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Abstract

Recent years have seen a rapid growth of utilizing graph neural networks (GNNs) in the 

biomedical domain for tackling drug-related problems. However, like any other deep architectures, 

GNNs are data hungry. While requiring labels in real world is often expensive, pretraining GNNs 

in an unsupervised manner has been actively explored. Among them, graph contrastive learning, 

by maximizing the mutual information between paired graph augmentations, has been shown 

to be effective on various downstream tasks. However, the current graph contrastive learning 

framework has two limitations. First, the augmentations are designed for general graphs and thus 

may not be suitable or powerful enough for certain domains. Second, the contrastive scheme 

only learns representations that are invariant to local perturbations and thus does not consider 

the global structure of the dataset, which may also be useful for downstream tasks. In this 

paper, we study graph contrastive learning designed specifically for the biomedical domain, where 

molecular graphs are present. We propose a novel framework called MoCL, which utilizes domain 

knowledge at both local- and global-level to assist representation learning. The local-level domain 

knowledge guides the augmentation process such that variation is introduced without changing 

graph semantics. The global-level knowledge encodes the similarity information between graphs 

in the entire dataset and helps to learn representations with richer semantics. The entire model 

is learned through a double contrast objective. We evaluate MoCL on various molecular datasets 

under both linear and semi-supervised settings and results show that MoCL achieves state-of-the-

art performance.
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1 INTRODUCTION

Graph neural networks (GNNs) has been demonstrated to achieve state-of-the-art 

performance on graph-related tasks such as node classification [13, 38, 40], link prediction 

[48] and graph classification [9, 38, 42]. It has also been frequently used in the biomedical 

domain recently to tackle drug-related problems [18, 30, 32]. However, like most deep 

learning architectures, it requires large amount of labeled data to train whereas task-specific 

labels in real world are often of limited size (e.g., in biomedical domain, requiring 

labels such as drug responses from biological experiments is always expensive and time 

consuming). Therefore, pretraining schemes on GNNs have been actively explored recently.

One line of works focuses on designing pretext tasks to learn node or graph representations 

without labels. The predefined tasks include graph reconstruction [12, 14, 45] and context 

prediction [11, 22]. The other line follows a contrastive learning framework from computer 

vision domain [5, 41], in which two augmentations are generated for each data and then 

fed into an encoder and a projection head. By maximizing the mutual information between 

the two augmented views, the model is able to learn representations that are invariant to 

transformations. In particular, [44] proposed four types of augmentations for general graphs 

and demonstrated that contrastive learning on graphs is able to produce representations that 

are beneficial for downstream tasks.

However, contrastive learning on graphs has its unique challenges. First, the structural 

information and semantics of the graphs varies significantly across domains (e.g., social 

network v.s. molecular graphs), thus it is difficult to design universal augmentation scheme 

that fits all scenarios. It has been shown that general augmentations can be harmful under 

a specific domain context [44]. Second, most current graph contrastive learning frameworks 

learn invariant representations while neglect the global structure of the entire data [1], e.g., 

some graphs should be closer in the embedding space due to their structural similarity. 

Nevertheless, modeling similarity between graphs itself is still a difficult problem [2]. Third, 

the contrast schemes are not unique because graph tasks can happen at different levels, e.g., 

node-graph contrast [10], node-node contrast [47], graph-graph contrast [44] are all possible 

contrast schemes.

Besides these unique challenges for graphs, contrastive learning itself also has unsolved 

problems. For example, accurately estimating mutual information in high dimension is 

difficult [23]. The connection between mutual information maximization and the success of 

contrastive learning is still not clear. In fact, [37] found the connection is actually weak, 

while instead metric learning shares some intrinsic connections with contrastive learning. 

These findings also motivate us to pay more attention to the role of augmentation schemes 

and global semantics of the data in order to improve contrastive learning on graphs.
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Therefore, in this paper, we aim to tackle the aforementioned challenges in the context 

of biomedical domain, where molecular graphs are present. Our goal is to improve 

representations by infusing domain knowledge into the augmentation and constrast schemes. 

We propose to leverage both local-level and global-level domain knowledge to assist 

contrastive learning on molecular graphs. In particular, unlike general augmentations in 

which nodes and edges in a graph are randomly perturbed, we propose a new augmentation 

scheme called substructure substitution where a valid substructure in a molecule is replaced 

by a bioisostere that introduces variation without altering the molecular properties too much. 

The substitution rules are derived from domain resource and we regard it as local-level 

domain knowledge. The global-level domain knowledge encodes the global similarities 

between graphs. We propose to utilize such information to learn richer representations via a 

double contrast objective.

Leveraging domain knowledge to assist contrastive learning has rarely been explored in 

literature and our work is the first to make this attempt. In summary, our contributions are as 

follows:

• We propose a new augmentation scheme for molecular graphs based on local-

level domain knowledge such that the semantics of graphs do not change in the 

augmentation process.

• We propose to encode global structure of the data into graph representations 

by adding a global contrast loss utilizing the similarity information between 

molecular graphs.

• We provide theoretical justifications that the learning objective is connected with 

triplet loss in metric learning which shed light on the effectiveness of the entire 

framework.

• We evaluate MoCL on various molecular datasets under both linear and semi-

supervised settings and demonstrate its superiority over the state-of-the-art 

methods.

2 RELATED WORK

Self-supervised learning on graphs.

A common strategy for learning node (graph) representation in an unsupervised manner 

is to design pretext tasks on unlabled data. For node-level tasks, You et al. [45] proposed 

three types of self-supervised tasks: node clustering, graph partition and graph completion 

to learn node representations. Peng et al. [22] proposed to predict the contextual position 

of a node relative to the other to encode the global topology into node representations. 

GPT-GNN [12] designed generative task in which node attributes and edges are alternatively 

generated such that the likelihood of a graph is maximized. After that, the pretrained 

GNN can be used for any downstream tasks. For graph level tasks, Hu et al. [11] first 

designed two tasks, predicting neighborhood context and node attributes to learn meaningful 

node representations, then using graph-level multi-task pretraining to refine the graph 

representation. GROVER [28] incorporated GNN into a Transformer-style architecture and 

learned node embedding by predicting contextual property and motif labels. Other works 
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[31, 35, 43] utilized similar strategies for either node or graph level pretraining in the context 

of a more specific task or domain.

Contrastive learning on graphs.

Contrastive learning on graphs can be categorized into two groups. One group aims to 

encode structure information by contrasting local and global representations. For example, 

DGI [39] proposed to maximize the mutual information between node embedding and graph 

summary vector to learn node representations that capture the graph semantics. InfoGraph 

[34] extended DGI to learn graph-level representations and further proposed a variant for 

semi-supervised scenarios. Another group aims to learn representations that are invariant to 

transformations, following the idea of contrastive learning on visual representations [5, 7, 

41], where two augmentations (views) of an image are generated and fed into an encoder 

and a projection head, after which their mutual information is maximized. Similarly, You et 

al. [44] explored four types of augmentations for general graphs and demonstrated that the 

learned representations can help downstream tasks. Instead of general corruption, [10] used 

graph diffusion to generate the second view and performed contrast between node and graph 

from two views. GCA [47] proposed adaptive augmentation such that only unimportant 

nodes and edges are perturbed. However, GCA is focused on network data and not suitable 

for molecular graphs. Instead of focusing on augmentation views, MICRO-Graph [46] 

proposed to contrast based on sub-graphs (motifs). GCC [24] proposed to use random walk 

to generate subgraphs and contrast between them.

Evaluation protocols.

There exist various evaluation schemes for graph level self-supervised learning. Most prior 

works [11, 34, 44, 46] adopt the linear evaluation protocol where a linear classifier is trained 

on top of the representations. [34, 44, 46] also adopt the semi-supervised protocol where 

only a small fraction of labels are available for downstream tasks. Other works [11, 28, 44] 

also explore the transfer learning setting in which the pretrained model is applied to other 

datasets.

3 METHOD

3.1 Problem Definition

A (molecular) graph can be represented as G = (V, ℰ), where V = v1, v2, .., v|V |  and 

ℰ = V × V denotes node and edge set respectively. Let X ∈ ℝ|V | × d1 be the feature matrix 

for all nodes in a graph, A ∈ ℝ|V | × |V | the adjacency matrix and E ∈ ℝ|ℰ | × d2 the edge 

features, our goal is to learn a graph encoder h = f(X, A, E) ∈ ℝd′ which maps an input 

graph to a vector representation without the presence of any labels. The learned encoder and 

representations can be used for downstream tasks directly or via finetune.

3.2 Contrastive Learning Framework

In a conventional contrastive learning framework (Fig. 1 left), for each graph Gi, two 

augmentation operators t1 and t2 are sampled from the family of all operators T, and applied 

to Gi to obtain two correlated views Gi
1 = t1 Gi  and Gi

2 = t2 Gi . We use numbers in the 
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superscript to represent different views throughout the paper. The correlated views are fed 

into a graph encoder f, producing graph representations hi
1 and hi

2, which are then mapped 

into an embedding space by a projection head g, yielding zi1 and zi2. The goal is to maximize 

the mutual information between the two correlated views in the embedding space via Eq (1).

ℒlocal = 1
n ∑i = 1

n ℒi
local, (1)

and the loss for each sample ℒi
local can be written as:

ℒi
local = ℒi

1 + ℒi
2

= − log es zi1, zi2 /τ

∑j = 1, j ≠ i
n es zi1, zj2 /τ

view 1 contrasts view 2

− log es zi2, zi1 /τ

∑j = 1, j ≠ i
n es zi2, zj1 /τ

view 2 contrasts view 1

, (2)

where n is the batch size, s(·, ·) is a function which measures the similarity of the two 

embeddings, τ is a scale parameter. The two correlated views zi1 and zi2 are regarded as 

positive pair while the rest pairs in the batch are regarded as negative pairs. The objective 

aims to increase the probability of occurrences of positive pairs as opposed to negative ones. 

Note that the negative pairs can be formed in two directions. If zi1 is the anchor, all zj2 in view 

2 are contrasted; if zi2 is the anchor, all zj1 in view 1 are contrasted. Thus the loss for each 

sample consists of two parts as showed in Eq (2).

3.3 Local-level Domain Knowledge

Most existing approaches adopt random corruption during augmentation. For example, [47] 

proposed four types of augmentations for general graphs (Fig. 2 upper). However, such 

random corruption may alter the semantics of molecular graphs. For node dropping and edge 

perturbation, the resulting molecule is rarely biologically proper, e.g., dropping a carbon 

atom in the phenyl ring of aspirin breaks the aromatic system and results in an alkene chain 

(Fig. 2a); perturbing the connection of aspirin might introduce a five-membered lactone 

(Fig. 2b), which may drastically change the molecular properties. For subgraph extraction, 

the resulting structure is arbitrary and not representative for molecular functionality, e.g., 

methyl acetate is a sub group of aspirin (Fig. 2c), but also frequently shown in other 

compounds such as digitoxin and vitamin C with diverse chemical structures and biological 

effects. Enforcing high mutual information between such augmentation pairs may produce 

suboptimal representations for downstream tasks. This phenomenon has also been observed 

in [47] that edge perturbation deteriorates the performance of certain molecular tasks. 

Among the general augmentations, only attribute masking (Fig. 2d) does not violate the 

biological assumptions since it does not change the molecule, it only masks part of the atom 

and edge attributes.

Therefore, we aim to infuse domain knowledge to assist the augmentation process. We 

propose a new augmentation operator called substructure substitution, in which a valid 

substructure in a molecule is replaced by a bioisostere [17] which produces a new molecule 
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with similar physical or chemical properties as the original one (Fig. 2e). We compile 218 

such rules from domain resource 1. Each rule consists of a source substructure and a target 

substructure represented by SMARTS string 2. A sample rule is as follows:

# 6:2 # 6:1 = O O; − , H1 ≫ * :2 c:1 1nn nH n1

indicating the transition from left substructure (carboxylic acid) to the right one (nitrogen 

heterocycle). The substitution rules have 36 unique source substructures which can be 

categorized into 8 groups. We summarize the statistics of the rules in Table 1. Note that 

target substructures are all unique and different. The original 218 substitution rules mostly 

happen at molecular positions where heteroatoms (heavy atoms that are not C or H) and 

aromatic rings are presented, therefore the variation for general carbon groups is limited. 

Under the common assumption that changing a few general carbon atoms will not alter the 

molecular property too much, we add 12 additional rules to subtract and add general carbon 

groups from and to a molecule. Some sample rules are:

* :1 CH2 CH2 * :2 ≫ * :1 * :2 drop
* :1 − * :2 ≫ * :1 CC * :2 add

Thus, MoCL consists of 230 rules in total to generate molecule variants that share similar 

properties. All the rules and code are available at https://github.com/illidanlab/MoCL-DK.

Moreover, since the source substructures in the rules are very common, a molecule may 

contain multiple source substructures or multiple copies of the same substructure in the 

rule, the proposed augmentation can be applied multiple times to generate variants with 

much more diversity. A notable difference between proposed augmentation and general 

augmentation is that the proposed rules are not guaranteed to be applicable to a molecule 

after it changes, therefore when applying proposed augmentation multiple times, we need 

to update the rule availability accordingly at each round. We summary the proposed 

augmentation procedure in Alg. 1.

3.4 Global-level Domain Knowledge

Maximizing mutual information between correlated views learns transformation-invariant 

representations. However, it may neglect the global semantics of the data. For example, 

some graphs should be closer in the embedding space since they share similar graph 

structures or semantics from domain knowledge. For molecular graphs, such information 

can be derived from multiple sources. For general graph structure, extended connectivity 

fingerprints (ECFPs) [27] encode the presence of substructures for molecules and are widely 

used to measure the structural similarity between molecular graphs. Drug-target networks 

[25] record the drug-protein interaction information which is one of the most informative 

biological activity measures. In this section, we first define graph similarity from general 

molecular graphs, then we propose two ways to incorporate the global semantics into our 

learning framework.

1 https://www.schrodinger.com/drug-discovery 
2 https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html 
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3.4.1 Similarity calculation.—Given the ECFP of two molecules, e1, e2 ∈ {0, 1}m 

where m is the vector length and 1 indicates the presence of certain substructures, the 

similarity of e1 and e2 can be calculated as the Tanimoto coefficient [3]:

s e1, e2 = N12
N1 + N2 − N12

, (3)

where N1, N2 denotes the number of 1s in e1, e2 respectively, and N12 denotes the number 

of 1s in the intersection of e1, e2. The resulted coefficient s(e1, e2) ∈ [0, 1] and a larger 

value indicates higher structural similarity. Similarly, for drug-target network, e1, e2 ∈ {0, 

1}m becomes the interaction profile of a drug to all proteins where m is the total number of 

proteins. The drug similarity can be calculated the same as Eq. (3).

3.4.2 Global-level Objective.—We propose two strategies for using the global 

similarity information. One strategy is to use it as direct supervision. Given embeddings of 

two original graphs zi and zj, we measure the similarity between them as θ zi, zj =
ziTzj

zi zj
. 

We optimize the similarity using least square loss as follows:

ℒi
global = ∑j ≠ iℒij

global = ∑j ≠ i θ zi, zj − si, j 2
2,

where si,j is the similarity from Eq. (3).

The second strategy is to utilize a contrastive objective in which similar graph pairs have 

higher mutual information as compared to the background. The objective is written as:

ℒi
global = − log

∑j = 1, j ∈ Ni
n es zi, zj /τ

∑j = 1, j ∉ Ni
n es zi, zj /τ

,

Sun et al. Page 7

KDD. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Ni refers the neighbors of graph i. The neighbors can be derived from global 

similarity by setting a threshold or a neighborhood size. The global loss for all graphs 

thus becomes:

ℒglobal = 1
n ∑i = 1

n ℒi
global . (4)

Finally, the full objective of the proposed MoCL can be written as:

ℒ = ℒlocal + λℒglobal, (5)

where λ is a tuning parameter that controls the emphasis between local loss and global loss. 

We summarize the pseudo code of the entire framework in Alg. 2.

3.5 Connection to Metric Learning

It has been well studied that optimizing objective Eq. (1) is equivalent to maximizing a 

lower bound of the mutual information between the correlated views, also a lower bound 

of the mutual information between input and the hidden representations [6, 20]. Formally, 

denote Z1 and Z2 as the random variables for the embeddings of augmentations, X the 

variable for original input features:

ℒlocal ≤ I Z1; Z2 ≤ I X; Z1, Z2 .

Beyond mutual information maximization, in this section, we provide additional justification 

for the proposed method from the perspective of metric learning, which unifies the local and 

global objectives. We show the following important result:
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LEMMA 1.

Assume the projection head g is an identity mapping, i.e., z = g(h) = h, and the similarity 

function s(·, ·) is inner product, i.e., s zi, zj = ziTzj. Consider 1-nearest neighbor of each 

graph in the batch for global structure information, and λ = 1, the objective ℒi is equivalent 

to the following:

ℒi ∝ ∑
j ≠ i

zi1 − zi2
2 − zi1 − zj2

2

local contrast view 1

+ zi2 − zi1
2 − zi2 − zj1

2

local contrast view 2

+ ∑
j ≠ k, k ∈ Ni

zi − zk 2 − zi − zj 2

global contrast
+ Const.

The lemma above connects the objective design to the metric learning. The equation consists 

of three triplet losses [4] which corresponds to the two local losses and the global loss 

respectively. As such, the MoCL objective aims to pull close the positive pairs while pushing 

away the negative pairs from both local and global perspective. Detailed proofs can be found 

in Appendix.

4 EXPERIMENT

In this section, we conduct extensive experiments to demonstrate the proposed method by 

answering the following questions:

Q1.

Does local-level domain knowledge (MoCL-DK) learns better representations than general 

augmentations? How does combination of different augmentations behave?

Q2.

Does global-level domain knowledge (MoCL-DK-G) further improve the learned 

representations? Do the two proposed global losses perform the same?

Q3.

How do the hyper-parameters (λ, neighbor size) involved in MoCL affect the model 

performance?

4.1 Evaluation Protocols

The evaluation process follows two steps. We first pretrain a model based on any 

comparison method, and then evaluate the learned model on downstream tasks. We adopt 

two evaluation protocols:

• Linear protocol: fix the representation from pretrained model and finetune a 

linear classifier on top of it.

• Semi-supervised protocol: sample a small set of labels of the downstream 

task and use the weights of learned graph encoder as initialization meanwhile 

finetune all the layers.
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which are most commonly used in literature [11, 34, 44, 47].

4.2 Experimental Setup

Datasets and Features.—We use 7 benchmark molecular datasets in the literature [11, 

34, 44] to perform the experiments, which covers a wide range of molecular tasks such as 

binding affinity, response in bioassays, toxicity and adverse reactions:

• bace [33]: a dataset containing the binding results between molecules and human 

proteins.

• bbbp [16]: a dataset measuring the blood-brain barrier penetration property of 

molecules.

• mutag [29]: a dataset recording the mutagenic effect of a molecule on a specific 

gram negative bacterium.

• clintox & tox21 & toxcast [8, 19, 26]: datasets that contains the molecule toxicity 

from FDA clinical trials (clintox) and in vitro high-throughput screening (tox21 

and toxcast).

• sider [15]: a dataset containing the adverse drug reactions (ADR) of FDA 

approved drugs.

The basic statistics of the datasets (size, tasks, molecule statistics) are summarized in Table 

2. In this paper, we mainly focus on classification tasks as prior works [11, 34, 44], therefore 

we use AUC [36] as the major evaluation metric.

For molecular graphs, we use both atom features and bond features as inputs. We use i) 

atomic number and ii) chirality tag as features for atoms and i) bond type and ii) bond 

directions as features for chemical bonds [11].

Model Architectures.—We use GIN [42] as our graph encoder f which has been shown 

to be the most expressive graph neural network layer in prior works [11]. It also allows us 

to incorporate edge features of molecules into the learning process. The update rule for each 

GIN layer can be written as:

xi
l + 1 = MLPθ xil + ∑j ∈ NiReLU xjl + ej, i ,

where xil is the node representation at l-th layer, Ni denotes the neighbor nodes of i-th node 

and ej,i represents the edge feature between node i and j. MLPθ is a two-layer perceptron 

parameterized by θ. Note that MLP here is for a single GIN layer in order to make the 

GIN layer the most expressive. After obtaining the node representations for all atoms in a 

molecule, we average them to get the graph representation h.

We use another two-layer perceptron for the projection head g in our framework following 

literature [5, 44]. It has been shown that a projection head with nonlinear transformation 

is necessary for a better representation of the layer before it due to information loss in the 

contrastive learning loss [5]. After adding a projection head, the representations at previous 
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layer, ie., h, can benefit more for downstream tasks. We use cosine similarity for the critic 

function s zi, zj = ziTzj/ zi zj  [44].

Baselines.—For both linear and semi-supervised evaluation protocols, we adopt three 

types of baselines for comparison:

• Vanilla GNN (Scratch): train a standard nonlinear GNN model on labeled data of 

the downstream task.

• General GNN self-supervised learning or pretraining baselines: i) InfoGraph 

[34], which maximizes the mutual information between nodes and graph; 

ii) Edge Pred & Context Pred [11]: which uses the node embeddings to 

predict graph edge and neighbor context in order to learn meaningful node 

representations; iii) Masking [11]: which masks the atom attributes and tries to 

predict them.

• Graph contrastive learning baselines: we adopt the four types of general 

augmentations for graph in [44]: i) node dropping; ii) edge perturbation; 

iii) subgraph extraction; iv) attribute masking for comparison. We also add 

linear procotol resutls reported in MICRO-Graph [46] which is a motif-based 

contrastive method for comparison (no public code available).

Implementation Details.—We use 3 layers of GIN for all methods since 3-hops 

neighborhood covers most aromatic rings and is usually sufficient for molecular structure 

learning [27]. The dimensions for GIN layer and embedding layer are 512 and 128 

respectively. We use Adam as optimizer with initial learning rate of 0.001 for all methods. 

We use dropout ratio 0.5 for GIN layers and default settings for baselines. The batch size 

is 32 across all scenarios. For pretraining models, the running epoch is fixed to 100. For 

downstream tasks, we use early stop via validation set. We implement all models using 

Pytorch [21] and run them on Tesla K80 GPUs.

The variation of results for a dataset comes from two sources, the pretrained model and 

the downstream task. By comparing them, we find the variation of pretrained model (by 

applying different seeds) is much smaller than the variation of downstream task (by different 

training-testing splits). Therefore, for each dataset, we use its molecular graphs to pretrain 

a model (1 seed) and then apply it to downstream task on the same dataset using different 

splits (5 seeds). We do not evaluate transfer learning setting in this paper where a pretrained 

model is applied to another dataset. During downstream task, we split the dataset into 

training (0.8), validation (0.1) and testing (0.1) set, we use validation set for early stop 

and evaluate the AUC on testing set. For semi-supervised protocol where only a small 

fraction of labels is used to train, since the data sizes are different, the ratio is picked 

from {0.01, 0.05, 0.5} such that around 100 molecules being selected for each dataset. For 

local-level domain knowledge, we use augmentation ratio 0.2 for general augmentations as 

prior work [44] and different augmentation times {1, 2, 3, 5} for the proposed method. 

For example, MoCL-DK3 denotes applying domain augmentation 3 times. For global-level 

domain knowledge part, we try λ = {0.5, 1.0, 5.0, 10.0} and 4 different nearest neighbor 
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sizes for each dataset based on its size. We use ECFP with dimension 1024 to calculate the 

global similarity. The complete implementation details can be found in Appendix.

4.3 Local-level domain knowledge (Q1)

We first examine whether the proposed augmentation helps learn a better representation. 

Since the contrastive framework involves two correlated views, different augmentation 

schemes can be applied to each view. Figure 3 shows the results of different augmentation 

combinations under linear protocol for all datasets (the results of toxcast is similar as 

tox21 therefore we remove it due to space limit). MoCL-DK represent applying domain 

augmentation by only once. We can see that i) the representations from MoCL-DK 

(diagonals) plus a linear classifier yield prediction accuracies which are on-par with a deep 

learning model train from scratch (bace, bbbp, sider), or even better than it (clintox, mutag). 

ii) the proposed augmentation MoCL-DK combined with other augmentations almost 

always produce better results compared to other combinations (rows and columns that 

contain MoCL-DK are usually higher). iii) Attribute masking and MoCL-DK are generally 

effective across all scenarios, combining them often yields even better performance. This 

verifies our previous assumption that MoCL-DK and attribute masking does not violate the 

biological assumption and thus works better than other augmentations. Moreover, harder 

contrast, e.g., combination of different augmentation schemes benefits more as compared 

to one augmentation schemes (MoCL-DK + AttrMask often produce the best results). This 

phenomenon is reasonable and also observed in prior works [44].

For semi-supervised protocol, the results are weaker, we did not include the augmentation 

combination figure due to space limit. But the complete results for all comparison methods 

for both linear and semi-supervised protocol can be found in Table 3, where the next-to-

bottom panel represents results for proposed augmentation and the bottom panel presents 

global results which we will mention in the next subsection.

The proposed augmentation MoCL-DK can be applied multiple times to generate more 

complicated views. We tried over a range of different augmentation strengths and report 

the corresponding results for all datasets in Figure 4. We can see that for most datasets, 

as we apply more times the proposed augmentation, the performance first increases and 

then decreases. MoCL-DK3 usually achieves better results than others. For certain datasets 

(clintox, toxcast) the trend is not very clear between the two evaluation protocols.

4.4 Global-level domain knowledge (Q2)

We next study the role of global-level domain knowledge by examining the following 

sub-questions: i) Does global similarity helps general (baseline) augmentations? Does it 

helps the proposed augmentation? Are the effectiveness the same? ii) How do different 

global losses behave, i.e., direct supervision as least square loss v.s. contrastive loss, across 

all datasets, which one is better?

Figure 5 shows the performance gain by incorporating global similarity information for 

general (baseline) augmentations and the proposed augmentation. Each bar represents the 

median gain across all 7 datasets for a particular augmentation scheme. We can see that 

global information generally improves all augmentation schemes (the bars are positive). 

Sun et al. Page 12

KDD. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interestingly, the gain for proposed domain augmentation (MoCL-DK1 and MoCL-DK3) are 

much higher as compared to other augmentations schemes. Note that we used the same set 

of global-level hyper-parameters for all augmentations for fair comparison. Table 4 shows 

the performance for different global losses under both evaluation protocols. We can see that 

contrastive loss (CL) for the global similarity achieves better results than directly using it as 

supervision by least-square loss (LS).

We summarize the complete results for all comparison methods in Table 3. We can 

see that i) contrastive learning works generally better than traditional graph pretraining 

methods, especially in linear protocol; ii) The proposed augmentation outperforms general 

augmentations. By combining MoCL augmentation and attribute masking, the results are 

even better for some datasets; iii) The global similarity information further improves 

the learned representations. Moreover, without combining with attribute masking, MoCL 

augmentation only already achieves the best performance under most scenarios after adding 

global information. The learned representations plus a linear classifier can achieve higher 

accuracy than a well-trained deep learning model. In summary, the proposed method is 

demonstrated to be effective for various molecular tasks.

4.5 Sensitivity Analysis (Q3)

Finally we check the sensitivity of global-level hyper-parameters, ie., the neighbor size and 

λ that controls the weight between local and global loss. Figure 6 shows the performance 

surface under different hyper-parameter combinations of the proposed method for bbbp 

dataset. We can see that a relatively smaller neighbor size (not too small) and larger weights 

(not too large) for the global loss leads to a best result. Other datasets also show the similar 

pattern.

4.6 Discussion

We provide additional observations and discussion in this subsection. First, we observe that 

representations which perform well under linear evaluation do not guarantee to be better in 

the semi-supervised setting. Since we finetune all the layers in semi-supervised learning, 

an overly delicate representation as initialization may not produce the best results in a 

fully nonlinear setting. Second, the effectiveness of contrastive learning also depends on 

the property of the dataset as well as the nature of the task. For example, single property 

prediction (mutag, bbbp) benefits more from pretraining as compared to toxicity prediction 

(tox21, toxcast) since it depends not only on the compound structure, but also the cellular 

environment. Therefore, incorporating drug-target network information and system biology 

data may be more helpful to these datasets, which is our future direction.

5 CONCLUSION

In this work, we propose to utilize multi-level domain knowledge to assist the contrastive 

representation learning on molecular graphs. The local-level domain knowledge enables new 

augmentation scheme and global-level domain knowledge incorporates global structure of 

the data into the learning process. We demonstrate that both knowledge improve the quality 

of the learned representations.
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APPENDIX

Implementation Details

Table 5 shows the detailed parameter settings for all datasets. Semi-ratio depends on the 

data size such that around 100 molecule labels are sampled from each dataset. The neighbor 

size also depends on the data size such that the number of clusters is between 5 and 30 for 

all datasets. The parameter λ which controls the weight between local and global loss, and 

augmentation time for MoCL-DK are all set to the same set of values for all datasets.

Table 5:

Detailed experimental settings for each dataset.

Dataset Size Semi-ratio Neigbor Size λ DK

bace 1513 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

bbbp 2050 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

clintox 1483 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

mutag 188 0.5 {10, 20, 30, 40} {0.5, 1, 5, 10} {1,2,3,5}

sider 1427 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

tox21 7831 0.01 (600, 800, 1000} {0.5, 1, 5, 10} {1,2,3,5}

toxcast 8597 0.01 {600, 800, 1000} {0.5, 1, 5, 10} {1,2,3,5}

Unlike prior work [44] in which only node, node features and connectivity information are 

used as input, our GNN incorporates edge features, therefore, the implementation of general 

augmentation is slightly different from [44]. We list the operations for both node (features) 

and edge (features) in Table 6.

Table 6:

Implementation details for general augmentation.

Augmentation Node Node features Edge Edge features

Drop Node removed removed removed removed

Perturb Edge - - permuted permuted

Subgraph subsample subsample keep keep

Mask Attributes mask mask mask mask

Edge refers all edges that reach out from the corresponding node. - denotes no change.

Figure 7 shows the distribution of number of augmentations that can be generated by 

applying MoCL-DK1 (left: from rules of substituting functional groups; right: from rules of 

adding/dropping general carbons). Other datasets reveal the same pattern therefore we do not 
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include them due to space limit. We see that MoCL-DK1 can generate considerable number 

of augmentations for the molecules. If we apply MoCL-DK multiple times (MoCL-DK3, 

MoCL-DK5), the number of possible products can further increase drastically.

Figure 7: Distribution of augmentations that can be generated by proposed augmentation rules 
(dataset: bace).

Proof of Lemma 1

Assume the projection head g is an identity mapping, i.e., z = g(h) = h, and the similarity 

function s(·, ·) is inner product, i.e.,s zi, zj = ziTzj. Consider 1-nearest neighbor of each graph 

in the batch for global structure information, and λ = 1, the objective ℒi is equivalent to the 

following:

ℒi ∝ ∑
j ≠ i

zi1 − zi2
2 − zi1 − zj2

2

local contrast view 1
+ zi2 − zi1

2 − zi2 − zj1
2

local contrast view 2
+ ∑

j ≠ k, k ∈ Ni
zi − zk 2 − zi − zj 2

global contrast
+ Const.

PROOF.

ℒi = log
∑j ≠ i

n es zi1, zj2

es zi1, zi2 /τ
+ log

∑j ≠ i
n es zi2, zj1 /τ

es zi2, zi1 /τ

+ log
∑j ≠ k, k ∈ Ni

n es zi, zj /τ

es zi, zk

= log ∑
j ≠ i

n
es zi1, zj2 /τ − s zi1, zi2 /τ + log ∑

j ≠ i

n
es zi2, zj1 /τ − s zi2, zi1 /τ

+ log ∑
j ≠ k, k ∈ Ni

n
es zi, zj /τ − s zi, zk /τ

By applying first-order Taylor expansion we have:
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ℒi ≈ ∑
j ≠ i

n
es zi1, zj2 /τ − s zi1, zi2 /τ + ∑

j ≠ i

n
es zi2, zj1 /τ − s zi2, zi1 /τ

+ ∑
j ≠ k, k ∈ Ni

n
es zi, zj /τ − s zi, zk /τ − 3

≈ 1
τ [ ∑

j ≠ i

n
s zi1, zj2 − s zi1, zi2 + ∑

j ≠ i

n
s zi2, zj1 − s zi2, zi1

+ ∑
j ≠ k, k ∈ Ni

n
s zi, zj − s zi, zk ] − 3

= 1
τ [ ∑

j ≠ i

n
zi
1Tzj2 − zi

1Tzi2 + ∑
j ≠ i

n
zi
2Tzj1 − zi

2Tzi1

+ ∑
j ≠ k, k ∈ Ni

n
ziTzj − ziTzk] − 3

= 1
2τ [ ∑

j ≠ i

n
‖zi1 − zi2‖2 − ‖zi1 − zj2‖2 + ‖zi2 − zi1‖2 − ‖zi2 − zj1‖2

+ ∑
j ≠ k, k ∈ Ni

n
‖zi − zk‖2 − ‖zi − zj‖2] − 3

∝ ∑
j ≠ i

‖zi1 − zi2‖2 − ‖zi1 − zj2‖2 + ‖zi2 − zi1‖2 − ‖zi2 − zj1‖2

+ ∑
j ≠ k, k ∈ Ni

‖zi − zk‖2 − ‖zi − zj‖2 − 6τ
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Figure 1: Overall framework of MoCL. First, two augmented views are generated from local-
level domain knowledge. Then, together with the original view (blue), they are fed into the GNN 
encoder and projection head. The local-level contrast maximizes the mutual information (MI) 
between two augmented views. The global-level contrast maximizes the MI between two similar 
graphs, where the similarity information is derived from global-level domain knowledge.
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Figure 2: Augmentation comparison. Upper: conventional augmentations that may alter the 
graph semantics. Lower: proposed augmentation in which valid substructures are replaced by 
bioisosteres that share similar properties.
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Figure 3: Augmentation combination under linear evaluation protocol. Each cell represents the 
performance difference between i) a vanilla GNN trained from scratch (upper-bound) and ii) 
learned representations (fixed) from the pretrained model plus a linear classifier, under a given 
augmentation combination. Each number is averaged from 5 runs. Blue represents negative 
value and red positive. Higher value is better. MoCL-DK is the proposed augmentation with 
local-level domain knowledge.
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Figure 4: Average test AUC of MoCL-Local across different augmentation strengths (repeat 
times) for all datasets.
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Figure 5: Average test AUC gain from global domain knowledge for different augmentations 
across all datasets.
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Figure 6: Average test AUC of different neighbor size and λ for MoCL-DK1-G under linear 
protocol (dataset: bbbp).
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Table 1:

Source and target statistics for substitution rules.

Group # source # target Formula

CA 1 68 RCOO

Ester 1 7 RCOOR’

Ketone 1 15 ROR’

Phenyl 22 36 Aromatic Rings

Tbutyl 1 10 C4

dsAmide 4 18 RONR’R”

msAmide 2 32 RONR’

nsAmide 4 32 RON

Total 36 218 -

R/R’/R” represent arbitrary carbon-containing groups.
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Table 2:

Basic statistics for all datasets

Dataset # Tasks Size Avg. Node Avg. Degree

bace 1 1513 34.1 36.9

bbbp 1 2050 23.9 25.8

clintox 2 1483 26.1 27.8

mutag 1 188 17.8 19.6

sider 27 1427 33.6 35.4

tox21 12 7831 18.6 19.3

toxcast 617 8597 18.7 19.2
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Table 4:

Comparison between different global losses under MoCL-DKl augmentation.

Protocol Linear Semi-supervised

Dataset LS CL LS CL

bace 0.831 0.845 0.662 0.701

bbbp 0.891 0.903 0.766 0.809

clintox 0.724 0.750 0.608 0.619

mutag 0.954 0.963 0.895 0.907

clintox 0.623 0.628 0.551 0.563

tox21 0.774 0.768 0.655 0.686

toxcast 0.659 0.653 0.547 0.546

LS: directly using global similarity and optimize by least-square loss; CL: contrastive loss using nearest neighbor derived from global similarity.
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