improvement in order to permit simultaneous transmission of data to 

both QC and denoising/analyzing systems that have been developed separately. Our 

suggested pipeline for real-time imaging applications is described in Fig. 2.

4.2. Variance and non-stationarity change in time-windowed correlations by denoising 
models

As more nuisance regressors were removed in the interest of calculation time, the CVARρ 
and non-stationarity in time-windowed correlations increased within the ROIs (Figs. 8 and 

9). This trend was more evident in the Fast ANATICOR model than the MO or MO+RVT 

models, even though the head-coil artifact partially overlapped with the visuospatial, right 

executive control, and anterior salience networks. It could be suggested that nuisance signals 

operate like a drift process in the time course of time-windowed correlations and that the 

localized artifact could be a strong inducer of stationarity between the time-windowed 

correlations.

4.3. Fast ANATICOR and data quality

In this study, we used relatively high-resolution EPI data. Notably, the WM erosion step 

typically requires EPI data of a resolution comparable to or higher than that of the data used 

here. At lower-resolutions, such as 3.5 mm isocubic voxel, little remains of WM voxels after 

the erosion operation. Fast ANATICOR uses a Gaussian-curved weighting kernel to compute 

each voxel-wise regressor, giving more weight to the white matter that is closest to a given 

voxel. If there is no WM voxel close to a given voxel (due to a poor segmentation or 

stringent erosion operation in a low-resolution data grid, for example), the Gaussian curve 

will likely find WM voxels farther away instead of creating an empty regressor.
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4.4. Physiological nuisance regressors

One physiological regressor, RVT, was included in this Fast ANATICOR model due to 

processing time limitations. In an interesting contrast to previous studies using typical, 

longer series of EPI data [3], the MO+RVT model in this study suppressed more artifactual 

correlations than NULL and MO models during the artifactual time interval (see Fig. 5-C). It 

is possible that physiological nuisance signals have a stronger effect in the input data with 

smaller time points in a time window analysis than the full-length EPI data.

5. Conclusion

In this study, we introduced a new image quality monitoring metric and denoising pipeline 

(Fast ANATICOR), optimized for a remarkably shorter processing time than traditionally 

ANATICOR. Using datasets with and without specific hardware artifacts, we validated Fast 

ANATICOR and compared it with other denoising models in terms of calculation time, 

artifact identification, and artifact removal. By optimizing the offline method with a 

weighted white matter regressor and streamlining the physiological regressors, we could 

both improve the detection of hardware artifacts and could decrease processing time.
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Highlights:

• Fast ANATICOR, a denoising method for real-time fMRI scanning, was 

developed to consider noise models for head motion, physiological, and non-

physiological artifacts in image quality control.

• Fast ANATICOR improved the detection of hardware artifacts and decreased 

processing time to within one repetition time (2-4s).

• A weighted, local white matter signal proved an efficient and effective real-

time image quality control metric.

• The spatiotemporal characteristics of artifacts were reported along the time 

axis, demonstrating non-stationarity changes in sliding-time-window-based 

functional connectivity.
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Fig. 1. 
Concept diagrams for kernel weighting methods by local white matter regressor (WMeLocal) 

and weighted local white matter regressor (wWMeLocal) for ANATICOR and Fast 

ANATICOR models, respectively. WMeLocal is obtained by averaging voxel time series with 

a binary mask (B2) that intersects the eroded WM mask (A) and a binary kernel weight 

mask with radius r (B1). wWMeLocal is computed by averaging voxel time series with the 

weighted masks (B2) overlapped with the eroded WM mask (A) over a Gaussian curve (C1). 

The wWMeLocal method blurs the time series of white matter voxels using a Gaussian kernel 

with the given full-width-at-half-maximum (FWHM).
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Fig 2. 
Suggested pipeline for the real time application of image quality control and denoising. 

Asterisked (*) blocks indicate the procedural goals of this study; (i) to reduce time to the 

local white matter (WM) regressor and resolve the aliasing effect in weighting, (ii) to add a 

local WM regressor to the denoising regression process, and (iii) to get effective 

measurements for image quality control (QC). The ultimate goal is to perform the in-session 

procedures within 1 TR time.
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Fig. 3. 
Approaches for transient artifact detection. In the echo planar imaging (EPI) data, (A) the 

artifactual pattern is not identifiable by visual inspection, (B) although the correlation maps 

could be biased by the artifact. (C) Local WM regressors can detect the artifact, but are time-

consuming for high resolution data. (D) Global correlation (GCOR) measures only detect 

severely corrupted data. (E) Typical outlier detection or head motion estimation cannot 

detect a weak or partly corrupted artifact along the time axis. (F) Retrospective artifact 

detectors from deep WM structures can detect the artifactual pattern. Details are presented in 

the methods section.
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Fig. 4. 
Correlation maps with a seed point at the right middle frontal gyrus ([31R, 45A, 10S] in the 

N27 brain template), which were derived from the residual time series after denoising 

regressions with different nuisance models, MO+RVT, ANATICOR, and Fast ANATICOR 

(FANATICOR). (A) For single subject data without coil artifact, there is no significant 

difference between correlation maps for all nuisance models (upper row), and a coil artifact 

pattern was not found in any of the explained variance (R2) maps of localized white matter 

(WM) regressor (lower row). (B) For single subject data with a significant coil artifact, a 

significantly biased correlation pattern was evident in and around the seed point for the MO

+RVT nuisance model (first column, upper row). This coil artifact was corrected by the 

ANATICOR and Fast ANATICOR models (second and third columns, upper row). The 

artifacts were well captured by the localized WM regressor of the ANATICOR and Fast 

ANATICOR models (R2 maps, lower row).
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Fig. 5. 
Spatiotemporal characteristics of transient artifacts detected by the weighted local white 

matter regressor (wWMeLOCAL), and performances of different denoising models for time-

windowed correlations. (A) Temporal noise-to-signal ratio (tNSR) change in weighted local 

white matter regressors (wWMeLOCAL) at two seed locations within and outside of the coil 

artifact area are shown at the right and left middle frontal gyri (RMFG and LMFG), 

respectively. While the transient artifact occurs, tNSR is increased as shown by the red line. 

(B) For the time window [5, 34] TRs, the tNSR map of wWMeLOCAL (tNSRwWMe) and the 

correlation maps for the RMFG seed, which were calculated from 4 different denoising 

models, NONE, MO, MO+RVT, and Fast ANATICOR (FANATICOR) are shown. There is 

no significant coil artifact, no significant spatial pattern in the tNSRwWMe map, and no 

significant difference between the four correlation maps. (C) For the time window [51, 80] 

TRs, the tNSR map of wWMeLOCAL (tNSRwWMe) and the correlations between time series 

a seed point at RMFG and the residual time series from 4 different noise models (NONE, 

MO, MO+RVT, and Fast ANATICOR) are shown. This time interval contains a significant 

coil artifact reflected in its tNSRwWMe map. Only the Fast ANATICOR model could reduce 

the effect of the artifact.
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Fig. 6. 
For a subject with a normal scan (N01), changes in explained variance (R2) maps of artifact 

components from windowed time series for individual subjects were shown along with the 

correlation maps with a seed point at the right middle frontal gyrus. Changes in correlation 

maps along the time change shown in (A), (B1), (C1), and (D1) were denoised by the 

nuisance models NULL, MO, MO+RVT, and Fast ANATICOR (FANATICOR), respectively. 

The R2 maps of nuisance components are shown in (B2), (C2-C3), and (D2-D4) for each 

denoising models. The time window size is 30 TRs.
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Fig. 7. 
For a subject with an artifactual scan (A01), changes in explained variance (R2) maps of 

artifact components from windowed time series for individual subjects are shown along with 

the correlation maps with a seed point at right middle frontal gyrus. Changes in correlation 

maps along the time change shown in (A), (B1), (C1), and (D1), were denoised by the 

nuisance models NULL, MO, MO+RVT, and Fast ANATICOR (FANATICOR), respectively. 

The R2 maps of nuisance components are shown in (B2), (C2-C3), and (D2-D4) for each 

denoising model. The time window size is 30 TRs. As shown in the green circles in the rows 

(A), (B1), and (C1), the local transient artifacts occurred during the TR ranges [50, 79] and 

[75, 104]. Only the nuisance model Fast ANATICOR could detect those artifacts as shown in 

the green circle in the row D4, producing correlation maps (see row D1) comparable to the 

normal cases in Fig. 6.
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Fig. 8. 
Coefficients of variance of windowed correlation (CVARρ) for different denoising models 

scaled to the 90 regions of interest (ROIs) of functional networks template. The NULL 

(panel A) and Fast ANATICOR (FANATICOR, panel D) models showed the least and most 

CVARρ values, respectively. The variances of time-windowed correlations along time axis 

for all functional ROIs were most increased by adding regressors.
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Fig. 9. 
Non-stationarity of the correlation matrices along the time axis by the augmented Dickey-

Fuller unit root test in the scale of the 90 regions of interest (ROIs) of functional networks 

template. For individual time-windowed correlation matrices from an individual subject, we 

obtained a binary matrix representing significant non-stationarity at a threshold p<0.05 from 

the unit root test. A frequency map of subjects that showed significantly non-stationary 

correlations was calculated from the 15 individual subjects. The NULL (panel A) and Fast 

ANATICOR (FANATICOR, panel D) models showed the least and most non-stationarity, 

respectively. An increase in the non-stationarity of time-windowed correlations was related 

to specific functional networks: auditory, basal ganglia, sensorimotor, visuospatial, anterior 

salience, and primary visual.
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