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Abstract

Thalamic nuclei have been implicated in several neurological diseases. Thalamic nuclei 

parcellation from structural MRI is challenging due to poor intra-thalamic nuclear contrast while 

methods based on diffusion and functional MRI are affected by limited spatial resolution and 

image distortion. Existing multi-atlas based techniques are often computationally intensive and 

time-consuming. In this work, we propose a 3D Convolutional Neural Network (CNN) based 

framework for thalamic nuclei parcellation using T1-weighted Magnetization Prepared Rapid 

Gradient Echo (MPRAGE) images. Transformation of images to an efficient representation has 

been proposed to improve the performance of subsequent classification tasks especially when 

working with limited labeled data. We investigate this by transforming the MPRAGE images 

to White-Matter-nulled MPRAGE (WMn-MPRAGE) contrast, previously shown to exhibit good 

intra-thalamic nuclear contrast, prior to the segmentation step. We trained two 3D segmentation 

frameworks using MPRAGE images (n=35 subjects): a) a native contrast segmentation (NCS) 

on MPRAGE images and b) a synthesized contrast segmentation (SCS) where synthesized WMn-

MPRAGE representation generated by a contrast synthesis CNN were used. Thalamic nuclei 
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labels were generated using THOMAS, a multi-atlas segmentation technique proposed for WMn-

MPRAGE images. The segmentation accuracy and clinical utility were evaluated on a healthy 

cohort (n=12) and a cohort (n=45) comprising of healthy subjects and patients with alcohol use 

disorder (AUD), respectively.

Both the segmentation CNNs yielded comparable performances on most thalamic nuclei with Dice 

scores greater than 0.84 for larger nuclei and at least 0.7 for smaller nuclei. However, for some 

nuclei, the SCS CNN yielded significant improvements in Dice scores (medial geniculate nucleus, 

P=.003, centromedian nucleus, P=.01) and percent volume difference (ventral anterior, P=.001, 

ventral posterior lateral, P=.01) over NCS. In the AUD cohort, the SCS CNN demonstrated 

a significant atrophy in ventral lateral posterior nucleus in AUD patients compared to healthy 

age-matched controls (P=0.01), agreeing with previous studies on thalamic atrophy in alcoholism, 

whereas the NCS CNN showed spurious atrophy of the ventral posterior lateral nucleus.

CNN-based segmentation of thalamic nuclei provides a fast and automated technique for thalamic 

nuclei prediction in MPRAGE images. The transformation of images to an efficient representation, 

such as WMn-MPRAGE, can provide further improvements in segmentation performance.
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INTRODUCTION

The thalamus, with its histologically and functionally distinct nuclei, is a deep brain 

relay organ involved in higher level neurological functions including sleep, arousal, and 

consciousness. Individual thalamic nuclei have been shown to be differentially involved in 

multiple neurological diseases including mediodorsal (MD) and pulvinar (Pul) nuclei for 

schizophrenia (Byne et al. 2001), interlaminar nuclei for Parkinson’s Disease (Henderson et 

al. 2000), limbic and anterior thalamic nuclei for Alzheimer’s disease (Braak and Braak 

1991; Aggleton et al. 2016; Bernstein et al. 2021), and anterioventral (AV), Pul, and 

habenular (Hb) nuclei for multiple sclerosis (Planche et al. 2019). Segmentation and analysis 

of individual thalamic nuclei, in addition to the thalamus, can not only provide more insight 

in understanding the relationship between thalamic volumes and neurological diseases but 

also better elucidate the role of thalamic nuclei in healthy and aging brains (Fama and 

Sullivan 2015).

Many automated methods for parcellation of thalamic nuclei reported in the literature are 

based on diffusion-MRI based techniques (Wiegell et al. 2003; Battistella et al. 2017; 

Behrens et al. 2003). Diffusion MRI inherently suffers from poor spatial resolution of 

the underlying echo-planar imaging acquisition. This along with the isotropic nature of 

diffusion within the thalamus, a predominantly gray matter region, has limited diffusion-

MRI based segmentation to either larger nuclei or nuclei clusters. Recently, Iglehart et 

al (2020) presented a systematic comparison of thalamic nuclei segmentation techniques 

based on structural, diffusion, and resting state functional MR acquisitions. In this work, 
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the authors showed that parcellations on structural MR images were more accurate in the 

delineation of smaller thalamic structures such as AV, Hb, and medial geniculate nucleus 

(MGN) compared to Diffusion Tensor Imaging (DTI). For thalamic nuclei segmentation 

on structural T1-weighted scans such as Magnetization Prepared Rapid Gradient Echo 

(MPRAGE), Iglesias et al (2018) developed a probabilistic thalamus atlas from ex-vivo 

histology and in-vivo MPRAGE and used Bayesian inference to segment thalamic nuclei 

on in vivo MR images. Available as part of the neuroimaging package Freesurfer (https://

surfer.nmr.mgh.harvard.edu), this segmentation technique is computationally intensive and 

time-consuming. Liu et al (2020) presented a hierarchical statistical shape model generated 

from histological-like atlases derived from manual delineation of thalamic nuclei in a series 

of 7T MR images acquired on 9 healthy subjects. Using shape-based models for thalamic 

nuclei segmentation, the authors reported average Dice scores of 0.53 to 0.90 for all nuclei 

with leave-one-out validation on healthy subjects. The segmentation accuracy relies on 

the shape-based multi-atlas technique but does not make use of intra-thalamic intensity 

information. Although routine clinical studies include MPRAGE scans, these images suffer 

from poor contrast (Saranathan et al. 2015) between the thalamus and its surrounding tissues 

as well as poor intra-thalamic nuclear contrast, making manual or automated thalamic nuclei 

segmentation challenging.

Recent works have demonstrated that a white-matter-nulled variant of the MPRAGE 

sequence, hereafter referred to as WMn-MPRAGE, provides improved image contrast to 

clearly identify thalamus boundaries for segmentation (Tourdias et al. 2014), and maximize 

intra-thalamic nuclear contrast at 7T (Saranathan et al. 2015). A multi-atlas technique 

called Thalamus Optimized Multi Atlas Segmentation (THOMAS) (Su et al. 2019) was 

proposed to segment thalamic nuclei on WMn-MPRAGE images at 7T. THOMAS was 

shown to perform well when validated against manual annotations, with Dice scores of at 

least 0.85 for the larger thalamic nuclei and at least 0.7 for smaller structures. Although 

WMn-MPRAGE provides excellent intra-thalamic nuclei contrast, this sequence is not part 

of conventional clinical imaging protocols and its inclusion will increase the overall scan 

time by 7-10 minutes. Moreover, numerous online data repositories that are used to study 

brain structure and metabolism like Alzheimer’s Disease Neuroimaging Initiative (ADNI) or 

Open Access Series of Imaging Studies (OASIS) contain only MPRAGE images.

Supervised deep learning models, especially Convolutional Neural Networks (CNNs), have 

been shown to provide state-of-the-art performance in medical image segmentation tasks 

in the presence of large, labeled datasets (Litjens et al. 2017), with faster prediction times 

and performance comparable to human observer variability. When working with limited 

labeled data, as is often the case with medical images, transformation of data to an efficient 

representation can leverage this limited availability and make the subsequent classification 

task easier (Ian Goodfellow and Yoshua Bengio and Aaron Courville 2016). The choice of 

this representation often depends upon the classification task under investigation and could 

be as simple as mapping the original image contrast to a new contrast where prior domain 

knowledge has demonstrated possibility for improved classification performance. The use of 

CNNs for synthesizing contrasts has been explored in various MRI applications including 

inter-modality and intra-modality synthesis (Wang et al. 2021). These techniques aim to 

improve pathology detection without the overhead of additional scan time associated with 
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acquiring a new contrast. For example, synthesis of FLAIR (Wei et al. 2019; Hagiwara et 

al. 2019) and double inversion recovery contrasts (Finck et al. 2020) for multiple sclerosis 

detection, synthesis of MP2RAGE contrast from MPRAGE images for automatic lesion 

segmentation (La Rosa et al. 2021) and synthesis of magnetic resonance angiography from 

conventional T1 and T2-weighted MRI (Olut et al. 2018). Moreover, these synthesized 

images have also been shown to aid subsequent post-processing tasks such as tumor 

segmentation (Conte et al. 2021; La Rosa et al. 2021) and image registration (Yang et 

al. 2020).

In this work, we propose a 3D deep learning based multi-scale CNN framework for thalamic 

nuclei segmentation using MPRAGE images. We refer to this segmentation CNN framework 

using MPRAGE image contrast as native contrast segmentation (NCS). We also explore the 

synthesis of WMn-MPRAGE contrast as an efficient representation of MPRAGE images 

and introduce a 3D CNN-based synthesis model prior to the segmentation CNN to learn 

this representational mapping from MPRAGE to WMn-MPRAGE contrast. We investigate 

if this representational learning can further improve thalamic nuclear conspicuity and, in 

turn, segmentation accuracy. We refer to the generated representation as synthesized WMn-

MPRAGE and the overall segmentation framework as synthesized contrast segmentation 

(SCS).

MATERIALS AND METHODS

CNN Architecture Overview

Figure 1 shows an overview of the proposed thalamic nuclei segmentation frameworks. 

Fig. 1a shows the 3D Native Contrast Segmentation (NCS) CNN that predicts the 

whole thalamus and individual thalamic nuclei on MPRAGE images. Fig. 1b shows the 

Synthesized Contrast Segmentation (SCS) CNN where a 3D contrast synthesis CNN to 

generate synthesized WMn-MPRAGE representation from MPRAGE images is introduced 

prior to the segmentation CNN.

The multi-scale thalamic nuclei segmentation CNN (Fig. 2a) has a U-NET (Ronneberger, 

Fischer, and Brox 2015) like encoder-decoder framework that processes features at multiple 

scales. At each resolution level, a series of convolution (3x3x3), batch normalization, and 

rectified linear unit layers extract features followed by a pooling layer for downsampling. 

The skip connections from each resolution level are concatenated to the corresponding 

resolution level along the upsampling path. The segmentation CNN uses MPRAGE images 

as input and predicts both the thalamus and individual thalamic nuclei in one pass through 

the model. Multiresolution feature maps are first used to predict the thalamus label. These 

feature maps, concatenated with the predicted thalamus label from the previous step, are 

then used to localize individual thalamic nuclei. Whole thalamus and thalamic nuclei labels 

generated from WMn-MPRAGE images using THOMAS are used as surrogate for manual 

segmentation ground truth for training the segmentation CNN. Dice loss is used for the 

thalamus and multi-label Dice loss is used for thalamic nuclei. The total segmentation loss is 

the sum of errors in the prediction of the thalamus using Dice loss and its individual nuclei 

using multi-label Dice loss. If C refers to the total number of nuclei labels, Gi and Pi refer 
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to the ground truth annotations and predictions for the ith label, respectively, the multi-label 

Dice loss used in this work is defined as follows:

Lmulti − label Dice = 1
C 1 − ∑

i

C 2 ∣ Gi ∩ Pi ∣
∣ Gi ∣ + ∣ Pi ∣

The architecture for the multi-scale contrast synthesis CNN also uses an encoder-decoder 

architecture similar to the segmentation CNN (Fig. 2b) except for the loss formulation. 

The contrast synthesis CNN is trained using MPRAGE images as input and co-registered 

WMn-MPRAGE images as ground truth. Here, along with an intensity similarity-based loss 

function, we also use the perceptual loss measured using a VGG16 model (Simonyan and 

Zisserman 2015) pre-trained on ImageNet, similar to some other works on contrast synthesis 

in MR images (Dar et al. 2019). If W and Wsyn are the ground truth WMn-MPRAGE image 

and the WMn-MPRAGE image synthesized from the corresponding MPRAGE image, 

respectively, the total synthesis loss function is given as:

L{W , W syn} = ∣ W − W syn ∣ 1 + ∣ F(W ) − F(W syn) ∣ 2

The first term represents the intensity similarity-based loss defined as the L1 norm-error 

between the ground truth and the synthesized images. The second term, corresponding to the 

L2 norm error of the perceptual loss, ensures visual similarity of the synthesized images and 

the reference images. The function F(.) extracts feature maps from the third rectified linear 

unit layer of the ImageNet pre-trained VGG16 model to compare features from ground truth 

and synthesized images.

Study Cohort

For generalizability, images acquired on two different scanners were pooled for training. 

This comprised of data from 18 healthy individuals acquired on a 3T MAGNETOM Prisma 

(Siemens Medical Solutions USA, Inc., Malvern, PA, USA) and 17 healthy individuals 

acquired on a 3T Signa (General Electric Healthcare, Waukesha, WI) MR scanner, each 

subject being scanned with both MPRAGE and WMn-MPRAGE protocols. Of these 35 

individuals, 33 subjects were retained for training, 2 were used for validation. Note that 

the training and validation cohorts consisted entirely of healthy individuals with no known 

pathologies.

Two independent test cohorts were used to demonstrate generalizability. The performance of 

the thalamic nuclei segmentation CNN trained directly on MPRAGE images (i.e. NCS) with 

those using synthesized WMn-MPRAGE images (i.e. SCS) is first evaluated on a cohort of 

healthy subjects (n=12). This cohort is referred to as test cohort 1. For clinical validation, 

the CNNs proposed in this work are used on MPRAGE images from an independent cohort 

of subjects (n=45) with alcohol use disorder (AUD) (n=22) and gender- and age-matched 

controls (n=23) to study the effect of AUD on thalamic nuclear atrophy. This second test 

cohort is referred to as the AUD cohort. The WMn-MPRAGE images from this cohort 

were previously used to characterize atrophy in thalamic nuclei volumes in alcoholism 
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using THOMAS (Zahr et al. 2020). The image acquisition for the testing cohorts also 

consisted of MPRAGE and WMn-MPRAGE protocols. All imaging data was acquired after 

prior informed consent and adhering to institutional review board guidelines. Additional 

information on MR image acquisition protocols for the subjects used in this study are 

available in the Supplementary Table 1.

CNN Data Generation

The ground truth labels for the thalamus and 11 thalamic nuclei were generated on WMn-

MPRAGE images using THOMAS (Su et al. 2019), a multi-atlas segmentation technique. 

THOMAS uses 20 anatomical priors with manual delineations by a radiologist, guided by 

the Morel atlas, to segment the thalamus into 11 nuclei and the mammillothalamic tract in 

15 minutes or less.

The isotropic resolution MPRAGE images and the corresponding WMn-MPRAGE images 

were co-registered using an affine transformation to train the segmentation CNNs. The 

co-registered images were brain extracted using FSL’s brain extraction toolbox (Smith 

2002), N4-bias corrected (Tustison et al. 2010), and intensity normalized using histogram-

based contrast stretching to scale intensities in the range of [0, 1]. Contrast stretching was 

performed to clip intensities below the 1st percentile and above the 99th percentile to avoid 

outlier-based clipping that may affect traditional min-max based intensity normalization.

The segmentation CNNs were trained using an image-based scheme. From each subject, 

training data for the segmentation CNN were generated by cropping and extracting 2.5D 

(192x192x5) images using a sliding window. Data augmentation for the segmentation CNN 

training included scaling and shearing transformations. The contrast synthesis CNN was 

trained using a patch-based scheme. The co-registered image pairs (MPRAGE and WMn-

MPRAGE images) were used to extract overlapping 2.5D patches (64x64x5) using a sliding 

window over the entire brain. The patches were extracted only from regions within the brain 

mask for each subject. Data augmentation for the synthesis CNN included random in-plane 

and through-plane rotations in addition to scaling and shearing transformations. Augmented 

images were generated on every training image batch by randomly selecting a subset of data 

augmentation schemes described previously during run time.

CNN Experiments and Implementation

To understand how segmentation CNN performance changes with loss function, we also 

trained the NCS CNN with weighted categorical cross entropy loss (WCCE). Here, a binary 

cross-entropy loss was used for thalamus and WCCE was used for thalamic nuclei. The 

WCCE loss function is defined as:

Lwcce = − ∑
n

∑
i

C
wi gn log pn

Here, C is the number of labels, wi is the weight associated with the ith label, gn and pn refer 

to the nth pixel of the ground truth (G) and prediction (P), respectively.
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The training parameters for the thalamic nuclei segmentation CNN are: loss function for 

thalamus = Dice, loss function for thalamic nuclei = multi-label Dice, epochs = 50, batch 

size = 10, optimizer = Adam, learning rate = 0.001, and decay = 0.1. The training parameters 

for the contrast synthesis CNN are: Loss function for image similarity = L1, perceptual 

loss = L2, epochs = 50, batch size = 10, optimizer = Adam, learning rate = 0.001, decay = 

0.1. Experiments were implemented in Python using Keras (https://keras.io) with Tensorflow 

(https://www.tensorflow.org) backend on a Linux system, with Titan P100 (NVIDIA) GPU. 

Architecture details and code used in this work are available at the following URL: https://

github.com/lunastra26/thalamic-nuclei-segmentation.

Evaluation of CNN Performance

The whole thalamus and individual thalamic nuclei labels were predicted on MPRAGE 

images using the two segmentation frameworks. Performance of the segmentation CNN 

was evaluated using Dice score and percent volume difference (VD). If G and P refer to 

the ground truth THOMAS labels and predictions, respectively, then, Dice = 2 ∣ G ∩ P ∣
∣ G ∣ + ∣ P ∣

and VD ( % ) =
∣ V G − V P ∣

V G
× 100. Here. VG corresponds to the volume of mask G. The 

performance of the contrast synthesis CNN was evaluated using root mean squared 

error (RMSE), structural similarity (SSIM), and peak signal-to-noise (PSNR) ratio. The 

definitions for these evaluation metrics are presented in the Supplementary material.

Statistical Analysis

A paired two-sided t-test (α = 0.05) was used to compare if there were any significant 

differences in the performance of the segmentation CNNs trained on MPRAGE images 

compared to their WMn-MPRAGE representation. A Bland Altman analysis was performed 

to assess agreement between ground truth and volumes predicted by NCS and SCS CNNs. 

Pearson’s correlation coefficient, coefficient of variation (CV) and percent reproducibility 

coefficient (RPC) statistics were also computed.

A recent work by Zahr et al (2020) used WMn-MPRAGE images and THOMAS 

segmentation to detect significant atrophy in the ventral lateral posterior (VLp) nucleus on 

a cohort comprising of patients with alcohol use disorder (AUD) and age-matched controls. 

We used the AUD cohort from this work to characterize atrophy in thalamic nuclei volumes 

in alcoholism, but using MPRAGE images instead of WMn-MPRAGE. The 11 thalamic 

nuclei were combined into four groups similar to Zahr et al (2020) : anterior, lateral, 

posterior, and medial. The nuclei breakdown for these groups is shown in Table 1. ANCOVA 

analysis was first performed on the predicted volumes from the NCS and SCS CNNs to 

understand the relationship between volumes of the nuclei groups and diagnosis (controls 

vs alcoholics), after accounting for age and intercranial volume (ICV) estimated using 

Freesurfer segmentation (Buckner et al. 2004). If a significant relationship was observed 

within any of these groups, ANCOVA analysis was repeated for individual nuclei within that 

group to further understand relationship between thalamic nuclei volumes and diagnosis.
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RESULTS

The training of the segmentation and synthesis CNNs took approximately 12 and 50 

hours, respectively. The end-to-end prediction time for a pre-processed MPRAGE volume 

(~ 256x256x210) was approximately 12 seconds, with 4 seconds for synthesizing WMn-

MPRAGE images and 8 seconds for segmenting the thalamus and its nuclei.

Table 2 compares the changes in segmentation accuracy of the NCS CNN based on the 

choice of loss function on test cohort 1 (n=12 healthy subjects). Although the segmentation 

CNN trained using WCCE loss function had a higher Dice score for larger nuclei such as 

Pul, MD, and VLp compared to multi-label Dice loss function, it had significantly higher 

VD in smaller nuclei such as LGN and MGN (P<.008). For the rest of the experimental 

analyses, NCS and SCS CNNs were trained using multi-label Dice loss function.

Synthesis CNN Performance

Synthesized WMn-MPRAGE images generated from the contrast synthesis CNN are 

compared to input MPRAGE and target WMn-MPRAGE images in Figure 3. The 

contrast synthesis CNN is able to mimic native WMn-MPRAGE contrast, especially 

between thalamus and white matter and inside the thalamus. A quantitative evaluation 

of synthesis CNN (Table 3) shows that synthesized WMn-MPRAGE images have a high 

structural similarity (93.7% and 92.1%) and PSNR (23.5 and 21.3) on both test cohorts. 

Joint histograms between co-registered MPRAGE, WMn-MPRAGE, and synthesized WMn-

MPRAGE images for the thalamus region from two test images (Supplementary Figure 1) 

show high concordance between histograms of WMn-MPRAGE images and synthesized 

WMn-MPRAGE images.

Segmentation CNN Performance

A qualitative comparison of the thalamic nuclei segmentation predictions from NCS and 

SCS CNNs for a test subject are shown in Figure 4. Note the improved intra-thalamic 

contrast as well as thalamus-WM boundary in SCS (arrows) compared to NCS. Both the 

CNN models are able to accurately identify thalamic nuclei relative to the ground truth for 

the larger nuclei. However, the boundaries of the smaller nuclei such as VA, Hb, and MTT 

(Figure 4) and AV, VLa, CM, LGN, MGN (Figure 5) from SCS CNN agree better with the 

ground truth annotations.

On the AUD cohort (Table 4), the segmentation CNNs yielded Dice scores of at least 0.84 

for the larger nuclei (Pul, MD, VLp) and at least 0.7 for the smaller nuclei. We also observed 

that synthesizing WMn-MPRAGE representation prior to segmentation significantly reduced 

overall VD of the whole thalamus (P=.008). For nuclei such as MGN (P=.003) and CM 

(P=.01), the predictions from SCS CNN yielded a significantly higher Dice score (MGN, 

P=.003 and CM, P=.01). Although the Dice scores were relatively comparable, SCS CNN 

made smaller errors in volume estimates compared to NCS in most of the nuclei, with 

significant lower error in volume estimates for VPl (P=.01) and VA (P=.001). Similar 

trends were also observed in test cohort 1 (Supplementary Table 2) where segmentation 

using synthesized WMn-MPRAGE representation instead of MPRAGE images yielded 
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significantly improved Dice scores (AV and CM, P<.005) and VD (CM, P<.005; MD, 

P<.01) for some nuclei and comparable performance in others.

Effect of Diagnosis on Thalamic Nuclei Volumes in AUD Cohort

The least-squares mean (and standard error) from the ANCOVA analysis on the AUD cohort 

are presented in Table 5. There was a significant effect of diagnosis on lateral nuclei group 

volumes after controlling for age and ICV. This reduction in lateral group of nuclei volumes 

in alcoholics was observed in volumes obtained from both SCS (F [1, 39] = 6.96, p = 0.01) 

and NCS CNNs (F [1, 39] = 6.92, p = 0.01). No significant effect of diagnosis was observed 

on other nuclei groups (anterior, medial, or posterior). Among the constituent nuclei of the 

lateral group (VLp, VPl, VA, VLa), both SCS (F [1, 39] = 6.68, p = 0.01) and NCS CNNs 

(F [1, 39] = 5.96, p = 0.04) segmentations showed a significant atrophy in VLp nucleus 

volumes in alcoholism. Note that these results are consistent with the previously reported 

study by Zahr et al (2020) where a significant atrophy was observed in the VLp nucleus 

in alcoholics but using WMn-MPRAGE images segmented using THOMAS. In addition to 

VLp, we noticed that the NCS CNN also showed a significant reduction in VPl (F [1, 39] = 

7.92, p = 0.008) nucleus for subjects with AUD. However, neither Zahr et al (2020) nor the 

SCS CNN framework showed any significant atrophy in the VPl nucleus.

Bland-Altman plots to assess agreement in CNN-predicted volumes and the ground truth 

for the whole thalamus, VLp, and the VPl nuclei for the AUD cohort are shown in Figure 

6. A stronger correlation between ground truth and volume estimates from SCS CNN is 

observed compared to NCS CNN. The limits of agreement were also tighter when using 

synthesized WMn-MPRAGE images for the whole thalamus (Fig. 6d) and VPl nucleus (Fig. 

6f) compared to using MPRAGE images (Fig. 6a and Fig. 6c). Bland-Altman plots for NCS 

CNN show a higher CV for the thalamus (7% vs 4% from SCS CNN) and VPl nucleus (17% 

vs 10% from SCS CNN).

Figure 7 (and Supplementary Table 3) also compares Dice scores and VD from the NCS 

CNN trained on WMn-MPRAGE contrast to demonstrate the improvements in segmentation 

accuracy if true WMn-MPRAGE images were used for training the segmentation CNN. We 

see that although synthesized WMn-MPRAGE images offer an improvement over MPRAGE 

contrast, true WMn-MPRAGE contrast still yielded better performance in terms of improved 

Dice scores and reduced VD for all thalamic nuclei (Figure 7). However, in scenarios 

where acquisition of WMn-MPRAGE is not possible, such as existing clinical protocols and 

online repositories, the use of synthesized WMn-MPRAGE can provide improvements over 

MPRAGE based thalamic nuclei segmentation.

DISCUSSION

In this work, a novel deep learning based thalamic nuclei segmentation framework for 

MPRAGE images was proposed. A 3D segmentation CNN trained on MPRAGE images 

(NCS) was developed and the effect of learning a WMn-MPRAGE representation of 

MPRAGE images in improving the segmentation performance was investigated. The NCS 

CNN and the segmentation CNN trained on synthesized WMn-MPRAGE images (SCS) 

were validated on two different cohorts- one containing healthy subjects and one consisting 
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of a mix of healthy controls and subjects with AUD. Our results show that CNN based 

segmentation can provide fast and registration-free thalamic nuclei predictions on MPRAGE 

images. Furthermore, with the training data used in this work, the transformation of 

MPRAGE images to synthesized WMn-MPRAGE representation was able to improve the 

accuracy of the segmentation CNN for some nuclei. Figure 8 illustrates an example AUD 

test subject where the SCS CNN improved the prediction of individual thalamic nuclei 

in the presence of thalamic lesions. These lesions appear brighter in the synthesized WMn-

MPRAGE contrast. Although both the CNN frameworks are trained on healthy individuals, 

the SCS CNN is able to better delineate thalamic nuclei boundaries, especially of Pul, CM, 

and VPl nuclei, even in the presence of thalamic lesions.

WMn-MPRAGE Contrast as an Efficient Representation for Thalamic Nuclei Segmentation

Although both the segmentation CNNs showed comparable performance on the thalamus 

and larger thalamic nuclei on the AUD cohort, the use of SCS CNN was able to significantly 

improve the Dice scores (MGN and CM) and volume difference (VA and VPl) for some 

nuclei compared to NCS CNN, and replicate previously observed thalamic nuclear atrophy 

trends in AUD patients. Both the NCS and the SCS CNNs were able to replicate atrophy 

in VLp nuclei for subjects with AUD (Zahr et al. 2020) but the NCS CNN showed an 

additional spurious atrophy in VPl volumes. Note that this is consistent with the significantly 

higher VD in Table 4 (13.3% ± 12.7% in NCS vs 8.1% ± 6.2% in SCS, P<.008) and 

larger standard error in Table 5 for in VPl nucleus. The Bland-Altman plots (Figure 6) 

reveal that NCS under-estimated volumes from subjects with AUD, artificially inflating the 

group differences in subjects with thalamic nuclei atrophy due to the underlying pathology. 

Together, these explain the spurious atrophy in VPl nucleus volumes observed in alcoholics 

when using volumes computed from the MPRAGE images (i.e. NCS). By transforming 

the MPRAGE images to a new representation for the segmentation CNN, we were able to 

demonstrate atrophy only in the VLp nucleus, as previously reported by Zahr et al (2020) 

using THOMAS and true WMn-MPRAGE data, attesting to the sensitivity, accuracy, and 

potential utility of representational learning in the segmentation framework used in this 

work.

Inference Time Computational Efficiency and Existing literature

Manual annotations for the thalamus and thalamic nuclei on structural MR images, although 

considered gold-standard, are tedious, often requiring hours for accurate delineation. 

Automated thalamic nuclear segmentation techniques on MRI provide a promising 

alternative to time-consuming manual annotations. Although recent techniques such as the 

Bayesian probabilistic atlas-based thalamus segmentation (Iglesias et al. 2018) available 

in Freesurfer have been proposed for MPRAGE images, the processing time for Freesurfer-

based segmentation is on the order of several hours. The shape-based multi-atlas technique 

proposed by Liu et al (2020) does not take advantage of inter-thalamic nuclear contrast 

and the segmentation accuracy can be affected in the presence of thalamic nuclear atrophy 

due to neurological diseases. Moreover, these existing atlas-based segmentation techniques 

on structural MR images (Iglesias et al. 2018; Su et al. 2019; Liu et al. 2020) rely on 

success of the nonlinear registration process to accurately transfer thalamic nuclei labels 

from atlas space to native space. In addition to being computationally burdensome with 
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longer processing times, the accuracy of the segmentation is often limited by the success 

of the registration process. The CNN-based segmentation frameworks proposed in this 

work provide a fully automated, fast, and reliable technique for thalamic parcellations (11 

nuclei and MTT) that neither requires registration to a template during inference time 

nor cropping of the thalamus region to predict individual thalamic nuclei. With prediction 

times in the order of seconds for a 3D volume, this is a significant reduction compared 

to multi-atlas schemes like THOMAS (15 min) or probabilistic atlas-based schemes like 

Freesurfer (several hours).

Recently, a multi-planar 2D CNN-based method was proposed for thalamic nuclei 

segmentation on WMn-MPRAGE images, where Majdi et al (2020) demonstrated 

preliminary results of thalamic nuclei segmentation from MPRAGE images using training 

from WMn-MPRAGE and MPRAGE contrasts. A cascade of 2D CNNs first predicted 

the thalamus and subsequently the individual thalamic nuclei. The input to the CNNs 

were cropped images obtained by registering them to a bounding box for thalamus 

on a WMn-MPRAGE template. This 2D CNN framework was shown to significantly 

outperform Freesurfer-based segmentation in terms of Dice scores, where the Freesurfer-

based segmentation yielded significantly lower Dice scores for small nuclei such as AV, 

VLa, CM as well as LGN and MGN (Majdi et al. 2020). As opposed to a cascade of 

2D CNNs in Majdi et al (2020), our proposed segmentation framework uses a single 3D 

CNN to directly predict the thalamus and individual nuclei on MPRAGE images in one 

pass through the CNN. Furthermore, NCS framework does not require any time-consuming 

registration-based preprocessing step for cropping.

Limitations and Future Work

A limitation of our work is the lack of manual annotations to train the segmentation CNNs. 

Manual annotations by experts, although considered gold standard, can be impractical to 

obtain for a large cohort such as ours. In this work, THOMAS, a multi-atlas framework that 

uses non-linear registration on WMn-MPRAGE images, is used to generate ground truth 

labels for training the CNN. The choice of target labels for the thalamus and individual 

thalamic nuclei, especially one generated from another automated segmentation technique, 

may affect the segmentation accuracy. However, THOMAS generated nuclei labels have 

previously been validated against manual annotations (Su et al. 2019). Evaluated on healthy 

volunteers and patients with Multiple Sclerosis by comparing against manual annotations, 

THOMAS achieved high Dice scores of at least 0.85 for the larger nuclei and at least 0.7 

for smaller structures. Su et al (2019) also compared structural-MRI based THOMAS and 

Freesurfer-based thalamic nuclei segmentation to manual annotations on a small subset of 

cases and found that THOMAS outperformed Freesurfer in terms of Dice score for smaller 

nuclei such as CM, AV, and VA as well as in larger nuclei such as VLp and Pul. With 

improved performance against benchmarks, THOMAS-generated labels act as excellent 

surrogates for time-consuming manual annotations.

Although the segmentation CNNs proposed in this work yield registration-free predictions 

during inference time, the impact of the success of registration process in the THOMAS 

label-generation process on CNN predictions would need to be further investigated. Future 
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studies may have to compare THOMAS and CNN generated labels with manual annotations, 

if and when available, to understand how errors propagate when training on labels generated 

by an automated algorithm instead of manual contours. The overall segmentation accuracy 

of the frameworks can be affected and further improved by the choice of CNN architectures, 

such as the use of CNN ensembles (Li et al. 2018; Umapathy et al. 2021) for improved 

generalization performance, or generative adversarial networks (Yi, Walia, and Babyn 2019) 

for contrast synthesis.

In this study, the segmentation frameworks were trained on a normal cohort and evaluated in 

subjects with AUD. Improvements in segmentation performance of the CNN was observed 

when training on a WMn-MPRAGE representation of the MPRAGE images, leading to 

improved sensitivity to the effects of AUD on thalamic nuclear atrophy on this particular 

cohort. The clinical applicability of the proposed technique to other neurological diseases 

that differentially affect thalamic nuclei volumes as well in the presence of lesions or metal 

electrode artifacts (for e.g. from deep brain stimulation leads) needs further investigation. 

Online repositories such as ADNI or OASIS with MPRAGE images can be used to 

explore the relationship between thalamic nuclei volumes and cognition. A fast and reliable 

MPRAGE-based thalamic parcellation technique such as ours would allow retrospective 

analysis of these previously acquired neuroimaging data.

CONCLUSION

In this work, the use of a deep learning-based 3D CNN framework was proposed for fast, 

automated, and registration-free thalamic nuclei segmentation on T1-weighted MPRAGE 

images. The potential of learning a new representation of MPRAGE images (WMn-

MPRAGE contrast) to further improve the performance of segmentation CNN was also 

investigated. Faster prediction times compared to traditional thalamic nuclei parcellation 

techniques and the same atrophy in ventral lateral posterior nucleus observed previously 

with WMn-MPRAGE images with THOMAS segmentation was achieved on subjects with 

alcoholism using the proposed deep learning frameworks, attesting to their sensitivity, 

accuracy, as well as clinical utility.
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Fig. 1: 
Overview of the proposed multi-scale thalamic nuclei segmentation frameworks. (a) The 

thalamus and its individual nuclei are predicted directly on MPRAGE images using 

the Native Contrast Segmentation (NCS) framework. (b) A contrast synthesis CNN is 

introduced prior to the segmentation CNN for synthesized contrast segmentation (SCS) 

framework. This synthesis CNN learns a new representation (WMn-MPRAGE) from 

MPRAGE contrast. The ground truth labels are generated on the WMn-MPRAGE images 

using a multi-atlas label fusion algorithm (THOMAS).
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Fig. 2: 
Convolutional Neural Network (CNN) architectures for synthesis and segmentation. (a) A 

3D multi-scale thalamic nuclei segmentation CNN and (b) a 3D multi-scale white-matter-

nulled contrast synthesis CNN are shown. The number of feature maps generated from 

each layer are denoted next to the layer. Note that both architectures have a similar encoder-

decoder like framework with skip connections except for the choice of loss functions.
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Fig. 3: 
White-matter-nulled MPRAGE (WMn-MPRAGE) synthesis. Representative axial and 

sagittal cross-sections of a synthesized image from a test subject are shown. The target 

WMn-MPRAGE images as well as input MPRAGE images are also shown for reference. 

The synthesized WMn-MPRAGE images are able to mimic the contrast between thalamus 

and the surrounding white matter similar to the WMn-MPRAGE images.
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Fig. 4: 
Thalamic nuclei prediction on MPRAGE and synthesized WMn-MPRAGE images using 

NCS and the SCS CNN frameworks, respectively. Top row (a-b): Representative axial 

cross-sections from a test subject for the different image contrast are shown. It is to be 

noted that synthesized WMn-MPRAGE contrast shows improved inter-thalamic contrast. 

The arrows in (b) highlight nuclei boundaries on synthesized WMn-MPRAGE image for 

MD and Pul nuclei. Bottom row: Individual thalamic nuclei labels predictions from the 

(c) MPRAGE contrast and (d) synthesized WMn-MPRAGE contrast are overlaid on the 

images with reference THOMAS labels outlined on the left thalamus. The segmentation 

CNN using synthesized contrast is able to accurately delineate even smaller nuclei such as 

ventral anterior (VA), habenula (Hb), and mammillothalamic tract (MTT).
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Fig. 5: 
Thalamic nuclei predictions from the synthesized contrast segmentation CNN. Multiplanar 

views of the test subject (top row) in Figure 4 with individual nuclei labels from the 

antral, ventral, posterior, and medial thalamic nuclei groups predicted using synthesized 

WMn-MPRAGE (bottom row) are shown. The corresponding ground truth labels from 

THOMAS are overlaid (color outlines) for the left thalamus. The coronal view shows the 

LGN and MGN nuclei. The predicted labels for the smaller nuclei such as AV, VA, VLa, 

CM, LGN, and MGN agree well with the THOMAS outlines.
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Fig. 6: 
Bland-Altman plots to assess agreement between predicted volumes and ground truth 

THOMAS labels on the Alcohol Use Disorder (AUD) cohort. Bland-Altman plots for 

agreement in volumes for Thalamus (a), ventral lateral posterior (b), and ventral posterior 

lateral nucleus (c) for the segmentation CNN trained on MPRAGE images (top row) are 

shown. The plots are also generated for the volumes predicted by the segmentation CNN 

trained on synthesized WMn-MPRAGE images (bottom row). The subjects are color-coded 

with blue for controls and red for subjects with AUD. For each case, Pearson’s correlation 

coefficient (ρ), percent repeatability coefficient (RPC), and coefficient of variation (CV) are 

also reported. It should be noted that on the AUD cohort, the volumes from synthesized 

WMn-MPRAGE images have tighter limits of agreement. Additionally, the NCS framework 

underestimates the volumes for thalamus and ventral posterior lateral nucleus for subjects 

with AUD (red).
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Fig. 7: 
Comparison of thalamic nuclei segmentation CNN performance with different image 

contrasts on the test cohorts (test cohort 1 and alcohol use disorder cohort). The bar 

plots compare the improvements in Dice score (a) and volume difference (VD) (b) for 

the different nuclei when using synthesized WMn-MPRAGE and WMn-MPRAGE over 

conventional MPRAGE contrast. The nuclei are arranged in decreasing order of their 

average volumes. Transforming the MPRAGE contrast to synthesized WMn-MPRAGE 

representation yields improvements in segmentation performance. The usage of true WMn-

MPRAGE contrast outperforms MPRAGE based segmentation.

Umapathy et al. Page 22

Neuroinformatics. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
Thalamic nuclei prediction on a subject with lesions in the thalamus. Axial cross-sections of 

the subject, with alcohol use disorder, are shown in the top row (a-b). The thalamic lesions 

(yellow arrows) appear bright in the WM-nulled representation of MPRAGE image. The 

predictions from the corresponding NCS CNN (c) and SCS CNN (d) are shown. On this 

particular case, the segmentation using MPRAGE contrast (NCS) fails to correctly delineate 

nuclei surrounding the lesions, especially centromedian (CM), pulvinar (Pul), and ventral 

posterior lateral (VPl) nuclei.
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Table 1:

Index of thalamic nuclei groups and abbreviations

Groups Thalamic Nuclei

Anterior Anterior ventral nucleus (AV)

Lateral

Ventral lateral posterior nucleus (VLp)

Ventral lateral anterior nucleus (VLa)

Ventral anterior nucleus (VA)

Ventral posterior lateral nucleus (VPl)

Posterior

Pulvinar nucleus (Pul)

Medial geniculate nucleus (MGN)

Lateral geniculate nucleus (LGN)

Medial

Mediodorsal nucleus (MD)

Centromedian nucleus (CM)

Habenular nucleus (Hb)

Others Mammillothalamic tract (MTT)

Neuroinformatics. Author manuscript; available in PMC 2023 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Umapathy et al. Page 25

Table 2:

Quantitative comparison (Mean ± SD) of segmentation CNN performance with different loss functions (test 

cohort 1)

Dice Scores Volume Difference (%)

WCCE
a Multi-label Dice WCCE Multi-label Dice

Thalamus 0.91 ± 0.03 0.91 ± 0.03 7.7 ± 7.3 6.1 ± 7.1

Lateral

VLp 0.84 ± 0.03 * 0.82 ± 0.04 6.4 ± 5.2 7.3 ± 7.4

VPl 0.74 ± 0.06 0.66 ± 0.12 16.9 ± 12.4 17.2 ± 18.4

VA 0.723 ± 0.08 0.72 ± 0.10 20.3 ± 10.0 14.0 ± 13.8

VLa 0.638 ± 0.11 0.62 ± 0.11 45.2 ± 39.5 23.8 ± 19.9

Posterior

Pul 0.89 ± 0.02 * 0.84 ± 0.05 4.7 ± 3.9* 10.9 ± 5.4

MGN 0.72 ± 0.08 0.77 ± 0.07 * 27.0 ± 13.3 9.3 ± 8.0 *

LGN 0.63 ± 0.20 0.74 ± 0.14 * 29.4 ± 20.4 13.2 ± 10.6 *

Medial

MD 0.86 ± 0.07 * 0.80 ± 0.12 12.5 ± 13.6 9.0 ± 10.2

CM 0.67 ± 0.06 0.57 ± 0.17 52.1 ± 29.2 37.6 ± 26.3

Hb 0.26 ± 0.22 0.56 ± 0.28 * 48.6 ± 33.3 25.4 ± 32.8

AV 0.70 ± 0.17 0.66 ± 0.14 40.2 ± 24.3 24.0 ± 21.1

a
WCCE = Weighted Categorical Cross Entropy

*
P<0.008, two-sided paired t-test
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Table 3:

Evaluation (mean ± SD) of synthesis CNN performance

Test Cohort 1 AUD Cohort

Root mean squared error (RMSE) 0.067 ± 0.007 0.086 ± 0.009

Peak signal to noise (PSNR) 23.5 ± 0.968 21.3 ± 0.829

Structural similarity (SSIM) 0.937 ± 0.010 0.921 ± 0.017
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Table 4:

Quantitative comparison of CNN frameworks (Mean ± SD) on Alcohol Use Disorder Cohort (n=45)

Dice Score Volume Difference (%)

NCS
a

SCS
b NCS SCS

Thalamus 0.92 ± 0.03 0.93 ± 0.01 4.9 ± 5.0 2.9 ± 2.3 *

VLp 0.84 ± 0.04 0.84 ± 0.04 6.4 ± 5.0 7.1 ± 4.7

VPl 0.73 ± 0.12 0.73 ± 0.1 13.3 ± 12.7 8.1 ± 6.2 *

VA 0.77 ± 0.04 0.78 ± 0.05 10.8 ± 8.6 7.3 ± 6.5 **

VLa 0.65 ± 0.12 0.67 ± 0.1 20.1 ± 16.0 16.8 ± 12.1

Pul 0.86 ± 0.09 0.88 ± 0.03 8.1 ± 12.2 5.4 ± 4.6

MGN 0.76 ± 0.08 0.78 ± 0.07 ** 11.6 ± 9.7 9.6 ± 7.1

LGN 0.76 ± 0.09 0.77 ± 0.08 15.1 ± 11.6 13.5 ± 13.4

MD 0.86 ± 0.05 0.87 ± 0.03 9.0 ± 10.2 6.7 ± 4.6

CM 0.72 ± 0.12 0.76 ± 0.07 * 14.6 ± 14.5 12.3 ± 11.2

Hb 0.68 ± 0.11 0.69 ± 0.08 17.2 ± 12.8 14.4 ± 7.9

AV 0.75 ± 0.11 0.74 ± 0.09 26.9 ± 51.7 24.9 ± 59.8

*
P=.01, two-sided paired t-test

**
P<.005, two-sided paired t-test

a
NCS: Native Contrast Segmentation CNN

b
SCS: Synthesized Contrast Segmentation CNN
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Table 5:

Thalamic atrophy in alcoholism: ANCOVA
a
 analysis on the Alcohol Use Disorder cohort

Lateral Group

Controls AUD P-value

NCS 3133.1 ± 69.7 2865.2 ± 71.5 0.01*

SCS 3153.3 ± 49.0 2964 ± 50.2 0.01*

Ventral lateral posterior

Controls AUD P-value

NCS 1787.6 ± 34.9 1678.5 ± 35.8 0.04*

SCS 1850.2 ± 31 1733.2 ± 31.7 0.01*

Ventral posterior lateral

Controls AUD P-value

NCS 604.1 ± 23.4 507.8 ± 24 0.008*

SCS 567.8 ± 12.8 537.1 ± 13.1 0.1

a
The values displayed are the least squares mean ± standard error from the ANCOVA analysis (n=45).
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