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Abstract

Drug repurposing is an effective strategy to identify new uses for existing drugs, providing the 

quickest possible transition from bench to bedside. Real-world data, such as electronic health 

records and insurance claims, provide information on large cohorts of users for many drugs. 

Here we present an efficient and easily customized framework for generating and testing multiple 

candidates for drug repurposing using a retrospective analysis of real-world data. Building upon 

well-established causal inference and deep learning methods, our framework emulates randomized 

clinical trials for drugs present in a large-scale medical claims database. We demonstrate our 

framework on a coronary artery disease cohort of millions of patients. We successfully identify 

drugs and drug combinations that substantially improve the coronary artery disease outcomes but 

haven’t been indicated for treating coronary artery disease, paving the way for drug repurposing.

Drug repurposing (also known as, drug repositioning) is a strategy to accelerate the drug 

discovery process by identifying novel uses for existing approved drugs1. The primary 

advantage of drug repurposing over traditional drug development is that it starts from 

compounds with well-characterized pharmacology and safety profiles and can substantially 

reduce the risk of adverse effects and attrition in clinical phases2.
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While many successful repurposed drugs (for example, Viagra for erectile dysfunction) have 

been discovered serendipitously3, computation-based repurposing methods have developed 

recently by leveraging structural features of compounds or proteins4,5, genome-wide 

association study (GWAS)6, transcriptional responses7 and gene expression8. These methods 

focus primarily on using pre-clinical information. Unfortunately, the clinical therapeutic 

effects in humans are not always consistent with pre-clinical outcomes9.

In healthcare, real-world data (RWD)10 refers to longitudinal observational data derived 

from sources that are associated with outcomes in a heterogeneous patient population in 

real-world settings, such as patient surveys, electronic health records (EHRs), and claims 

and billing activities. Since RWD are direct observations from human bodies, they become 

a promising source for drug repurposing. A few researchers have already validated a 

small number of repurposing drug candidates on RWD11,12. However, there are some 

limitations with these approaches. First, most studies are complementary (that is, the 

original hypotheses usually come from other studies). Second, their studied number of 

repurposing candidates is limited and unable to proactively generate de novo repurposing 

drug candidates.

In this study, we follow protocols of randomized clinical trial (RCT) design13, and 

computationally screen repurposing candidates for beneficial effect by explicitly emulating 

the corresponding clinical trials using RWD. Considering the inherent characteristics of 

RWD (that is, temporal sequence data and existing confounding variables14), we apply 

deep learning and causal inference methodologies to control the confounders in RWD, 

and systematically estimate the drug effects on various disease outcomes. Specifically, the 

estimated drug effects are obtained by long short-term memory (LSTM)15 and inverse 

probability of treatment weighting (IPTW)16, on MarketScan claims data17.

As a test case, we apply the proposed drug repurposing framework to a coronary artery 

disease (CAD) cohort of millions of patients and emulate RCTs for multiple drug 

candidates, estimating their effects on CAD progression outcomes.

In general, our contribution is threefold:

• We develop a framework for high-throughput screening of on-market drugs by 

emulating, for each drug, an RCT that evaluates its beneficial effect. This allows 

repurposed drug candidates to be proactively generated from existing large-scale 

RWD.

• We present an innovative study design for the estimation of a drug’s effect 

from longitudinal observational data. The CAD cohorts are automatically derived 

under our framework, which accelerates the process of computational drug 

repurposing.

• We propose a propensity score estimation model based on deep learning to 

correct for confounding and selection biases. Experimental comparisons to 

the logistic-regression-based propensity score estimation model show that our 

proposed deep learning model effectively estimates drug effects from RWD, 

paving the way for drug repurposing.
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• We evaluate the therapeutic effect of drug combinations, drug-class-levelled 

candidates on disease outcomes and further explore potential repurposing 

opportunities with different model parameters. We also compare our framework 

with three existing pre-clinical drug repurposing methods, which gives a 

favourable outcome.

Overall framework

We develop a high-throughput, computational drug-repurposing pipeline (Fig. 1) that, given 

a disease cohort (for example, CAD patients), extracts a list of potential repurposing drug 

ingredients and, for each, identifies the corresponding user and non-user sub-cohorts. It 

then computes, for all patients in both sub-cohorts, a large number of features (confounding 

factors), as well as disease progression outcomes. The treatment effects are estimated after 

correcting for confounding and selection biases using the deep learning framework (Fig. 2). 

The framework is equipped with an attention mechanism that provides interpretability for 

the model. Drug ingredients with statistically significant beneficial effects will be considered 

as repurposed drug candidates and suggested as treatments for CAD. This algorithm shows 

an overview of the steps in estimating the effect of assigned treatment on the outcome from 

observational data:

Input: patient data: assigned treatment, outcomes, values for potential confounders

Output: repurposed drug candidates, and their estimated effect, unbalanced feature ratio and 

significance

1. Generate user and non-user sub-cohorts for the treatment

2. C ompute balancing weights for all patients in both sub-cohorts via LSTM-based 

IPTW

3. Estimate the effect over multiple outcomes after correcting for the biases in the 

confounders (equation (1))

4. Compute the unbalanced feature ratio for the treatment after re-weighting using 

standardized difference (equation (2))

5. Estimate the significance of effect and compute adjusted p-values using 

bootstrapping

6. if estimated effect < 0 and adjusted p-value < 0.05 and unbalanced feature ratio < 

2% then

7. return the estimated effect, unbalanced feature ratio and computed p-value

8. end if

Results

In this section we introduce the dataset we use for this study and then demonstrate the 

performance of our model in CAD drug repurposing experiments.
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Dataset.

We identified around 107.5 million distinct patients in the MarketScan Commercial Claims 

and Encounters (CCAE)17 from 2012 to 2017, which contain individual-level, de-identified 

healthcare claims information from employers, health plans and hospitals. CCAE contains 

the largest number of patients and the most diverse population of the MarketScan data. The 

MartketScan table structure and data flow can be found in its user manual18. We extracted 

patient data from three source tables: Outpatient Drug (D), Inpatient Admission (I) and 

Outpatient Services (O). Then we compiled and formulated the raw data into five separate 

tables that can be easily prepossessed. The details of these tables and demo input data can be 

found in our Github repository at https://github.com/ruoqi-liu/DeepIPW.

MarketScan claims data are primarily used for evaluating health utilization and services. The 

overall distribution of patients during the recording period is shown in Extended Data Fig. 

1a. We consider both inpatient and outpatient claims. CAD cohort criteria are defined using 

International Classification of Diseases (ICD) codes19 (Supplementary Table 1). In total, 

there were 1,178,997 CAD patients. We refer to the first date when patients were diagnosed 

with CAD as their CAD initiation date. Extended Data Fig. 1b shows the patient distribution 

of time before/after CAD initiation date.

We identify three categories of study variable: demographic characteristics, diagnosis codes 

and prescription medication. Demographic characteristics in MarketScan CAD data include 

information on age and gender for each patient. Extended Data Fig. 1d shows the age and 

gender statistics distributions of our dataset. Because a majority of the data come from 

commercial claims, race and ethnicity information is incomplete and is not included in the 

analysis. Diagnosis codes in MarketScan CAD data are defined using the ICD codes for 

billing purposes. There are 57,089 ICD-9/10 codes considered in the dataset. Prescription 

medications in MarketScan CAD data also contain all prescription drug claims, which 

contain prescription drug name (generic and brand), national drug code (NDC) and the 

number of days of supply approved. By matching NDCs to observational medical outcomes 

partnership (OMOP) ingredient concept IDs20, we get 1,353 unique drugs in the dataset for 

drug repositioning screening. For drugs with multiple ingredients, we consider each active 

ingredient separately in the mapping processes.

To evaluate the drug effect, we consulted domain experts to define a set of clinically relevant 

events linked to CAD as the disease outcomes (for example, heart failure onset and stroke 

onset). These definitions are based on ICD codes and can be found in Supplementary Tables 

2 and 3. Since CAD is the major risk factor for both heart failure21,22 and stroke23,24, we 

hypothesize that an effective drug will lower the risks of CAD patients developing those 

diseases. Extended Data Fig. 1c demonstrates the time to develop outcomes from the CAD 

initiation date. The confounding variables affect both treatment assignment of patients and 

an outcome used in the trial. We consult domain experts to compile a list of hypothesized 

confounders for the CAD case study with respect to the study variables illustrate above: 

demographics, co-morbidities (diagnosis codes) and co-prescribed drugs.
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Model performance.

Evaluation metrics.

Treatment effect estimation.: In this study, we leverage average treatment effect (ATE) to 

examine the treatment effect at the population level, which is defined as

ATE = E Y 1 − E Y 0 (1)

where E Y 1  and E Y 0  are the expected potential treated and control outcomes of the 

whole population, respectively. The values of ATE are used to determine whether the given 

treatment can improve disease outcomes or not.

Testing feature balance.: We evaluate the performance of models by measuring features’ 

balance between the weighted user and non-user sub-cohorts generated by the IPTW. Given 

patient weights from IPTW, we quantify the balance for each feature using its standardized 

mean difference (SMD), which is the difference in the variable means between the two 

treatment groups, divided by the combined standard deviation. To be exact, we use the 

following definition for standardized difference:

SMD = μuser − μnon−user
suser2 + snon‐user2 /2 (2)

where μuser and μnon-user are the mean in user cohort and non-user cohort; suser
2 and 

snon–user
2 are sample variance of variables in two s2 is calculated by sub-cohorts. For binary 

variables, the variance μ(1 − μ). We consider a standardized difference greater than 0.1 as 

unbalanced25 and compute the unbalanced feature ratio (that is, unbalanced/all features) 

before and after weighting to evaluate the performance of balancing. The user and non-user 

sub-cohorts are considered as balanced if their unbalanced feature ratio is below 2% after 

weighting.

Confidence intervals and significance of effect.: We use bootstrapping26 to calculate the 

confidence intervals of estimators of E Y 1  and E Y 0 , and statistical significance of ATE. 

For each candidate I ingredient, we repeatedly generate multiple different control drugs via 

random sampling with replacement, and the analysis is repeated in each bootstrap sample. 

The 95% confidence interval is then computed by using the standard normal approximation: 

±1.96 times the estimate of the standard error. The p-value of the effect estimator can be 

computed by the normal cumulative distribution function of estimators. We use adjusted p-

value27 as a statistically significant measurement. We consider a repurposing drug candidate 

as significant if its adjusted p-value is below 0.05.

Performance over repurposing drug candidates.—We identified 55 qualified drugs 

following our study design (Methods). Then we estimated the treatment effect on various 

disease outcomes (that is, heart failure and stroke). The flowchart of data collection and 

study process can be found in Supplementary Fig. 2.

Liu et al. Page 5

Nat Mach Intell. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Among the qualified drugs obtained from the data, four of them are known CAD treatments: 

amlodipine, diltiazem, ticagrelor and rosuvastatin (drug label information is collected from 

SIDER28 and DrugBank29). Our framework successfully retrieved three of these known 

drugs: amlodipine, diltiazem and rosuvastatin. We demonstrate the distribution of estimated 

ATE in Fig. 3. Here, we show the drug candidates with balanced user and non-user sub-

cohorts after re-weighting and statistically significant estimates (adjusted p-value). All the 

drugs are ranked from left to right according to increasing estimated ATE values. Based on 

the definition of ATE (that is, the weighted average of observed outcomes from the user and 

non-user sub-cohorts), the drug ingredients with ATE values smaller than 0 are identified 

as improving disease outcomes, while the drug ingredients with ATE values larger than 0 

are identified to worsen disease outcomes. For drugs with beneficial effects, we colour those 

with known CAD indications in red and those without in blue.

From the results, we observe that nine drugs yield a beneficial effect on disease outcomes 

among the sixteen selected significant drug candidates. Specifically, only three have been 

indicated for CAD according to their drug labels information. The remaining six drugs, 

which have not been indicated for treating CAD but can improve the disease outcomes, 

are considered as repurposed drug candidates. We find evidence to support these six drug 

candidates from related literature and web resources as follows: (1) metoprolol is one of 

the most commonly used beta-blockers for treating high blood pressure and chest pain. It 

shows beneficial effects in patients with heart failure associated with CAD30; (2) fenofibrate 

is mainly used to treat abnormal blood lipid levels and also appears to decrease the risk of 

CAD in patients with diabetes mellitus31; (3) hydrochlorothiazide, which is often used to 

treat high blood pressure and diabetes insipidus32, also shows effectiveness in preventing 

CAD33; (4) pravastatin has also shown a beneficial effect on CAD34; (5) for simvastatin, 

results from RCTs show that it can reduce the occurrence of heart failure in patients with 

CAD35; (6) valsartan, a kind of angiotensin receptor blocker, results in improved coronary 

micro-vascular flow reserve, suggesting a direct benefit in hypertensive patients with stable 

CAD36.

We further list the sub-cohort size, feature balancing and estimated ATE values for each 

drug candidate in Table 1. The results of all 55 drugs can be found in Supplementary Table 

4. The first column lists the names corresponding to drugs in Fig. 3. The second and third 

columns denote the number of patients in user and non-user sub-cohorts, respectively. The 

next two columns denote the average number of unbalanced covariates before and after 

re-weighting. The unbalanced ratio column represents the ratio of unbalanced covariates to 

all covariates after re-weighting (that is, the number of unbalanced covariates divided by the 

total number of covariates). And the last two columns are the estimated ATE before and 

after re-weighting. We rank the drugs by increasing re-weighted ATE values. We see that our 

proposed method successfully corrects for most biases in the original data, which results in a 

decrease in the number of unbalanced covariates.

Attention visualization case studies.—Having shown that our model successfully 

identified repurposed drug candidates for CAD treatment, we further demonstrate the 

interpretability of our framework achieves via attention mechanism. To exemplify this, we 

select two case drug candidates: diltiazem and fenofibrate. According to Table 1, diltiazem 
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and fenofibrate both have beneficial effects on CAD disease outcomes. Diltiazem has 

already been used for treating CAD37, while fenofibrate does not have CAD indication 

on its drug label.

We want to identify the covariates that are greatly biased between the user and non-user 

cohorts in original data but balanced after re-weighting. The learned attention weights 

enable visualization of each covariate and its SMD values before/after balancing between 

the user and non-user cohorts. We select the top 20 well-balanced (that is, large deviations 

of SMD during balancing) covariates and plot the distribution of SMD values for two 

case drugs in Fig. 4. The original unweighted data are denoted as blue dots and LSTM-

weighted data as orange dots. The covariates are ordered from bottom to top according to 

the increase of differences between SMD values of unweighted data and LSTM-weighted 

data. According to the figure, we see that for both drugs, the SMD values in the original 

data are greater than 0.1 (that is, the threshold of balancing), which indicates that the 

original observational data is highly biased and many confounding variables exist. The 

maximum SMD value is about 0.6 for diltiazem and 0.35 for fenofibrate. While the 

SMD values estimated in the LSTM-weighted data are smaller than 0.1, which means 

no major biases between the user and non-user cohorts in terms of selected covariates. 

The selected covariates include demographics (for example, age), co-prescribed drugs 

(metformin, metoprolol and so on) and co-morbidities (for example, acute myocardial 

infarction, cardiac dysrhythmias and so on). Correcting for these confounding variables 

gives a more accurate estimation of the treatment effect on the diseases.

Discussion

In this section, we demonstrate the model performance by comparing our framework with 

a logistic regression (LR)-based propensity score estimation method, and three existing 

pre-clinical drug repurposing methods. We also explore additional repurposing opportunities 

with drug class, synergistic drug combinations and various model parameters, further 

demonstrating the potential of our deep learning framework.

Comparison with an LR-based method.

We also developed a base version of our model that uses LR for computing propensity score 

and treatment effect estimation. A recent study identifying drug repurposing candidates from 

observational data achieved a good performance on a case study of Parkinson’s disease38. 

They estimated the propensity scores using LR. Thus, we conduct comparison experiments 

using the base model (LR-IPTW) and our model (LSTM-IPTW) on the two case drugs 

above and show the results for diltiazem in Extended Data Fig. 2 (the results for fenofibrate 

can be found in Supplementary Fig. 1).

As feature balancing is one of the most important evaluation metrics, we first plot the 

distribution of absolute SMD values computed by LSTM-IPTW and LR-IPTW (Extended 

Data Fig. 2a,d). In both LSTM- and LR-weighted data, many features exhibit large absolute 

SMD values (greater than 0.1) in the original data, while most features exhibit low absolute 

SMD (below 0.1) after re-weighting. Specifically, fewer features exhibit absolute SMD 

values above 0.1 thresholds after weighting by the LSTM model than weighting by the 
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LR model. This indicates that the data is well balanced by LSTM-IPTW and the estimated 

ATE from LSTM-IPTW should be more accurate than LR-IPTW. Extended Data Fig. 2b 

shows the propensity distribution plot over user and non-user cohorts using LSTM-IPTW 

and LR-IPTW models. We observe that the propensity distribution of LSTM-IPTW is more 

smooth (that is, the propensities are normally distributed) than the distribution of LR-IPTW. 

Under the LR-IPTW model, many of the patients in non-user cohorts are predicted to 

have a propensity of 0. We also evaluated our models using conventional metrics. The 

receiver operating characteristic (ROC) curve is a standard metric widely used to estimate 

the performance of prediction models. The area under the ROC curve (AUC) characterizes 

the accuracy of the prediction results. Extended Data Fig. 2c,f shows the ROC curves for 

the LSTM-IPTW and LR-IPTW models. The ‘propensity’ curves in the figures are the 

standard ROC curves of the LSTM and the LR models. By comparing the AUC values 

of the two models, we see that the LSTM model yields more accurate prediction results 

than the LR model. With the accurate treatment predictions, the model would generate 

better weights for balancing and treatment effect estimates in the following tasks. Besides 

the standard ROC curve, we also show another two curves: the weighted propensity curve 

and expected curve, which are also leveraged for evaluating causal inference algorithms39. 

The weighted propensity curve is obtained by re-weighting the standard ROC curve using 

weights drawn from the propensity model (the same weights applied in covariate balancing 

and effect estimates). This curve should be very close to the curve that would arise by a 

random assignment (that is, with an AUC close to 0.5), which indicates our assumption that 

the weighting can emulate an RCT. From the plots, we find that LSTM-IPTW performs 

better than LR-IPTW in terms of being closer to 0.5. Compared with the standard propensity 

ROC curve, the ‘expected’ ROC curve duplicates the population and assigns weights to each 

individual based on the propensity. In this setting, each patient contributes their propensity to 

the true positives and (1 − propensity) to the false positives. The standard propensity ROC 

curve should be close to the expected propensity ROC. We observe that the propensity curve 

of LSTM-IPTW is much closer to its expected curve than LR-ITPW.

Additional experiments on drug class.

We further consider the drug classes as repurposing candidates to extend the current 

framework, showing that our repurposing framework can also be applied to drug class level. 

We group the drugs into sub-classes according to ATC fourth-level (indicating chemical, 

therapeutic or pharmacological sub-group). Then we regard each drug sub-class as a 

repurposing candidate and emulate, for each candidate, an RCT to evaluate its treatment 

effect. The study design remains the same as that for individual drugs except that our studied 

repurposing candidates are drug classes (ATC fourth level). By applying the selection 

criteria and study design, we obtain 38 (out of 247) eligible drug classes.

We plot the distribution of estimated ATE values in Extended Data Fig. 3 (the mapping of 

ATC codes and drug class names is shown in Extended Data Fig. 4). Here, we only show 

the drug classes with the balanced user and non-user sub-cohorts after re-weighting and 

statistically significant estimates (adjusted p-value). The results of all 38 drug classes can be 

found in Supplementary Table 5. All the drug classes are ranked left to right according to the 
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increasing order of estimated ATE values. From the results, we observe that 12 drug classes 

yield a beneficial effect on disease outcomes among 16 selected significant drug classes.

We also compare the results of drug classes to previous results based on drug ingredients. 

We observe that most extracted drug classes are consistent with the extracted drug classes 

in Table 1, while some of them are not. For example, three extracted significant drug 

ingredients: rosuvastatin, pravastatin and simvastatin, belong to drug class HMG CoA 

reductase inhibitors (ATC code: C10AA), whereas HMG CoA reductase inhibitors is not 

a significant drug class. Also, some drug classes (for example, ‘other antidepressants’ 

and “selective serotonin reuptake inhibitors”) show a beneficial effect with statistical 

significance in Extended Data Fig. 4, but the drugs that belong to them are not significant 

nor beneficial to the disease in Table 1.

Drug class offers additional information for drug discovery or drug repurposing tasks. 

Considering the drug class helps to uncover potential repurposing drug candidates from the 

drug classes. In future work, we will consider the drug class for drug discovery/repurposing 

with a more comprehensive analysis.

Additional experiments on drug combinations.

We also evaluate the effect of drug combinations on CAD disease progression. Similar to 

the experimental setting of individual drugs, we select drug combinations that satisfy the 

previous cohort definition and criteria (that is, the number of minimum patients in a cohort 

is no less than 500, window thresholds, persistent prescription and so on). After applying 

the cohort selection, we obtain seven drug combinations: (1) metoprolol and clopidogrel; (2) 

metoprolol and atorvastatin; (3) lisinopril and atorvastatin; (4) lisinopril and clopidogrel; (5) 

metoprolol and lisinopril; (6) clopidogrel and atorvastatin; (7) carvedilol and atorvastatin.

We demonstrate the significant drug combinations in Extended Data Fig. 5 (the full list 

of drug combinations can be found in Supplementary Table 6). As shown in some drugs 

are not significant when evaluating their effectiveness at the individual level, while they 

are significant when combined with others. For example, lisinopril and atorvastatin are not 

statistically significant as individual treatments, but their drug combination is significant and 

has a beneficial effect on the outcomes. These results illustrate that considering the synergies 

of drug combinations provides further interesting findings of potential repurposing.

Comparison with pre-clinical-based methods.

We compare our method with three existing pre-clinical drug repurposing methods40–42 and 

conduct experiments using CAD as a case study. From the literature43,44, we know that 

drug chemical structures, protein targets and chemical–protein interactome (CPI) docking 

are very important for computational pre-clinical drug repurposing methods. We followed 

the experimental settings of Gottlieb et al.45 to predict drugs for CAD. Specifically, we built 

an 881-dimensional binary vector for chemical structures following Zhang et al.40 and Liang 

et al.41. We built a 1,210-dimensional binary vector for protein targets following Zhang et 

al.40 and Liang et al.41. And we built a 600-dimensional continuous vector for CPI docking 

scores following Luo et al.42 and Luo et al.4.
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For the performance evaluation, we used precision at K (precision@K) as our main 

evaluation metric to see how many drugs can be validated among the top-ranked candidates. 

We chose precision@K because given a limited budget, pharmaceutical companies can only 

evaluate the top-ranked drug candidates instead of all existing on-market drugs. As shown in 

Extended Data Fig. 6, our method performs better than the other three pre-clinical methods 

that use CPI docking, drug chemical structures and drug targets as features, respectively. 

Compared with pre-clinical methods, our method demonstrates two further advantages: 

(1) fewer translational problems9: we use observational data and emulate the process of 

RCTs while they only leverage pre-clinical information; (2) it’s more robust: we have strict 

covariate balancing testing and significance testing that guarantee our results are robust and 

convincing.

Influence of the model parameters to the results.

We also study the influence of one of our model parameters: adjusted p-value to the results. 

We slightly relax the threshold for adjusted p-value from 0.05 to 0.15 (ref. 46) and keep 

the post-weighting unbalanced ratio the same as before. Extended Data Fig. 7 shows the 

additional repurposing candidates retrieved under this parameter setting (adjusted p-value 

is less than 0.15 and the post-weighting unbalanced ratio is less than 0.02). As shown 

in Extended Data Fig. 7, four more drugs are retrieved by our framework. Specifically, 

(1) metformin, which is the first-line medication for the treatment of type 2 diabetes, and 

has also been tested for treating CAD in clinical trials47; (2) escitalopram, used to treat 

major depressive disorder or generalized anxiety disorder48, and some studies have started 

to explore the drug repurposing opportunity for CAD49; (3) atorvastatin has already been 

studied in a clinical trial for evaluating its therapeutic effect on CAD50; and (4) losartan has 

also been included in clinical trials51.

By relaxing the adjusted p-value threshold, we have more drug candidates (for example, 

metformin and escitalopram) with diverse indications. Our goal is to develop a general 

computational framework for drug repurposing. For people who want to use our framework, 

they can easily adjust these parameters according to their preference.

This study can be extended in multiple directions in the future. For this study, we used 

hypothesized confounders including demographics, co-morbidities and co-prescribed drugs. 

Some other potential confounders such as time elapsed from the first disease diagnosis to 

index date and outcome value calculated over the baseline period could be considered to 

build the model in the future work.

In summary, we demonstrate that the proposed computational drug repurposing framework 

can successfully identify drug candidates that have a beneficial effect on disease outcomes 

but aren’t yet indicated for CAD patients. The proposed LSTM-IPTW model performs 

better at correcting biases and estimating treatment effects than LR-IPTW, and retaining 

interpretability for recognizing important confounding. We also evaluate the therapeutic 

effect of drug combinations, drug-class-level candidates on disease outcomes and further 

explore the potential repurposing opportunity with different model parameters. Besides, we 

compare our framework with three existing pre-clinical drug repurposing methods and our 

framework outperforms others.

Liu et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

In this section, we introduce the study design, which includes definitions of cohorts and 

study variables. Then we illustrate our deep learning model in detail with three main 

components.

Study design.

Our framework identifies drug repurposing candidates using MarketScan CAD data to 

emulate a bulk of corresponding RCTs. Below, we describe the design of the emulated trials 

and the key components of our framework for CAD drug repurposing.

User and non-user cohorts.—Given the drug tested in the trial, a patient is assigned 

to the user cohort if the following inclusion criteria are satisfied: (1) the patient has been 

persistently prescribed the drug (for example, the interval between two prescriptions is less 

than 30 days); (2) the patient is eligible for trial at the time of the first prsquocription for the 

drug (in the CAD study, this condition is that the first prescription is after the CAD initiation 

date); (3) the patient had at least one year’s (365 days) history in the database prior to the 

first prescription of the drug.

Estimating the effect of a drug requires comparing the user cohort to a control group 

assigned with alternative drugs. Once the alternative drugs are determined, the non-user 

cohort is defined by the same inclusion criteria described above— but with respect to the 

alternative drugs. To avoid overlap between the user and non-user cohorts, the framework 

further excludes from the non-user cohort any patient prescribed with the trial’s drug. In 

our study design, alternative drugs are selected randomly from the prescribed ingredients, 

excluding the trial drug itself. Such a control group directly compares the trial’s drug to 

drugs of the same therapeutic indication, reducing confounding by indication. We use the 

term “index date” to refer to the date of the first prescription of the assigned drug, that is, the 

first time the trial’s drug (respectively, the alternative drug) was prescribed for patients in the 

user (respectively, non-user) cohort.

Baseline and follow-up periods.—We refer to the time period prior to the index date 

for which we have information on the patient as the baseline period. We use the baseline 

period for characterizing the patients prior to the beginning of the treatment with the 

assigned drug. The follow-up period starts at the index date, that is, at the beginning of 

the treatment with the trial’s drug in the user cohort, and the control drug in the non-user 

cohort. The effect of the drug is evaluated during the follow-up period. In the CAD study, 

the baseline period is at least 365 days, and the follow-up period is 2 years (730 days). 

Extended Data Fig. 8 demonstrates the definition of user and non-user cohorts.

Outcomes and hypothesized confounders.—The effect of the drug during the 

follow-up period is defined with respect to various disease outcomes. In this CAD drug 

repurposing case study, we consulted domain experts to define a set of clinically relevant 

events linked with CAD as the outcome, for example, heart failure onset (Supplemental 

Table 2) and stroke onset (Supplemental Table 3). The treatment effect is estimated on these 
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outcomes during the follow-up period (that is, 730 days after the index date). The patient is 

considered to have the disease outcome if either of them happens in the follow-up period.

Confounders are variables affecting both treatment assignment of patients and an outcome 

used in the trial, thus creating a ‘backdoor path’ that may hinder the true effect of the drug 

on the outcome. We consult domain experts to compile a list of hypothesized confounders 

for the CAD study, including demographics (for example, age at the index date and sex), 

co-morbidities (for example, indicator per each ICD-9/10 diagnosis class) and co-prescribed 

drugs. Since confounders affect treatment assignment, they are computed on the baseline 

period.

Repurposing drug ingredients.—We regard a drug as a repurposing candidate if it 

satisfies the following conditions: (1) contains an active ingredient (that is, the ingredient 

directly involved in achieving the mediation objectives); and (2) is persistently prescribed 

to a large enough number of patients in the disease cohort. Specifically, an ingredient is 

considered as being used by a patient only if it was prescribed on two or more distinct dates, 

as least one month apart. And a minimum of 500 patients prescribed a certain ingredient 

was required. For each repurposing candidate, we can compute the user and non-user 

cohorts according to the above definition of cohorts. After obtaining the corresponding 

user and non-user cohorts, we can extract outcomes and hypothesized confounders for 

each individual patient from the database. Every patient in their sub-cohort is represented 

by a sequence of events, with each event providing the patient information (that is, co-

morbidities, co-prescribed drugs and so on) that corresponds to each visit. The available data 

within these visits during the baseline period, combined with demographic characteristics 

(that is, age and gender collected at CAD initiation date) are used as inputs to the model.

Model.

Estimation of ATE.—Our proposed framework evaluates the effect of a certain drug 

(that is, a trial’s drug) on a clinical outcome with respect to alternative treatments. Let 

α = 1 denote the treatment corresponding to the trial’s drug, and α = 0 denote the 

alternative treatments. We define the ATE of a drug on the potential outcome Y as 

ATE = E Y 1 − E Y 0 , with E Y α  denoting the potential expected prevalence of patients 

who would have experienced an outcome event during a complete follow-up period if 

all patients in the trial had been assigned with treatment α. The potential outcomes are 

referred to as counterfactual as only one of these is observed for any given individual. 

By running RCTs, we can measure the outcomes within user and non-user groups into 

which individuals are randomly assigned: E Y 1  can be directly estimated as E Y |α = 1  and 

E Y 0  as E Y |α = 0 . However, in observational data (for example, our MarketScan CAD 

data), treatment assignment is usually far from random, which may depend on confounders 

(affecting both treatment assignment and outcome). We need to assign weights to the 

individuals in each group to avoid the influence of confounders.

In order to control the influence of confounders, we apply IPTW to create a pseudo-

population from the original one by assigning a weight wiα to an individual i with treatment 

α. The weight is defined as the inverse of the conditional probability (or propensity score) 
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that an individual is treated with α given the confounding values. One common issue with 

IPTW is that individuals with a propensity score very close to 0 will end up with an 

extremely high weight, potentially making the weighted estimator unstable. We address this 

problem by adopting an alternative weighting function called standardized IPTW25, which 

uses the marginal probability of treatment instead of 1 in the weight numerator.

Logistic regression is the most popular method in statistics for estimating the propensity 

score52. In longitudinal observational data, those observational covariates are not a set of 

static feature vectors (one for each patient), but irregularly sampled time series (recording 

diagnoses, medications and so on at each timestamp). Thus, logistic regression is not ideal 

for effectively modelling longitudinal observational data.

Model for propensity score weighting.—The schematic view of our model is shown in 

Fig. 2, which consists of three main components: an embedding module, a recurrent neural 

network and a prediction module. Briefly, the model estimates the propensity score by first 

transforming the input features using an embedding layer. These embedded features are then 

fed into LSTM, the output of which at every time point is aggregated through an attention 

layer for automatically focusing on important time points. The aggregated features are fed 

into a prediction module that provides the probability of receiving treatment. Each of these 

is discussed below in detail.

Embedding module.—The embedding module is to convert the initial high-dimensional 

and sparse input features into a lower-dimensional and continuous data representation, 

which is beneficial to the following prediction task. As shown in Fig. 2, the input features 

consist of three components: diagnosis, prescription and demographic information (age 

and gender). The diagnosis codes for each patient at each timestamp can be denoted as 

d1, d2, …, dt , and prescription can be denoted as p1, p2, …, pt . Here, dt and pt are both one 

dimensional binary vectors with the size of diagnosis code dictionary (r) and prescription 

code dictionary (s), respectively. For each element in the vector, the value in the j-th 

column indicates that code j is documented in the t-th visit. We use two linear embedding 

modules to represent diagnosis and prescription respectively. That is, we define et = Wemb
d dt, 

ft = Wemb
p pt, where et ∈ ℝm denotes the embedding of the input vector dt ∈ ℝr, m is the size 

of the diagnosis embedding dimension, and Wemb
d ∈ ℝm × r is the embedding matrix. ft ∈ ℝn

denotes the embedding of the input vector pt ∈ ℝs, n is the size of the diagnosis embedding 

dimension, and Wemb
p ∈ ℝn × s is the embedding matrix. The age is normalized into a range 

of [0, 1] using min–max normalization and the gender is represented as a binary vector. 

Having the embedded vectors of patients, we input them to LSTM.

Recurrent neural network and attention mechanism.—LSTM15, which is a kind 

of recurrent neural network equipped with memory cells, can better model the temporality 

of observational data. A common LSTM unit contains a cell, an input gate, an output gate 

and a forget gate. The cell can remember values over irregular time intervals and the three 

gates moderate the flow of information into and out of the cell. The inputs to the LSTM are 

embedded confounding vectors from the embedding module and the output of which is the 
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patient’s latent health status at the time of visit. We use two LSTMs, LSTMα and LSTMβ to 

separately model diagnosis and prescription codes of patients.

h1, h2, …, ht = LSTMα e1, e2, …, et
g1, g2, …, gt = LSTMβ f1, f2, …, ft

(3)

where ht ∈ ℝu, ht ∈ ℝv are hidden state vectors at t-th visit, and u and v denote the size 

of hidden layer of LSTMα and LSTMβ. Then those patient hidden states are aggregated 

through two separate attention layers for automatically focusing on important visits.

αi = Softmax Wα
⊤hi + bα , for i = 1, 2…, t

cα = ∑i = 1
t αihi

βi = Softmax Wβ
⊤gi + bβ , for i = 1, 2…, t

cβ = ∑i = 1
t βigi

(4)

where Wα ∈ ℝu, bα ∈ ℝu, Wβ ∈ ℝv and bβ ∈ ℝv are the parameters to learn. Using the 

generated attention weights for diagnosis and prescription, we obtain the aggregated vectors 

cα ∈ ℝu and cβ ∈ ℝv as defined in equation (4). Then we combine cα, cβ with vectorized age 

and gender to predict the probability of receiving a treatment (propensity score).

Prediction module.—The aggregated patient states from attention layer cα, cβ, combined 

with the demographic features cdemo, are passed through a fully connected neural network to 

predict the probability of receiving a treatment as follows,

y = Sigmoid W⊤ct + b (5)

where ct = ReLu Wc cα, cβ, cdemo + bc , Wc ∈ ℝk × (u + v + 2), bc ∈ ℝk, W ∈ ℝk, b ∈ ℝ are the 

model parameters. We use cross-entropy to calculate the prediction loss as follows,

ℒ = − 1
N ∑i = 1

N yilogyi + 1 − yi log 1 − yi (6)

where yi is the ground truth of observed treatment for patient i.

Experiment settings.—The model is implemented and trained with Python 3.6 and 

PyTorch 1.4 (https://pytorch.org/), on a high-performance computing cluster with four 

NVIDIA TITAN RTX 6000 GPUs. For each drug candidate, we train a model using the 

adaptive moment estimation (Adam) algorithm with a batch size of 50 subjects and a 

learning rate of 0.001. We run each model for 50 iterations for computing p-values and 

confidence intervals. We randomly split the input data into training, validation and test sets 

with a ratio of 70:10:20. The information from a given patient is only present in one set. The 

training set is to train the proposed models. The validation set is used to improve the models 

and select the best model hyperparameters.
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Extended Data

Extended Data Fig. 1 |. CAD cohorts characteristics.
a, The patients’ distribution of total time in the database. b, The patient’s distribution of 

time before/after CAD initiation date. c, The growth of the number of patients developing 

outcomes after CAD initiation date. d, The gender distribution with age at CAD initiation 
date.
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Extended Data Fig. 2 |. Performance comparison of LSTM-IPTW and LR-IPTW using drug 
candidate: diltiazem (with known CAD indication).
The three figures on the top are results obtained from LSTM-IPTW, while the figures on the 

bottom are from LR-IPTW. a, and (d) The absolute SMD of each covariate in the original 

data (orange triangles) and in the weighted data (blue circles). b, and (e) The distribution of 

estimated propensity scores over user (orange area) and non-user (blue area) cohorts. c, and 

(f) The ROC curves for the propensity model (orange), expected value (green) and weighted 

propensity (blue).

Liu et al. Page 16

Nat Mach Intell. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3 |. Distribution of estimated ATE of drug classes on defined outcomes across 
the 50 bootstrap samples.
All these showing drug classes satisfy two conditions: adjusted p-value less than 0.05 

and post unbalanced ratio less than 2%. Within the boxplot, the central line denotes the 

median, and the bottom and the top edges denote the 25th(Q1) and 75th(Q3) and percentiles 

respectively. The whiskers extend to 1.5 times the interquartile range.
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Extended Data Fig. 4 |. The list of significant drug classes.
The drug classes are denoted using ATC code and corresponding names.

Extended Data Fig. 5 |. The estimated treatment effects for CAD over balanced and statistically 
significant drug combinations.
The drug combinations are ranked by the estimated ATE values.

Extended Data Fig. 6 |. Performance comparison of proposed method and three pre-clinical 
methods evaluated by Precision@K.
The values of K are selected from {6, 9}.
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Extended Data Fig. 7 |. Retrieved additional repurposing candidates under different thresholds’ 
setting.
The adjusted p-value is changed to 0.15 and the post unbalanced ratio remains the same as 

previous setting (less than 2%).

Extended Data Fig. 8 |. The definition of user and non-user cohorts.
Index date refers to the first prescription of the trial’s drug (user cohort) or the alternative 

drug (non-user cohort). The time period before the index date is the baseline period, and the 

time after the index date is the follow-up period. The patient covariates are collected during 

the baseline period and the treatment effects are evaluated at the follow-up period.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Flowchart of overall drug repurposing framework.
First, a list of potential repurposing drug ingredients are extracted from the observational 

medical database given a disease cohort. Second, for each ingredient, the framework 

identifies the corresponding user and non-user sub-cohorts, and computes a large number 

of features for patients in both sub-cohorts. Third, the treatment effects are estimated via 

emulating an RCT for each ingredient to adjust confounding and biases.
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Fig. 2 |. Illustration of the deep learning model for predicting treatment probability (or 
propensity score) that we used to correct confounding from time sequence data (including 
diagnoses dt, prescriptions pt and demographics bt).
It consists of three main components: an embedding module, a recurrent neural network 

(LSTM) and a prediction module.
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Fig. 3 |. Distribution of estimated ATE of drugs on defined outcomes across the 50 bootstrap 
samples.
All shown drugs satisfy two conditions: adjusted p-value ≤ 0.05 and post-weighting 

unbalanced ratio ≤ 2%. Within the boxplot, the central line denotes the median, and the 

bottom and the top edges denote the 25th (Q1) and 75th (Q3) and percentiles respectively. 

The whiskers extend to 1.5 times the interquartile range.
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Fig. 4 |. The SMD values of the top 20 well-balanced covariates.
a, Diltiazem results. b, Fenofibrate results. The dashed red lines indicate the threshold of 

balancing.
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