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ABSTRACT

Background: Patients in the intensive care unit (ICU) are often in critical condition and have a high mortality

rate. Accurately predicting the survival probability of ICU patients is beneficial to timely care and prioritizing

medical resources to improve the overall patient population survival. Models developed by deep learning (DL)

algorithms show good performance on many models. However, few DL algorithms have been validated in the

dimension of survival time or compared with traditional algorithms.

Methods: Variables from the Early Warning Score, Sequential Organ Failure Assessment Score, Simplified

Acute Physiology Score II, Acute Physiology and Chronic Health Evaluation (APACHE) II, and APACHE IV models

were selected for model development. The Cox regression, random survival forest (RSF), and DL methods were

used to develop prediction models for the survival probability of ICU patients. The prediction performance was

independently evaluated in the MIMIC-III Clinical Database (MIMIC-III), the eICU Collaborative Research Data-

base (eICU), and Shanghai Pulmonary Hospital Database (SPH).

Results: Forty variables were collected in total for model development. 83 943 participants from 3 databases

were included in the study. The New-DL model accurately stratified patients into different survival probability

groups with a C-index of >0.7 in the MIMIC-III, eICU, and SPH, performing better than the other models. The cal-

ibration curves of the models at 3 and 10 days indicated that the prediction performance was good. A user-

friendly interface was developed to enable the model’s convenience.

Conclusions: Compared with traditional algorithms, DL algorithms are more accurate in predicting the survival

probability during ICU hospitalization. This novel model can provide reliable, individualized survival probability

prediction.
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BACKGROUND

Patients in the intensive care unit (ICU) are often in critical condi-

tion and have a high mortality rate. The average in-hospital mortal-

ity of ICU patients can be as high as 11%–42%.1–6 In general

hospitals, the ICU generally accounts for 10%–15% of hospital

beds, but its operating cost accounts for 22% of the total cost of the

hospital.7 In addition, limited by the development of medical care,

the doctor-to-patient ratio is meager in most countries, especially de-

veloping countries with a large population base.8 Reducing the cost

as much as possible and efficiently utilizing the resources of the ICU

are the main problems that we are currently facing.9–11 Therefore,

predicting ICU patients’ survival probability is vital for identifying

appropriate interventions and formulating health care policies.

The main characteristic of patients in ICU is that their vital signs

are unstable and need to be monitored closely. Real-time monitoring

data react to the patient’s current condition. However, it is difficult

for ICU doctors to quantify the survival probability of patients with

the critical information collected from vast amounts of electronic

medical records, which will lead to a low identification efficiency,

treatment delay, and the condition deterioration of critical patients.

In the past 30 years, research on prediction models for ICU

patients has been fruitful. The previous clinical practice mainly

includes the Early Warning Score (EWS),12 the Sequential Organ

Failure Assessment Score (SOFA),13 the Simplified Acute Physiology

Score (SAPS),14,15 and the Acute Physiology and Chronic Health

Evaluation (APACHE) score.16–18 These models are based on previ-

ous research on mortality prediction, which plays a certain guiding

role in the clinical evaluation of ICU patients.14–20 However, the

results from different countries also suggested that the predicted

mortality rate obtained by such scoring criteria is still generally

overestimated.21,22 Moreover, although these scores distinguish be-

tween patients with expected death and expected survival, only the

probability of survival during ICU hospitalization is given without

considering the survival length so that the prediction effect is mini-

mal.23,24

In addition, inaccurate predictions are often due to the deviation

in algorithm selection rather than variables selection. For example,

the linear regression algorithm is unsuitable for complicated real-

world scenes. Most traditional models only predict the survival

probability during the entire hospitalization period and lack predic-

tion in the time dimension. It is imprecise to determine the priority

of medical resource allocation through the prediction results of these

models.25,26 Models built around machine learning (ML) or deep

learning (DL) algorithms have been widely used in the prediction of

survival and prognosis of cancer patients and have achieved good

results.27,28 At the same time, studies have shown that the DL model

can be used for classification problems and processing the survival

time.

Therefore, based on the variables of the existing EWS, SOFA,

SAPS II, APACHE II, and APACHE IV prediction models, this study

developed a new evaluation and prediction method based on DL

algorithms to predict the survival probability of ICU patients during

hospitalization accurately.

METHODS

Study population
This study was analyzed based on participants’ information in the

MIMIC-III Clinical Database (MIMIC-III),29 approved after a strict

deidentification process by the Harvard Medical School’s Ethics Re-

view Board and the Massachusetts Institute of Technology. Then,

we randomly divided the participants into a training set and a test-

ing set in a 70%:30% ratio. At the same time, we also included par-

ticipants in the eICU Collaborative Research Database (eICU) and

the Shanghai Pulmonary Hospital Database (SPH) as the external

testing set of the study. The eICU is released under the Health Insur-

ance Portability and Accountability Act safe harbor provision. The

institutional review board of Shanghai Pulmonary Hospital ap-

proved our study and waived the need for informed consent due to

the retrospective nature of this study.

Patients aged �14 years were included, and the required varia-

bles were established according to the predictive model. Each ICU

admission record of the patient was evaluated for multiple ICU ad-

mission records of the same patient. Patients with a missing propor-

tion of the corresponding variables greater than 20% were

excluded.

Data preprocessing
Forty variables were collected from the classic ICU patients’ proba-

bility scores, including EWS, SOFA, APACHE II, APACHE IV, and

SAPS II.14–20 We divided the variables into 4 categories: admission

information, vital signs and arterial blood gas (ABG) analysis, his-

tory information, and laboratory results.

We obtained basic information about the participants (such as

age and comorbidity) from their medical records at admission. We

selected the first measurement results for laboratory results within

24 h after admission. For variables such as 24-h urine volume, we

calculated the cumulative urine volume for 24 h since admission.

We manually screened the values of the included variables, and

the screening details are shown in the Supplementary eMethods.

Subsequently, we filled in the missing data. We directly filled these

values with the median data for variables missing less than 5% of

values. For variables missing more than 5% of values, we filled in

the data with the multiple imputation method.30 The values range of

variables in the database was shown in Supplementary e-Table 1.

Study design
The research process, including the inclusion and exclusion of par-

ticipants, variable selection, data extraction, model development,

model validation, and evaluation, is shown in Figure 1.

First, we integrated the existing variables among the classic ICU

patients’ scores and combined any duplicated or identical variables.

Then, we used Cox regression to develop a prediction model for the

survival probability of ICU patients. As a well-recognized regression

model for survival probability prediction, we use it as a baseline for

the models we developed. We introduced the random survival forest

(RSF) and DL algorithms to build new prediction models with the

same variables. The New-Cox model was developed by the survival

R package.31–33 The relative scores of each variable were obtained

by univariable and multivariable analyses. The randomForestSRC R

package34 was used to build the New-RSF model and obtained vari-

able importance (VIMP) utilizing the VIMP method.35 The New-DL

model contained a core hierarchical structure with fully connected

feed-forward neural networks with a single output node to calculate

the survival probability hhðxiÞ of patient i using the negative log-

partial likelihood function. More details about the New-DL model

are described in the Supplementary eMethods. To provide insights

into the predictions made by the New-DL model, we provide local

interpretable model-agnostic explanations (LIME).36
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A user-friendly tool was developed in Python for the New-DL

model to facilitate survival probability predictions. The codes used

in our study are available online (https://github.com/HuddTang/

Deep-learning_ICU.git). The user interface consists of the informa-

tion input interface and the survival probability prediction interface.

The information input interface can help users input all entries re-

garding patient characteristics into the New-DL model. The user in-

put view allows users to predict the survival probability based on

specific patient information by clicking the “predict” button.

Statistical analysis
Differences in continuous variables were assessed with Student t test.

Categorical variables were compared by the chi-squared test. Patient

baseline information was compared with SPSS 22.0 (IBM Corpora-

tion). A 2-sided P value less than .05 was considered to be statistically

significant. The ability of the prediction models was assessed by using

the C-index (Hmisc R package)37,38 and the receiver operating charac-

teristic curve (ROC) (ROCR and plotROC R package).39 It is worth

mentioning that the area under curve, which is often used to evaluate

model efficiency, is generally defined as equal to the C-index for di-

chotomous variables. However, for analyses involving survival time

variables, the C-index should be used for analysis. In addition, The C-

index was compared with the compareC R package.40 We plotted the

calibration curve of the model for predicting survival with the pec R

package41 and plotted the decision curve of the model for predicting

survival with the code described in the Supplementary eMethods.42

Data availability
The datasets generated and analyzed during the current study are

available in the MIMIC-III Clinical Database and the eICU Collabo-

rative Research Database, https://physionet.org/content/mimiciii/1.

4, https://physionet.org/content/eicu-crd/2.0. The other data sup-

porting this study’s findings are available from the corresponding

author upon reasonable request.

RESULTS

Characteristics of the study participants
Forty variables, routinely available for patients admitted to the ICU,

were included in the model development, consisting of 26 continu-

ous variables and 14 categorical variables (Supplementary e-Ta-

ble 2). Subsequently, the relevant data of participants in the

MIMIC-III were extracted. After data preprocessing, 61 532 partici-

pants in the MIMIC-III were included in a dataset for this study. Af-

ter removing the samples with missing values, 49 345 participants in

the MIMIC-III were eventually included, with 34 541 and 14 804

participants in the training and testing sets. Subsequently, with the

same inclusion and exclusion criteria, we selected 147 876 partici-

pants and included 34 098 participants from the eICU. Similarly, we

randomly selected 500 participants from the SPH.

The characteristics of participants with complete data included in the

analysis are shown in Table 1. For the included participants, most of the

participants in the MIMIC-III were admitted to the emergency depart-

ment (85.8%), while medical ICU patients accounted for 39.6%. Most

of the participants in the eICU were nonemergency patients (63.7%), and

the majority were surgical ICU patients (60.9%). Most of the participants

in the SPH were admitted to the emergency department (63.2%), and all

participants in the SPH were medical ICU patients. 76.1% of the partici-

pants in the MIMIC-III received ventilation, compared with 43.4% of

the participants in the eICU and 58.8% of the participants in the SPH.

For other variables, especially laboratory variables, the data from the 3

databases were slightly different but generally consistent. After establish-

ing the training set and the testing set in the MIMIC-III, we also added

the external testing set, including participants from the eICU and SPH, to

compare the patients’ basic information, predictor information, and prog-

nosis. All variables were shown in Supplementary e-Table 3.

Figure 1. Schematic of the study design. A total of 49 345 participants in the MIMIC-III were randomly split into training (n¼ 34 541) and testing (n¼ 14 804) sets.

Cox regression, the random survival forest (RSF), and the deep learning (DL) algorithm were used to develop models. All models were tested in the testing set of

the MIMIC-III and externally tested among the participants from the eICU (n¼ 34 098) and the SPH (n¼500).
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Development and validation of the survival probability

prediction model
A New-Cox model was developed and validated in the testing set.

Variables from the classic ICU patients’ risk scores, including the

EWS, SOFA, and APACHE IV scores, were used. The C-index val-

ues of the EWS, SOFA, and APACHE IV model were 0.685 (95%

CI, 0.668, 0.701), 0.737 (95% CI, 0.722, 0.753), and 0.785 (95%

CI, 0.772, 0.798), respectively. The accuracy of prediction has been

improved.

We integrated all variables to develop the New-Cox, New-RSF,

and New-DL models, the C-index values of which were 0.802 (95%

CI, 0.790, 0.815), 0.818 (95% CI, 0.807, 0.829), and 0.868 (95%

CI, 0.859, 0.878), respectively. The C-index for the prediction of pa-

tient death by the New-DL model was higher than that of the other

models. To verify the model’s stability further, we divided the ICU

patients into subgroups based on the ICU type and age to verify the

model performance. The results showed that the New-DL model

showed good performance in different subgroups. We present the

results in Supplementary e-Figures 1 and 2.

We then applied the above models in the external testing set. The

performance of the models in the external testing set A (eICU) and

external testing set B (SPH) decreased compared with that in the

testing set, but the C-index of each model was still within the accept-

able range. The models developed by the DL method, C-index val-

Table 1. Demographic characteristics of the participants in MIMIC-III and the eICU included in the analysis

Characteristic MIMIC-III eICU SPH

No. of participants 49 345 34 098 500

Age (years) 63.95 (52.67, 77.83) 63.83 (54, 76) 63.13 (55, 77)

Type of admission

Elective 6992 (14.2%) 21 731 (63.7%) 184 (36.8%)

Emergency 42 353 (85.8%) 12 367 (36.3%) 316 (63.2%)

Type of ICU

Medical 19 550 (39.6%) 3294 (9.7%) 500 (100%)

Medicosurgical 8027 (16.3%) 20 780 (60.9%) 0

Coronary and cardiac surgery 15 774 (32.0%) 8261 (24.2%) 0

Other (trauma surgical/neuro) 5994 (12.1%) 1763 (5.2%) 0

Temperature (�C) 36.7 (36.2, 37.2) 36.37 (36, 36.8) 36.63 (36.2, 37)

Arterial blood pH 7.38 (7.33, 7.44) 7.36 (7.31, 7.43) 7.38 (7.32, 7.44)

Heart rate (bpm) 88.05 (75, 100) 107.59 (95, 127) 94.38 (79, 110)

Mean arterial pressure (mmHg) 81.53 (70.74.91) 85.31 (50, 127) 83.98 (65, 96.25)

Systolic arterial pressure (mmHg) 118.86 (106.94, 129.07) 118.7 (99, 136) 119.01 (106, 130)

Respiratory rate (cpm) 18.17 (14, 21) 27.56 (12, 38) 22.06 (15, 26)

Serum sodium (mmol/L) 138.72 (136, 141) 138.23 (135, 141) 138.21 (136, 141)

Serum potassium (mmol/L) 4.07 (3.7, 4.4) 4.13 (3.7, 4.5) 4.10 (3.7, 4.4)

Serum creatinine (mg/dL) 0.98 (0.7, 1.1) 1.39 (0.77, 1.72) 1.04 (0.7, 1.13)

Blood urea nitrogen (mmol/L) 21.26 (13, 26) 28.49 (15, 37) 24.21 (13.16, 30)

Albumin (g/dL) 3.06 (2.6, 3.5) 2.72 (2.2, 3.2) 3.03 (2.6, 3.6)

Bilirubin (lmol/L) 0.78 (0.4, 1.07) 0.84 (0.4, 1) 0.78 (0.4, 1)

Blood glucose (mg/dL) 130.16 (103, 149) 162.77 (97, 207) 150.2 (106, 181)

Hematocrit (%) 31.4 (27.8, 34.7) 31.73 (26.7, 36.4) 31.93 (27.5, 35.9)

White blood cell count (109/L) 11.03 (7.6, 13.7) 12.85 (7.88, 16.7) 11.35 (7.42, 14.53)

Platelet (109/L) 212.01 (149, 263) 193.33 (133, 244) 205.1 (142, 259)

Ventilation, No. (%) 37 541 (76.1%) 17 525 (51.4%) 294 (58.8%)

Mechanical ventilation, No. (%) 17 434 (35.3%) 14 814 (43.4%) 170 (34.0%)

PaO2 (mmHg) 170.85 (81, 246) 126.21 (73, 146) 142.9 (74.9, 184.7)

PCO2 (mmHg) 41.01 (35, 46.45) 41.74 (33.4, 47) 40.84 (34.1, 45.3)

Bicarbonates (mmol/L) 23.86 (22, 26) 22.79 (19.4, 26) 23.95 (21.32, 26.7)

24-h urine output (mL) 1925.7 (1055, 2515) 1542.36 (582.34, 2242.72) 1708.39 (1002.28, 2194.67)

GCS score 13.78 (14, 15) 11.03 (8, 15) 13.14 (13, 15)

Chronic health condition

Chronic renal failure, No. (%) 2776 (5.6%) 1375 (4.0%) 28 (5.6%)

Lymphoma 512 (1.0%) 191 (0.6%) 2 (0.4%)

Liver cirrhosis 2454 (5.0%) 886 (2.6%) 20 (4.0%)

Leukemia/myeloma 792 (1.6%) 291 (0.9%) 4 (0.8%)

Hepatic failure 2752 (5.6%) 727 (2.1%) 29 (5.8%)

Immunosuppression 1908 (3.9%) 1091 (3.2%) 8 (1.6%)

Metastatic carcinoma 2106 (4.3%) 712 (2.1%) 20 (4.0%)

AIDS 521 (1.1%) 57 (0.2%) 3 (0.6%)

Treatment

Dopamine (mg) 1.87 (0, 0) 9.4 (0, 0) 11.84 (0, 0)

Epinephrine (mg) 0.02 (0, 0) 1.22 (0, 0) 0.46 (0, 0)

Pre-ICU length of stay (days) 1.04 (0, 0.58) 1.95 (0.05, 1.19) 1.20 (0, 0.57)

ICU: intensive care unit; PaO2: arterial partial pressure of oxygen; PCO2: arterial partial pressure of carbon dioxide; GCS: Glasgow Coma Score; AIDS: ac-

quired immune deficiency syndrome.
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ues of which were 0.764 (95% CI, 0.756, 0.771), were still better

than the other models (Supplementary e-Table 4).

For the New-Cox model, we evaluated the related risk ratio

according to the training set data, shown in Table 2. The feature im-

portance ranking of the New-RSF model is shown in Figure 2A.

Insights into the variable importance of the New-DL model are pro-

vided in Figure 2B. Supplementary e-Figure 3 provides insights into

the variable importance of the New-DL model for predicting the

survival probability using local interpretation methods among a ran-

domized sample of 300 participants in the testing set of the MIMIC-

II and eICU. The feature component weightings in the New-DL

model are listed in Supplementary e-Table 5.

According to the model prediction value and patient survival

data information, we drew a ROC curve for each model, shown in

Figure 3. We also drew decision curves of the models at 3 and 10

days after admission to the ICU, which indicated that the accuracy

of the survival probability prediction of the modified model was ex-

cellent (Supplementary e-Figure 4A–F). The New-DL model per-

formed well in both the testing and external testing sets. To test the

calibration of the model, we ultimately drew the calibration curves

of the models at 3 and 10 days after admission to the ICU, and most

of the prediction and observation points were distributed directly on

the 45� line (Figure 4A–F). The results show that the New-DL model

performs the best, and its Brier Score is smaller than other models in

Table 2. Univariate and multivariate analyses for the New-Cox model for survival probability

Classification Variables Univariate Cox regression Multivariate Cox regression

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Patient and admission

information

Age 11 (9, 13) <.0001 7.49 (6.06, 9.26) <.0001

Emergency 4 (3.4, 4.7) <.0001 3.98 (3.21, 4.94) <.0001

First admission 0.96 (0.89, 1) .2900 1.04 (0.97, 1.13) .2358

LOS before ICU 13 (0.1, 1700) .3000 0.19 (0.00, 47.2) .5588

History information AIDS 0.94 (0.7, 1.3) .6600 1.08 (0.73, 1.61) .6782

CRF 1.1 (0.99, 1.3) .0650 0.94 (0.82, 1.06) .3438

Dobutamine 2.4 (2.1, 2.8) <.0001 1.31 (1.14, 1.50) .0001

Immunosuppression 1.3 (1.2, 1.5) <.0001 1.11 (0.83, 1.48) .4600

Leukemia 1.7 (1.4, 2) <.0001 1.7 (1.28, 2.24) .0002

Liver cirrhosis 1.6 (1.4, 1.8) <.0001 0.84 (0.64, 1.10) .2148

Liver failure 1.7 (1.5, 1.8) <.0001 1.69 (1.30, 2.19) .0001

Lymphoma 1.5 (1.2, 1.8) .0016 1.37 (0.96, 1.95) .0763

Metastatic cancer 2.2 (2, 2.4) <.0001 2.38 (2.12, 2.67) <.0001

Elective surgery 0.29 (0.22, 0.38) <.0001 1.05 (0.74, 1.49) .7484

Vital signs and arterial

blood gas

GCS 0.34 (0.3, 0.38) <.0001 0.43 (0.39, 0.48) <.0001

HR 3.3 (2.6, 4.4) <.0001 1.78 (1.33, 2.39) .0001

MAP 0.078 (0.055, 0.11) <.0001 0.61 (0.41, 0.90) .0143

Urinary output 2.1e208 (5.3e209, 8.1e208) <.0001 8.81e205 (2.27e205, 3.42e204) <.0001

RR 22 (16, 29) <.0001 8.60 (6.13, 12.0) <.0001

SBP 0.017 (0.012, 0.026) <.0001 0.13 (0.08, 0.20) <.0001

Temperature 0.33 (0.27, 0.4) <.0001 0.49 (0.41 ,0.60) <.0008

FiO2 2.2 (2, 2.5) <.0001 1.81 (1.61, 2.02) <.0001

HCO3� 0.053 (0.041, 0.069) <.0001 0.38 (0.28, 0.51) <.0005

Hct 1.8 (1.3, 2.4) .0002 5.26 (3.78, 7.31) <.0001

PaO2 0.58 (0.48, 0.71) <.0001 0.70 (0.56, 0.87) .0014

PCO2 0.43 (0.33, 0.56) <.0001 0.46 (0.33, 0.63) <.0003

pH 0.1 (0.079, 0.13) <.0001 0.31 (0.23, 0.42) <.0009

Laboratory results Alb 0.1 (0.078, 0.13) <.0001 0.54 (0.40, 0.72) <.0002

Bil 2.2 (1.9, 2.7) <.0001 1.46 (1.20, 1.76) .0001

BUN 7.1 (5.9, 8.6) <.0001 1.11 (0.88, 1.40) .3538

Cr 18 (14, 23) <.0001 2.64 (1.96, 3.55) <.0006

Glu 3.5 (2.5, 4.9) <.0001 1.86 (1.33, 2.58) .0002

Kþ 3 (2.3, 3.9) <.0001 1.99 (1.56, 2.55) <.0004

Naþ 2 (1.6, 2.5) <.0001 1.41 (1.14, 1.74) .0013

Plt 0.57 (0.48, 0.67) <.0001 0.67 (0.56, 0.81) <.0001

WBC 2 (1.6, 2.5) <.0001 1.14 (0.92, 1.43) .2210

Treatment informa-

tion

MV 1.3 (1.2, 1.4) <.0001 1.42 (1.31, 1.54) <.0001

Ventilate 1.4 (1.3, 1.6) <.0001 0.91 (0.82, 1.00) .0599

Dopamine 90 (48, 170) <.0001 13.0 (6.17, 27.6) <.0007

Epinephrine 2.0eþ01 (2.3e�16, 1.8eþ18) .8800 1.53eþ03 (8.27e�27, 2.82eþ32) .8311

Note: See Table 1 legend for expansion of other abbreviations.

LOS: length of stay; CRF: chronic renal failure; HR: heart rate; MAP: mean arterial pressure; Urinary Output: urinary output within 24 h after admission to

the ICU; RR: respiratory rate; SBP: systolic blood pressure; FiO2: fraction of inspiration oxygen; HCO3�: bicarbonate; Hct: hematocrit; Alb: blood albumin; Bil:

total bilirubin; BUN: blood urea nitrogen; Cr: serum creatinine; Glu: blood glucose; Kþ: serum potassium; Naþ: serum sodium; Plt: platelet; WBC: white blood

cell; MV: mechanical ventilate. Bold words indicate P < .05.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 9 1571

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac098#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac098#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac098#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac098#supplementary-data


each dataset. We divided the included population from the MIMIC-

III, eICU, and SPH into 3 groups according to the predicted value of

ICU mortality risk (high, middle, and low). The Kaplan–Meier anal-

ysis was used to compare the survival of the patients in these groups

(Figure 5). The model developed by DL algorithms can more accu-

rately classify patients with different survival probability.

Model visualization
We developed the interface (https://github.com/HuddTang/Deep-learn-

ing_ICU.git) to facilitate the use of the model to explore the relative

contribution of survival probability factors in ICU patients. In the pre-

diction view, the system invokes a prediction model, and the New-DL

model predicts the patient’s survival probability. The analysis results

are visualized in a graphic view as a survival curve, which indicates

the survival probability of the patient input over time (Figure 6).

DISCUSSION

The estimation of the survival probability of critical patients is an es-

sential reference for doctors to choose appropriate intervention

times and allocate medical resources. The classic ICU patients’

scores mainly used the logistic regression model for prediction.14,17

With the advent of the era of big data, the application of DL algo-

rithms has provided accurate and feasible methods for clinical pre-

diction, which have been applied to the prognosis prediction of

Figure 2. Variable importance (VIMP) based on the New-RSF model (A) and feature component weightings in the New-DL model trained in participants from the

MIMIC-III (B).

Figure 3. Receiver operating characteristic (ROC) curve and C-index comparing the models for survival probability in the testing set of the MIMIC-III (A), eICU (B),

and SPH (C).
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cancer patients.27,28,43 These studies show that the most significant

advantage of DL algorithms, as discussed before, is that they try to

learn high-level features from data in an incremental manner.

This study applied DL algorithms to clinical variables, including

admission information, vital signs and ABG analysis, history infor-

mation, and laboratory results. The prediction effect of the DL

model was better than that of linear regression models and ML mod-

els (such as the RSF model). In addition, the model included not

only patient death or survival outcomes during hospitalization but

also the patient length of stay and survival. Therefore, this model

can reflect the risk of events in each period after admission to the

ICU. It is worth mentioning that we also used the currently relatively

mature shallow algorithm. Given the need for studies to assess sur-

vival probability on time scales, we planned to use Support Vector

Machine (SVM) and RSF algorithms.44,45 However, the sample size

involved in this study is vast, and the calculation amount of the

SVM algorithm is difficult to support on the current platform, and it

takes much time and cost in the process of parameter adjustment.

Therefore, we finally chose RSF with similar performance as the

shallow model. However, the results still show that complex archi-

tectures such as the DL model are better than the RSF model in pre-

dicting the survival probability of ICU patients.

Previously, a series of studies have been published on the prog-

nostic risk of ICU patients.23,38 Most of the studies were based on

the existing prediction models and incorporated more clinical pre-

dictive variables to make the prediction results of the model closer

to real-world scenes. However, the methods used are always linear

models, which are not fully applicable to complex clinical scenes, so

Figure 4. Calibration curves for the models for predicting survival probability at 3 days in the testing set of the MIMIC-III (A), eICU (B), and SPH (C) databases and

10 days in the testing set of the MIMIC-III (D), eICU (E), and SPH (F) databases.

Figure 5. Kaplan–Meier analysis of participants in the pooled samples according to the survival probability predicted by the New-Cox, New-RSF, and New-DL

model.
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the accuracy of the prediction results often presents bottlenecks. The

input of big data also does not optimize algorithm performance. At

the same time, the increasing number of predictive variables aggra-

vates the complexity of the clinical operation, and the model effi-

ciency cannot be significantly improved. Therefore, we propose a

new model (the DL model) to address this bottleneck.

Most models only included patients’ death or survival informa-

tion in the ICU but did not evaluate patients’ survival probability in

the dimension of survival time.2,46,47 In other words, the lower the

survival probability reflected in the prediction model was, the

shorter the survival time of patients, and these patients should be

treated sooner. To give a simple example, when using traditional

models to assess the survival probability of 2 patients admitted to

the ICU simultaneously. If the survival probability scores of the 2

patients (patient A and patient B) are the same, it means that the

probability of death of the 2 patients throughout the hospitalization

period is the same. Even though patient A may die after 3 days, pa-

tient B may die after 14 days. In these models, only survival/death is

considered when the model is trained and the time is ignored. If the

new model predicts the survival probability of these 2 patients, pa-

tient A, who may die after 3 days, will have a lower probability.

Therefore, in the case of limited medical resources, prioritizing med-

ical resources for patient A will help improve the overall prognosis

of ICU patients.

To our knowledge, this study is the first to predict the survival

probability of ICU patients using patient follow-up survival data.

Compared with previous studies, this study has the following char-

acteristics: (1) In addition to the death and survival information of

patients, the survival time information of patients was included in

the model development; therefore, the survival probability of

patients admitted to the ICU can be predicted continuously in the di-

mension of survival time. (2) DL algorithms avoid the limitation

that traditional linear regression models cannot reflect clinical real-

ity. It is closer to real-world scenes. (3) A friendly interface was de-

veloped to realize the visualization of the model, which added great

clinical application value to the model.

In terms of model evaluation, we evaluated the predictive effi-

cacy of the Cox model, ML model, and DL model in the MIMIC-III

testing set, and the DL model had advantages over the former 2

models. We applied the model to the external test (the eICU and the

SPH), and although the evaluation accuracy decreased, the DL

model still performed better than the other models. We believe that

the decrease in the testing set may be related to the data heterogene-

ity in the 2 datasets, such as the median survival time, vital signs,

and results of laboratory examinations. In our opinion, since the

data were collected retrospectively, the ICU data of different medi-

cal centers were biased. For example, the conditions of laboratory

examination instruments and the measurement methods of vital

Figure 6. User-friendly interface of the New-DL model facilitating survival probability prediction.
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signs were not restricted by the study, which was the main reason

for the differences among the datasets. Ideally, multicenter ICU data

should be adopted for training so that the prediction results can inte-

grate multidimensional features to improve prediction accuracy.

In addition to the model’s accuracy, we further showed the propor-

tion of the impact efficiency of the prediction variables to confirm the

rationality of the model. In the Cox model, there were statistically sig-

nificant variable values, and the variables with the highest relative

score were the dose of dobutamine, respiratory rate, age, hematocrit,

and emergency admission. In the RSF model, the values with the high-

est weight for each variable in the model were urinary output within

24 h after admission to the ICU, the fraction of inspiration oxygen,

age, blood nitrogen, and serum creatinine. The latter variables indicate

that the most critical variables for the survival probability assessment

of patients are correlated with the circulatory system, such as urine

volume, urea nitrogen, and creatinine, which are associated with

blood perfusion. At the same time, oxygenation index and age are

mostly related to cardiopulmonary function. The model evaluation

system of RSF is more combined with general clinical cognition.

Although our proposed model can improve the survival proba-

bility prediction for ICU patients, it is more important to translate

the improved accuracy into better decision-making for clinicians

and patients. For this purpose, we developed an interface that allows

researchers and clinicians to explore the accuracy of our model’s fea-

tures in predicting the survival probability of ICU patients, making

it easier for scientific and clinical applications. This prediction tool

can help ICU physicians identify patients with a higher mortality

risk ahead of time, enabling timely care and prioritizing medical

resources to improve the overall patient population survival.

This study still has some limitations. It is a retrospective study

based on ICU databases, and there may be data collection errors,

missing data, and other problems in data collection and recording.

In addition, because the DL algorithms have high requirements for

data integrity, patients with more than 20% of missing variables

were excluded. Therefore, there may be the risk that poses to gener-

alizability and introducing bias. Ideally, a prospective cohort study

should be carried out in the ICU patient population to verify the

model prediction accuracy. In addition, the time span of the patient

inclusion process in the MIMIC-III used in this study was 12 years,

and there may be data drift. However, we cannot know the exact

time due to the strict deidentification, so it cannot be verified. Future

studies can also explore the application of the DL model in effec-

tively screening high-risk groups to guide medical staff practice. The

predictive ability of this DL model still needs to be further explored.

CONCLUSION

The results of this study indicate that the use of DL algorithms to predict

the survival probability during ICU hospitalization has good accuracy

and practicability. Compared with traditional linear models and ML

models, the DL model is more accurate. Moreover, the user-friendly vi-

sual prediction tool developed based on this model can help clinicians

make more accurate judgments and can compensate for the deficiency of

previous experience judgments to make the treatment of ICU inpatients

more technical with a more reasonable allocation of resources.
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