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Abstract: Forward-looking sonar is a technique widely used for underwater detection. However,
most sonar images have underwater noise and low resolution due to their acoustic properties. In
recent years, the semantic segmentation model U-Net has shown excellent segmentation performance,
and it has great potential in forward-looking sonar image segmentation. However, forward-looking
sonar images are affected by noise, which prevents the existing U-Net model from segmenting small
objects effectively. Therefore, this study presents a forward-looking sonar semantic segmentation
model called Feature Pyramid U-Net with Attention (FPUA). This model uses residual blocks to
improve the training depth of the network. To improve the segmentation accuracy of the network
for small objects, a feature pyramid module combined with an attention structure is introduced.
This improves the model’s ability to learn deep semantic and shallow detail information. First, the
proposed model is compared against other deep learning models and on two datasets, of which
one was collected in a tank environment and the other was collected in a real marine environment.
To further test the validity of the model, a real forward-looking sonar system was devised and
employed in the lake trials. The results show that the proposed model performs better than the other
models for small-object and few-sample classes and that it is competitive in semantic segmentation
of forward-looking sonar images.

Keywords: forward-looking sonar; sonar image segmentation; semantic segmentation; attention
mechanism; convolution neural network

1. Introduction

As humans continue to explore the oceans, they are constantly conducting research
into marine resources. Underwater imaging technology is an important aspect of this
work [1]. However, it is difficult for optical imaging devices to achieve good results owing
to the turbidity of seawater and low light levels [2–4]. In contrast, sonar sensors are well
suited to these conditions [5–7]. For example, multibeam forward-looking sonar provides
underwater images by using new two-dimensional sonar imaging technology to record
high-speed motion [8]. This approach has the advantage of using equipment that is portable
and easy to operate, making it ideal for underwater observations. Thus, the demand for
forward-looking sonar equipment has been increasing in recent years. However, sonar
also has some limitations. For example, images can be affected by noise from the imaging
mechanism and complex environments [9–11]. This interference can result in blurred
target areas and complex edge information, which seriously affect subsequent image
processing [12]. Despite the existence of synthetic aperture sonar, which can provide high-
resolution sonar images and is nearly independent of frequency and target range [13,14],
it still has speckle noise in its images [15], which does not facilitate us to develop further
studies of the images.
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As sonar imaging applications have developed, there has been widespread research
into sonar image segmentation technology [16,17]. The main purpose of sonar image
segmentation is to divide images into several specific regions with unique properties and to
identify targets of interest [18]. Moreover, sonar image semantic segmentation is required to
identify different targets for segmentation [19]. Thus, it can help researchers to identify the
important parts of images quickly, and it has important practical applications. At present,
sonar image segmentation methods can be roughly divided into five categories based
on: (1) thresholding, (2) edge detection, (3) Markov random field models, (4) clustering
algorithms, and (5) artificial neural networks [20]. Liu et al. [21] proposed a threshold
segmentation method for underwater linear target detection based on prior knowledge,
and they achieved good segmentation quality and computation time by analyzing the
threshold variation. Wu et al. [22] introduced a fractal coding algorithm for regional
segmentation of sonar images, which improved the segmentation speed. Villar et al. [23]
proposed a side-scan sonar target segmentation method, which introduced the order
statistic-constant false alarm rate (OS-CFAR) and sliding windows to achieve segmentation.
This method is less sensitive to scattered noise than other methods, and it can achieve
better segmentation accuracy. The thresholding segmentation method is simple and easy to
implement, but accurate results can be obtained only when there are significant variations
in grayscale images. Karine et al. [24] extracted the features of textured images using
generalized Gaussian distribution and α-stable distribution. They showed that their method
is applicable to sonar image segmentation, but its use in high-noise scenarios is limited
because it is a frequency domain operation. Kohntopp et al. [25] segmented specific objects
in sonar images using an active contour algorithm, and their method can adapt to the
intensity distribution characteristics of sonar images. Li et al. [26] proposed a new active
contour model for image segmentation. This approach embeds a local texture neighborhood
region and defines its structure with respect to the noise and object boundary pollution in
the image. They also introduced a Bayesian framework that embeds a Markov random field
model and local texture information to manage intensity inhomogeneities. Song et al. [27]
proposed a side-scan sonar segmentation algorithm based on a Markov random field and an
extreme learning machine, and their method showed good segmentation results for sonar
data. However, although Markov fields use local information effectively, the use of global
information is insufficient. Abu et al. [28] proposed a sonar image segmentation method
that combines the level set and lattice Boltzmann methods. They achieved more accurate
segmentation by dividing the segmentation task into two subtasks. Xu et al. [29] proposed
an enhanced fuzzy segmentation algorithm based on a kernel metric and improved the
segmentation accuracy by introducing local spatial and statistical information. This method
is suitable for sonar images with inhomogeneous intensity and complex seafloor textures.

These methods have disadvantages of high algorithm complexity, slow recognition
speed, and high image quality requirements [15,30–32], so there is an urgent need for more
efficient sonar image segmentation methods. Neural-network-based image segmentation
has become a popular research direction [33] as it has excellent performance in complex
image segmentation. This is discussed in detail in Section 2.

Forward-looking sonar devices provide real-time sonar images for underwater target
detection, navigation, surveillance, and inspection [34–36]. In combination with semantic
segmentation algorithms, forward-looking sonar can present the underwater scene clearly,
providing an important basis for target localization and identification [37]. At present,
semantic segmentation of forward-looking sonar images has the following challenges [38]:
(1) serious noise interference, which makes it difficult to segment target areas accurately,
especially when they are small; and (2) many images are required to obtain sufficient
data to achieve high segmentation accuracy, and improvements are required to achieve
high accuracy from a limited number of images. Recently, deep-learning-based semantic
segmentation has demonstrated excellent performance. U-Net was obtained by extending
and modifying a full convolutional network [39]; it consists of two parts: a contraction path
to obtain contextual information and a symmetric expansion path for accurate locating.
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This approach requires a small amount of training data and good results can be achieved
quickly, so it is often used in medical image segmentation and has attracted research
interest [40]. There are some similarities between sonar and medical images as they both
obtain information about a target using ultrasound [41]. Therefore, this work was based
on U-Net.

This study integrates the residual model [42] into U-Net in order to improve the
network and address the difficulties associated with deep model optimization. To enhance
the integration of semantic messages (decode part) and shape messages for objects of
different sizes, we introduce a multi-layer feature fusion algorithm that combines U-Net
and multi-layer features to reduce the possibility of mis-segmentation. Moreover, to better
integrate deep semantic and shallow contour features, and to improve the recognition of
important features, an attention method that allows the model to consider both semantic
features and shallow contours is demonstrated. Thus, a feature fusion network based on
U-Net called Feature Pyramid U-Net with Attention (FPUA) is presented. FPUA solves
the difficulties with optimizing depth models by introducing the residual module and
introduces the feature pyramid network module and attention structure to improve the
accuracy of semantic segmentation for small object classes. In summary, the proposed
model can extract semantic information from forward-looking sonar images better than
existing models.

The main contributions of this work are as follows. (1) A network model specifically
for semantic segmentation of forward-looking sonar images, called FPUA, is proposed. It
uses a fused feature pyramid method to improve the overall segmentation accuracy by
synthesizing deep semantic and shallow detail information. (2) A fused attention structure
is proposed to provide different weights to different features in the feature pyramid, which
helps to improve segmentation accuracy for small targets. (3) Using the marine-debris-fls-
datasets dataset, the proposed model is compared to mainstream models. This shows that
the proposed model can achieve good segmentation results overall and for small objects.
Moreover, it indirectly promotes recognition of small samples because the classes with
few samples mainly include small objects. (4) We have produced datasets based on real
environmental data and have demonstrated that our models can achieve good results in
real environments by comparing them with mainstream models.

2. Related Work

The main aim of this study is to achieve semantic segmentation for forward-looking
sonar images. The proposed network will improve the ability to capture semantic infor-
mation from noisy images and show better segmentation performance for small objects.
This section will describe existing research applying deep learning to sonar images, then
discuss common semantic segmentation methods.

2.1. Current State of Sonar Imaging Research

Many scholars have investigated application of deep-learning-based methods for
sonar image analysis. These methods use sonar images as training data to identify in-
trinsic laws and representation levels, which avoids the need for researchers to conduct
in-depth analysis of image features and reduces accuracy loss caused by improper feature
selections [30].

Fan et al. [43] proposed a deep-learning-based method of sonar image target detection
that used a series of residual blocks to construct a 32-layer feature extraction network. This
network structure improved detection of sonar image targets and reduced the number of
training parameters required. However, compared with other methods, it did not improve
the quality of detection. Song et al. [44] proposed a convolutional neural network for
side-scan sonar that could utilize both local and global features through cropping layers
and that did not require additional convolutional parameters. Their method is mainly used
for target detection in side-scan sonar, and it can satisfy real-time target detection tasks.
Wang et al. [45] proposed a real-time semantic segmentation network for side-scan sonar
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images. They improved the performance using deep separable convolution and 2-way
branching and implemented a corresponding decoder network to recover details of the
target. This method can satisfy certain real-time requirements with high segmentation
accuracy, and the experimental results show that it can also satisfy real-time requirements
for side-scan sonar images.

2.2. Semantic Segmentation Based on Deep Learning

Semantic segmentation is a fundamental task in computer vision in which image
information is separated into different semantically interpretable classes [46]. Although
target detection methods can help to determine the edges of identified entities, semantic
segmentation can label objects at pixel level, which provides a more detailed understanding
of the image than image classification or target detection. Nowadays, mainstream semantic
models include U-Net, DeepLabV3, and PSPNet.

The FPN model is a classical target recognition model that was proposed by Lin et al.
in 2017 [47]. It effectively solves the problem of predicting different-size targets. More-
over, the FPN model improves utilization of image information by combining shallow
features and deep semantic information, and this method is also applicable to semantic
segmentation [48,49]. The U-Net model was proposed by Ronneberger et al. [39]. It is
similar to the FPN model in that it performs feature fusion to obtain richer semantic infor-
mation. However, because U-Net is applied directly to semantic segmentation, it needs
to judge the class information of each pixel, so multiple feature fusions are required to
make the features richer and the semantic segmentation more accurate. The U-Net model
can achieve good segmentation with fewer data samples than previous models. Based on
U-Net, Zhou et al. [50] proposed the U-Net++ model. They argued that it is inappropriate
to use a skip connection to combine the shallow features of the encoder directly with the
deep features of the decoder, as in U-Net, because this generates a semantic gap. Instead,
they connected the skip path through a series of nested, dense skip paths, with the aim of
reducing the semantic gap between the feature maps of encoder and decoder sub-networks.
Subsequently, Huang et al. [51] proposed the U-Net3+ model based on U-Net++, in which
each decoder layer incorporates small- and same-scale feature maps from the encoder,
and large-scale feature maps from the decoder, to capture both fine- and coarse-grained
semantics at full scale.

The PSPNet model was proposed by Zhao et al. [52]. The main innovation of this model
lies in the proposed spatial pyramid pooling module. In segmentation tasks, the size of the
perceptual field is indicative of the ability to use contextual information, and the empirical
perceptual field of a neural network is much smaller than the theoretical one, especially
for deep scene networks [53]. Thus, the model provides an effective global contextual
prior through a hierarchical global prior containing contextual information for different
scales and different sub-regions. The DeepLab series is a series of semantic segmentation
algorithms proposed by the Google team, and DeepLab v3+ is based on DeepLab v3,
which was proposed by Chen et al. [54]. It borrows the encoder–decoder architecture from
networks such as the FPN, implements feature map fusion across blocks, and uses group
convolution to improve the operation speed. Thus, the DeepLab v3+ model contains more
shallow information and optimizes the segmentation effect for segmented edges.

The above methods can segment images well in simple marine environments, but their
performance is poor when applied to complex images with high noise and small object
areas. This is mainly because shallow detail information and deep sematic information from
the graph cannot be fully utilized. To address this, we propose a model that incorporates
more semantic information.

3. Proposed Approach

This section will introduce the proposed model, FPUA. The overall framework is
shown in Figure 1. FPUA includes the U-Net module, residual block, feature pyramid
network module, and attention structure. The U-Net module includes the encoder, decoder,
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and skip connection modules. U-Net has proven to be an efficient semantic segmentation
architecture. It uses skip connections in the reconstruction phase to pass feature maps from
the same-level encoder, which makes it very convenient for segmentation tasks that require
precise localization. Therefore, U-Net was chosen for the backbone of the proposed model,
and the residual block is introduced to supplement the feature information lost during
the convolution process. To improve the segmentation accuracy of the network model, a
feature pyramid network is used to fuse the features of each decoder so that more semantic
information can be obtained. Different decoders have different effects on the results. To
improve the segmentation accuracy of the model for small objects, an adaptive attention
scheme is proposed that dynamically assigns different decoder weights; this improves
utilization of semantic information.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 23 
 

 

information from the graph cannot be fully utilized. To address this, we propose a model 
that incorporates more semantic information. 

3. Proposed Approach 
This section will introduce the proposed model, FPUA. The overall framework is 

shown in Figure 1. FPUA includes the U-Net module, residual block, feature pyramid 
network module, and attention structure. The U-Net module includes the encoder, de-
coder, and skip connection modules. U-Net has proven to be an efficient semantic seg-
mentation architecture. It uses skip connections in the reconstruction phase to pass feature 
maps from the same-level encoder, which makes it very convenient for segmentation tasks 
that require precise localization. Therefore, U-Net was chosen for the backbone of the pro-
posed model, and the residual block is introduced to supplement the feature information 
lost during the convolution process. To improve the segmentation accuracy of the net-
work model, a feature pyramid network is used to fuse the features of each decoder so 
that more semantic information can be obtained. Different decoders have different effects 
on the results. To improve the segmentation accuracy of the model for small objects, an 
adaptive attention scheme is proposed that dynamically assigns different decoder 
weights; this improves utilization of semantic information. 

 
Figure 1. Diagram showing the overall structure of FPUA, where different colors indicate different 
sizes of feature information. 

3.1. Residual U-Net 
The main structure of U-Net is composed of two parts, as shown in Figure 2a, with 

an encoder on the left and a decoder on the right. The encoder consists of five submodules, 
which each contain a downsampling layer implemented by a max pool. The resolution of 
the input image is 320 × 480, and the resolutions of modules 1–5 are 320 × 480, 160 × 240, 
80 × 120, 40 × 60, and 20 × 30, respectively. The decoder consists of five submodules, and 
the resolution is increased sequentially through upsampling until it matches the resolu-
tion of the input image. The encoder process can be expressed as 

)1-(E= eiiei  (1)

where ei denotes the result of encoder at layer i, Ei denotes the encoder structure of U-Net 
at layer i, and the decoder process can be expressed as 

)1+,(D= izieiiz   (2)

where ei denotes the result of encoder at layer i, Ei denotes the encoder structure of U-Net 
at layer i. 

Figure 1. Diagram showing the overall structure of FPUA, where different colors indicate different
sizes of feature information.

3.1. Residual U-Net

The main structure of U-Net is composed of two parts, as shown in Figure 2a, with an
encoder on the left and a decoder on the right. The encoder consists of five submodules,
which each contain a downsampling layer implemented by a max pool. The resolution of
the input image is 320 × 480, and the resolutions of modules 1–5 are 320 × 480, 160 × 240,
80 × 120, 40 × 60, and 20 × 30, respectively. The decoder consists of five submodules, and
the resolution is increased sequentially through upsampling until it matches the resolution
of the input image. The encoder process can be expressed as

ei = Ei
(

ei−1
)

(1)

where ei denotes the result of encoder at layer i, Ei denotes the encoder structure of U-Net
at layer i, and the decoder process can be expressed as

zi = Di
(

ei, zi+1
)

(2)

where ei denotes the result of encoder at layer i, Ei denotes the encoder structure of U-Net
at layer i.

The residual block uses the residual connections to fuse the convolved results with
the original input features to improve the performance and optimization efficiency of the
network. Its structure is shown in Figure 2b. The residual block in U-Net splices the outputs
from submodules with the same resolution, which preserves semantic information at a
certain scale.
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3.2. Feature Pyramid Network

The shallow network focuses more on shape information, and the deep network
focuses more on semantic information. Thus, the shallow network can help segment
the region of an object accurately, and the deep network can help segment the target
class accurately. The feature pyramid can include pooling, and different pooling can
generate new feature maps with different semantic sizes. However, pooling lacks semantic
information. In contrast, U-Net uses skip connect and deep decoder information to obtain a
feature map, so some detail information is lost. Therefore, a feature pyramid incorporating
multi-level semantic information, which will improve the accuracy of sample segmentation,
is proposed. The proposed structure is shown in Figure 3.
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Figure 3. Feature pyramid network structure.

Different decoder feature maps have different sizes and shapes, so dimensionality
reduction and upsampling are used to align the different feature maps with the last feature.

To reduce the number of parameters and memory usage, 1 × 1 conv is used as the
dimensionality reduction method, where the dimensionality reduction operation is first
applied to the input, followed by upsampling. This process is shown in Figure 4. First, z0 is
taken as the final target, then zi is downsampled from ci to c0 and upsampled by a factor of
c0//ci to obtain ui. This process can be expressed as

ui = Upsample(Conv1×1(zi)) (3)

where zi denotes the result of U-Net layer I decoder, ui is the result after dimensionality
reduction and upsampling.
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To prevent information loss, features are traditionally fused by concatenating them
together. Although concatenation retains the information of each feature, it generates
intermediate variables that occupy a great deal of explicit memory. In addition, different
features are not assigned different weights, and they are considered to contribute equally
to the result.

3.3. Attention Structure

An attention-based feature fusion method is proposed as a means of making the model
pay attention to different feature information. First, the weights of different features are
obtained through the attention structure. This process can be expressed as

A = Att(C) ci ∈ C (4)

where C is the result after pooling, A denotes a vector of batch size × 5 dimensions, and
each value is greater than 0 and the sum is 1. Then, different features are fused into a new
feature, which can be expressed as

ẑ = ∑ ai × ui ai ∈ A, (5)

where ai is the attention weight corresponding to different scales, ui is the characteristic at
different scales, and ẑ is the overall feature information after fusing multi-scale attention.

The features incorporating multiple layers of semantic information are then used to
predict the segmentation results.

The attention module is proposed as a way to fuse multiple layers of feature infor-
mation, as shown in Figure 5. Inspiration is taken from SENet [55], and a new attention
structure is proposed. The purpose of this structure is to augment important features and
attenuate unimportant ones so that the extracted features are more directed. First, pooling
is used to extract channel information through feature compression. Then, the compression
information for five features is connected to 5 × c two-dimensional information. Finally,
the attention weights of each feature module are predicted using a multilayer perceptron
(MLP) network. The MLP module contains a hidden layer and a dropout layer, which
compresses the channel information for each feature, fuses them, and obtains attention
through the fully connected layer.
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4. Experiment and Analysis

In this section, we will first present the analysis of the model using the water tank
dataset, and then we build the dataset for the real environment. With this dataset, the
segmentation effect of our model in the real environment will be verified. Finally, we use
our own developed forward-looking sonar equipment for image acquisition and processing
to further demonstrate the feasibility of our method through a real-world environment
with high noise. Through these three experiments, the performance of the FPUA model in
different noisy environments will be demonstrated. The information of the three datasets is
shown in Table 1.

Table 1. Dataset statistics.

Dataset Quality Resolution Train-Test Split

Tank dataset 1868 320 × 480 1000 for train, 617 for test, 251 for verification
Marine dataset 3116 320 × 320 2493 for train, 312 for test, 311 for verification

Self-developed equipment datasets 1000 512 × 256 800 for train, 100 for test, 100 for verification

In the experimental part, the Adam optimizer [56] is used, and the parameters of all
network models are kept consistent, where learning rate = 0.002, decay = 0, 1st exponential
decay rate is 0.9, and 2nd exponential decay rate is 0.99. The epoch of each network in all
experiments is 100 generations, and the model with the highest score in the validation set
is taken as the optimal model for the current network, and the model is used in the test set
to obtain the actual segmentation score. Table 2 shows the protocols and parameters of the
baseline methods.

Table 2. Comparison of different architectures implementation.

Model Parameters

U-Net [39] 14.3 M
U-Net++ [50] 31.4 M
U-Net3+ [51] 26.7 M

FPN [49] 46.1 M
DeepLabV3+ [54] 22.9 M

PSPNet [52] 2.8 M
Segformer [57] 47.3 M

HSSN [58] 88.5 M
FPUA 14.4 M

4.1. Tank Dataset

The data used in this study consisted of 1868 fls images acquired by the ARIS Explorer
3000 sensor presented by Alejandro et al. [38]. The data were collected in a (W, H, D) = (3 ×
2× 4) tank with a sonar frequency of 3.0 MHz. The sonar has 128 beams with a field of view
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of 30◦ × 15◦ and a spacing of 0.25◦ between beams. The sonar spatial resolution is 2.3 mm
per pixel in close range and almost 10 cm per pixel at the far range. The sonar was installed
above the water tank and had a pitch angle between 15◦ and 30◦. They were all grayscale
images 480 × 320 pixels in size, and the class information was obtained by categorizing
each pixel by class. All the targets were divided into twelve classes: bottle, can, chain, drink
carton, hook, propeller, shampoo bottle, standing bottle, tire, valve, wall, and background,
as shown in Figure 6. The bottle class included horizontally placed glass and plastic bottles;
the can class included a variety of metal cans; the chain class was a one-meter-long chain;
the drink carton class consisted of juice and milk boxes placed horizontally; the hook class
included small metallic hooks; the propeller class was a metal propeller, like those used in
small boats; the shampoo bottle class was a shampoo bottle placed vertically; the standing
bottle class consisted of a standing glass beer bottle; the tire class was a small rubber tire
placed horizontally; the valve class consisted of a metal valve; and the wall class included
boundary locations. Not all the images in the dataset were clearly visible, and some were
unclear owing to noise.
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Figure 6. Examples of objects belonging to various classes.

The data were divided randomly to provide 1000 images in the train set, 251 images
in the validation set, and 617 images in the test set. The random division ensured that the
data were evenly distributed across each set, and the number of images from each class in
each set is shown in Figure 7.
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Analysis of the randomly divided data revealed that the dataset suffered from sample
imbalance, which is consistent with the existence of majority and minority classes of targets
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in the marine environment. The proportions of each class are shown in Figure 7. Among
the classification data, the hook, propeller, shampoo bottle, and standing bottle classes
accounted for the smallest proportions of the samples.

To judge the proportion of image pixels belonging to targets of each class, the pixel
distribution was obtained for each class, as shown in Figure 8. This shows that all the
classes, except the wall class, occupied a relatively small number of pixels, among which the
drink carton, hook, shampoo bottle, standing bottle, and valve classes occupied the smallest
proportions, so these are small-target classes. The data show that most of the few-sample
classes contain small objects, so we assumed that the proposed model would also improve
the segmentation of few-sample classes. The subsequent analysis will consider the effect of
few samples and small objects on the experimental results.
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All the experiments in this study used dice loss as the loss function, which is valid
for sample imbalance. To analyze the segmentation effect of the proposed model on the
dataset, we used the mean intersection over union (mIoU). The IoU is commonly used
to evaluate semantic segmentation, and it is an important reference metric. The mIoU is
used to obtain the segmentation accuracy of pixels in each class by calculating the IoU
and then merging to obtain the overall segmentation accuracy afterwards. Considering
that the background occupies a relatively large area and does not contain specific semantic
information, it should not appear as an independent class. Therefore, this study only
counted information from the eleven remaining classes and analyzed them using the mIoU.

4.2. Tank Experimental Result

Figure 9 shows the segmentation results for the dataset with different models. To
represent the segmentation effect clearly, some samples and small objects are labeled.
The proposed model was compared with the U-Net, U-Net ++, U-Net 3+, FPUA, FPN,
DeepLabV3+, and PSPNet models. The results show that the proposed model provided
more detailed segmentation than the other models when there were few samples (see
Figure 9e–h). It also showed better performance in contour segmentation for small objects
(see Figure 9d,e,g,h,j). Thus, the proposed model can improve the accuracy of semantic
segmentation for few-sample and small-object classes. It also showed good segmentation
performance for other classes. Therefore, the proposed model can be used to improve the
accuracy of semantic segmentation for forward-looking sonar images.
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Figure 9. Segmentation results by target class for different models. Subfigure (a) shows the seg-
mentation effect of bottle and wall, subfigure (b) shows the segmentation effect of can, subfigure (c)
shows the segmentation effect of chain, subfigure (d) shows the segmentation effect of drink carton,
subfigure (e) shows the segmentation effect of hook, subfigure (f) shows the segmentation effect of
propeller, subfigure (g) shows the segmentation effect of shampoo bottle, subfigure (h) shows the
segmentation effect of standing bottle, subfigure (i) shows the segmentation effect of tire, subfigure
(j) shows the segmentation effect of wall. Subfigure (h) shows the segmentation of standing bottle,
subfigure (i) shows the segmentation of tire, and subfigure (j) shows the segmentation of valve. The
yellow box in the figure represents the enlargement of some details.

The effect of semantic segmentation was analyzed in terms of the metrics. Table 3
shows that the proposed model has significantly better accuracy than the other models for
the chain, hook, shampoo bottle, and valve classes, and similar accuracy to the optimal
models for the other classes. We also find that the transformer-based SegFormer model
does not achieve good results due to the amount of data [59] and noise.
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Table 3. IoU for each class in the test set for investigation of segmentation model performance. The
best segmentation accuracy for each class is marked bold.

Model U-Net [39] U-Net++ [50] U-Net3+ [51] FPN [49] DeepLabV3+
[54] PSPNet [52] SegFormer

[56] HSSN [57] FPUA

Bottle 0.631 0.728 0.723 0.731 0.683 0.746 0.643 0.749 0.741
Can 0.593 0.563 0.516 0.562 0.607 0.622 0.522 0.582 0.620

Chain 0.622 0.632 0.605 0.618 0.568 0.535 0.575 0.633 0.641
Drink carton 0.738 0.711 0.744 0.693 0.658 0.691 0.644 0.735 0.742

Hook 0.693 0.710 0.695 0.717 0.630 0.638 0.595 0.747 0.731
Propeller 0.650 0.686 0.706 0.694 0.694 0.692 0.633 0.699 0.705

Shampoo bottle 0.816 0.767 0.822 0.590 0.818 0.821 0.674 0.832 0.844
Standing bottle 0.640 0.779 0.677 0.550 0.748 0.693 0.582 0.723 0.778

Tire 0.869 0.880 0.875 0.858 0.875 0.870 0.833 0.859 0.888
Valve 0.378 0.509 0.501 0.538 0.521 0.510 0.361 0.566 0.557
Wall 0.859 0.876 0.869 0.872 0.862 0.865 0.859 0.847 0.868

Few-sample mIoU 0.700 0.736 0.725 0.638 0.722 0.711 0.621 0.750 0.765
Small-object mIoU 0.653 0.695 0.688 0.618 0.675 0.671 0.571 0.721 0.730

mIoU 0.680 0.713 0.703 0.675 0.697 0.699 0.629 0.725 0.738

Consider the few-sample classes, that is, the hook, propeller, shampoo bottle, and
standing bottle classes. For the hook class, the segmentation accuracy of the proposed
model is similar to the best model. For the propeller class, the proposed model had similar
segmentation accuracy to the U-Net3+ model but still improved the accuracy by at least 1%
compared to the other models. For the shampoo bottle class, the proposed model improved
the segmentation accuracy by 1.2%. For the standing bottle class, the proposed model
improved the segmentation accuracy by approximately 3% compared to the other models,
except for U-Net ++. The average mIoU for these classes was used as the reference metric
for the few-sample classes, and the proposed model improved the average segmentation
accuracy by 1.5%. This indicates that it can achieve relatively high-accuracy segmentation
when trained with few samples. The main contribution comes from the fact that there were
few samples of small objects, which proves that the proposed model has good segmentation
performance for small objects with few samples.

Next, consider the small-object classes. Table 3 shows that the proposed model can
achieve great segmentation results for small objects. The small-object classes included
the drink carton, hook, shampoo bottle, standing bottle, and valve classes. The results
for the hook, shampoo bottle, and standing bottle classes were discussed above. For the
drink carton class, the proposed model achieved a segmentation result similar to that of
the U-Net3+ model and had segmentation accuracy approximately 3% better than the
other models. For the valve class, the proposed model has similar accuracy to HSSN and
improved the segmentation accuracy by approximately 2%. The small-object mIoU was
obtained by taking the average for all the small-object classes, and the proposed model
improved the accuracy by approximately 1%. This demonstrates that the proposed model
had excellent performance for small-object classes.

In summary, the proposed model achieved good semantic segmentation of forward-
looking sonar images for the few-sample and small-object classes and also achieved high
segmentation accuracy for the other classes.

4.3. Ablation Experiment

To demonstrate that our modules affect the results, an ablation experiment was con-
ducted using the proposed model. The ablation experiment considered the effects of the
residual block, FPN module, and attention structure on the model performance. The exper-
iment included six models. First, the residual module was reserved and the effects of the
other two modules on the experimental results were investigated. Then, the residual block
was removed, and the effects of the FPN and attention modules on the experimental results
were investigated. The names of these models are shown in Table 4.

Figure 10 compares the segmentation results of each model in our experiments. To
compare the effect of each module, the few-sample and small-object classes are labeled in
the figure. Comparing each model in the figure shows that the residual module, feature
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pyramid module, and attention structure improve the segmentation accuracy, and the
results are closer to the original image.

Table 4. Modules included in different models.

Modules U-Net Model 1 Model 2 Model 3 Model 4 FPUA

Residual block
√ √ √

Feature Pyramid module
√ √ √ √

Attention Structure
√ √Sensors 2022, 22, x FOR PEER REVIEW 14 of 23 
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Figure 10. Segmentation results for each model in the ablation experiment. Subfigure (a) shows the
segmentation effect of bottle, subfigure (b) shows the segmentation effect of can and wall, subfigure
(c) shows the segmentation effect of chain, subfigure (d) shows the segmentation effect of drink carton,
subfigure (e) shows the segmentation effect of hook and tire, subfigure (f) shows the segmentation
effect of propeller, subfigure (g) shows the segmentation effect of shampoo and partition effect of
shampoo bottle, subfigure (h) shows the partition effect of standing bottle, and subfigure (i) shows
the partition effect of tire. The yellow box in the figure represents the enlargement of the details.
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The effect of reserving the residual module is shown in Table 5. Comparing U-Net
and model 1 shows that the residual block produced a greater improvement in the overall
segmentation effect. The U-Net network slightly outperformed model 1 in the can, drink
carton, and shampoo bottle classes, whereas it performed worse in the other classes, up
to 13.6% in the standing bottle class, which shows that the residual block can improve the
overall performance of the network.

Table 5. Segmentation results for ablation experiment. The best segmentation accuracy for each class
is marked bold.

Model U-Net Model 1 Model 2 Model 3 Model 4 FPUA

Bottle 0.631 0.731 0.746 0.727 0.738 0.741
Can 0.593 0.565 0.607 0.609 0.576 0.620

Chain 0.622 0.641 0.584 0.593 0.606 0.641
Drink carton 0.738 0.738 0.740 0.715 0.729 0.742

Hook 0.693 0.707 0.709 0.675 0.685 0.731
Propeller 0.650 0.665 0.707 0.676 0.678 0.705

Shampoo bottle 0.816 0.811 0.829 0.793 0.817 0.844
Standing bottle 0.640 0.776 0.777 0.762 0.778 0.778

Tire 0.869 0.879 0.858 0.833 0.887 0.888
Valve 0.378 0.510 0.544 0.523 0.543 0.557
Wall 0.859 0.866 0.866 0.867 0.870 0.868

mIoU 0.680 0.717 0.724 0.707 0.719 0.738

The effect of the FPN module on the segmentation accuracy was also investigated.
Comparing model 1 and model 2 shows that the overall segmentation accuracy was
improved slightly. The segmentation effect was poor for the chain and tire classes, but the
performance was better for the other classes, and the accuracy in the propeller category was
improved by approximately 6%. Therefore, introduction of the FPN module is beneficial to
the network and improves the overall segmentation effect. Moreover, a good leaning effect
and high segmentation accuracy can still be achieved when there are few samples.

Finally, the effect of the FPN module combined with the attention structure on the
segmentation accuracy was investigated. Model 2 was compared with the proposed
network model FPUA. Model 2 had better results in two classes, the bottle and propeller
classes, but the difference in segmentation accuracy was less than 1%. This is in line with
the expectation that the attention structure would improve the segmentation accuracy of
the network for small objects, so introduction of the attention structure is beneficial to the
overall segmentation accuracy of the network.

4.4. Marine Dataset

The above experiments demonstrate the good performance of our model. To validate
the performance of the model in the marine environment, we have used data from an
open-source website for dataset production (http://www.soundmetrics.com/, accessed
on 1 August 2022). The site performed data acquisition using ARIS Explorer 3000, which
contains sonar video data in tilt and roll modes. For the video resource, we acquired only
one frame per second and labeled the data with LabelMe, and a total of 3116 images were
labeled. The data can be divided into 12 classes, and the specific class divisions are shown
in Table 6.

http://www.soundmetrics.com/
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Table 6. Selection of semantic classes available in our dataset.

Class ID Object Description

1 Schools of fish A school of small fish. (Figure 11a)
2 Nurse shark A fish with a large pixel ratio. (Figure 11b)
3 Divers Underwater swimmers. (Figure 11c)
4 Pipe leakage Gases leaking from pipelines. (Figure 11d)
5 Ammunition box Rectangular shaped ammunition box. (Figure 11e)
6 Tire Round tire. (Figure 11f)
7 Mesh box Boxes with mesh holes. (Figure 11g)
8 Spinning umbrella A round umbrella. (Figure 11h)
9 Salmon A species of fish, more elongated. (Figure 11i)
10 Barrel Horizontally positioned barrel. (Figure 11j)
11 Propeller Spinning propellers. (Figure 11k)
12 Sunken aircraft Underwater aircraft wreckage. (Figure 11l)

The number of each class is shown in Figure 12. In our experiments, we do not
introduce the background as a class, and, from the figure, we can see that sunken aircraft
makes up the largest proportion of the dataset, while the number of images of nurse shark
and propeller is relatively small.
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Since most of the classes have a small number, here, we mainly distinguish the small
object classes and do not consider the few sample classes separately. The specific pixel
distribution is shown in Figure 13. Among them, schools of fish, nurse shark, pipe leakage,
and salmon have fewer pixels and belong to the small objects class.
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4.5. Marine Experimental Results

We divided the dataset according to 8:1:1. The data were randomized for each experi-
ment and the experiments have been repeated 10 times to obtain the average experimental
results, which fully meet the requirements of cross-validation. We compared our model
with other models and obtained the results, as shown in Figure 14. Regarding the small
object classes (Figure 14a,b,d,h), the contours of our model are closer to the original image.
Moreover, on the other classes, the segmentation is more natural.

By analyzing Table 7, in the small object class, the FPUA model improves in two
classes, schools of fish, and pipe leakage, but is 1% worse than the best model in the salmon
class in terms of accuracy. In the mIoU of these four small object classes, our model can
outperform the other models by at least 1.9% in segmentation accuracy. In the other classes,
the FPUA model is 0.6% worse than the best model in the drivers’ class, 0.5% behind the
best model in the tires class, and 0.8% worse than the best model in the spinning umbrella
class. In the propeller class, it is about 0.6% worse than the best model; however, FPUA
achieves the best segmentation accuracy in the four classes of ammunition box, mesh box,
barrel, and sunken aircraft. The FPUA model also achieves 80.52% accuracy in the mIoU
index, which is 1.3% ahead of other effective models, which proves that FPUA model can
achieve good segmentation accuracy in real underwater environment.

Table 7. The mIoU results for each class of each model under real data. The best segmentation
accuracy for each class is marked bold.

Model U-Net [39] U-Net++
[50]

U-Net3+
[51] FPN [49] DeepLabV3+

[54] PSPNet [52] SegFormer
[56] HSSN [57] FPUA

Schools of fish 0.551 0.572 0.587 0.572 0.625 0.581 0.497 0.611 0.635
Nurse shark 0.679 0.698 0.682 0.659 0.662 0.696 0.622 0.721 0.716

Divers 0.633 0.643 0.639 0.617 0.691 0.671 0.598 0.679 0.685
Pipe leakage 0.689 0.694 0.704 0.522 0.695 0.747 0.611 0.733 0.754

Ammunition box 0.884 0.898 0.872 0.890 0.894 0.909 0.883 0.903 0.939
Tire 0.613 0.623 0.633 0.577 0.588 0.587 0.592 0.618 0.628

Mesh box 0.946 0.958 0.950 0.932 0.924 0.963 0.944 0.946 0.958
Spinning umbrella 0.979 0.970 0.971 0.958 0.960 0.961 0.913 0.954 0.971

Salmon 0.659 0.715 0.684 0.597 0.679 0.643 0.657 0.713 0.704
Barrel 0.852 0.863 0.858 0.863 0.851 0.866 0.833 0.852 0.873

Propeller 0.943 0.947 0.935 0.921 0.960 0.940 0.917 0.948 0.954
Sunken aircraft 0.809 0.821 0.814 0.812 0.832 0.819 0.822 0.833 0.844

Small object mIoU 0.645 0.670 0.664 0.588 0.665 0.667 0.597 0.655 0.674
mIoU 0.770 0.783 0.777 0.743 0.780 0.782 0.741 0.792 0.805
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Figure 14. Segmented images in real oceans. Subfigure (a) shows the segmentation effect of a
school of fish, subfigure (b) shows the segmentation effect of a nurse shark, subfigure (c) shows the
segmentation effect of divers, subfigure (d) shows the segmentation effect of pipe leakage, subfigure
(e) shows the segmentation effect of an ammunition box, subfigure (f) shows the segmentation
effect of tires, subfigure (g) shows the segmentation effect of a mesh box, subfigure (h) shows the
segmentation effect of spinning umbrella, subfigure (i) shows the segmentation effect of salmon,
subfigure (j) shows the segmentation effect of barrel, subfigure (k) shows the segmentation effect of
propeller, and subfigure (l) shows the segmentation effect of sunken aircraft. The yellow box in the
figure represents the enlargement of the details.
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4.6. Real Forward-Looking Sonar System Dataset

To verify the performance of the model under the actual forward-looking sonar equip-
ment, we conducted experiments in Qiandao Lake using our self-developed forward-
looking sonar equipment. The device operates at 350 KHz, with a detection distance of
25 m and an opening angle of 135◦ and a total of 512 beams. The equipment is installed on
the side of the test vessel to collect sonar data from the outside, as shown in Figure 15. As
the ship moves, we acquire an image every three seconds. A dataset containing 1000 images
was produced with data from both the step and ship classes. The number of images and
pixel distribution for each class are shown in Figure 16. Compared with the other two
datasets, our collected data show a longer distance, so the pixel share of objects is smaller,
and it can also be found from Figure 16a that our data have more serious noise interference,
which better reflects the sonar images in complex scenes.
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By analyzing the images as well as the data, we can find that the steps and ships
occupy a small percentage of pixels and belong to the small object class. At the same
time, there is a great deal of noise in our acquired images, so we also need to consider the
recognition of our model regarding noisy images.

4.7. Real Forward-Looking Sonar System Experimental Results

By analyzing the data in Table 8, it is evident that FPUA can achieve better results
when dealing with both ships and steps. Our model can improve the segmentation progress
by 1.6% on the ship class and can improve the segmentation accuracy by at least 1.3% on
the step class compared to other models. This further demonstrates that our model has
good segmentation results in forward-looking sonar images.

Table 8. IoU of each class in the images acquired by the self-developed equipment. The best
segmentation accuracy for each class is marked bold.

Model U-Net [39] U-Net++ [50] U-Net3+ [51] FPN [49] DeepLabV3+ [54] PSPNet [52] SegFormer [56] HSSN [57] FPUA

Ships 0.5204 0.5801 0.6017 0.5192 0.5907 0.5455 0.4977 0.6022 0.6183
Steps 0.6061 0.6461 0.6325 0.5569 0.6491 0.6693 0.5338 0.6837 0.6952
mIoU 0.5634 0.6131 0.6171 0.5381 0.6199 0.6074 0.5158 0.6430 0.6566

5. Conclusions

This study proposed a semantic segmentation network model FPUA for forward-
looking sonar images. The model uses U-Net as the backbone and combines a residual
block to increase the depth of the network that can be trained effectively. Then, the
FPN module combined with attention was introduced, which improves the segmentation
accuracy of the network model for small-object classes and also has a good segmentation
effect for few-sample classes. In the water tank environment, FPUA had a great advantage
in forward-looking sonar image segmentation and achieved better segmentation for few-
sample and small-object classes. Specifically, the proposed model improved the average
segmentation accuracy by 1.5% for the few-sample classes and 1% for the small-object
classes. The proposed model achieved a segmentation accuracy of 73.8%, which is 1.3%
higher than other semantic segmentation models. In the real environment data, FPUA
also outperformed other models by at least 1.3% in average segmentation accuracy, which
achieved a segmentation result of 80.52%. In the data collected by our self-developed device,
despite the presence of relatively severe noise interference, the segmentation accuracy of
FPUA can also be improved by 1.26% to 65.66% compared to other effective models.

FPUA focuses on the problem of object feature extraction under noise interference, and
the three datasets also represent different environments and different noise interference.
Compared with other models, our model achieves better results on all three datasets. In
addition, experiments on multiple datasets show that the model can be applied to sonar
images under different noises. Further, the model can also achieve better results on other
sonar devices, such as high-resolution synthetic aperture sonar, by virtue of its feature
extraction capability.

In future research, we will further investigate object boundary segmentation and
realize a more refined semantic segmentation model for forward-looking sonar images. We
will also conduct experiments on different types of sonar devices to further confirm the
segmentation accuracy of the model.
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