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Abstract

We present an algorithm to solve the two-dimensional Fredholm integral of the first kind with 

tensor product structure from a limited number of measurements, with the goal of using this 

method to speed up nuclear magnetic resonance spectroscopy. This is done by incorporating 

compressive sensing–type arguments to fill in missing measurements, using a priori knowledge of 

the structure of the data. In the first step we recover a compressed data matrix from measurements 

that form a tight frame, and establish that these measurements satisfy the restricted isometry 

property. Recovery can be done from as few as 10% of the total measurements. In the second and 

third steps, we solve the zeroth-order regularization minimization problem using the 

Venkataramanan–Song–Hürlimann algorithm. We demonstrate the performance of this algorithm 

on simulated data and show that our approach is a realistic approach to speeding up the data 

acquisition.
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1. Introduction

We present a method of solving the two-dimensional (2D) Fredholm integral of the first kind 

from a limited number of measurements. This is particularly useful in the field of nuclear 

magnetic resonance (NMR), in which making a sufficient number of measurements takes 

several hours. Our work is an extension of the algorithm in [56] based on the new idea of 

matrix completion; cf. [10, 29, 52].

A 2D Fredholm integral of the first kind is written as

g(x, y) = ∫ ∫ k1(x, s)k2(y, t)f(s, t)dsdt,

where k1 and k2 are continuous Hilbert–Schmidt kernel functions and f, g ∈ L2(ℝ2); cf. [27]. 

2D Fourier, Laplace, and Hankel transforms are all common examples of Fredholm integral 

equations. Applications of these transformations arise in any number of fields, including 

methods for solving PDEs [31], image deblurring [4, 38], and moment generating functions 

[40]. This paper specifically focuses on Laplace-type transforms, where the kernel singular 

values decay quickly to zero.

To present the main idea of the problem, the data M is measured over sampling times τ1 and 

τ2 and is related to the object of interest ℱ(x, y) by a 2D Fredholm integral of the first kind 

with a tensor product kernel,

M(τ1, τ2) = ∫ ∫ k1(x, τ1)k2(y, τ2)ℱ(x, y)dxdy + ε(τ1, τ2),

where ε(τ1, τ2) is assumed to be Gaussian white noise. In most applications, including 

NMR, the kernels k1 and k2 are explicit functions that are known to be smooth and 

continuous a priori. Solving a Fredholm integral with smooth kernels is an ill-conditioned 

problem, since the kernel’s singular values decay quickly to zero [34]. This makes the 

problem particularly interesting, as small variations in the data can lead to large fluctuations 

in the solution.

For our purposes, ℱ(x, y) represents the joint probability density function of the variables x 
and y. Specifically in NMR, x and y can be the measurements of the two combination of the 

longitudinal relaxation time T1, transverse relaxation time T2, diffusion D, and other 

dynamic properties. Knowledge of the correlation of these properties of a sample is used to 

identify its microstructure properties and dynamics [6].

This paper focuses on the discretized version of the 2D Fredholm integral,

M = K1FK2′ + E, (1.1)
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where our data is the matrix M ∈ ℝN1×N2, matrices K1 ∈ ℝN1×Nx and K2 ∈ ℝN2×Ny are 

discretized versions of the smooth kernels k1 and k2, and the matrix F ∈ ℝNx×Ny is the 

discretized version of the probability density function ℱ(x, y) which we are interested in 

recovering. We also assume that each element of the Gaussian noise matrix E has zero mean 

and constant variance. And since we have assumed that ℱ(x, y) is a joint probability density 

function, each element of F is nonnegative.

Venkataramanan, Song, and Hürlimann [56] laid out an efficient strategy for solving this 

problem given complete knowledge of the data matrix M. The approach centers around 

finding an intelligent way to solve the Tikhonov regularization problem,

F = arg min
F ≥ 0

‖M − K1FK2′‖F
2 + α‖F‖F

2 , (1.2)

where || · ||F is the Frobenius norm.

There are three steps to the algorithm in [56] for solving (1.2).

1. Compress the data. Let the SVD of Ki be

Ki = UiSiV i′, i ∈ {1, 2} .

Because K1 and K2 are sampled from smooth functions k1 and k2, the singular 

values decay quickly to 0. Let s1 be the number of nonzero singular values of K1, 

and let s2 be the number of nonzero singular values of K2. Then Ui ∈ ℝNi×si and 

Si ∈ ℝsi×si for i = 1, 2, as well as V1 ∈ ℝNx×s1 and V2 ∈ ℝNy×s2.

The data matrix M can be projected onto the column space of K1 and the row 

space of K2 by U1U1′MU2U2′ . We denote this as M∼ = U1′MU2. The Tikhonov 

regularization problem (1.2) is now rewritten as

F = arg min
F ≥ 0

‖U1M∼U2′ − U1U1′K1FK2′U2U2′‖F
2 + ‖M‖F

2 − ‖U1M∼U2′‖F
2

+ α‖F‖F
2

(1.3)

= arg min
F ≥ 0

‖M∼ − (S1V 1′)F(S2V 2′)′‖F
2 + α‖F‖F

2 , (1.4)

where (1.4) comes from U1 and U2 having orthogonal columns, and the second 

and third terms in (1.3) being independent of F. The key note here is that M̃ ∈ 
ℝs1×s2, which significantly reduces the complexity of the computations.

2. Optimization. For a given value of α, (1.4) has a unique solution due to the 

second term being quadratic. We shall detail the method of finding this solution 

in section 4.
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3. Choosing α. Once (1.4) has been solved for a specific α, an update for α is 

chosen based on the characteristics of the solution in step 2. Repeat steps 2 and 3 

until convergence. Again, this is detailed in section 4.

The approach in [56] assumes complete knowledge of the data matrix M. However, in 

applications with NMR, there is a cost associated with collecting all the elements of M, 

namely, time. With the microstructure-related information contained in the multidimensional 

diffusion-relaxation correlation spectrum of the biological sample [49, 22, 25, 20, 35, 54] 

and high-resolution spatial information that magnetic resonance imaging (MRI) techniques 

can provide, there is a need to combine the multidimensional correlation spectra NMR with 

2D/3D MRI for preclinical and clinical applications [21]. Without any acceleration, 

however, it could take several days to acquire this data.

In practice, the potential pulse sequences for the combined multidimensional diffusion-

relaxation MRI would be single spin echo (90°–180° acquisition and spatial localization) 

with saturation, inversion recovery, driven-equilibrium preparation to measure T1-T2 

correlation, and diffusion weighting preparation for D-T2 measurements. With these MRI 

pulse sequences, a single point in the 2D T1-T2 or D-T2 space is acquired for each “shot,” 

and the total time for the sampling of the T1-T2 or D-T2 space is determined directly by the 

number of measurements required to recover F from (1.2). A vastly reduced number of 

sample points in M, together with rapid MRI acquisition techniques, which can include, e.g., 

parallel imaging [50], echo planar imaging (EPI) [24], gradient-recalled echo [36], and 

sparse sampling with compressed sensing [45], could reduce the total experiment time 

sufficiently to make this promising technique practicable for preclinical and clinical in vivo 

studies.

Notice that, despite collecting all N1 × N2 data points in M, step 1 of the algorithm 

immediately throws away a large amount of that information, reducing the number of data 

points to a matrix of size s1 × s2. M̃ is effectively a compressed version of the original M, 

containing the same information in a smaller number of entries. But this raises the question 

of why all of M must be collected when a large amount of information is immediately 

thrown away, since we are interested only in M̃.

This question is what motivates the introduction of a compressive sensing–type approach. 

The task is to undersample signals that are “compressible,” meaning that the signal is sparse 

in some basis representation [12, 11, 23]. The problem of recovering M falls into a subset of 

this field known as low-rank matrix completion; see [10, 29, 14].

An n × n matrix X that is rank r requires approximately nr parameters to be completely 

specified. If r ≪ n, then X is seen as being compressible, as the number of parameters 

needed to specify it is much less than its n2 entries. It is less clear how to recover X from a 

limited number of coefficients efficiently. But the results of [10] showed that it is possible to 

recover X from, up to a constant, nr log(n) measurements by employing a simple 

optimization problem. These findings were inspired, at least in part, by [12, 11]. Also, the 

types of measurements we utilize in this paper, operator bases with bounded norm, 

originated via quantum state tomography [30].
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Compressive sensing has been used in various forms of medical imaging for several years. 

The authors of [45] originally proposed speeding up MRI acquisition. The authors of [47] 

introduced group sparsity into consideration for accelerating T2-weighted MR. Finally, the 

authors of [55, 39] both introduced basic ideas of compressive sensing into the NMR 

framework and attained promising results, but the results did not utilize the matrix 

completion aspect of the physical problem and did not introduce any theoretical guarantees 

for reconstruction.

This paper develops an alternative to [56] which incorporates matrix completion in order to 

recover M̃ from significantly fewer measurements. It is organized as follows. Section 2 

examines how recovery of M̃ fits into existing theory and shows that data from the 2D 

Fredholm integral can be recovered from 10% of the measurements. Section 3 covers the 

practical considerations of the problem and discusses the error created by our reconstruction. 

Section 4 covers the algorithms used to solve the low-rank minimization problem and invert 

the 2D Fredholm integral to obtain F. Section 5 shows the effectiveness of this 

reconstruction on simulated data. Appendix A contains a detailed proof of the central 

theorem of this paper.

2. Data recovery using matrix completion

2.1. Background for matrix completion

The problem of matrix completion has been in the center of scientific interest and activity in 

recent years [10, 26, 29, 51, 5, 9, 13, 7]. The basic problem revolves around trying to recover 

a matrix X0 ∈ ℝn1×n2 from only a fraction of the N1 × N2 measurements required to observe 

each element of M. Without any additional assumptions, this is an ill-posed problem. 

However, there have been a number of attempts to add natural assumptions to make this 

problem well-posed. Other than assuming that X0 is low rank, as we mentioned in section 1, 

there are assumptions that X0 is positive definite [28, 42], or that X0 is a distance matrix [2], 

or that X0 has a nonnegative factorization [57]. A survey of some of these other methods can 

be found in [37].

For our purposes, we shall focus on low-rank matrix completion, as that is the most natural. 

Let X0 be rank r. Consider a linear operator : ℝn1×n2 → ℝm. Then our observations take 

the form

y = A(X0) + z, ‖z‖2 ≤ ε, (2.1)

where z represents a noise vector that is typically white noise, though not necessarily.

The naive way to proceed would be to solve the nonlinear optimization problem

min rank(Z)
such that ‖A(Z) − y‖2 ≤ ε . (2.2)
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However, the objective function rank(Z) makes the problem NP-hard. So instead we define 

the convex envelope of the rank function.

Definition 2.1—Let σi(X) be the ith singular value of a rank r matrix X. Then the nuclear 

norm of X is

‖X‖∗: = ∑
i = 1

r
σi(X) .

We now proceed by attempting to solve the convex relaxation of (2.2),

min ‖Z‖∗
such that ‖A(Z) − y‖2 ≤ ε . (2.3)

As with traditional compressive sensing, there exists a restricted isometry property (RIP) 

over the set of matrices of rank r.

Definition 2.2—A linear operator : ℝn1×n2 → ℝm satisfies the RIP of rank r with 

isometry constant δr if, for all rank r matrices X,

(1 − δr)‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δr)‖X‖F .

The RIP has been shown to be a sufficient condition for solving (2.3) [52, 8, 26]. These 

papers build on each other to establish the following theorem.

Theorem 2.3—Let X0 be an arbitrary matrix in ℂm×n. Assume that δ5r < 1/10. Then the X̂ 

obtained from solving (2.3) obeys

‖X − X0‖F ≤ C0
‖X0 − X0, r‖∗

r + C1ε, (2.4)

where X0,r is the best r rank approximation to X0, and C0,C1 are small constants depending 

only on the isometry constant.

This means that, if the measurement operator  satisfies RIP, then reconstruction via convex 

optimization behaves stably in the presence of noise. This result is very important in the 

context of the 2D Fredholm problem, as inversion of the Fredholm integral is very sensitive 

to noise. The bound in (2.4) guarantees that our reconstructed data behaves stably and will 

not create excess noise that would cause issues in the inversion process.

2.2. Matrix completion applied to NMR

For the NMR problem, let us say that

Cloninger et al. Page 6

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



M = K1FK2′ + E

= U1M∼0U2′ + E,
(2.5)

where Ui ∈ ℝNi×si, M̃ ∈ ℝs1×s2, and E ∈ ℝN1×N2. This means that

M∼0 = S1V 1′FV 2S2 . (2.6)

To subsample the data matrix M, we shall observe it on random entries. Let Ω ⊂ {1, …, N1} 

× {1, …, N2} be the set of indices where we observe M. For |Ω| = m, let the indices be 

ordered as Ω = {(ik, jk)}k = 1
m . Then we define the masking operator Ω as

AΩ:ℝN1 × N2 ℝm,
(AΩ(X))k = Xik, jk .

Recall that the goal is to recover M̃
0. This means that our actual sampling operator is

ℛΩ:ℝs1 × s2 ℝm,
ℛΩ(X) = AΩ(U1XU2′ ) .

Now the problem of speeding up NMR can be written as an attempt to recover M̃
0 from 

measurements

y = ℛΩ(M∼0) + e, ‖e‖2 ≤ ε . (2.7)

Note that [56] is assuming Ω = {1, …, N1} × {1, …, N2}, making the sampling operator 

ℛΩ(M∼) = U1M∼U2′ .

Then in the notation of this NMR problem, our recovery step takes the form

min ‖Z‖∗
such that ‖ℛΩ(Z) − y‖2 ≤ ε . (2.8)

Now the key question becomes whether ℛΩ satisfies the RIP. As we said in section 2.1, the 

RIP is a sufficient condition for an operator to satisfy the noise bounds of Theorem 2.3. 

Without this, there is no guarantee that solving (2.8) yields an accurate prediction of M̃. For 

this reason, the rest of this section shall focus on proving that ℛΩ is an RIP operator.

First, we must define the notion of a Parseval tight frame.
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Definition 2.4—A Parseval tight frame for a d-dimensional Hilbert space ℋ is a collection 

of elements {ϕj}j∈J ⊂ ℋ for an index set J such that

∑
j ∈ J

∣ 〈f, ϕj〉 ∣ 2 = ‖f‖2 ∀f ∈ H .

This automatically forces |J| ≥ d.

This definition is very closely related to the idea of an orthonormal basis. In fact, if |J| = d, 

then {ϕj}j∈J would be an orthonormal basis. This definition can be thought of as a 

generalization. Frames have the benefit of giving overcomplete representations of the 

function f, making them much more robust to errors and erasures than orthonormal bases 

[17, 41, 15]. This redundancy is exactly what we will be taking advantage of in Theorem 

2.6.

Further, we introduce a definition used in [29].

Definition 2.5—A bounded norm Parseval tight frame with incoherence μ is a Parseval 

tight frame {ϕj}j∈J on ℂd×d that also satisfies

‖ϕj‖2 ≤ μ d
∣ J ∣ ∀j ∈ J . (2.9)

The paper [29] defines this type of bound on an orthonormal basis. Note that, in the case of 

{ϕj}j∈J being an orthonormal basis, |J| = d2, reducing the bound in (2.9) to ||ϕj||2 ≤ μ/d, as in 

the case of [29].

Now notice that in our problem, ignoring noise, each observation can be written as

Mj, k = (u1
j)M∼0(u2

k)′

= 〈(u1
j)′(u2

k), M∼0〉,

where u1
j (resp., u2

j) is the jth row of U1 (resp., U2). Noting that U1 and U2 are left orthogonal 

(i.e., Ui′Ui = Idsi), one can immediately show that {(u1
j)′(u2

k)}(j, k) ∈ ℤN1 × ℤN2 forms a 

Parseval tight frame for ℝs1×s2. Also, because K1 and K2 are discretized versions of smooth 

continuous functions, { (u1
i )′(u2

j)} are a bounded norm frame for a reasonable constant μ (see 

further discussion of μ in section 3.2). Thus, ℛΩ is generated by randomly selecting 

measurements from a bounded norm Parseval tight frame.

We now have the necessary notation to state our central theorem, which establishes bounds 

on the quality of reconstruction from (2.8) in the presence of noise. The theorem and proof 
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rely on a generalization of [44], which only assumes the measurements to be orthonormal 

basis elements.

It is interesting to note that, because our measurements are overcomplete (|J| > s1s2), our 

system of equations is not necessarily underdetermined. However, Theorem 2.6 still gives 

guarantees on how the reconstruction scales with the noise, regardless of this detail. This is a 

difference from most compressive sensing literature. Generally the goal is to show that an 

underdetermined system has a stable solution. In our case we are showing that, regardless of 

whether or not the system is underdetermined, our reconstruction is stable in the presence of 

noise and the reconstruction error decreases monotonically with the number of 

measurements.

Theorem 2.6—Let {ϕj}j∈J ⊂ ℂs1×s2 be a bounded norm Parseval tight frame, with 

incoherence parameter μ. Let n = max(s1, s2), and let the number of measurements m satisfy

m ≥ Cμrn log5 n · log ∣ J ∣ ,

where C is a constant. Let the sampling operator ℛΩ be defined for Ω ⊂ J, with Ω = {i1, …, 

im}, as

ℛΩ:ℂs1 × s2 ℂm,
(ℛΩ(X))j = 〈ϕij, X〉, j = 1, …, m .

Let measurements y satisfy (2.7). Then, with probability greater than 1−e−Cδ2
 over the 

choice of Ω, the solution M̃ to (2.8) satisfies

‖M∼ − M∼0‖F ≤ C0
‖M∼0 − M∼0, r‖∗

r + C1p−1/2ε, (2.10)

where p = m
∣ J ∣ .

To prove this result, we need a key lemma, which establishes that our measurements satisfy 

the RIP.

Lemma 2.7—Let {ϕj}j∈J ⊂ ℂs1×s2 be a bounded norm Parseval tight frame, with 

incoherence parameter μ. Fix some 0 < δ < 1. Let n = max(s1, s2), and let the number of 

measurements m satisfy

m ≥ Cμrn log5 n · log ∣ J ∣ , (2.11)

where C ∝ 1/δ2. Let the sampling operator ℛΩ be defined for Ω ⊂ J, with Ω = {i1, …, im}, 

as
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ℛΩ:ℂs1 × s2 ℂm,
(ℛΩ(X))j = 〈ϕij, X〉, j = 1, …, m .

Then, with probability greater than 1 − e−Cδ2
 over the choice of Ω, ∣ J ∣

m ℛΩ satisfies the RIP 

of rank r with isometry constant δ.

The proof of this lemma is found in Appendix A and follows [44], where the claim is proved 

for an orthonormal basis. The main point here is to generalize the measurements to a 

bounded norm Parseval tight frame (also mentioned in [48], however, not considering when 

m > n2).

Proof of Theorem 2.6: We assume that Lemma 2.7 is true. Lemma 2.7 states that ∣ J ∣
m ℛΩ

satisfies the RIP. However, (2.8) is stated using only ℛΩ as the measurement operator.

This means we must include a scaling factor of ∣ J ∣
m  to understand the noise bound. Let 

p = m
∣ J ∣ = m

N1N2
 be the percentage of elements observed. Then, to utilize the RIP, we must 

try to solve the problem

min ‖Z‖∗

such that ‖p−1/2ℛΩ(Z) − p−1/2y‖2 ≤ p−1/2ε .
(2.12)

While scaling by a constant does not affect the result of the minimization problem, it does 

help us better understand the error in our reconstruction.

Theorem 2.3 tells us that our reconstruction error is bounded by a constant multiple of the 

error bound. But (2.12) means we can rewrite the error bound as

‖M∼ − M∼0‖F ≤ C0
‖M∼0 − M∼0, r‖∗

r + C1p−1/2ε,

thus attaining the desired inequality.

Remark 1: Examination of the proof of Lemma 2.7 shows that the bound on m in (2.11) is 

actually not sharp. If one refers to (A.1) in Appendix A, m is actually bounded below by a 

factor of logm. In (A.2) we simply overestimate this term with log |J| for simplicity. 

However, in reality the bound is

m ≥ Cλμrn log5 n · log m .
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Let N = Cλμrn log5 n. This would give the bound m ≥ e−W−1(−1/N), where W−1 is the lower 

branch of the Lambert W function [19]. Taking the first three terms of a series 

approximation of W−1 in terms of log(1/N) and log(log(N)) [18] gives us

m ≥ e−log(1/N)elog(log(N))e− log(log(N))
log(1/N)

= N log (N)e− log(log(N))
log(1/N)

= Cλμrn log5 n · log (Cλμrn log5 n) · e
log(log(Cλμrnlog5n))

log(Cλμrnlog5n) .

(2.13)

Note that taking three terms is sufficient as each subsequent term is asymptotically small 

compared to the previous. The bound in (2.13) is clearly much more intricate than simply 

bounding by m ≥ Cλμrn log5 n log |J|, but for typical sizes of |J| in the Fredholm integral 

setting, this results in m decreasing by less than 5% from its original size.

3. Numerical considerations

Section 2 gives theoretical guarantees about the error of estimating M̃
0 with the recovered 

M̃. We shall address several issues related to practical applications in this section. We shall 

let M̃
0 be the original compressed data matrix we are hoping to recover, and let M̃ be the 

approximation obtained by solving (2.8) for the sampling operator ℛΩ. We consider the 

guarantee given in (2.4) term by term.

For the rest of this paper, we take the kernels K1 and K2 to be Laplace-type kernels with 

quickly decaying singular values. For our purposes, we shall use the kernels k1(τ1, x) = 1 − e
−τ1/x and k2(τ2, y) = e−τ2/y to represent the general data structure of most multiexponential 

NMR spectroscopy measurements. The same kernels shall be used in section 5 for 

simulations and experiments. Also, τ1 is logarithmically sampled between 0.0005 and 4, and 

τ2 is linearly sampled between 0.0002 and 0.4, as these are typical values in practice. Also 

for this section, F is taken to be a two-peak distribution, namely Model 3 from section 5.

When needed, we set s1 = s2 = 20. This choice is determined by the discrete Picard condition 

(DPC) [33]. For ill-conditioned kernel problems Kf = g, with {ui} denoting left singular 

vectors of K and {σi} the corresponding singular values, the DPC guarantees that the best 

reconstruction of f is given by keeping all σi ≠ 0 such that 
∣ u1

∗g ∣
σi

 on average decays to zero 

as σi decrease. For our kernels with tensor product structure in (1.1), Figure 1 shows the 

relevant singular values and vectors to keep. The s1 = s2 = 20 rectangle provides a close 

estimate for what fits inside this curve, implying that at a minimum we could set s1 = s2 = 20 

to satisfy the DPC. The DPC provides a stronger condition than simply keeping the largest 

singular values or attempting to preserve some large percentage of the energy [32].

3.1. Noise bound in practice

Theorem 2.3 hinges on the assumption that δ5r < 1/10, where δr is the isometry constant for 

rank r. This puts a constraint on the maximum size of r. Let us denote that maximal rank by 

Cloninger et al. Page 11

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



r0. If we knew a priori that M̃
0 was at most rank r0, then this term of 

‖M∼0 − M∼0, r‖∗
r  would 

have zero contribution, as M̃
0 = M̃

0,r. However, because of (2.6), M̃
0 could theoretically be 

full rank, since S1 and S2 are decaying but not necessarily 0.

This problem is rectified by utilizing the knowledge that K1 and K2 have rapidly decaying 

singular values. Figure 2 shows just how rapidly the singular values decay for a typical 

choice of kernels and discretization points. This means M̃
0 from (2.6) must have even more 

rapidly decaying singular values, as V 1′FV 2 is multiplied by both S1 and S2. Figure 3 shows 

that the singular values of M̃
0 drop to zero almost immediately for a typical compressed data 

matrix.

This means that even for small r0, 
‖M∼0 − M∼0, r‖∗

r ≤ ‖∑i = r0 + 1
min(s1, s2)σi(M

∼
0)‖ is very close to zero, 

as the tail singular values of M̃
0 are almost exactly zero.

Figure 4 shows how the relative error decays for larger percentages of measurement, and 

how that curve matches the predicted curve of p−1/2||e||2. One can see from this curve that the 

rank r error does not play any significant role in the reconstruction error.

3.2. Incoherence

The incoherence parameter μ to bound the number of measurements in (2.11) plays a vital 

role in determining m in practice. It determines whether the measurements { ui′vj} are viable 

for reconstruction from significantly reduced m, even though they form a Parseval tight 

frame.

To show that μ does not make reconstruction prohibitive, we demonstrate on a typical 

example of K1 and K2, as described at the beginning of this section.

Figure 5 shows the ‖ϕj‖2∣ J ∣
n  for each measurement { ui′vj} from the above description, 

making μ = max ‖ϕj‖2∣ J ∣
n = 89.9. While this bound on μ is not ideal, as it makes m > n2, 

there are two important points to consider. First, as was mentioned in section 2.2, 

Theorem2.3 guarantees strong error bounds regardless of the system being underdetermined. 

Second, as is shown in section 3.3, the estimate M̃ is still significantly better than a simple 

least squares minimization, which in theory applies as the system isn’t underdetermined.

Also note from Figure 5 the fact that mean(‖ϕj‖2∣ J ∣
n ) and median(‖ϕj‖2∣ J ∣

n ) differ greatly 

from max (‖ϕj‖2∣ J ∣
n ). This implies that, while a small number of the entries are somewhat 

problematic and coherent with the elementary basis, the vast majority of terms are perfectly 

incoherent. This implies that Theorem 2.3 is a nonoptimal lower bound on m. Future work 

will be to examine the possibility of bounding m below with an average or median 

coherence, or considering a reweighted nuclear norm sampling similar to [16]. Another 

possibility is to examine the idea of asymptotic incoherence [1].
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3.3. Least squares comparison

One could also attempt to solve for M̃
0 using a least squares algorithm on the observed 

measurements via the Moore–Penrose pseudoinverse. However, as we shall show, due to 

noise and ill-conditioning, this is not a viable alternative to the nuclear norm minimization 

algorithm employed throughout this paper. As an example, we shall again use K1 and K2 as 

described in the beginning of this section. The noise shall range over various signal-to-noise 

ratios (SNRs).

We will consider a noisy estimate M̃ of the compressed matrix M̃
0, generated through the 

pseudoinverse, nuclear norm minimization, or simply the projection of a full set of 

measurements M via U1′MU2. Figure 6 shows the relative error of each of these recoveries, 

defining error to be

‖M∼0 − M∼‖F
‖M∼0‖F

.

Clearly, nuclear norm minimization, even for a small fraction of measurements kept, mirrors 

the full measurement compression almost perfectly, as was shown in Figure 4. However, the 

least squares minimization error is drastically higher. Even at 20% measurements kept, the 

difference in error between least squares reconstruction and the full measurement projection 

error is 4 times higher than the difference between nuclear norm reconstruction and the full 

measurement projection error.

4. Algorithm

The algorithm for solving for F in (1.1) from partial data consists of three steps. An 

overview of the original algorithm in [56] is in section 1. Our modification and the specifics 

of each step are detailed below.

1. Construct M̃ from given measurements. Let y = ℛΩ(M̃
0) + e be the set of 

observed measurements, as in (2.7). Even though section 2 makes guarantees for 

solving (2.8), we can instead solve the relaxed Lagrangian form

min μ‖X‖∗ + 1
2‖ℛΩ(X) − y‖2

2 . (4.1)

To solve (4.1), we use the singular value thresholding algorithm from [5, 46]. To 

do this, we need some notation. Let the matrix derivative of the L2 norm term be 

written as

g(X) = ℛΩ
∗ (ℛΩ(X) − y)

= U1′ (AΩ
∗ (AΩ(U1XU2′ ) − y))U2 .

Cloninger et al. Page 13

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also need the singular value thresholding operator ν that reduces each 

singular value of some matrix X by ν. In other words, if the SVD of X = UΣV′, 

then

Sν(X) = U∑
∼

V ′, ∑
∼

i, j =
max (∑i, i − ν, 0), i = j,
0 otherwise.

Using this notation, the algorithm can then be written as a simple, two-step 

iterative process. Choose a τ > 0. Then, for any initial condition, solve the 

iterative process

Y k = Xk − τg(Xk),
Xk + 1 = Sτμ(Y k) .

(4.2)

The choices of τ and μ are detailed in [46], along with adaptations of this method 

that speed up convergence. However, this method is guaranteed to converge to 

the correct solution.

This means that, given partial observations y, the iteration scheme in (4.2) 

converges to a matrix M̃, which is a good approximation of M̃ +0. Once M̃ has 

been generated, we recover F by solving

arg min
F ≥ 0

‖M∼ − (S1V 1′)F(S2V 2′)′‖F
2 + α‖F‖F

2 . (4.3)

2. Optimization. For a given value of α, (4.3) has a unique solution due to the 

second term being quadratic. This constrained optimization problem is then 

mapped onto an unconstrained optimization problem for estimating a vector c.

Let f be the vectorized version of F and m be a vectorized version of M̃. Then we 

define the vector c from f implicitly by

f = max (0, K′c), where K = (S1V 1′ ) ⊗ (S2V 2′ ) .

Here, ⊗ denotes the Kronecker product of two matrices. This definition of c 
comes from the constraint that F ≥ 0 in (4.3), which can now be reformed as the 

unconstrained minimization problem

min 1
2c′[G(c) + αI]c − c′m , (4.4)

where
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G(c) = K

H(K1, ·′ c) 0 ⋯ 0
0 H(K2, ·′ c) ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ H(KNx × Ny, ·′ c)

K′

and H(x) is the Heaviside function. Also, Ki,· denotes the ith row of K. The 

optimization problem (4.4) is solved using a simple gradient descent algorithm.

3. Choosing α. There are several methods for choosing the optimal value of α.

• Butler–Reeds–Dawson (BRD) method. Once an iteration of step 2 has 

been completed, it is shown in [56] that a better value of α can be 

calculated by

αopt =
s1s2
‖c‖ .

If one iterates between step 2 and the BRD method, the value of α 
converges to an optimal value. This method is very fast; however, it can 

have convergence issues in the presence of large amounts of noise, as 

well as on real data [53].

• S-curve. Let Fα be the value returned from step 2 for a fixed α. The 

choice of α should be large enough that Fα is not being overfitted and 

unstable to noise, yet small enough that Fα actually matches reality. 

This is done by examining the “fit error”

χ(α) = ‖M − K1FαK2′ ‖F .

This is effectively calculating the standard deviation of the resulting 

reconstruction. Plotting χ(α) for various values of α generates an S-

curve, as shown in Figure 7. The interesting value of α occurs at the 

bottom “heel” of the curve (i.e., d log χ(α)
d log α ≈ .1). This is because, at 

αheel, the fit error is no longer demonstrating overfitting as it is to the 

left of αheel, yet is still matching the original data, unlike to the right of 

αheel. This method is slower than the BRD method; however, it is 

usually more stable in the presence of noise.

For the rest of this paper, we use the S-curve method of choosing α.

5. Simulation results

In our simulations, we shall use the kernels k1(τ1, x) = 1 − e−τ1/x and k2(τ2, y) = e−τ2/y and 

sample τ1 logarithmically and τ2 linearly, as was done in section 3. Our simulations revolve 

around inverting subsampled simulated data to recover the density function F(x, y). We shall 

test three models of F(x, y). In Model 1, F(x, y) is a small variance Gaussian. In Model 2, 
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F(x, y) is a positively correlated density function. In Model 3, F(x, y) is a two-peak density, 

one peak being a small circular Gaussian and the other being a ridge with positive 

correlation.

The data is generated for a model of F(x, y) by discretizing F and computing

M = K1FK2′ + E,

where E is Gaussian noise. That data is then randomly subsampled by keeping only a λ 
fraction of the entries.

Each true model density F(x, y) is sampled logarithmically in x and y. τ1 is logarithmically 

sampled N1 = 30 times, and τ2 is linearly sampled N2 = 4000 times. Each model is 

examined for various SNRs and values of λ, and α is chosen using the S-curve approach for 

each trial.

Let us also define the signal-to-noise ratio (SNR) for our data to be

SNR = 10 log10
‖M‖2

‖E‖2 dB .

Note that [56] has extensively examined steps 2 and 3 of this algorithm, including the effects 

of α and the SNR on the reconstruction of F. Our examination focuses on the differences 

between the F generated from full knowledge of the data and the F generated from 

subsampled data. For this reason, Ffull refers to the correlation spectrum generated from full 

knowledge of the data using the algorithm from [56]. Fλ refers to the correlation spectrum 

generated from only a λ fraction of the measurements using our algorithm.

5.1. Model 1

In this model, F(x, y) is a small variance Gaussian. This is the simplest example of a 

correlation spectrum, given that the dimensions are uncorrelated. F(x, y) is centered at (x, y) 

= (.1, .1) and has standard deviation .02. The maximum signal amplitude is normalized to 1. 

This model of F(x, y) is a base case for any algorithm. In other words, any legitimate 

algorithm for inverting the 2D Fredholm integral must at a minimum be successful in this 

case.

Figure 8 shows the quality of reconstruction of a simple spectrum with an SNR of 30dB. 

Figure 9 shows the same spectrum, but with an SNR of 15dB. Almost nothing is lost in 

either reconstruction, implying that both the original algorithm and our compressive sensing 

algorithm are very robust to noise for this simple spectrum.

5.2. Model 2

In this model, F(x, y) is a positively correlated density function. The spectrum has a positive 

correlation, thus creating a ridge through the space. F(x, y) is centered at (x, y) = (.1, .1), 

Cloninger et al. Page 16

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the variance in the x + y direction being 7 times greater than the variance in the x − y 
direction. The maximum signal amplitude is normalized to 1. This is an example of a 

spectrum where it is essential to consider the 2D image. A projection onto one dimension 

would yield an incomplete understanding of the spectrum, as neither the T1 projection nor 

the T2 projection would convey that the ridge is very thin. This is a more practical test of our 

inversion algorithm.

Figure 10 shows the quality of reconstruction of a correlated spectrum with an SNR of 

30dB. Figure 11 shows the same spectrum, but with an SNR of 20dB. There is slight 

degradation in the 10% reconstruction, but the reconstructed spectrum is still incredibly 

close to Ffull. Overall, both of these figures show the quality of our compressive sensing 

reconstruction relative to using the full data.

5.3. Model 3

In this model, F(x, y) is a two-peak density, with one peak being a small circular Gaussian 

and the other being a ridge with positive correlation. The ridge is centered at (x, y) = (.1, .1), 

with the variance in the x + y direction being 7 times greater than the variance in the x − y 
direction. The circular part is centered at (x, y) = (.05, .4). The maximum signal amplitude is 

normalized to 1. This is an example of a common, complicated spectrum that occurs during 

experimentation.

Figure 12 shows the quality of reconstruction of a two-peak spectrum with an SNR of 35dB. 

In this instance, there is some degradation from Ffull to any of the reconstructed data sets. 

Once again, there is slight degradation in the 10% model, but the compressive sensing 

reconstructions are still very close matches to Ffull.

6. Conclusion

In this paper, we introduce a matrix completion framework for solving 2D Fredholm 

integrals. This method allows us to invert the discretized transformation via Tikhonov 

regularization using far fewer measurements than previous algorithms. We proved that the 

nuclear norm minimization reconstruction of the measurements is stable and 

computationally efficient, and demonstrated that the resulting estimate of ℱ(x, y) is 

consistent with using the full set of measurements. This allows us in application to reduce 

the measurements conducted by a factor of 5 or more.

While the theoretical framework of this paper applies to 2D NMR spectroscopy, the 

approach is easily generalized to larger-dimensional measurements. This allows for 

accelerated acquisition of 3D correlation maps [3] that would otherwise take days to collect. 

This shall be a subject of forthcoming work.
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Appendix A. Proof of Lemma 2.7

Let us define

U = {X ∈ ℂs1 × s2 ∣ ‖X‖∗ ≤ r‖X‖F} .

Note that the set of all rank r matrices in ℂs1×s2 is a subset of U by Hölder’s inequality. For 

the proof, we need some notation:

U2 = {X ∈ ℂs1 × s2 ∣ ‖X‖F ≤ 1, ‖X‖∗ ≤ r‖X‖F},

εr(A) = sup
X ∈ U2

∣ 〈X, (A∗A − ℐ)X〉 ∣ .

The RIP can be rewritten as

(1 − δ)2〈X, X〉 ≤ 〈X, A∗AX〉 ≤ (1 + δ)2〈X, X〉 ∀X ∈ U,

which is implied by

∣ 〈X, (A∗A − ℐ)X〉 ∣ ≤ 2δ − δ2 ∀X ∈ U2 .

So we need to show that εr( ) ≤ 2δ − δ2 ≡ ε.

One can then define a norm on the set of all self-adjoint operators from ℂs1×s2 to ℂs1×s2 by

‖ℳ‖(r) = sup
X ∈ U2

∣ 〈X, ℳX〉 ∣ .

The proof that this is a norm, and that the set of self-adjoint operators is a Banach space with 

respect to ||·||(r), is found in [44].
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We can now write εr( ) = ||  *  − ℐ||(r). For our purposes, as with most compressive 

sensing proofs, we first bound εr( ) and then show that εr( ) is concentrated around its 

mean.

For our problem of dealing with tight frame measurements, let A∗A − ℐ = ∑i = 1
m χi, where 

χi = ∣ J ∣
m ϕi

∗ϕi − ℐ
m . Also, let χi′ be independent copies of the random variable χi. Finally, let 

εi be a random variable that takes values ±1 with equal probability. Then we have that

EΩεr(A) = EΩ ∑χi (r)
≤ EΩ ∑χi − χi′ (r)
= EΩEε ∑εi(χi − χi′) (r)

= EΩEε ∑εi(ϕi∗ϕi − (ϕi′)
∗ϕi′)

∣ J ∣
m (r)

≤ 2 n
mEΩEε ∑εi

∣ J ∣
n ϕi∗ϕi

∣ J ∣
n (r) .

Now we cite Lemma 3.1 of [44], which is general enough to remain unchanged in the case 

of tight frames.

Lemma A.1

Let {V i}i = 1
m ⊂ ℂs1 × s2 have a uniformly bounded norm, ||Vi|| ≤ K. Let n = max(s1, s2), and 

let {εi}i = 1
m  be independent and identically distributed uniform ±1 random variables. Then

Eε ∑
i = 1

m
εiV i∗V i

(r)
≤ C1 ∑

i = 1

m
V i∗V i

(r)

1/2
,

where C1 = C0 rK log5/2 n log1/2 m and C0 is a universal constant.

For our purposes, V i = ∣ J ∣
n ϕi. Then

Eεr(A) ≤ 2C1
n
mEΩ ∑ ∣ J ∣

n ϕi∗ϕi
∣ J ∣

n (r)
1/2

≤ 2C1
n
m EΩ ∑ ∣ J ∣

n ϕi∗ϕi
∣ J ∣

n (r)
1/2

= 2C1
n
m(E‖A∗A‖)1/2

≤ 2C1
n
m(Eεr(A) + 1)1/2 .

Here,
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C1 = C0 r μ log5/2 n · log1/2 m . (A.1)

If we take E0 = εr( ) and C = 2C1
n
m , then (A.1) gives us

E0
2 − C2E0 − C2 ≤ 0.

Fix some λ ≥ 1, and choose

m ≥ Cλμrn log5 n · log ∣ J ∣
≥ λn(2C1)2 .

(A.2)

This makes Eεr(A) ≤ 1
λ + 1

λ .

The next step is to show that εr( ) does not deviate far from εr( ). Let  *  − ℐ = χ 
be a random variable and χ′ be an independent copy of χ. We now note that

Pr (‖χ‖(r) > 2Eεr(A) + u) ≤ 2 Pr (‖χ − χ′‖(r) > u) .

Define Yi = χi − χi′, so that χ − χ′ = Y = ∑i = 1
m Yi. Clearly

‖Yi‖(r) ≤ 2‖χi‖(r) = 2 sup
X ∈ U2

∣ J ∣
m ∣ 〈ϕi, X〉 ∣ 2 − 1

m‖X‖F
2 ≤ 2nrμ + 1

m ≤ 1
2λC0

2 .

We now use the following result by Ledoux and Talagrand in [43].

Theorem A.2

Let {Yi}i = 1
m  be independent symmetric random variables on some Banach space such that ||

i|| ≤ R. Let Y = ∑i = 1
m Yi. Then for any integers l ≥ q and any t > 0

Pr (‖Y‖ ≥ 8qE‖Y‖ + 2Rl + tE‖Y‖) ≤ (K/q)l + 2e−t2/256q,

where K is a universal constant.

Now for appropriate choices of q, l, and t, and with an appropriate λ such that λ ≥ A/ε2 for 

some constant A, we get that
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Pr (‖χ‖(r) ≥ ε) ≤ e−Cε2λ,

where C is a constant. Thus, the probability of failure is exponentially small in λ.
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Figure 1. 
Points denote which singular values of K1 (rows of plot) and K2 (columns of plot) to keep in 

order to satisfy the DPC for stable inversion.
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Figure 2. 
Plots of the singular value decay of the kernels. Left: K1. Right: K2.
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Figure 3. 
Plot of the singular value decay for data matrix M.
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Figure 4. 
Plot of the error in reconstruction.
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Figure 5. 

Plot of ‖ui′vj‖ ∣ J ∣
n  for each measurement element from the NMR problem.
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Figure 6. 
Relative error of least squares approximation compared to nuclear norm minimization versus 

percentage of measurements kept. Left: SNR = 15dB. Center: SNR = 25dB. Right: SNR = 

35dB.
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Figure 7. 
Plot of the fit error for various α.

Cloninger et al. Page 30

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Model 1 with SNR of 30dB. Top left: True spectrum. Top right: Ffull. Bottom left: 

Reconstruction from 30% measurements. Bottom right: Reconstruction from 10% 

measurements.

Cloninger et al. Page 31

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Model 1 with SNR of 15dB. Top left: True spectrum. Top right: Ffull. Bottom left: 

Reconstruction from 30% measurements. Bottom right: Reconstruction from 10% 

measurements.
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Figure 10. 
Model 2 with SNR of 30dB. Top left: True spectrum. Top right: Ffull. Bottom left: 

Reconstruction from 30% measurements. Bottom right: Reconstruction from 10% 

measurements.
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Figure 11. 
Model 2 with SNR of 20dB. Top left: True spectrum. Top right: Ffull. Bottom left: 

Reconstruction from 30% measurements. Bottom right: Reconstruction from 10% 

measurements.

Cloninger et al. Page 34

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Model 3 with SNR of 30dB. Top left: True spectrum. Top right: Ffull. Bottom left: 

Reconstruction from 30% measurements. Bottom right: Reconstruction from 10% 

measurements.
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