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As algorithms are increasingly applied to screen applicants for
high-stakes decisions in employment, lending, and other domains,
concerns have been raised about the effects of algorithmic mono-
culture, in which many decision-makers all rely on the same
algorithm. This concern invokes analogies to agriculture, where
a monocultural system runs the risk of severe harm from unex-
pected shocks. Here, we show that the dangers of algorithmic
monoculture run much deeper, in that monocultural convergence
on a single algorithm by a group of decision-making agents,
even when the algorithm is more accurate for any one agent in
isolation, can reduce the overall quality of the decisions being
made by the full collection of agents. Unexpected shocks are
therefore not needed to expose the risks of monoculture; it
can hurt accuracy even under “normal” operations and even for
algorithms that are more accurate when used by only a sin-
gle decision-maker. Our results rely on minimal assumptions and
involve the development of a probabilistic framework for ana-
lyzing systems that use multiple noisy estimates of a set of
alternatives.

monoculture | ranking | random utility model | algorithmic
decision-making

The rise of algorithms used to shape societal choices has been
accompanied by concerns over monoculture—the notion

that choices and preferences will become homogeneous in the
face of algorithmic curation. One of many canonical artic-
ulations of this concern was expressed in The New York
Times by Farhad Manjoo (1), who wrote: “Despite the bar-
rage of choice, more of us are enjoying more of the same
songs, movies and TV shows.” Because of algorithmic cura-
tion, trained on collective social feedback (2), our choices are
converging.

When we move from the influence of algorithms on media con-
sumption and entertainment to their influence on high-stakes
screening decisions about to whom to offer a job or to whom
to offer a loan, the concerns about algorithmic monoculture
become even starker. Even if algorithms are more accurate
on a case-by-case basis, a world in which everyone uses the
same algorithm is susceptible to correlated failures when the
algorithm finds itself in adverse conditions. This type of con-
cern invokes an analogy to agriculture, where monoculture
makes crops susceptible to the attack of a single pathogen (3);
the analogy has become a mainstay of the computer-security
literature (4), and it has recently become a source of con-
cern about screening decisions for jobs or loans as well. Dis-
cussing the postrecession financial system, Citron and Pasquale
(5) write: “Like monocultural-farming technology vulnerable
to one unanticipated bug, the converging methods of credit
assessment failed spectacularly when macroeconomic conditions
changed.”

The narrative around algorithmic monoculture thus suggests
a trade-off: In “normal” conditions, a more accurate algorithm
will improve the average quality of screening decisions, but when
conditions change through an unexpected shock, the results can
be dramatically worse. But is this trade-off genuine? In the
absence of shocks, does monocultural convergence on a sin-
gle, more accurate screening algorithm necessarily lead to better
average outcomes?

In this work, we show that algorithmic monoculture poses
risks, even in the absence of shocks. We investigate a model
involving minimal assumptions, in which two competing firms
can either use their own independent heuristics to perform
screening decisions, or they can use a more accurate algorithm
that is accessible to both of them. (Again, we think of screen-
ing job applicants or loan applicants as a motivating scenario.)
We find that even though it would be rational for each firm in
isolation to adopt the algorithm, it is possible for the use of the
algorithm by both firms to result in decisions that are worse on
average. This, in turn, leads, in the language of game theory, to a
type of “Braess’ paradox” (6) for screening algorithms: The intro-
duction of a more accurate algorithm can drive the firms into a
unique equilibrium that is worse for society than the one that was
present before the algorithm existed.

Note that the harm here is to overall performance. Another
common concern about algorithmic monoculture in screening
decisions is the harm it can cause to specific individuals: If all
employers or lenders use the same algorithm for their screen-
ing decisions, then particular applicants might find themselves
locked out of the market when this shared algorithm doesn’t
like their application for some reason. While this is clearly
also a significant concern, our results show that it would be
a mistake to view the harm to particular applicants as neces-
sarily balanced against the gains in overall accuracy—rather,
it is possible for algorithmic monoculture to cause harm not
just to particular applicants, but also to the average quality of
decisions as well.

Our results thus have a counterintuitive flavor to them: If an
algorithm is clearly more accurate than the alternatives when
one entity uses it, why does the accuracy become worse than the
alternatives when multiple entities use it? The analysis relies on
deriving some probabilistic properties of rankings, establishing
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that when we are constructing a ranking from a probability dis-
tribution representing a “noisy” version of a true ordering, we
can sometimes achieve less error through an incremental con-
struction of the ranking—building it one element at a time—than
we can by constructing it in a single draw from the distribution.
We now set up the basic model and then frame the probabilistic
questions that underpin its analysis.

Algorithmic Hiring as a Case Study
To instantiate the ideas introduced thus far, we’ll focus on the
case of algorithmic hiring, where recruiters make decisions based
in part on scores or recommendations provided by data-driven
algorithms. In this setting, we’ll propose and analyze a styl-
ized model of algorithmic hiring with which we can begin to
investigate the effects of algorithmic monoculture.

Informally, we can think of a simplified hiring process as fol-
lows: Rank all of the candidates, and select the first available
one. We suppose that each firm has two options to form this
ranking: Either develop their own, private ranking (which we will
refer to as using a “human evaluator”) or use an algorithmically
produced ranking. We assume that there is a single vendor of
algorithmic rankings, so all firms choosing to use the algorithm
receive the same ranking. The firms proceed in a random order,
each hiring their favorite remaining candidate according to the
ranking they’re using—human-generated or algorithmic (see Fig.
1 for an example). Thus, we can frame the effects of monoculture
as follows: Are firms better off using the more accurate, common
algorithm, or should they instead employ their own less accurate,
but private, evaluations?

In what follows, we’ll introduce a formal model of evaluation
and selection, using it to analyze a setting in which firms seek to
hire candidates.

Modeling Ranking. More formally, we model the n candidates
as having intrinsic values x1, . . . , xn , where any employer would
derive utility xi from hiring candidate i . Throughout the paper,
we assume without loss of generality that x1> x2> . . .> xn .
These values, however, are unknown to the employer; instead,
they must use some noisy procedure to rank the candidates. We
model such a procedure as a randomized mechanism R that
takes in the true candidate values and draws a permutation π
over those candidates from some distribution. Our main results
hold for families of distributions over permutations as defined
below:
Definition 1 (Noisy Permutation Family): A noisy permutation
family Fθ is a family of distributions over permutations that
satisfies the following conditions for any θ > 0 and set of
candidates x:

1. Differentiability: For any permutation π, PrFθ [π] is continu-
ous and differentiable in θ.

Fig. 1. Each firm has the choice to use either their own private ranking or
the common algorithmic ranking to order the n candidates. In a random
order, each firm hires the highest-ranked available candidate according to
the ranking they chose. For example, if firm 1 uses their private ranking and
firm 2 uses the algorithmic ranking, then firm 1 hires candidate B, and firm
2 hires candidate A. If both firms use the algorithmic ranking, then the firm
randomly selected to hire first hires candidate A, and the firm randomly
selected to hire second hires candidate C.

2. Asymptotic optimality: For the true ranking π∗,
limθ→∞ PrFθ [π

∗] = 1.
3. Monotonicity: For any (possibly empty) S ⊂ x, let π(−S) be

the partial ranking produced by removing the items in S from
π. Let π(−S)

1 denote the value of the top-ranked candidate
according to π(−S). For any θ′>θ,

EFθ′

[
π
(−S)
1

]
≥EFθ

[
π
(−S)
1

]
. [1]

Moreover, for S = ∅, Eq. 1 holds with strict inequality.

θ serves as an “accuracy parameter”: For large θ, the noisy
ranking converges to the true ranking over candidates. The
monotonicity condition states that a higher value of θ leads to
a better first choice, even if some of the candidates are removed
after ranking. Removal after ranking (as opposed to before) is
important because some of the ranking models we will consider
later do not satisfy Independence of Irrelevant Alternatives.
Examples of noisy permutation families include Random Utility
Models (RUMs) (7) and the Mallows Model (8), both of which
we will discuss in detail later.

As an objective function to evaluate the effects of different
approaches to ranking and selection, we’ll consider each individ-
ual employer’s utility, as well as the sum of employers’ utilities.
We think of this latter sum as the social welfare, since it repre-
sents the total quality of the applicants who are hired by any firm.
(For example, if all firms deterministically used the correct rank-
ing, then the top applicants would be the ones hired, leading to
the highest possible social welfare.)

Modeling Selection. Each firm in our model has access to the
same underlying pool of n candidates, which they rank using a
randomized mechanism R to get a permutation π, as described
above. Then, in a random order, each firm hires the highest-
ranked remaining candidate according to their ranking. Thus, if
two firms both rank candidate i first, only one of them can hire
i ; the other must hire the next available candidate according to
their ranking. In our model, candidates automatically accept the
offer they get from a firm. For the sake of simplicity, through-
out this paper, we restrict ourselves to the case where there are
two firms hiring one candidate each, although our model readily
generalizes to more complex cases.

As described earlier, each firm can choose to use either a
private human evaluator or an algorithmically generated rank-
ing as its randomized mechanism R. We assume that both
candidate mechanisms come from a noisy permutation family
Fθ , with differing values of the accuracy parameter θ: Human
evaluators all have the same accuracy θH , and the algorithm
has accuracy θA. However, while the human evaluator pro-
duces a ranking independent of any other firm, the algorith-
mically generated ranking is identical for all firms who choose
to use it. In other words, if two firms choose to use the algo-
rithmically generated ranking, they will both receive the same
permutation π.

The choice of which ranking mechanism to use leads to a
game-theoretic setting: Both firms know the accuracy parameters
of the human evaluators (θH ) and the algorithm (θA), and they
must decide whether to use a human evaluator or the algorithm.
This choice introduces a subtlety: For many ranking models, a
firm’s rational behavior depends not only on the accuracy of the
ranking mechanism, but also on the underlying candidate values
x1, . . . , xn . Thus, to fully specify a firm’s behavior, we assume
that x1, . . . , xn are drawn from a known joint distribution D.
Our main results will hold for any D, meaning that they apply
even when the candidate values (but not their identities) are
deterministically known.
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Stating the Main Result. Our main result is a pair of intuitive con-
ditions under which a Braess’ Paradox-style result occurs—in
other words, conditions under which there are accuracy parame-
ters for which both firms rationally choose to use the algorithmic
ranking, but social welfare (and each individual firm’s utility)
would be higher if both firms used independent human eval-
uators. Recall that the two firms hire in a random order. For
a permutation π, let πi denote the value of the i th-ranked
candidate according to π.

We first state the two conditions and then the theorem based
on them.
Definition 2 (Preference for the First Position): A candidate distri-
bution D and noisy permutation family Fθ exhibits a preference
for the first position if for all θ > 0, if π,σ∼Fθ ,

E [π1−π2 |π1 6=σ1]> 0.

In other words, for any θ > 0, suppose we draw two permuta-
tions π and σ independently from Fθ , and suppose that the
first-ranked candidates differ in π and σ. Then, the expected
value of the first-ranked candidate in π is strictly greater than
the expected value of the second-ranked candidate in π.
Definition 3 (Preference for Weaker Competition): A candidate
distribution D and noisy permutation family Fθ , exhibits a pref-
erence for weaker competition if the following holds: For all
θ1>θ2, σ∼Fθ1 and π, τ ∼Fθ2 ,

E
[
π
(−{σ1})
1

]
<E

[
π
(−{τ1})
1

]
.

Intuitively, suppose we have a higher accuracy parameter θ1 and
a lower accuracy parameter θ2<θ1; we draw a permutation π

fromFθ2 ; and we then derive two permutations from π: π(−{σ1})

obtained by deleting the first-ranked element of a permutation
σ drawn from the more accurate distribution Fθ1 , and π(−{τ1})

obtained by deleting the first-ranked element of a permutation τ
drawn from the less accurate distribution Fθ2 .

Then, the expected value of the first-ranked candidate in
π(−{τ1}) is strictly greater than the expected value of the first-
ranked candidate in π(−{σ1})—that is, when a random candidate
is removed from π, the best remaining candidate is better in
expectation when the randomly removed candidate is chosen
based on a noisier ranking.

Using these two conditions, we can state our theorem.
Theorem 1. Suppose that a given candidate distribution D and

noisy permutation family Fθ satisfy Definition 2 (preference for the
first position) and Definition 3 (preference for weaker competition).

Then, for any θH , there exists θA>θH such that using the algo-
rithmic ranking is a strictly dominant strategy for both firms, but
social welfare would be higher if both firms used human evaluators.

A Preference for Independence. Before we prove Theorem 1, we
provide some intuition for the two conditions in Definitions 2 and
3. The second condition essentially says that it is better to have
a worse competitor: The firm randomly selected to hire second
is better off if the firm that hires first uses a less accurate rank-
ing (in this case, a human evaluator instead of the algorithmic
ranking).

The first condition states that when two identically distributed
permutations disagree on their first element, the first-ranked
candidate according to either permutation is still better, in
expectation, than the second-ranked candidate according to
either permutation. In what follows, we’ll demonstrate that
this condition implies that firms in our model rationally pre-
fer to make decisions using independent (but equally accurate)
rankings.

To do so, we need to introduce some notation. Recall that
the two firms hire in a random order. Given a candidate distri-

bution D, let Us(θA, θH ) denote the expected utility of the first
firm to hire a candidate when using ranking s , where s ∈{A,H }
is either the algorithmic ranking or the ranking generated by a
human evaluator, respectively. Similarly, let Us1s2(θA, θH ) be the
expected utility of the second firm to hire, given that the first
firm used strategy s1 and the second firm uses strategy s2, where
again, s1, s2 ∈{A,H }. Finally, let π,σ∼Fθ .

In what follows, we will show that for any θ,

E [π1−π2 |π1 6=σ1]> 0⇐⇒UAH (θ, θ)>UAA(θ, θ). [2]

In other words, whenever a ranking model meets Definition 2,
the firm chosen to select second will prefer to use an independent
ranking mechanism from its competitor, given that the ranking
mechanisms are equally accurate.

First, we can write

UAH (θA, θH )=E [π1 ·1π1 6=σ1 +π2 ·1π1=σ1 ]

UAA(θA, θH )=E [σ2]

=E [σ2 ·1π1 6=σ1 +σ2 ·1π1=σ1 ].

Thus,

UAH (θA, θH )−UAA(θA, θH )

=E [(π1−σ2) ·1π1 6=σ1 +(π2−σ2) ·1π1=σ1 ].

Conditioned on either π1 =σ1 or π1 6=σ1, π2 and σ2 are iden-
tically distributed and, therefore, have equal expectations. As a
result,

UAH (θA, θH )−UAA(θA, θH )=E [(π1−π2) ·1π1 6=σ1 ], [3]

which implies Eq. 2. Thus, whenever a ranking model meets Def-
inition 2, firms rationally prefer independent assessments, all else
equal.

To provide some intuition for what this preference for inde-
pendence entails, consider a setting where a hiring committee
seeks to hire two candidates. They meet, produce a ranking σ,
and hire σ1 (the best candidate according to σ). Suppose they
have the option to either hire σ2 or reconvene the next day to
form an independent ranking π and hire the best remaining can-
didate according to π; which option should they choose? It’s
not immediately clear why one option should be better than the
other. However, whenever Definition 2 is met, the committee
should prefer to reconvene and make their second hire according
to a new ranking π. After proving Theorem 1, we will provide nat-
ural ranking models that meet Definition 2, implying that under
these ranking models, independent reranking can be beneficial.

Proving Theorem 1. With this intuition, we are ready to prove
Theorem 1.
Proof of Theorem 1. For given values of θA and θH , using the
algorithmic ranking is a strictly dominant strategy as long as

UA(θA, θH )+UAA(θA, θH )>UH (θA, θH )+UAH (θA, θH ),
[4]

UA(θA, θH )+UHA(θA, θH )>UH (θA, θH )+UHH (θA, θH ).
[5]

Note that Eq. 5 is always true for θA>θH by the monotonic-
ity assumption onFθ: UA(θA, θH )≥UH (θA, θH ) because a more
accurate ranking produces a top-ranked candidate with higher
expected value, and UHA(θA, θH )≥UHH (θA, θH ) because this
holds even conditioned on removing any candidate from the
pool (in this case, the candidate randomly selected by the firm
that hires first). Crucially, in Eq. 5, the first firm’s random selec-
tion is independent from the second firm’s selection; the same
logic could not be used to argue that Eq. 4 always holds for
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θA≥ θH . Moreover, when θA>θH , UA(θA, θH )>UH (θA, θH ) by
the monotonicity assumption, meaning Eq. 5 holds.

Let Ws1s2(θA, θH ) denote social welfare when the two firms
employ strategies s1, s2 ∈{A,H }. Then, when both firms use the
algorithmic ranking, social welfare is

WAA(θA, θH )=UA(θA, θH )+UAA(θA, θH ).

By Eq. 2, Definition 2 implies that for any θ, UAA(θ, θ)<
UAH (θ, θ), implying

UA(θH , θH )+UAA(θH , θH )<UH (θH , θH )+UAH (θH , θH ).

However, by the optimality assumption onFθ in Definition 1, for
sufficiently large θ̂A,

UA(θ̂A, θH )+UAA(θ̂A, θH )>UH (θ̂A, θH )+UAH (θ̂A, θH ).

Note that Us1(θA, θH ) and Us1s2(θA, θH ) are continuous with
respect to θA for any s1, s2 ∈{A,H } since they are expecta-
tions over discrete distributions with probabilities that are, by
assumption, differentiable with respect to θA. Therefore, by the
differentiability assumption on Fθ from Definition 1, there is
some θ∗A>θH such that

UA(θ
∗
A, θH )+UAA(θ

∗
A, θH )=UH (θ∗A, θH )+UAH (θ∗A, θH ),

[6]
i.e., given that its competitor uses the algorithmic ranking, a
firm is indifferent between the two strategies. For such θ∗A, using
the algorithmic ranking is still a weakly dominant strategy. By
definition of WAA,

WAA(θ
∗
A, θH )=UH (θ∗A, θH )+UAH (θ∗A, θH ).

If both firms had instead used human evaluators, social welfare
would be

WHH (θ∗A, θH )=UH (θ∗A, θH )+UHH (θ∗A, θH ).

By Definition 3, for σ∼FθA∗ and π, τ ∼FθH ,

E
[
π
(−{σ1})
1

]
<E

[
π
(−{τ1})
1

]
.

Note that

UAH (θ∗A, θH )=E
[
π
(−{σ1})
1

]
UHH (θ∗A, θH )=E

[
π
(−{τ1})
1

]
.

Thus, Definition 3 implies that for θA∗ >θH , UHH (θ∗A, θH )>
UAH (θ∗A, θH ). As a result, for θA∗ >θH , using the algorithmic
ranking is a weakly dominant strategy, but

WHH (θ∗A, θH )=UH (θ∗A, θH )+UHH (θ∗A, θH )

>UH (θ∗A, θH )+UAH (θ∗A, θH )

=UA(θ
∗
A, θH )+UAA(θ

∗
A, θH )

=WAA(θ
∗
A, θH ),

meaning that social welfare would have been higher had both
firms used human evaluators.

We can show that this effect persists for a value θ′A, such that
using the algorithmic ranking is a strictly dominant strategy. Intu-
itively, this is simply by slightly increasing θ∗A so the algorithmic
ranking is strictly dominant. For fixed θH , define

f (θA)=UA(θA, θH )+UAA(θA, θH )

g(θA)=UH (θA, θH )+UAH (θA, θH )

h(θA)=UH (θA, θH )+UHH (θA, θH ).

Because Eq. 5 always holds for θA>θH , it suffices to show
that there exists θ′A such that g(θ′A)< f (θ′A)< h(θ′A). This is
because g(θ′A)< f (θ′A) is equivalent to Eq. 4, and f (θ′A)< h(θ′A)
is equivalent to WAA(θ

′
A, θH )<WHH (θ′A, θH ).

First, note that h(θA) is a constant, and by Definition 3,
g(θA)< h(θA) for all θA>θH . By the optimality assumption of
Definition 1, there exists sufficiently large θ̂A such that f (θ̂A)>
g(θ̂A). Recall that by definition of θ∗A, f (θ∗A)= g(θ∗A). Both f and
g are continuous by the differentiability assumption in Defini-
tion 1. Thus, there must exist some θ′A>θ

∗
A such that g(θ′A)<

f (θ′A)< h(θ′A). This means that for θ′A, using the algorithmic
ranking is a strictly dominant strategy, but social welfare would
still be larger if both firms used human evaluators.

Instantiating with Ranking Models
Thus far, we have described a general set of conditions under
which algorithmic monoculture can lead to a reduction in social
welfare. Under which ranking models do these conditions hold?
In the remainder of this paper, we instantiate the model with
two well-studied ranking models: RUMs (7) and the Mallows
Model (8). While RUMs do not always satisfy Definitions 2 and
3, they do under some realistic parameterizations, regardless of
the candidate distribution D. Under the Mallows Model, Defi-
nitions 2 and 3 are always met, meaning that for any candidate
distribution D and human evaluator accuracy θH , there exists an
accuracy parameter θA such that a common algorithmic ranking
with accuracy θA decreases social welfare.

RUMs. In RUMs, the underlying candidate values xi are per-
turbed by independent and identically distributed noise εi ∼
E , and the perturbed values are ranked to produce π. Origi-
nally conceived in the psychology literature (7), this model has
been well-studied over nearly a century, (9–14), including more
recently in the computer science and machine-learning literature
(15–19).

First, we must define a family of RUMs that satisfies the condi-
tions of Definition 1. Assume without loss of generality that the
noise distribution E has unit variance. Then, consider the fam-
ily of RUMs parameterized by θ, in which candidates are ranked
according to xi +

εi
θ

. By this definition, the SD of the noise for
a particular value of θ is simply 1/θ. Intuitively, larger values of
θ reduce the effect of the noise, making the ranking more accu-
rate. In SI Appendix, we show as long as the noise distribution E
has positive support on (−∞,∞), this definition of Fθ meets the
differentiability, asymptotic optimality, and monotonicity condi-
tions in Definition 1. For distributions with finite support, many
of our results can be generalized by relaxing strict inequalities in
Definition 1 and Theorem 1 to weak inequalities.

Because RUMs are notoriously difficult to work with analyt-
ically, we restrict ourselves to the case where n =3—i.e., there
are three candidates. Under this restriction, we can show that
for Gaussian and Laplacian noise distributions, Definition 2 and
3—the two conditions of Theorem 1—are met, regardless of the
candidate distribution D. We defer the proof to SI Appendix.

Theorem 2. Let Fθ be the family of RUMs with either Gaussian
or Laplacian noise with SD 1/θ. Then, for any candidate distri-
bution D over three candidates, the conditions of Theorem 1 are
satisfied.

It might be tempting to generalize Theorem 2 to other distri-
butions and more candidates; however, certain noise and candi-
date distributions violate the conditions of Theorem 1. Even for
three-candidate RUMs, there exist distributions for which each
of the conditions is violated; see SI Appendix for examples.

Moreover, while Gaussian and Laplacian distributions prov-
ably meet Definitions 2 and 3 with only three candidates, this
doesn’t necessarily extend to larger candidate sets. Fig. 2 shows
that Definition 2 can be violated under a particular candidate
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Fig. 2. UAH(θ, θ)−UAA(θ, θ) for three noise models with n candidates whose utilities are drawn from a uniform distribution with unit variance for n = 3,
n = 5, and n = 15. Note that for n = 15, UAH(θ, θ)−UAA(θ, θ)< 0 for Laplacian noise, meaning Definition 2 is not met.

distribution D for Laplacian noise with 15 candidates. This
challenges the intuition that independence is preferable—under
some conditions, it can actually better in expectation for a firm
to use the same algorithmic ranking as its competitor, even if
an independent human evaluator is equally accurate overall.
Unlike Theorem 2, which applies for any candidate distribution
D, certain noise models may violate Definition 2 only for par-
ticular D. It is an open question as to whether Theorem 2 can
be extended to larger numbers of candidates under Gaussian
noise.

Finally, there exist noise distributions that violate Definition 2
for any candidate distribution D. In particular, the RUM family
defined by the Gumbel distribution is well-known to be equiva-
lent to the Plackett–Luce model of ranking, which is generated
by sequentially selecting candidate i with probability

exp(θxi)∑
j∈S exp(θxj )

, [7]

where S is the set of remaining candidates (10, 20). Under the
Plackett–Luce model, for any θ, UAH (θ, θ)=UAA(θ, θ). To see
this, suppose the firm that hires first selects candidate i∗. Then,
the firm that hires second gets each candidate i with probability
given by Eq. 7 with S = {1, . . . ,n}\i∗. As a result, by Eq. 3, if
π,σ∼Fθ ,

E [π1−π2 |π1 6=σ1]= 0,

for any candidate distribution D, meaning the Plackett–Luce
model never meets Definition 2. Thus, under the Plackett–Luce
model, monoculture has no effect—the optimal strategy is always
to use the best available ranking, regardless of competitors’
strategies.

Given the analytic intractability of most RUMs, it might
appear that testing the conditions of Theorem 1, especially for
particular noise and candidate distributions, may not be possi-
ble; however, they can be efficiently tested via simulation: As
long as the noise distribution E and the candidate distribution
D can be sampled from, it is possible to test whether the con-
ditions of Theorem 1 are satisfied. Thus, even if the conditions
of Theorem 1 are not met for every candidate distribution D, it
is possible to efficiently determine whether they are met for any
particular D.

It is also interesting to ask about the magnitude of the neg-
ative impact produced by monoculture. Our model allows for
the qualities of candidates to be either positive or negative (cap-
turing the fact that a worker’s productivity can be either more

or less than their cost to the firm in wages); using this, we can
construct instances of the model in which the optimal social wel-
fare is positive, but the welfare under the (unique) monocultural
equilibrium implied by Theorem 1 is negative. This is a strong
type of negative result, in which suboptimality reverses the sign
of the objective function, and it means that, in general, we can-
not compare the optimum and equilibrium by taking a ratio of
two nonnegative quantities, as is standard in Price of Anarchy
results. However, as a future direction, it would be interesting
to explore such Price of Anarchy bounds in special cases of the
problem where structural assumptions on the input are suffi-
cient to guarantee that the welfare at both the social optimum
and the equilibrium are nonnegative. As one simple example,
if the qualities for three candidates are drawn independently
from a uniform distribution centered at zero, and the noise dis-
tribution is Gaussian, then there exist parameters θA>θH such
that expected social welfare at the equilibrium where both firms
use the algorithmic ranking is nonnegative and approximately

Fig. 3. Regions for different equilibria. When human evaluators are more
accurate than the algorithm, both firms decide to employ humans (HH).
When the algorithm is significantly more accurate, both firms use the algo-
rithm (AA). When the algorithm is slightly more accurate than human
evaluators, two possible equilibria exist: 1) One firm uses the algorithm and
the other employs a human (AH) or (2) both decide whether to use the algo-
rithm with some probability p. The shaded portion of the green AA region
depicts where social welfare is smaller at the AA equilibrium than it would
be if both firms used human evaluators.
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4% less than it would be had both firms used human evaluators
instead.

The Mallows Model. The Mallows Model also appears frequently
in the ranking literature (21, 22) and is much more analytically
tractable than RUMs. Under the Mallows Model, the likeli-
hood of a permutation is related to its distance from the true
ranking π∗:

Pr[π] =
1

Z
φ−d(π,π∗), [8]

where Z is a normalizing constant. In this model, φ> 1 is the
accuracy parameter: The larger φ is, the more likely the ranking
procedure is to output a ranking π that is close to the true rank-
ing r . To instantiate this model, we need a notion of distance
d(·, ·) over permutations. For this, we’ll use Kendall tau distance,
another standard notion in the literature, which is simply the
number of pairs of elements in π that are incorrectly ordered
(23). In SI Appendix, we verify that the family of distributions
Fθ given by the Mallows Model satisfies Definition 1, defining
θ=φ− 1 (for consistency, so θ is well-defined on (0,∞)).

In contrast to RUMs, the Mallows Model always satisfies the
conditions of Theorem 1 for any candidate distribution D, which
we prove in SI Appendix.

Theorem 3. Let Fθ be the family of Mallows Model distributions
with parameter θ=φ− 1. Then, for any candidate distribution D,
the conditions of Theorem 1 are satisfied.

Fig. 3 characterizes firms’ rational behavior at equilibrium in
the (θH , θA) plane under the Mallows Model. The decrease in
social welfare found in Theorem 3 is depicted by the shaded por-
tion of the green region labeled AA, where social welfare would
be higher if both firms used human evaluators.

While the result of Theorem 3 is certainly stronger than that
of Theorem 2, in that it applies to all instances of the Mallows
Model without restrictions, it should be interpreted with some
caution. The Mallows Model does not depend on the underly-
ing candidate values, so, according to this model, monoculture
can produce arbitrarily large negative effects. While insensitivity
to candidate values may not necessarily be reasonable in prac-
tice, our results hold for any candidate distribution D. Thus, to
the extent that the Mallows Model can reasonably approximate
ranking in particular contexts, our results imply that monoculture
can have negative welfare effects.

Conclusion
Concerns about monoculture in the use of algorithms have
focused on the danger of unexpected, correlated shocks and on
the harm to particular individuals who may fare poorly under
the algorithm’s decision. Our work here shows that concerns
about algorithmic monoculture are, in a sense, more fundamen-
tal, in that it is possible for monoculture to cause decisions of
globally lower average quality, even in the absence of shocks.
In addition to telling us something about the pervasiveness of
the phenomenon, it also suggests that it might be difficult to
notice its negative effects, even while they’re occurring—these
effects can persist at low levels, even without a shock-like dis-
ruption to call our attention to them. Our results also make

clear that algorithmic monoculture in decision-making doesn’t
always lead to adverse outcomes; rather, we give natural condi-
tions under which such outcomes become possible and show that
these conditions hold in a wide range of standard models.

Our results suggest a number of natural directions for further
work. To begin with, we have noted earlier in the paper that
it would be interesting to give more comprehensive quantita-
tive bounds on the magnitude of monoculture’s possible negative
effects in decisions such as hiring—how much worse can the
quality of candidates be when selected with an equilibrium strat-
egy involving shared algorithms than with a socially optimal
one? In formulating such questions, it will be important to take
into account how the noise model for rankings relates to the
numerical qualities of the candidates.

We have also focused here on the case of two firms and a sin-
gle shared algorithm that is available to both. It would be natural
to consider generalizations involving more firms and potentially
more algorithms as well. With more algorithms, we might see
solutions in which firms cluster around different algorithms of
varying accuracies, as they balance the level of accuracy and the
amount of correlation in their decisions. It would also be interest-
ing to explore the ways in which correlations in firms’ decisions
can be decomposed into constituent parts, such as the use of stan-
dardized tests that form input features for algorithms, and how
quantifying these forms of correlation might help firms assess
their decisions.

Finally, it will be interesting to consider how these types of
results apply to further domains. While the analysis presented
here illustrates the consequences of monoculture as applied to
algorithmic hiring, our findings have potential implications in
a broader range of settings. Algorithmic monoculture not only
leads to a lack of heterogeneity in decision-making; by allow-
ing valuable options to slip through the cracks—be they job
candidates, potential hit songs, or budding entrepreneurs—it
reduces total social welfare, even when the individual decisions
are more accurate on a case-by-case basis. These concerns extend
beyond the use of algorithms; whenever decision-makers rely on
identical or highly correlated evaluations, they miss out on hid-
den gems and, in this way, diminish the overall quality of their
decisions.

Materials and Methods
The results in Figs. 2 and 3 were obtained by computational methods.
The computational results for RUMs in Fig. 2 were performed via sim-
ulation, taking the average of 10,000,000 trials and reporting 95% CIs.
Candidate utilities were drawn from a uniform distribution on [−

√
3,
√

3],
which is symmetric and has unit variance. The computational results for
the Mallows Model in Fig. 3 were obtained symbolically by using the
sympy module in Python. Candidate utilities were drawn from a uniform
distribution on [0, 1].

Data Availability. There are no data underlying this work.
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