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Abstract

Formal thought disorder (ThD) is a clinical sign of schizophrenia amongst other serious mental 

health conditions. ThD can be recognized by observing incoherent speech - speech in which 

it is difficult to perceive connections between successive utterances and lacks a clear global 

theme. Automated assessment of the coherence of speech in patients with schizophrenia has been 

an active area of research for over a decade, in an effort to develop an objective and reliable 

instrument through which to quantify ThD. However, this work has largely been conducted in 

controlled settings using structured interviews and depended upon manual transcription services 

to render audio recordings amenable to computational analysis. In this paper, we present an 

evaluation of such automated methods in the context of a fully automated system using Automated 

Speech Recognition (ASR) in place of a manual transcription service, with “audio diaries” 

collected in naturalistic settings from participants experiencing Auditory Verbal Hallucinations 

(AVH). We show that performance lost due to ASR errors can often be restored through 

Weizhe Xu: study conceptualization, design of experiments, and coherence software development with input from Trevor Cohen and 
Serguei Pakhomov.
Dror Ben-Zeev and Ayesha Chander: data collection and curation.
Andrew Campbell and Weichen Wang: data collection and provided additional metadata.
Weichen Wang: additional metadata interpretation
Serguei Pakhomov: designing automated speech recognition (ASR) pipeline.
Jake Portanova: label creation for the dataset.
Weizhe Xu wrote the initial draft of the manuscript, with input from Trevor Cohen and Serguei Pakhomov. All authors read and 
reviewed the manuscript, providing edits and suggestions for improvement where appropriate.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure:
Dr. Ben-Zeev has an intervention content licensing agreement with Pear Therapeutics and financial interests in FOCUS technology 
and in Merlin LLC. He has consulted for Trusst Health, eQuility, Otsuka Pharmaceuticals, and Deep Valley Labs.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2023 February 01.

Published in final edited form as:
J Biomed Inform. 2022 February ; 126: 103998. doi:10.1016/j.jbi.2022.103998.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the application of Time-Series Augmented Representations for Detection of Incoherent Speech 

(TARDIS), a novel approach that involves treating the sequence of coherence scores from a 

transcript as a time-series, providing features for machine learning. With ASR, TARDIS improves 

average AUC across coherence metrics for detection of severe ThD by 0.09; average correlation 

with human-labeled derailment scores by 0.10; and average correlation between coherence 

estimates from manual and ASR-derived transcripts by 0.29. In addition, TARDIS improves 

the agreement between coherence estimates from manual transcripts and human judgment and 

correlation with self-reported estimates of AVH symptom severity. As such, TARDIS eliminates a 

fundamental barrier to the deployment of automated methods to detect linguistic indicators of ThD 

to monitor and improve clinical care in serious mental illness.

Graphical Abstract

1 Introduction

Coherent speech is apparent when individual utterances are logically connected and relate to 

a global theme. Speech lacking such coherence is clinically indicative of a range of serious 

mental illnesses, notably schizophrenia, where it is considered to be a manifestation of an 

underlying formal thought disorder (ThD) [1]. Consider for example this excerpt from the 

speech of a patient with schizophrenia, presented by Andreasen and Grove [1]:

They’re destroying too many cattle and oil just to make soap. If we need soap when 

you can jump into a pool of water and then when you go to buy your gasoline, 

m-my folks always thought they should, get pop but the best thing to get, is motor 

oil, and money.

While connections between sentences are perceivable at times, there are lapses in which 

it is difficult to understand how elements of the discourse relate to one another - such 

as why one might need soap to buy gasoline - or to a central theme. In psychiatry, lack 

of clear associative connections in spoken language is referred to as derailment, loose 
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associations, or flight of ideas, with standardized instruments further distinguishing the 

total absence of connectivity between ideas as a distinct construct [1-2]. The notion that 

coherence might be automatically estimated using methods of distributional similarity was 

proposed by Foltz et al. [3], who derived a measure of text coherence by estimating the 

semantic relatedness between successive text segments using Latent Semantic Analysis 

(LSA) [4], for the purpose of studying the relationship between narrative coherence and 

text comprehension. The utility of this approach as a diagnostic instrument was evaluated 

by Elvevag, Foltz, and colleagues [5], who showed significant differences in automated 

coherence metrics between patients with schizophrenia and healthy controls, and between 

patients that were clinically rated as having higher degrees of ThD and other patients. 

Coherence scores from this method were subsequently incorporated into a predictive 

model that distinguished between patients and their healthy relatives with an accuracy of 

approximately 86% in cross-validation experiments [6]. In more recent work, LSA-based 

coherence metrics were incorporated as features in a classifier that predicted the onset 
of psychosis in a small sample (n=34) of youths experiencing prodromal symptoms with 

perfect accuracy in participant-level leave one out cross-validation experiments [7]. A 

variant of this approach was subsequently shown to retain 83% accuracy in predicting 

psychosis onset when evaluated using a larger data set from another site [8]. Neural word 

embeddings, as an alternative to LSA, have also been explored in automated coherence 

analysis, showing promising results in predicting clinical ratings of ThD [9,10]. Most 

recently, differences between participants with schizophrenia spectrum disorders and healthy 

controls were found in coherence estimates using sentence embeddings from a pretrained 

deep learning architecture, Bidirectional Embedding Representations from Transformers 

(BERT) [11,12].

While these studies provide support for the validity of semantic distance-based measures of 

coherence as indicators of ThD, they also raise questions about barriers to the deployment 

of these measures in practice. Work in this area has depended upon manual transcriptions 

of lengthy clinical interviews (e.g., > 1 hour in duration in Bedi, et al [7]), or data gathered 

in the context of structured tasks (such as story recall in Elvevag et al. [5]) conducted in 

controlled settings by interviewers with specialized training. The use of manual transcribers 

presents logistical challenges to automated speech assessment in serious mental illness, 

as this requires transferring potentially sensitive information to a third-party transcription 

service and would result in delays in response to changes in the clinical state if applied 

for the purpose of real-time monitoring. Extended structured interviews provide granular 

information but would place excessive demands on both staff and patients if applied with the 

frequency prerequisite for early detection of exacerbation in clinical symptoms.

Recent research suggests pathways through which to negotiate these challenges to 

automated, speech-based monitoring of symptoms in serious mental illness. The 

pervasiveness of smartphone technology presents the opportunity for real-time, real-place 

granular capture of speech data. Individuals with mental illness are more likely to own a 

smartphone than a computer [13], with survey estimates as high as two-thirds [14]. In our 

own recent work, we have demonstrated that individuals with schizophrenia are able to use 

smartphones for illness monitoring and relapse detection for extended periods (i.e., up to a 

year [15-17]); that people with active psychotic symptoms are willing to use their personally 
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owned smartphones to record “audio diaries” describing them; and that automated analysis 

of manual transcriptions of these audio diaries approximates human judgment in the 

identification of thought disorder (e.g., semantic incoherence) [18]. This work showed 

that meaningful linguistic markers indicating thought disorder can be reliably extracted 

from transcripts of short (three minutes or less) smartphone-derived audio recordings of 

spontaneous speech captured in naturalistic settings in response to an open-ended prompt. 

This raises the question as to whether similar alignment with human judgment can be 

achieved in the context of Automated Speech Recognition (ASR), which would eliminate an 

important logistical barrier to deployment.

There is reason to believe this may be the case - in a recent study, Holmlund and colleagues 

[19] demonstrated that automated estimates of performance on story recall tasks using 

manual and ASR-derived transcripts of smartphone-derived audio recordings were highly 

correlated with one another, and comparably correlated with human ratings [19]. While this 

work did not concern formal thought disorder, the method used to derive automated recall 

scores depends upon estimates of semantic relatedness derived from vector representations 

of words similar to those that underlie previous work on automated coherence estimates. 

The authors argue that the robustness of automated scoring performance in the context of 

ASR errors is in part attributable to the mapping between variant forms of words on account 

of distributional similarity, reducing the dependence on perfectly accurate word recognition 

such that even recognition of a word fragment may be sufficient for meaningful estimation 

of the relatedness between text passages. In subsequent work [20], the automated story recall 

scores were incorporated amongst a battery of smartphone-delivered neuropsychological 

tests, further underscoring the potential of smartphone technology for scalable deployment 

of neuropsychological assessments.

In the current work, we assess the robustness of automated estimates of coherence [18] 

to errors introduced during the process of ASR. We also devise a novel representational 

approach for these coherence estimates called Time-series Augmented Representations for 

Detection of Incoherent Speech (TARDIS) and compare this with the typical approach of 

aggregating coherence estimates across transcripts: taking the minimum coherence score. 

This approach predominates in prior work on automated estimates of coherence in the 

context of thought disorganization [5-8], underlies key validation studies in this area [5,7], 

and has been shown to outperform a range of other aggregate statistics in its agreement with 

human judgment and utility as a predictive feature of the onset of psychosis in high-risk 

individuals [7,18]. However, as it is based on a point estimate only, we hypothesized that it 

would be vulnerable to ASR errors. Using an in-house ASR system based on Baidu’s Deep 

Speech 2 architecture [21], we generated automated transcriptions of 275 “Audio Diary” 

recordings of participants describing their experiences of Auditory Verbal Hallucinations 

(AVH) – another prominent symptom of psychotic-spectrum disorders such as schizophrenia 

- and compared the concordance of automated estimates of coherence derived from both 

these and professional transcriptions to the judgment of human annotators. To ensure the 

generalizability of our method, we employed an additional 2000+ unannotated “Audio 

Diary” recordings. We assessed the correlation between coherence estimates derived from 

manual and automated transcriptions and the strength of association between the resulting 

estimates and baseline estimates of the severity of related psychotic symptoms using a 
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validated self-report scale. We hypothesized that ASR-based metrics would (1) largely 

retain their alignment with the human judgment of coherence; (2) correlate well with 

corresponding assessments from professional transcriptions; (3) retain their association 

with the severity of related psychotic symptoms. In addition, we hypothesized loss in 

performance with ASR in all three of these evaluations could be partly remediated using 

TARDIS – an alternative to the typical approach of using the lowest evaluation of coherence 

between semantic units (words, phrases, or sentences) of a transcript as a sole feature. 

This approach seemed to us particularly vulnerable to spuriously low coherence estimates 

introduced by ASR errors.

2 Method

2.1 Data sets

Data used in this work were provided by 384 participants experiencing AVH, of which 295 

had significant clinical histories, including inpatient care (50%) and partial hospitalization 

(33%). Participants were drawn from 41 U.S. states, with the majority (approximately 

80%) of participants recruited online. The participant pool was diverse, with approximately 

20% of participants identifying as Black or African American, and approximately 15% 

identifying as Hispanic or Latino. Together, these participants contributed a total of 27,731 

Ecological Momentary Assessment (EMA) self-reports and 4809 Audio Diary recordings, 

with 3040 of these – recordings of duration 30 seconds or longer – professionally 

transcribed [22]. From these data, we derived two datasets, one annotated with human-

assigned estimates of incoherence (the labeled dataset) and the other without human 

annotation (the unlabeled set).

Figure 1 provides an overview of the data sets and how they were constructed. The partial 

overlap between the “Full” (all participants completing the study) and “Labeled” (from 

participants with data available in October of 2019) source sets can be explained by data in 

the smaller set, which was gathered earlier, from participants who did not complete the study 

in its entirety.

Labeled dataset: We used data collected by extracting a sample of up to three 

smartphone-derived Audio Diary recordings of duration thirty seconds or more per 

participant from the data collected up to date Oct 2019, resulting in a set of 310 transcripts 

of 142 participants describing their auditory hallucinations. These transcripts were manually 

annotated by two raters for the construct of “derailment” as defined in the Thought and 

Language Disorder Scale (TALD) [2]. Scores were assigned by 2 annotators independently 

and ranged from 0-4; with 0 indicating no evidence of derailment, 1-2 indicating mild 

to moderate derailment, 3 indicating severe derailment, and 4 indicating the text was 

incomprehensible. After independent reassessment of any discrepancies of 2 or more TALD 

units, agreement by quadratically weighted Kappa score was 0.71 [18]. For a small number 

of recordings, neither the ASR system nor the human transcribers were able to produce 

meaningful transcripts. In these cases, the human transcribers noted background noise, and 

the ASR system did not produce output. After removing these recordings and restricting 

to only those transcripts from which all coherence metrics produced a score (for example, 
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sentence-based metrics require more than one sentence to be recognized), we arrived at a set 

of 275 paired (manually transcribed and ASR) labeled transcripts from 134 participants.

Unlabeled dataset: While most of the full set of 3033 recordings with transcriptions 

has not been annotated for derailment, this set nonetheless provides additional data for 

evaluation purposes. While the annotated set is not a subset of this set (because it includes 

data from participants that were enrolled earlier in the study but did not complete it), 

there was some overlap between the sets with 247 recordings occurring in both sets. After 

removing these files from the larger set and those in which the ASR system did not produce 

any output, we retained a total of 2359 unlabeled transcripts from 235 participants. Because 

it is without human annotation for coherence, this set was used to compare coherence scores 

derived from automated transcripts with either comparable scores from manual transcripts, 

or clinical rating scales. Specifically, the unlabeled dataset was used to (1) evaluate the 

correlation between ASR- and manual transcript-derived coherence scores; and (2) assess 

the relationship between these scores and scores from a validated self-report instrument for 

the assessment of the severity of other psychotic symptoms.

2.2 Automatic speech recognition

We trained an ASR system based on Baidu’s Deep Speech 2 architecture [21] implemented 

in PyTorch1, and consisting of 3 convolutional neural network (CNN) layers, followed by 

5 bidirectional recurrent neural network (RNN) layers with gated recurrent units (GRU), a 

single lookahead convolution layer followed by a fully connected layer and a single softmax 

layer. The system was trained using the Connectionist Temporal Classification (CTC) 

loss function [23]. In addition to the default greedy search decoding over the hypotheses 

produced by the softmax layer, the system’s implementation also can use a beam search 

decoder with a standard n-gram language model. We used default hyperparameters: the size 

of the RNN layers was set to 800 GRU units; starting learning rate was set to 0.0003 with 

the annealing parameter set to 1.1 and momentum of 0.9. Audio signal processing consisted 

of transforming the audio from the time to the frequency domain via Short-time Fourier 

transform as implemented by the Python librosa2 library. The signal was sampled in frames 

of 20 milliseconds overlapping by 10 milliseconds. The resulting input vectors to the first 

CNN layer of the Deep Speech 2 network consisted of 160 values representing the power 

spectrum of each frame.

A collection of speech corpora available from the Linguistic Data Consortium were 

used as training data. These corpora include the Wall Street Journal (WSJ: LDC93S6A, 

LDC94S13B), Resource Management (RM - LDC93S3A), TIMIT (LDC93S1), FFMTIMIT 

(LDC96S32), DCIEM/HCRC (LDC96S38), USC-SFI MALACH corpus (LDC2019S11), 

Switchboard-1 (LDC97S62), and Fisher (LDC2004S13, LDC2005S13). In addition to these 

corpora, we used the following publicly available data: TalkBank (CMU, ISL, SBCSAE 

collections) [24], Common Voice (CV: Version 1.0)) corpus 3, Voxforge corpus 4, TED-

1Baidu Deep Speech: https://github.com/SeanNaren/deepspeech.pytorch
2Librosa: https://librosa.org/
3Common voice: http://voice.mozilla.org
4Voxforge: http://www.voxforge.org/
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LIUM corpus (Release 2) [25], LibriSpeech [26], Flicker8K [27], CSTR VCTK corpus 

[28], and the Spoken Wikipedia Corpus (SWC-English [29]). Audio samples from all these 

data sources were split into pieces shorter than 25 seconds in duration. The total size of 

the resulting corpus was approximately 4,991 hours of audio (2,000 hours contributed by 

the Fisher corpus alone). Finally, we also used in-house audio data from various prior 

studies that were conducted at the University of Minnesota consisting of story recall, verbal 

fluency, and spontaneous narrative tasks. Apart from the Fisher and Switchboard corpora, 

all other data were recorded at a minimum of 16 kHz sampling frequency. The Fisher and 

Switchboard corpora contain narrow-band telephone conversations sampled at 8 KHz. All 

data were either down-sampled or upsampled and converted using the SoX toolkit5 to a 

single channel 16-bit 16 kHz PCM WAVE format.

Beam-search decoding was used to produce raw ASR transcripts with a 4-gram language 

model constructed with the SRILM Toolkit [30] from the English language portion of the 1 

Billion words text corpus6 model with Kneser-Ney smoothing [31].

2.3 Post-processing of transcripts

2.3.1 Repunctuation—The raw output of the ASR pipeline is a sequence of words, 

without capitalization or punctuation. However, punctuation is necessary for the phrase- and 

sentence-level segmentation, which is required for certain coherence metrics. We therefore 

used the punctuator model of Tilk et al [32] to add punctuation to the transcriptions. This 

model uses a bidirectional recurrent neural network with an attention mechanism, trained 

on English TED talks (2.1M words). We used a publicly available pretrained model7 to add 

punctuation marks such as commas, periods, and question marks to our ASR output. After 

repunctuation, we capitalized the first letter of each sentence (start of a line or following a 

period) and standalone “i” characters, to further improve transcript quality.

2.3.2 Segmentation—Automated estimates of coherence leveraging distributional 

similarity are estimated by comparing the semantic relatedness between units of text, 

where a unit might be an individual word, phrase, or sentence. Before coherence analysis, 

transcripts must be tokenized into such semantic units. Tokenization is a necessary process 

to break down the document into basic units (word/phrase/sentence), and in the case of 

larger units, further tokenization is required to construct semantic vectors for further analysis 

by averaging the vectors of the words they contain. We first removed the “stop-words”, 

words that do not carry semantic content (such as “a”, “an”, and “the”), using a commonly 

used list of stop-words provided by the NLTK toolkit [33]. Then we tokenized the transcripts 

into semantic units at three different levels of granularity: words, noun phrases, and 

sentences. The words and sentences were tokenized using the NLTK word and sentence 

tokenizer, respectively, and the noun phrases were tokenized using the noun-phrase tokenizer 

from the Spacy package [34].

5Sox toolkit: http://sox.sourceforge.net
6SRILM toolkit: https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
7Punctuator: https://github.com/ottokart/punctuator2
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2.4 Assessment of coherence

In this section, we will describe our pipeline for automated estimation of coherence 

subsequent to the tokenization of incoming text into semantic units at the word, phrase, 

or sentence level. Once this segmentation is accomplished, the main questions to consider 

are: (1) how is semantic relatedness between units of text measured? (2) upon which 

units are these measurements based (e.g., sequential units, gapped units); and (3) how are 

these measurements aggregated across a transcript? We will commence by describing how 

semantic vector representations of words are used to calculate the relatedness between 

semantic units.

2.4.1 Skip-gram semantic vectors—Vector representations of words learned from 

large unlabeled corpora have a long track record of application in both automated natural 

language processing tasks, and cognitive models of lexical semantics [35-37]. Neural word 

embedding [38] is a widely used approach to generating semantic word vectors, on account 

of its ability to scale comfortably to large corpora. For the current research, we used 

publicly available pre-trained vectors derived using the FastText [39] package8 consisting of 

2-million-word vectors trained on a corpus derived from Common Crawl9. Individual words 

are represented by their vectors, and larger units (phrases or sentences) are represented as 

the normalized superposition of the vectors of the words they contain. For example, the 

noun phrase “bank account” can be represented by an embedding that is the normalized 

sum of the embedding of “bank” and the embedding of “account”. The same approach 

can be applied to each sentence. With some sentence-level variants (henceforth denoted 

with “IDF”), this superposition is weighted by the inverse document frequency of the terms 

concerned, such that relatively infrequent (and hence more informative) terms will carry 

more weight. The relatedness between any pair of semantic units is calculated as the cosine 

of the angle between the vectors that represent them.

2.4.2 Contextual semantic vectors—In addition to skip-gram semantic vector 

embeddings, we experimented with contextual semantic vector embeddings using the 

Bidirectional Encoder Representations from Transformers (BERT) model [12]. Coherence 

estimates based on BERT-derived sentence embeddings have recently been shown to differ 

between patients with schizophrenia spectrum disorders and healthy controls [11], and 

we wished to evaluate their utility as a means to model coherence in our data with and 

without TARDIS. BERT models are trained to predict ‘masked’ words within sentences and 

to predict whether one observed sentence follows another. This is accomplished using an 

attention mechanism, through which the contextual representation of a word is informed by 

the representations of other words in its vicinity. This context-specific representation differs 

from the single (global) vector representation of a word that underlies the distributional 

semantic vector representations we have discussed previously. We derived contextual 

embedding from the BERT model at token, phrase, and sentence levels. The token level 

embeddings were derived as the sum of the last four layers of the hidden state output for 

each input token [12]. The phrase embeddings were generated as the sum of the embeddings 

8FastText: https://fasttext.cc/docs/en/english-vectors.html
9Common crawl: https://commoncrawl.org/2017/06
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from the individual token components. At the sentence level, we experimented with a range 

of approaches: the second-to-last layer of hidden state output [12], the CLS token output 

(a special token prepended to the sequence that is typically used to generate sentence 

representations for the purpose of text categorization), the sum of the token embeddings that 

form the sentence, and the sentence embeddings from sentence-BERT [40]. Sentence-BERT 

uses Siamese and triplet network structures to derive semantically meaningful sentence 

embeddings with advantages in performance over prior methods in sentence similarity tasks 

[40]. We used the pretrained “BERT-base-uncased” model to derive most of the embedding 

variants and the publicly available “all-MiniLM-L6-v2” model to derive the embeddings 

from the sentence-BERT implementation [40]-.

2.4.3 Cosine calculations—Sequential estimates of coherence are based on 

measurement of the similarity between terms that are juxtaposed in sequence underlie most 

automated estimates of formal thought disorder. Sequential estimates have been validated 

in numerous prior studies [5,7]. However, in recent work, we have shown that global 
estimates of coherence, based on the similarity between terms in a text and their centroid 

(or vector average) can align better with annotator assessment of coherence than their 

sequential counterparts [18]. Motivated by these results, we calculated both sequential and 

centroid-based estimates of coherence for the current study. With centroid-based methods, 

we included both static and cumulative variants, where the former measure the relatedness 

between each term in a transcript and their centroid, and the latter measure the relatedness 

between each term and the centroid for all terms encountered up to the point in the sequence 

of the term under consideration. Where sequential approaches estimate the relatedness 

between ideas that are stated in proximity, global estimates measure the relatedness between 

each stated idea and the central topic of a body of text. The relatedness was measured in 

terms of cosine similarity such that each transcript was represented by a series of cosine 

values.

2.4.4 TARDIS: Time-series augmentation—Once the cosine similarities between 

all the units of interest in a text have been calculated, these are typically aggregated to 

provide a coherence estimate to serve as a single feature for analysis, or for downstream 

machine learning. The minimum cosine score is a commonly used aggregation function 

for this purpose [6-7], and this proved effective in our recent work also [18]. While this 

is convenient to calculate and has been effective as a basis for machine learning models 

[7-8], we were concerned that a single point estimate (such as the minimum cosine between 

successive phrases) or some other individual summary statistic (such as the mean cosine 

across all semantic units) may be vulnerable to occasional extremely low cosine values 

from errors arising during automated transcription. We were also concerned that simply 

taking an aggregation function would discard much information about the pattern of the 

cosine values as a transcript progresses, especially given that a decrease in coherence 

throughout an utterance was observed in participants judged to have high degrees of formal 

thought disorder in previous work [5]. Therefore, we developed TARDIS - a novel approach 

to representing coherence estimates from an entire transcript, which involves treating the 

cosine values for words that occur in sequence as time-series data, and further analyzing the 
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coherence through time series feature extraction for machine-learning-based prediction of 

human-assigned scores.

We extracted key features from time-series data using the TSFRESH software package [41]. 

The TSFRESH package acquired features in the following main categories: (1) features from 

summary statistics (e.g. min, max, number of peaks) (2) additional characteristics of the 

sample distribution (e.g. binned energy, data symmetry) (3) features derived from observed 

dynamics (e.g. mean autocorrelation, the Fast Fourier Transformation coefficient). We 

removed length-dependent features, in order to avoid developing models that consider the 

volume rather than the coherence of language produced. We then used these features to train 

a support vector machine regression (SVR) model to predict annotator-assigned derailment 

scores. Additional statistically-based feature selection provided by TSFRESH [41] was 

performed before model training, but only with word-level semantic units because larger 

semantic units did not produce sufficient individual cosine values for this to be effective 

due to the limited length of our transcripts. The Scikit Learn package10 implementation 

of the SVR model was used. We chose the radial basis function (RBF) kernel and kept 

other hyperparameters as their default values. We used leave-one-out (LOO) cross-validation 

to generate a regression result for each transcript (such that each transcript’s prediction 

score was the output of the model trained using the other 274 transcripts). The SVR model 

predictions served as a final coherence assessment in terms of derailment.

2.5 Summary of the analytic pipeline

The coherence analytic pipeline described in sections 2.2-2.4 is be summarized in Figure 2, 

which demonstrates the path from an audio recording to estimation of a coherence score, 

through either TARDIS or the minimum aggregation function.

2.6 Experiments

2.6.1 Alignment between ASR-derived coherence metrics and human-labeled 
derailment scores—The goal of this experiment was to evaluate the extent to which 

errors introduced by ASR transcripts negatively influence the agreement between system- 

and human-assigned derailment scores. A secondary goal was to evaluate the extent to which 

using time-series features could recover lost performance. We measured the performance of 

each metric in two ways. To assess overall agreement with the average human-assigned 

score, we calculated the Spearman correlation between this average and each of our 

automated coherence estimates. To assess the ability to detect severe cases of incoherence, 

we rank-ordered transcripts by their automatically assigned coherence scores and calculated 

the area under the receiver operating characteristic curve (ROC AUC) using the labeled 

derailment scores to identify transcripts corresponding to severe levels of disorganization 

according to the TALD. Specifically, positive class labels for AUC calculation were affixed 

to transcripts with derailment scores of 3 or more. To evaluate the impact of ASR on 

the coherence metrics, we compare the performance of ASR-derived and professional 

transcription-derived coherence scores estimated using the minimum aggregation function 

(i.e. the lowest coherence score across a transcript). To evaluate the extent to which the 

10Scikit learn: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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time-series method, TARDIS, restores performance, we compare the performance of ASR-

derived coherence scores generated by the minimum aggregation function and the time-

series methods. TARDIS in this experiment was evaluated using a leave-one-participant-out 

cross-validation procedure (i.e. for each transcript, train on all other transcripts and store the 

predicted score for this held-out test case), due to the limited sample size. In contrast, in 

the experiments that follow – which do not use the annotated set for evaluation purposes - 

the entire set of 275 annotated transcripts was used to train both TARDIS-based models and 

those trained on entity grid feature vectors that provide a point of comparison (see section 

2.6.4).

2.6.2 Alignment of ASR-derived and professional transcription derived 
coherence metrics—In this experiment, we aimed to assess the correlation between 

the ASR-derived coherence metrics and professional transcription derived coherence 

metrics across a larger set of unannotated recordings, with a high correlation suggesting 

that few errors were introduced by the ASR process. Once again, we examined 

whether the time-series method could improve this correlation, by comparing it with the 

minimum aggregation function method. Correlation between ASR- and transcription-derived 

coherence scores was measured using Spearman Rho correlation. For this component, we 

used the 2359 unlabeled recordings to make the comparison.

In addition, we assessed the relationship between ASR accuracy and correlation between 

scores assigned to professional and corresponding ASR-derived transcripts of the same 

recordings, with the hypothesis that TARDIS would enhance the robustness of this 

correlation to ASR error, which was measured in word error rate (WER). This metric 

calculates the number of substitutions, deletions, and insertions divided by the number of 

words in the manual transcript.

2.6.3 TARDIS enhancement of coherence metrics derived from manual 
transcriptions.—In this experiment, we evaluated the potential for TARDIS to improve 

performance in the context of professionally transcribed recordings. Performance was 

measured as the Spearman Rho correlation with average annotator score, and the ROC AUC 

for detection of transcripts with average annotator scores >=3. The dataset concerned was 

the 275 annotated transcripts, and the time-series method was evaluated in a leave-one-out 

cross-validation configuration. The performance characteristics of this times-series method 

and the minimum aggregation method were calculated and compared.

2.6.4 Comparison of TARDIS metrics with Entity Grid coherence metrics.—
Although they have not to our knowledge been used to model thought disorganization 

previously, we include Entity Grid coherence scores as an additional point of comparison. 

The Entity Grid method is a well-established approach to measuring textual coherence that 

operates by capturing the local syntactic transitions of entities – how they shift from one 

semantic role to another across sentences [42]. These role transitions (e.g. subject-to-object) 

are quantified to generate feature vectors for machine learning models, providing a syntax-

informed point of comparison for the feature vectors emerging from TARDIS. We used the 

feature vectors created from entity grids to train an SVM regressor to serve as a baseline 
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comparison to the TARDIS feature set. The entity grids and features were generated using 

the text-to-entity grid package11.

2.6.5 Correlation with HPSVQ—The Hamilton Program for Schizophrenia Voices 

Questionnaire (HPSVQ) [43-44] is a validated self-report instrument for AVH. While this 

questionnaire does not measure the severity of other manifestations of psychotic episodes 

– such as thought disorganization – we nonetheless hypothesized that the HSPVQ total 

score, which indicates the severity of this symptom, would partly correlate with the severity 

of thought disorganization as estimated by coherence assessment because these aspects of 

psychosis are frequently observed together [45]. We further hypothesized that the correlation 

with the overall score would decrease with ASR on account of transcription errors and that 

time-series featurization may restore some of this correlation.

The HPSVQ was collected once when participants signed up for the study. We used 

the transcript with the lowest coherence score to represent the coherence score for each 

participant. Each of the coherence metrics (time-series vs. minimum) generated from either 

manual (professionally transcribed) or ASR-derived transcripts were compared for their 

correlation with the summary score of the HSPVQ.

3 Results

3.1.1 Alignment of ASR-derived coherence metrics and human-labeled derailment scores 
(annotated set) using skip-gram vectors:

Figure 3 provides a side-by-side comparison of the time-series method and minimum 

aggregation method across transcripts. Each 3-bar column represents a different coherence 

metric with different combinations of semantic units and computation methods. Within 

each column, the 3 bars represent evaluation scores for the minimum coherence method 

from manual transcripts, the minimum coherence method from ASR, and the TARDIS 

method from ASR (left to right, respectively). We can derive 2 main observations (1) For 

the minimum coherence method, performance usually drops when switching from manual 

transcript (first of three bars) to ASR transcript (second of three bars). (2) The TARDIS 

method (third of three bars) improves the performance of almost all the coherence metrics 

when using ASR. When considering AUC in the context of ASR, the time-series method 

produces the highest value of 0.744 and improves the average AUC across all the coherence 

metrics from 0.623 to 0.691. With respect to Spearman Rho with ASR, the time-series 

method achieves the highest performance with Rho=0.456, improving the average across all 

coherence metrics from 0.287 to 0.396.

3.1.2 Alignment of ASR-derived coherence metrics and human-labeled derailment scores 
(annotated set) using contextual vectors derived from BERT:

The contextual vectors derived from the BERT model were applied using both minimum 

coherence (manual and automated transcripts) and TARDIS (automated transcripts only). 

As shown in Figure 4, the results are similar to those obtained with skip-gram word 

11Text to entity grid: https://github.com/MMesgar/text_to_entity_grid
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embeddings. With ASR, TARDIS using BERT-derived vectors outperformed BERT-derived 

minimum coherence for most metrics in terms of ROC-AUC (the rightmost red bars are 

higher than the middle blue bars in each metric group). We also observed a similar pattern 

of performance drop with minimum aggregation when switching from manual transcript to 

ASR transcript (observed from the leftmost orange bars higher than the middle blue bars in 

each metric group). Additionally, we observed systematic improvements when moving from 

minimum coherence aggregation to TARDIS across most metrics in terms of Spearman Rho 

correlation. This shows the robustness of the advantage of time-series representations across 

different embedding approaches.

Table 1 shows a comparison between performance with skip-gram and contextual vectors at 

each semantic level. In terms of ROC-AUC, we did not find an improved maximum AUC 

with BERT for all the coherence metrics. However, we did find improvements within certain 

semantic units - specifically at the word and sentence levels. With respect to Spearman 

Rho correlation, performance was generally better with neural word embeddings. The only 

exception occurred when using contextual vectors with the sentence-level metrics. However, 

this did result in the best overall Spearman Rho correlation of 0.465 (as compared with 

0.456 with skip-gram embeddings).

3.2.1 Alignment of ASR-transcript-derived coherence metrics and manual-transcript 
derived coherence metrics (unannotated set):

We explored the correlation between the coherence scores generated from ASR transcripts 

and manual transcripts using TARDIS and the standard aggregation approach of taking the 

minimum value for a transcript, with minimum aggregation used for manual transcripts 

and either TARDIS or minimum aggregation used with ASR. Higher correlation indicates 

relative robustness to transcription errors introduced by ASR. The results of this analysis are 

shown in Table 2.

These results demonstrate that the time-series method consistently improved the correlation 

between coherence scores from ASR-derived transcripts and those from professionally 

transcribed recordings, with a mean increase from 0.429 to 0.720 across all coherence 

metrics.

3.2.2 Impact of ASR error on coherence metrics:

ASR transcription error is a key reason for drops in performance in coherence evaluations. 

For example, an instance of “Craigslist ad” in a manual transcript was transcribed as 

“Craigslist dad” in an automated transcript, altering the meaning of the phrase. This 

section demonstrates evaluations of coherence metrics in the context of similar ASR errors 

measured by word-error-rate (WER) and character-error-rate (CER) metrics. As might be 

anticipated given the difficulties inherent in transcribing recordings captured in naturalistic 

settings, performance was closer to that documented with Deep Speech 2 with noisy speech 

(WER 21.59-42.55) than with standard evaluation sets (WER 3.10-12.73) [21], with a mean 

WER of 0.36 and CER of 0.2 across the transcripts used in our studies. Figure 5 shows 

the correlation between average coherence scores across all metrics derived from ASR and 

manual transcripts plotted against different ranges of ASR WERs (bins divided at each 
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quantile). Higher correlation indicates higher similarity and potentially less performance loss 

between the ASR and manual transcripts. The results indicate that coherence metrics suffer 

correlation loss linearly as the ASR error rate increases up to an error rate of approximately 

0.5, and that correlation declines precipitously after this point. TARDIS is more resistant to 

ASR error because it has a higher correlation at all error rates.

3.3 TARDIS improvement on manual-transcript-derived coherence scores—
Having observed a strong recovery in performance with ASR-derived transcripts when 

using time-series features, we proceeded to evaluate how this featurization approach affects 

performance in the context of professionally transcribed recordings.

The results of these experiments are shown in Figure 6, which shows a comparison between 

the time-series method and the original method of taking the minimum coherence across 

a transcript on manual transcripts (from professionally transcribed recordings). In terms 

of the AUC, we can observe that TARDIS improves the majority of metrics with both skip-

gram and BERT-derived embeddings. However, it does not improve the best-performing 

metrics, including the sentence-based metrics and the phrase-based centroid metrics with 

skip-gram vectors. When considering Spearman correlation there is a clear advantage for 

TARDIS across all metrics (with both FastText and BERT embeddings), with an increase 

of maximum value from 0.525 to 0. 601. The overall performance of TARDIS indicates a 

general improvement in the alignment between coherence scores and human judgment, but 

not necessarily in the ability to identify severe cases (mean TALD >= 3).

3.4 Comparison between TARDIS metrics and the Entity Grid representation.
—Table 3 shows the SVM model prediction performance using TARDIS feature set and the 

entity grid feature set on automated and manual transcripts. The entity grid features led to a 

promising performance with both automated and manual transcripts. However, they did not 

outperform the best TARDIS metrics in any of the cases.

3.5 Alignment of the coherence scores to the HPSVQ [44] clinical scale.—In 

this section, we evaluated the Spearman Rho correlation between various coherence metrics 

(the minimum coherence estimated for an individual) and the HPSVQ total score.

Table 4 indicates that some correlations exist between the coherence metrics and AVH 

severity measured by HPSVQ. Although not strongly so, self-reported AVH symptoms 

are shown to correlate with the automatically measured coherence in speech. In addition, 

the TARDIS method amplifies the mean correlations with the HPSVQ total scores in the 

context of both ASR and manual transcripts. The contextual embeddings also demonstrated 

potential in their correlation with HPSVQ scale because the strongest correlations in each 

experimental set up came from a metric with BERT-derived embeddings.

4. Discussion:

4.1 Key findings

In this study we evaluated a fully automated approach to quantify coherence from speech 

samples collected in naturalistic environments. Our results show that our novel featurization 
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approach, TARDIS, effectively compensates for ASR errors when estimating coherence and 

improves performance with most coherence metrics with manual transcripts.

In comparison with professional manual transcriptions, ASR may introduce transcription 

errors. Our results show that these errors do impair the performance of coherence metrics 

to some degree. This impairment is most pronounced in the case of sentence-based metrics. 

This may be explained by that relatively few coherence measurements between units occur 

at this level of analysis. The effects of transcription errors on metrics of coherence are 

demonstrated through their loss of alignment with human-assigned derailment scores, and 

decreased correlation between coherence scores generated from manual and automated 

transcripts of the same set of recordings.

We found that these losses can be largely recovered by representing the full spectrum 

of coherence information generated from a transcript as a time series. This provides an 

alternative to the predominant approach of using the point of least coherence between 

elements of a transcript as a sole feature [7]. We do so by using an approach we call 

Time-series Augmented Representations for Detection of Incoherent Speech (TARDIS). 

TARDIS does not rely on a single extreme coherence value exclusively. As such, it is 

robust to such values being introduced by sporadic machine transcription errors. In addition, 

TARDIS leverages features derived from the trajectory of coherence estimates over the 

course of a transcript. This is in accordance with the seminal finding that automated 

estimates of coherence may decrease precipitously as speech progresses in the setting 

of severe thought disorder [5]. The recovery of performance with TARDIS is evident in 

our findings. Most of the coherence metrics applied to ASR transcripts show improved 

association with human-assigned scores with this approach. In many cases, performance 

recovers to that obtained with manual transcripts. Surprisingly, TARDIS performance with 

automated transcripts even surpasses the performance of the ‘minimum coherence’ approach 

with manual transcripts for some coherence metrics, suggesting that the benefits of time-

series featurization on this task extend beyond their robustness to ASR error. Recovery 

with TARDIS is further supported by the considerably higher correlation between coherence 

scores derived from ASR (with TARDIS) and scores derived from manual transcripts (with 

minimum coherence as an aggregation function). This indicates a reduction in divergence 

between coherence assessments of ASR and manual transcripts when TARDIS is applied to 

automated transcripts.

The hypothesis that TARDIS may have benefits beyond robustness to ASR error is also 

supported by our subsequent findings. TARDIS also improves the alignment between 

human-assigned and automated estimates of coherence with manual transcripts. This is most 

evident in the Spearman Rho correlation with human-assigned derailment scores, where 

all coherence metrics show improvement with time-series featurization. This correlation is 

indicative of alignment with human annotators across the full spectrum of coherence levels 

in our dataset. However, the ability of models to identify cases of severe thought disorder (as 

indicated by a TALD derailment score >= 3) may provide a better estimate of their clinical 

utility in the context of smartphone-based continuous monitoring efforts to identify relapse 

events. TARDIS improves the majority of metrics’ ability to identify such severe cases. 

However, in the context of these manual transcripts, the minimum aggregation approach has 
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the highest overall AUC scores. These are obtained when it is applied to sentence-based 

coherence metrics. One explanation for this finding is that at the sentence level the number 

of time-series data points available for analysis is limited because the sentence is the 

largest semantic unit considered. Another is that with manual transcripts the extremely 

low scores captured by the minimum aggregation function are likely to indicate legitimate 

severe cases, rather than being artifacts of ASR error. However, in the context of ASR, 

sentence embeddings derived from word vectors (weighted or unweighted) suffer from a 

decline in performance with higher ASR error rate [47]. Thus, the sentence-based coherence 

metrics are severely limited by ASR error especially when only using the minimum value 

to represent the transcript. The TARDIS method we presented in this study did not improve 

the sentence embeddings themselves under the influence of ASR error. However, it did 

improve the performance of the downstream coherence evaluation task by incorporating 

more information about the transcript and limiting the impact of any individual error. In this 

way, the TARDIS method improves the performance of sentence-based coherence metrics 

considerably when ASR transcripts are used.

This robustness of TARDIS-based approaches to ASR error is illustrated by a series of 

coherence scores extracted from one of the annotated transcripts in our set (Figure 7). This is 

a time-series representation of a transcript when using the sequential word coherence metric, 

such that the score indicates the cosine of the angle between vectors representing sequential 

words. When using the minimum aggregation method, the minimum value 0.03 was directly 

taken as the coherence score for the entire transcript but most of the cosine values are 

well above this. The normalized human-assigned coherence for this transcript was 0.875 

(indicating a high degree of coherence), the TARDIS coherence was 0.787 (also indicating a 

coherent transcript) but the minimum coherence score was 0.536 (all values were normalized 

(min-max scaled between 0-1) across all transcripts) and represent coherence instead of 

derailment). As such, it is readily apparent why TARDIS produces a better estimation of 

coherence in this case.

We also demonstrated the robustness of TARDIS-based metrics across a different set of 

word embeddings (FastText and BERT embeddings). The TARDIS metrics outperform the 

minimum coherence metrics using both skip-gram embeddings (FastText) and contextual 

embeddings (BERT). This observation shows that time-series features represent useful 

information for the task of estimating coherence, irrespective of whether the global or 

context-specific meaning of words is considered. In addition, when comparing skip-gram 

and contextual word embeddings, we found some potential advantages for including 

contextual information when estimating coherence. This is a novel finding - recent 

work using BERT embeddings did not include a comparison with established skip-gram 

semantics-based approaches. The best Spearman Rho correlation with human judgment 

using automated transcripts was achieved with BERT-derived embeddings. BERT-derived 

embeddings also improved ROC-AUC performance with word and sentence level metrics. 

Thus, applying contextual embeddings to the task of quantifying coherence for ThD may be 

a fruitful direction for future research.

Interestingly, TARDIS-based coherence scores also on average correspond better with 

clinical assessment of other features of psychosis, namely AVH. Despite disorganized 
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thinking being a separate construct from AVH, we find a modest but significant Spearman 

Rho correlation between the lowest coherence score for the transcript from an individual, 

and their scores on the HPSVQ (which measures the severity of AVH) collected at baseline. 

This correlation is stronger with TARDIS with both manual and automated transcripts. This 

suggests an association between the severity of the AVH symptoms and the coherence of 

speech. This finding is consistent with previous research showing that AVH tends to cooccur 

with thought disorder [45], potentially because incoherence of covert (i.e. ‘internal’) speech 

may influence discourse processing and manifest as poorly organized overt speech [48].

Surprisingly, despite the general loss of performance when transitioning from manual to 

ASR-derived transcripts, some phrase-based coherence metrics did not lose performance in 

certain evaluations. One possible explanation for this observation is that the noun-phrase 

extractor extracts different amounts of data from manual and ASR transcripts. On account of 

ASR and repunctuation errors, more phrases are extracted from manual transcripts than from 

their ASR-derived counterparts. For example, a common ASR error involves the omission of 

a spoken word from a transcript, which would reduce the number of noun phrases extracted 

if this word were a noun. For the current experiments, the average number of noun phrases 

extracted from the manual transcripts was 20.5 whereas with the ASR transcripts this was 

reduced to 13.7 (P<.001). Thus, with ASR the unit of analysis is larger than with manual 

transcripts. This may have a smoothing effect, such that the effects of unrelated smaller 

phrases that would be ‘semantic outliers’ with manual transcripts are diluted within the 

larger phrases extracted from automated ones.

The entity grid approach, which has not to our knowledge been applied to model thought 

disorganization previously, incorporates structural elements by quantifying transitions 

between syntactic roles across sentences [42]. This approach yielded promising performance 

on the task of quantifying coherence in our AVH data. Although TARDIS metrics generally 

achieved better performance, the entity grid approach offers new insights into the usefulness 

of syntactic features for the detection of ThD. Prior work has prioritized semantics over 

syntax, perhaps because syntactic structures are thought to be preserved in schizophrenia 

even in the presence of thought disorganization [49]. Our findings suggest that the entity 

grid can be used when modeling thought disorganization. This may be explained by the fact 

that the entity grid measures the saliency of the entities in text [42]. Despite speech in ThD 

exhibiting correct syntactic structure, entity saliency is still an important feature to consider. 

While it takes syntax into account, the entity grid method is not intended to measure the 

correctness of syntactic structure. Rather, it uses this structure to identify salient entities 

in text. It is the transitions of the syntactic roles of these entities across sentences that are 

used to generate features from which to estimate coherence. This, and the performance of 

entity grid features in our evaluations, suggest that syntax-aware models offer potential as an 

alternative and likely complementary approach to established methods.

4.2 Implications

This study presents a new method (TARDIS) for quantifying coherence of speech and 

demonstrates its utility in the context of a novel pipeline for the automated assessment of 
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thought disorder and AVH severity, without the need for manual transcription. The main 

implications of this study can be summarized as follows:

4.2.1 Coherence estimates using speech samples from naturalistic 
settings: Traditionally the data needed to assess thought disorders are collected in 

laboratory settings, and elicited through structured interviews [7], or tasks such as story 

recall [5]. As a result, the participant pool size is limited by available resources and 

logistical constraints, and data are limited to brief snapshots that may miss clinically 

important fluctuations in symptom severity in between clinic visits. Our results demonstrate 

the feasibility of measuring coherence using speech samples gathered in a naturalistic 

environment using smartphone technology, with data captured in real-time. By eliminating 

logistical and resource-related barriers, it allows for the recruitment of larger participant 

pools in a domain where small proof-of-principle studies have predominated to date [50].

4.2.2 Automated speech analysis pipeline: From speech recordings to transcripts to 

coherence scores, the process of quantifying coherence can be completed without manual 

input. Prior efforts [5,7] require manual transcription from speech data, a process that 

imposes further logistical constraints on the analysis process, such as time-to-transcription 

and transfer of sensitive data to a third party. With the introduction of the novel 

TARDIS method, the performance of coherence assessment using ASR transcripts improves, 

approximating performance with manual transcripts in most cases. This establishes the 

feasibility of the application of a fully automated pipeline from data collection to coherence 

assessment eliminating a crucial logistical barrier to real-time monitoring of patients for 

exacerbations of their psychotic symptoms. As an additional benefit, this pipeline enhances 

patient privacy. The fully automated ASR-based coherence measures can be estimated 

without sending any sensitive data to a third-party service.

4.3 Limitations and future work

One limitation of this study is the limited interpretability of the time-series features. The 

features extracted from the TSFRESH package are well-established as ways to represent 

information carried in time-series data [51]. Upon evaluation of feature importance to 

our Support Vector Regression models using Shapley [52] additive explanations, the most 

influential time-series features were the angle component of the Fourier coefficient [53], and 

the standard error and r-value of the regression line. However, in some cases, it is difficult 

to interpret how individual time-series features contribute to a particular aspect of coherence 

scoring. Some straightforward features such as the “minimum” can be readily interpreted 

as the worst possible coherence score for the entire document (often used as the sole 

feature in prior work), but others such as the Fourier coefficient are derived from multiple 

components which makes it difficult to isolate the utility of the information they carry. 

This is particularly important in the context of our current dataset, as we have observed a 

moderate correlation between human-assigned derailment scores and word count. That is to 

say, those transcripts viewed as less coherent by our annotators were generally longer than 

those viewed as more coherent, which is consistent with both the tendency of coherence 

to decrease as speech progresses [6] and the likelihood of incoherence being easier to 

observe with more data available. Nonetheless, we would not wish our incoherence models 
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to react to sequence length independently, and with the minimum aggregation function, we 

can be certain this is not the case. With TARDIS, we deliberately removed features that 

were obviously length-dependent from consideration, such as the sum, time-series length, 

and the number of peaks. However, we cannot exclude the possibility that some of the 

remaining features are affected by word count in more subtle ways, and as such it is not 

clear how much of the additional correlation with human scores obtained with TARDIS 

may be a secondary effect of sensitivity to transcript length. While we note that an SVM 

regression model trained with word count as a sole feature has a correlation with human 

judgment considerably below that of the average of the TARDIS models for each coherence 

score (ASR: 0.227 vs. 0.396; manual: 0.329 vs. 0.543) future work with an evaluation set 

that is balanced with respect to word count would be required to resolve this conclusively. 

Similarly, an important direction for future work will be to isolate individual time series 

features and consider their importance to predictive models. By doing so, we will gain a 

better understanding of the contribution of each feature toward quantifying coherence and 

draw closer toward interpretability.

Another limitation concerns the use of only one construct, derailment, for the assignment of 

manual coherence scores. While this is arguably the construct most conducive to modeling 

in the context of short recordings of spontaneous speech without a directive prompt (as 

compared with, for example modeling tangentiality as a divergence from such a prompt), it 

is of interest for future work to determine the extent to which ASR errors affect other digital 

speech-based diagnostic approaches such as the use of speech graphs [54].

We have also yet to evaluate the influence of regional differences in language use and 

dialectical differences on the performance of our models. Recent research suggests these 

are important concerns for both speech recognition and NLP [55-57], but we have yet to 

establish the extent to which measures of coherence are affected. In future work, ASR 

accuracy may also be further improved by adapting the ASR model to individual participants 

via an enrollment process in which participants are asked to read a short passage with the 

resulting audio used to finetune the ASR model.

Another limitation is that this study did not evaluate neural models that have developed from 

the entity grid approach. We performed entity grid analysis on our data as an alternative 

feature representation for comparison to TARDIS features in our regression models. 

However, entity grids are based on discrete symbols while distributed representations, which 

permit models to draw associations between words with related meanings, are by now a 

well-established means to model semantics in ThD. Recent work has developed variants of 

the entity grid approaches that involve neural networks [58-60]. These, along with other 

neural network approaches that involve syntactic structure input [61] are known as neural 

coherence models. These models offer the advantage of considering both distributional 

semantics and syntactic structure from texts. While such models have yet to be evaluated for 

their utility as a means to model coherence in ThD, the performance of the entity grid model 

in our experiments suggests their potential as a direction for future work.
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5 Conclusions

In the context of the task of quantifying formal thought disorder in participants experiencing 

AVH, this study considers the use of smartphone-based data collection in conjunction with 

ASR in speech data collection as a means to mitigate logistical constraints on the application 

of these methods for monitoring of symptoms between clinic visits. Our findings show that 

the robustness of coherence metrics to ASR-induced transcription errors is enhanced by 

our novel representation approach, TARDIS, which improves the alignment of automated 

assessments of derailment with human judgment. As such, our methods show potential as 

a way to enhance existing coherence metrics and pave the way toward fully automated 

detection of disorganized thinking in naturalistic settings with implications for research and 

practice. Our implementation of TARDIS and the underlying coherence metrics used in this 

work is publicly available on Github12.
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Highlights:

• Quantifying coherence in speech identifies formal thought disorder 

automatically

• Manual transcription constrains research and practice applications

• Standard coherence estimates are vulnerable to automated transcription errors

• TARDIS - our novel method for estimating coherence - is robust to such 

errors

• TARDIS applies to both contextual and skip-gram semantic embeddings

• TARDIS better aligns with coherence estimates from professional transcripts

• This facilitates scalable, privacy-preserving automated coherence estimation
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Figure 1: 
Data aggregation and processing.
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Figure 2: 
Summary of coherence analytical pipeline.
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Figure 3: 
The performance comparison among manual minimum coherence (reference metric), ASR 

minimum coherence, and ASR time-series coherence. (a) Top: Evaluation by AUC, (b) 

Bottom: Evaluation by Spearman Rho. MM = minimum coherence with manual transcripts. 

MA = minimum coherence with automated transcripts. TDS = time-series based coherence 

with automated transcripts. SC = static centroid. CC = cumulative centroid. IDF = inverse 

document frequency.
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Figure 4: 
The performance comparison among manual minimum coherence (reference metric), ASR 

minimum coherence, and ASR time-series coherence with BERT-derived contextual vectors. 

(a) Top: Evaluation by AUC, (b) Bottom: Evaluation by Spearman Rho. MM = minimum 

coherence with manual transcripts. MA = minimum coherence with automated transcripts. 

TDS = time-series based coherence with automated transcripts. SC = static centroid. CC 
= cumulative centroid. CLS = embeddings from the CLS token. Sum = obtained from the 

sum of individual word vectors. 2ndLayer = 2nd to last layer of BERT hidden state output. 

SBert = vectors from the sentence-BERT package [40].
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Figure 5: 
Correlations between average coherence scores derived from ASR and manual transcripts. 

Each bin corresponds to one quartile from the distribution of coherence scores for each 

transcript. (A) The left figure shows averages for coherence metrics with minimum 

aggregation. (B) The right figure shows averages for TARDIS-derived coherence metrics.
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Figure 6: 
Comparison of TARDIS and Minimum coherence performance using FastText (top) and 

BERT embeddings (bottom) with manual transcripts. MIN= minimum coherence with 

manual transcripts. TDS = time-series based coherence with automated transcripts. SC = 

static centroid. CC = cumulative centroid. Sum = obtained from the sum of individual word 

vectors. 2ndLayer = 2nd to last layer of BERT hidden state output. SBERT = vectors from 

the sentence-BERT package [40].
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Figure 7: 
Time-series representation of an illustrative transcript. The y-axis represents cosine values 

computed between adjacent word vectors while the x-axis represents the order in which the 

words appear in the text. The TARDIS takes into consideration many characteristics of this 

plot such as the mean, max, or regression line slope, not just the minimum, which is the only 

data point considered by standard approaches.
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Table 1:

Comparison of different embeddings with the best performing metric on each semantic level (Using TARDIS 

on ASR transcripts). Best results in boldface. (IDF = inverse document frequency, SBERT = vectors from the 

sentence-BERT package [40].)

Word Phrase Sentence

Skip-gram
embeddings
(FastText)

Contextual
embeddings
(BERT)

Skip-gram
embeddings
(FastText)

Contextual
embeddings
(BERT)

Skip-gram
embeddings
(FastText)

Contextual
embeddings
(BERT)

Best ROC-
AUC

0.696 0.718 0.744 0.728 0.698 0.718

Best Metric Sequential Cumulative 
Centroid

Cumulative 
Centroid

Cumulative 
Centroid

IDF Cumulative 
Centroid

SBERT 
Cumulative 
Centroid

Best Spearman 
Rho

0.456 0.409 0.377 0.364 0.414 0.465

Best Metric Static Centroid Cumulative 
Centroid

Sequential Sequential Cumulative 
Centroid

SBERT 
Cumulative 
Centroid
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Table 2:

Spearman Rho correlations between manually transcribed and ASR transcript derived coherence scores. IDF = 

inverse document frequency, BERT2ndLayer = 2nd to last layer of BERT hidden state output, BERTCLS = 

embeddings from the CLS token, BERTSum = obtained from the sum of individual word vectors, SBERT = 

vectors from the sentence-BERT package [40].

Metrics TARDIS Minimum

Word Sequence (FastText) 0.698 0.453

Word Centroid (FastText) 0.740 0.504

Word Cumulative Centroid (FastText) 0.738 0.603

Phrase Sequence (FastText) 0.764 0.445

Phrase Centroid (FastText) 0.772 0.689

Phrase Cumulative Centroid (FastText) 0.767 0.723

Sentence Sequence 0.695 0.186

Sentence Centroid 0.692 0.408

Sentence Cumulative Centroid 0.684 0.398

Sentence IDF Sequence 0.694 0.252

Sentence IDF Centroid 0.679 0.454

Sentence IDF Cumulative Centroid 0.669 0.461

Word Sequence (BERT) 0.757 0.386

Word Centroid (BERT) 0.770 0.431

Word Cumulative Centroid (BERT) 0.791 0.421

Phrase Sequence (BERT) 0.756 0.337

Phrase Centroid (BERT) 0.765 0.567

Phrase Cumulative Centroid (BERT) 0.789 0.601

Sentence BERT2ndLayer Sequence 0.717 0.192

Sentence BERT2ndLayer Centroid 0.704 0.405

Sentence BERT2ndLayer Cumulative Centroid 0.701 0.404

Sentence BERTCLS Sequence 0.692 0.201

Sentence BERTCLS Centroid 0.689 0.341

Sentence BERTCLS Cumulative Centroid 0.691 0.372

Sentence BERTSum Sequence 0.709 0.196

Sentence BERTSum Centroid 0.703 0.422

Sentence BERTSum Cumulative Centroid 0.701 0.423

Sentence SBERT Sequence 0.679 0.312

Sentence SBERT Centroid 0.699 0.635

Sentence SBERT Cumulative Centroid 0.706 0.639

Mean 0.720 0.429
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Table 3:

Performance comparison across the best performing TARDIS metrics and the entity grid metric. (SBERT = 

vectors from the sentence-BERT package [40])

Auto transcripts Manual transcripts

AUC-ROC Spearman Rho AUC-ROC Spearman Rho

Entity grid 0.733 0.457 0.767 0.438

TARDIS 0.744 0.465 0.811 0.601

TARDIS metric Phrase Cumulative Centroid 
(FastText)

Sentence SBERT Cumulative 
Centroid

Sentence SBERT Cumulative 
Centroid

Word Sequential (BERT)
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Table 4:

Mean and max Spearman Rho correlations between coherence scores and HPSVQ total score. The mean and 

max were aggregated across all coherence metrics and the metrics that produced the max correlation were also 

included in the table. The p-values for mean correlation were calculated using Fisher’s combined probability 

test [46]. (BERTCLS = embeddings from the CLS token, SBERT = vectors from the sentence-BERT package 

[40].)

Minimum (ASR) TARDIS (ASR) Minimum
(Manual)

TARDIS (Manual)

Mean correlation 0.181 (P<.001) 0.203 (P<.001) 0.191 (P<.001) 0.237 (P<.001)

Max correlation 0.240 (P<.001) 0.237 (P<.001) 0.271 (P<.001) 0.275 (P<.001)

Max correlation 
metric

Word Static Centroid 
(BERT)

Phrase Sequence 
(BERT)

Sentence SBERT Static 
Centroid

Sentence BERTCLS 
Sequence
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