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Abstract

We propose an automatic method to estimate self-reported pain based on facial landmarks 

extracted from videos. For each video sequence, we decompose the face into four different regions 

and the pain intensity is measured by modeling the dynamics of facial movement using the 

landmarks of these regions. A formulation based on Gram matrices is used for representing the 

trajectory of landmarks on the Riemannian manifold of symmetric positive semi-definite matrices 

of fixed rank. A curve fitting algorithm is used to smooth the trajectories and temporal alignment 

is performed to compute the similarity between the trajectories on the manifold. A Support Vector 

Regression classifier is then trained to encode extracted trajectories into pain intensity levels 

consistent with self-reported pain intensity measurement. Finally, a late fusion of the estimation 

for each region is performed to obtain the final predicted pain level. The proposed approach is 

evaluated on two publicly available datasets, the UNBCMcMaster Shoulder Pain Archive and the 

Biovid Heat Pain dataset. We compared our method to the state-of-the-art on both datasets using 

different testing protocols, showing the competitiveness of the proposed approach.
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1 Introduction

Pain is an unpleasant sensory and emotional experience associated with actual or potential 

tissue damage caused by illness or injury [1]. Pain assessment is necessary for differential 

diagnosis, choosing, monitoring, and evaluating treatment efficiency. The assessment of pain 

is accomplished primarily through subjective self-reports using different medical scales like 

the Visual Analog Scale (VAS)—the most commonly used scale in clinical assessment [2], 

[3], [4], [5]—or the Numerical Rating Scale (NRS) [6]. However, while useful, self-reported 

pain is difficult to interpret due to subjectivity and personal experiences, and may be 

impaired or, in some circumstances, not even possible to obtain, such as for children, 

cognitively impaired patients or patients requiring breathing assistance [7]. To improve 

assessment of pain and guide treatment, objective measurement of pain from nonverbal 

behavior (i.e., facial expressions, head and body movements, and vocalizations) is emerging 

as a powerful option [7], [8].

Extensive behavioral research has documented reliable facial indicators of pain [9], 

[10], [11], [12]. The core facial movements that have been found to discriminate the 

presence from the absence of pain are brow lowering, orbit tightening, upper-lip raising, 

nose wrinkling, and eye closure [9]. Based on these findings, most efforts in automatic 

assessment of pain have focused on facial expression. Using either the Facial Action Coding 

System (FACS) [9] or the holistic dynamics of the face, computational models have been 

trained to learn the association between discriminative facial features and pain occurrence or 

intensity [7], [8].

Building upon previous efforts, our primary measure for computational pain assessment is 

the dynamics of pain related facial movements [9]. To assess the contribution of different 

facial regions in distinguishing between scores of pain level, facial movement dynamics 

were measured holistically (i.e., using the whole face) and by face-specific regions (i.e., 

eyes, eyebrows, mouth, and nose, separately and in combination). To capture changes 

in the dynamics of facial movement relevant to pain expression, we propose an original 

framework based on the temporal evolution of facial landmarks modeled as a trajectory on 

a Riemannian manifold. This formulation has shown promising results in action recognition 

[13], [14], [15], [16] and in facial expression recognition [16], [17]. In our case, Gram 

matrices are computed from facial landmarks at each video frame and their temporal 

evolution is modeled as a trajectory on the Riemannian manifold of symmetric positive 

semi-definite (PSD) matrices [16]. With this representation, pain estimation is modeled as 

the problem of computing similarity between trajectories on the manifold, then using a 

Support Vector Regression [18] model to predict pain scores.

In summary, the main contributions of this work are:
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• We propose a solution to model the temporal dynamics of facial landmarks 

position and velocity as Gram matrix trajectories on the Positive Semi-Definite 

(PSD) manifold;

• Using Gram matrix trajectories, we estimate pain score at sequence-level, rather 

than at frame-level.

• We present state-of-the-art results in VAS score estimation on two benchmark 

datasets.

The remaining of the paper is organized as follows: In Section 2, we summarize previous 

approaches to pain detection that are more relevant to the proposed model; In Section 3, 

we introduce the face representation based on facial landmarks, and in Section 4 we extend 

it to include the temporal dynamics. The way we use the above representation for pain 

estimation is illustrated in Section 5. Experimental results on two pain benchmark datasets 

are reported in Section 6. Finally, in Section 7, we present a critical discussion of our work 

with perspectives for future development.

2 Related Work

Significant efforts have been made in human behavioral studies to identify reliable and 

valid facial indicators of pain [9], [10], [11], [12]. In these studies, pain expression and 

intensity were characterized at the frame level by highly trained human coders that annotated 

anatomical facial actions using the Facial Action Coding System (FACS) [19]. However, 

manual FACS based pain assessment requires over a hundred hours of training for FACS 

certification, and approximately an hour or more to manually annotate a minute of video. 

The intensive time required to annotate videos using the manual FACS makes it ill suited for 

daily clinical use. This limitation lead to the emergence of considerable efforts in computer 

vision and machine learning for automatic pain assessment of self-reported pain (i.e., VAS 

based measurement) and observed pain (i.e., FACS based), respectively [7]. Since the goal 

of our work is to automatically assess the self-reported pain, the state-of-the-art on FACS 

based pain assessment is not reviewed here (see [7] for a detailed review).

Using the UNBC-McMaster Shoulder Pain Archive [20] a few recent efforts have 

investigated video based measurement of self-reported Visual Analog Scale (VAS) pain 

intensity scores. The VAS is a self-reported pain score that indicates on a 0 to 10 scale the 

intensity of pain (where 0 corresponds to no pain, and 10 to the worst possible pain). For 

instance, Martinez et al. [21] proposed a two-step learning approach to estimate pain scores 

consistent with the self-reported VAS. The authors employed a Recurrent Neural Network 

(RNN) to first estimate the Prkachin and Solomon Pain Intensity score (PSPI) at frame-level 

from face images. The estimated PSPI scores were then fed into a personalized Hidden 

Conditional Random Fields (HCRF) to derive a pain score consistent with the VAS. Liu 

et al. [22] proposed a two-stage personalized model, named DeepFaceLIFT, for automatic 

estimation of the self-reported VAS pain score. This approach is based on a Neural Network 

and a Gaussian process regression model, and is used to personalize the estimation of 

self-reported pain via a set of hand-crafted personal features and multitask learning. Xu et 
al. [23] proposed a three-stage multitask pain model to estimate self-reported pain scores. 

Szczapa et al. Page 3

IEEE Trans Affect Comput. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



First, a VGGFace neural network is used to predict frame-level PSPI based pain scores. 

Second, a fully connected neural network is employed to estimate the VAS at sequence-level 

from frame-level PSPI predictions using multitask learning to learn multidimensional pain 

scales instead of the VAS for the entire sequence. Finally, an optimal linear combination 

of the multidimensional sequence-level VAS was used to predict the final VAS based pain 

score. Xu et al. [24] further refined the work in [23] by using the four labels available in 

the dataset (i.e., VAS, AFF, SEN and OPR) to estimate the level of pain from human-labeled 

Action Units. The authors combined the use of multitask learning neural network to predict 

pain scores with an ensemble learning model to linearly combine the multi-dimensional pain 

scores to estimate the VAS. Erekat et al. [25] proposed a spatio-temporal Convolutional 

Neural Network - Recurrent Neural Network (CNN-RNN) for the automatic measurement 

of self reported pain and observed pain intensity, respectively. The authors proposed a 

new loss function that explores the added value of combining different self reported pain 

scales for a reliable assessment of pain intensity from facial expression. Using an automatic 

spatio-temporal architecture, they proposed a reliable assessment of pain by maximizing the 

consistency between different pain assessment scales. Their results show that enforcing the 

consistency between different self-reported pain intensity scores collected using different 

pain scales enhances self-reported pain estimation.

All the previously mentioned methods make use of (deep-)neural networks or try to estimate 

pain intensity at frame level first (PSPI scores), and predict the sequence level pain index 

from this first estimation.

Only few works investigated video or geometric based approaches to estimate self-reported 

pain using the Biovid Heat Pain dataset [26]. In this dataset, the self-reported pain ranges 

from 0 to 4 (where 0 corresponds to no pain and 4 to high level of pain). This dataset is 

composed of different parts that come with several modalities such as long or short video 

sequences and biomedical signals like ECG, EMG or skin conductance. Much of the work 

that has been done with this dataset used the Part A, which comes with biomedical signals 

and short sequences to estimate the pain intensity at sequence level. Skin conductance was 

used by Pouromran et al. [27] or Lopez-Martinez and Picard [28]. Other approaches like 

the one proposed by Kachele et al. [29] tested the combination of different modalities. They 

also extracted the facial landmarks and computed several statistical geometric features from 

the raw coordinates. In a different way, Lopez-Martinez et al. [30] also extracted facial 

landmarks in order to compute statistical geometric features and combine them with the 

biomedical signals to estimate the levels of pain. However, they do not use the short video 

sequences available in the Part A of the dataset.

In this paper, we propose a model for estimating VAS pain intensity score at sequence level 

by analysing the dynamics of the face. In particular, the face dynamics is described in terms 

of position and velocity of facial landmarks. To investigate the relevance of different facial 

regions for pain estimation, facial landmarks are grouped into four clusters corresponding 

to different anatomical regions of the face. The dynamics of the landmarks in each region 

is modeled as a trajectory on the manifold of Positive Semi-Definite Matrices of fixed rank. 

Modeling the temporal evolution of landmarks as a trajectory on a Riemannian manifold 

has shown promising results in action recognition [13], [14], [16] and in facial expression 
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recognition [17]. Motivated by these results, we propose a geometric approach for VAS pain 

intensity estimation based on the representation of facial landmarks and their dynamics as 

Gram matrices of fixed rank. The dynamics of the face is formulated as a trajectory on 

the Riemannian manifold of positive semi-definite matrices of fixed rank (Figure 1). To 

cope with noisy data and accommodate for different frame rates of landmark detection, a 

cubic Bézier curve fitting model is adopted to approximate Gram matrix trajectories on 

the manifold. Ultimately, distances between trajectories on the manifold are used to build 

a kernel of similarities, used to train a Support Vector Regression model that estimates 

the VAS pain index score. Evaluation using two benchmark datasets demonstrates that 

the proposed solution improves the accuracy compared to the state-of-the-art. This work 

develops on the model preliminary proposed in Szczapa et al. [31], exploiting the idea 

of modeling the dynamics of the face with Gram matrices on the manifold of positive 

semi-definite matrices of fixed rank. Compared to this preliminary approach, the main 

novelties of this paper are:

• A region-based representation of the face is used rather than a holistic one. 

This enables us to investigate the relevance of different facial parts for pain 

estimation;

• An investigation on how to perform the fusion of the regions to estimate the pain 

at a sequence level;

• The proposed approach is tested on two datasets, showing the effectiveness of 

facial decomposition.

3 Facial Shape Representation

We propose a video based measurement of self-reported VAS based pain intensity scores 

using the dynamics of facial movement. An overview of the proposed approach is reported 

in Figure 1. First, facial landmarks are detected from each video frame to form a sequence 

of landmark configurations. The landmark configurations are then split into four regions to 

form four sequences of facial region landmark configurations. For each region based time 

series, velocities are then computed as the displacement of the coordinates between two 

consecutive frames. Gram matrices are computed from the combination of the landmark 

coordinates and their velocities. These matrices are represented as trajectories on the +(2, 

m) manifold, which is the set of m × m symmetric positive semi-definite matrices of rank 

2, with one manifold per region. We apply a curve fitting algorithm to the trajectories of 

each manifold for smoothing and noise reduction. Alignment of the trajectories is obtained 

by using the Global Alignment Kernel (GAK) [32], which results in a similarity matrix per 

region containing the similarities between trajectories of homologous regions. Finally, we 

use the kernels generated by GAK with SVR to estimate the pain intensity based on each 

region. A late fusion is then used to combine the estimated pain scores.

3.1 Gram Formulation

Given an image sequence, we represent the dynamics of facial movement with a time series 

formed by the coordinates (x1, y1), (x2, y2), …, (xn, yn) of n tracked facial landmarks and 

grouped into matrices Zi. Each Zi (0 ≤ i ≤ τ) being a n × 2 matrix [(x1, y1),(x2, y2), …, 
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(xn, yn)]T of rank 2 encoding the positions of the n facial landmarks. For each landmark li, 
its velocity is also measured as the magnitude of the displacement between two consecutive 

matrices Zi and Zi+1. We denote the velocity matrix at frame i as V i = Zi + 1 − Zi ∈ ℝn × 2. 

Since velocity cannot be extracted from the last frame, Vi is computed only for i ∈ {0, …, 

τ − 1}. However, to simplify the notation, we adopt the same range of the frame indexes {1, 

τ} for both the landmark position and their velocity. In doing so, the last frame is dropped 

from the video sequence, and it is only used to estimate the velocity.

Our objective here is to find a shape representation that is invariant to Euclidean 

transformations (rotations and translations). To remove the translation, each landmark 

configuration Zi is centered by subtracting the landmarks center of mass. The velocity of 

each landmark is computed after this normalization. Similar to [15], [16], [17], we propose 

the Gram matrix G as a representation of landmarks and velocities. The Gram matrix is 

defined by:

G = FFT = pi, pj ,    1 ≤ i, j ≤ 2n, (1)

where F = [Z|V] is the 2n × 2 matrix obtained by concatenating the position Z, and the 

velocity V of the landmarks. The Gram matrix representation is invariant to rotation and 

translation. In addition, Gram matrices of the form FFT, where F is an m × 2 matrix of 

rank 2 (m = 2n), are characterized as m×m positive semi-definite (PSD) matrices of rank 

2, a Riemannian manifold of well-studied geometry and theoretical properties [33]. As an 

example, Figure 2 shows a Gram matrix representation as a trajectory on the manifold of 

PSD matrices.

3.2 Gram Matrix Distance

To model the dynamic changes of landmarks as the distance between consecutive Gram 

matrices, we consider here the Riemannian geometry of the space +(2, m) of m × m 
positive semi-definite matrices of rank 2 [33]. This Riemannian geometry has been studied 

in [34], [35], [36], [37], [38], [39] and used in [40], [41], [42], [43]. In [16], it was 

demonstrated that the distance between two Gram matrices Gi = FiFi
T  and Gj = FjFj

T  can be 

defined as follows:

d Gi, Gj = tr Gi + tr Gj − 2tr Gi

1
2GjGi

1
2

1
2

. (2)

This distance can be expressed in terms of the facial configurations Fi, Fj ∈ ℝ*
m × 2 as 

follows:

d Gi, Gj = min
Q ∈ O2

∥ FjQ − Fi ∥F ,
(3)
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where ∥.∥F is the Frobenius norm. The optimal solution is Q* ≔ V UT, where Fi
TFj = UΣV T

is a singular value decomposition. In case the facial landmarks are points in a 2D space, (2) 

can be evaluated in a computationally convenient form, as stated in the following Theorem.

Theorem 1. Considering Gi, Gj ∈ +(2, m) as the two Gram matrices obtained from facial 

configurations Fi, Fj ∈ ℝm × 2, the Riemannian distance in (2) can be expressed as:

d Gi, Gj = tr Gi + tr Gj − 2 (a + d)2 + (c − b)2, (4)

where Fi
TFj = a b

c d .

Proof. We can reformulate our metric introduced in (3) with:

d2 Gi, Gj = tr FjQ − Fi FjQ − Fi
T

= tr Gi − 2tr FiQTFjT + tr Gj

To minimize our distance, we need to maximize the term tr FiQTFj
T . Let Fj

TFi be a 2×2 

matrix with four unknown values a, b, c, d and let Q ∈ p, we maximize:

max tr a cosΘ − b sinΘ −
− c sinΘ + d cosΘ . (5)

From (5), we now have to find the maximum of (a + d) cosΘ + (c − b) sinΘ, meaning that we 

have to maximize (a + d)2 + (c − b)2 cos O − O′ . As we want to maximize this value, O has 

to be equal to O′, so (a + d)2 + (c − b)2 cos O − O′ ⩽ (a + d)2 + (c − b)2. Therefore we can 

say that:

max tr FiQTFj
T = (a + d)2 + (c − b)2 . (6)

□

4 Modeling the Temporal Dynamics of Landmarks

Based on the landmark representation introduced in the previous section, each face in a 

frame of a video sequence is mapped to a point on the PSD manifold. Thus, it becomes 

natural to interpret the points mapped from consecutive frames as describing a trajectory 

on the manifold. However, making these trajectories useful for subsequent processing and 

comparison requires smoothing (Section 4.1) and alignment (Section 4.2), as illustrated in 

the following.

4.1 Trajectory Modeling and Smoothing

The dynamic changes of facial landmarks movement originate trajectories on the 

Riemannian manifold of positive-semidefinite matrices of fixed rank. We fit a curve βG to a 
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sequence of landmark configurations {F0, …, Fτ} represented by their corresponding Gram 

matrices {G0, …, Gτ} in +(2, m). This curve enables us to model the spatio-temporal 

evolution of the elements on +(2, m).

Modeling a sequence of landmarks as a piecewise-geodesic curve on +(2, m) showed very 

promising results when the data are well acquired, i.e., without tracking errors or missing 

data. To smooth the data, accounting both for missing data and tracking errors, we propose 

to use cubic blended curve fitting algorithms [44], [45]. These algorithms only require to 

compute Riemannian exponential and logarithm, and also represent the curve by means of a 

number of tangent vectors that grows linearly with the number of data points. In this paper, 

we use the algorithm defined in [46]. Specifically, given a set of points {G0, …, Gτ} ∈ +(2, 

m) associated to times {t0, …, tτ}, with ti ≔ i, the curve βG, defined on the interval [0, τ], is 

defined as:

βG(t) ≔ γi(t − i),    t ∈ [i, i + 1], (7)

where each curve γi is obtained by blending together fitted cubic Bézier curves computed 

on the tangent spaces of the data points di and di+1 (represented by Gram matrices on the 

manifold forming a trajectory). The De Casteljau algorithm, used during the reconstruction 

process is fully performed in the tangent spaces of di and di+1, and a weighted mean is done 

on the two obtained points.

These fitting cubic Bézier curves depend on a parameter λ, allowing us to balance two 

objectives: (i) Proximity to the data points at the associated time instants; (ii) Regularity of 

the curve (measured in terms of mean square acceleration). A high value of λ results in a 

curve with possibly high acceleration that almost interpolates the data, while taking λ → 0 

results in a smooth function approximating the original trajectory.

4.2 Global Alignment

As introduced in the previous section, we represent a sequence of Gram matrices as a 

trajectory in +(2, m). Since videos could have different duration (i.e., video sequences of 

pain, in our case), the length of the corresponding trajectories represented in this manifold 

can be different. The Dynamic Time Warping (DTW) algorithm is a commonly used method 

to compute the similarity between trajectories of different length. However, DTW does not 

define a proper metric and cannot be used to derive a valid positive-definite kernel. This 

would hamper the use of many approaches (including Support Vector Regression) to learn 

the mapping between trajectories in +(2, m) and pain intensity. Cuturi et al. [32] proposed 

the Global Alignment Kernel (GAK) to address non-positive definite kernels induced by 

DTW. GAK allows us to derive a valid positive-definite kernel when aligning two time 

series. As opposed to the DTW, the kernel generated by GAK, that is the similarity matrix 

between all the sequences, can be used directly with Support Vector Regression. In fact, the 

kernels built with DTW do not show favorable positive definiteness properties as they rely 

on the computation of an optimum, rather than the construction of a feature map. In terms of 

complexity, similar to naive implementation of DTW, the computational complexity of the 

GAK kernel is quadratic.
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Let us now consider G1 = G0
1, ⋯, Gτ1

1  and G2 = G0
2, ⋯, Gτ2

2 , two sequences of Gram 

matrices. Given a metric d to compute the distance between two elements of two sequences 

(see (4)), we compute the matrix D of size τ1 × τ2, where each D(i, j) is the distance 

between the i-th and j-th elements of the two sequences, respectively, with 1 ≤ i ≤ τ1 and 1 ≤ 

j ≤ τ2:

D(i, j) = d Gi
1, Gj

2 . (8)

The kernel k can now be computed using the halved Gaussian Kernel on this same matrix D. 

Therefore, the kernel k can be defined as:

k(i, j) = 1
2 * exp − D(i, j)

σ2 , (9)

with 0 ≤ σ ≤ 1. The choice of the right value of σ can affect the similarity score. If this 

value is too small, it penalizes the values of the distance matrix D, and the similarity scores 

obtained at the end of the process will be too small and similar to each other, even when 

two sequences are very different. In the same way, if this value is too high, the values in 

the kernel k will be similar, and the similarity scores will be too high and also similar to 

differentiate the sequences. As a convenient trade-off between these two opposite scenarios, 

σ was set to 0.7. This is the σ value used in all the experiments reported in Section 6.

As reported in [32], we can redefine our kernel as:

k(i, j) = k(i, j)
(1 − k(i, j))

. (10)

This strategy guarantees us the kernel is positive semi-definite and can be used in its own. 

Finally, we can compute the similarity score between the two trajectories G1 and G2. This 

computation is performed with quadratic complexity, like DTW. To do so, we define a new 

matrix M that contains the path to the similarity between our two sequences. We define M as 

a zeros matrix of size (τ1 + 1) × (τ2 + 1) and M0,0 = 1. Computing the terms of M is done 

using Theorem 2 in [32, §2.3]:

Mi, j = Mi, j − 1 + Mi − 1, j − 1 + Mi − 1, j * k(i, j) . (11)

The similarity score between the trajectories G1 and G2 is given by the value at 

Mτ1 + 1, τ2 + 1
p , being p ∈ {0, 1, 2, 3} the index used to denote one of the four face regions.

5 Pain Estimation

Having a representation of landmark sequences as a trajectory on the PSD manifold and a 

similarity measure between them, we are in the position of using these similarities to train a 

regressor for VAS pain score estimation at video level.
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As described in Section 3, the dynamics of the facial landmarks is captured by four 

trajectories, each one capturing the dynamics of one out of four regions of the face. In 

order to estimate the pain score, these trajectories can be processed following three different 

strategies: (i) perform a manifold product among the four manifolds, one for each region, 

to form a new valid manifold and compute the similarity between the trajectories on this 

new manifold; (ii) compute the similarity scores between the trajectories on each manifold 

independently, then perform an early fusion to estimate the pain score; (iii) compute the 

similarity scores between the trajectories on each manifold independently, then perform a 

late fusion to estimate the pain score.

Given a dataset composed of nseq videos annotated with pain intensity score, a sequence 

of facial landmark configuration matrices is extracted from each video. Then, a symmetric 

matrix Kp of size nseq × nseq is built to store the similarity scores between all the trajectories 

for a given region p. These matrices are built with values computed using the positive 

semi-definite kernel, meaning that each matrix is positive semi-definite. Now that we have 

a valid and positive semi-definite kernel Kp, as demonstrated by Cuturi et al. [32], we can 

use it directly as a valid kernel for estimation. To estimate the pain intensity score (i.e., 

self-reported VAS scores), we use a Support Vector Regression (SVR) model [47], [48]. In 

order to predict the level of pain based on similarity matrices from different regions of the 

face, three different strategies can be adopted, namely, manifold product, early fusion and 

late fusion. These three strategies are combined with two evaluation protocols to estimate the 

pain index of each sequence, i.e., Leave-One-Subject-Out cross validation and k-fold cross 
validation.

5.1 Evaluation Protocols

To evaluate the proposed method, we used the two subject-independent protocols presented 

in [31]: Leave-One-Subject-Out cross validation, and k-fold cross validation.

Leave-One-Subject-Out cross validation –—In this protocol, for each round, we use 

all the sequences from all subjects but two for training, and the remaining sequences of one 

subject for validation and the sequences of the other subject for testing. There is no overlap 

between the training, validation and testing sets. Accordingly, this is a subject-independent 
evaluation protocol. We perform this operation for all the subjects in the dataset, so that each 

subject is used once for testing.

k-fold cross validation –—This protocol is similar to the Leave-One-Subject-Out cross 

validation one, but instead of taking only the sequences of one subject at a time for 

validation and testing at each round, we take all the sequences of k subjects for validation 

and testing, and the remaining sequences for training. The choice of the k subjects for the 

validation set is done by choosing the k first subjects in the dataset, then the k next subjects 

for testing and the remaining for training and so on until all the subjects are used for testing 

(i.e., k rounds). Also this evaluation protocol is subject-independent.

Cross validation has the advantage of preventing from having results that are due to the 

chance as all data are used to train and test the proposed method. The average across all 

folds is more representative of the whole dataset.
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5.2 Regions Manifold Product

The idea here to compute pain scores is that of combining the manifolds, one for each 

region, before using SVR for pain estimation. Indeed, the decomposition of the face into 

four regions can be seen as the product space of four manifolds ℳ = +(2, n1) × +(2, n2) × 
+(2, n3) × +(2, n4), one manifold per region. Thus, the distance between two elements Gi, 

Gj ∈ ℳ can be modeled as the square root of the sum of the squared distances between these 

elements in each manifold [49]:

dℳ Gi, Gj = ∑
k = 1

4
d Gki, Gkj S + 2, nk

2 , (12)

where each nk, 1 ≤ k ≤ 4, encodes the landmark coordinates in region k, and d(., .) is 

the distance defined in (4). The result is a new manifold that preserves the structure of 

the original manifolds. The result of this formula is the distance between Gi and Gj. This 

distance is computed between all the Gram matrices composing two trajectories and the 

alignment algorithm is then performed on the resulting distance matrix as explained in the 

previous section.

The distances between the trajectories in the manifold ℳ are computed to form the similarity 

matrix. As the manifolds are combined into one new manifold, only one similarity matrix is 

computed and is used as our kernel for estimation. In this case, no weights combination is 

performed and we only have to train one SVR, like in the early fusion strategy.

5.3 Early Fusion

In this strategy, the SVR model is fed with the combination of the four kernels Kp and 

trained to estimate pain score. By adopting the early fusion approach, the combination of the 

kernels is done by averaging the similarity scores:

Ki, j =
∑p = 1

4 Ki, j
p

4 . (13)

By doing so, we only need to train one SVR for the whole face using this new kernel that is 

computed by fusing the scores of different regions of the face in such a way that all regions 

are assigned the same weight.

5.4 Late Fusion

When adopting the late fusion strategy, the training sets used as inputs to train the models 

are part of our kernel Kp containing the similarity scores between all the training trajectories 

for the region p. Taking a subset of the entire kernel Kp for training gives us a new kernel 

that is also positive semi-definite by construction. A vector containing the ground-truth VAS 

scores for the trajectories is also given for the training part. Finally, the outputs of region 

specific models are combined to predict the VAS scores for the whole face. Accordingly, 

we train one SVR per region independently, using the kernels Kp. Once the VAS scores 

are predicted for all the regions and for all the sequences in the dataset, we apply a late 
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fusion of the scores to obtain the VAS pain index y for the whole face by taking a weighted 

combination of the four predictions for each sequence:

y = wj ⋅ yjaw + wn ⋅ ynose + wm ⋅ ymoutℎ + we ⋅ yeyes
4 . (14)

In order to identify the best combination of the weight values, a grid search approach has 

been adopted, with values in the set {0.1, 0.2, …, 0.9, 1.0}. The best weight values are 

determined at each round of the cross validation by taking out the sequences of one (or k) 

subject that will be used as testing data. Then, a second cross validation loop is included 

inside the first one, where the sequences of a subject are taken out and used as validation 

data, while the remaining sequences are used as training data. The weights are estimated 

at each round of this second cross validation loop, using the validation data, and the best 

weight combination is used to estimate the pain index of each sequence of the testing data. 

By this double cross validation loop, the weights are optimized using validation data that are 

not included in the testing set, reducing the risk of overfitting.

6 Experimental Results

Our goal here is to estimate self reported pain intensity from videos. To do so, the proposed 

approach has been experimented on two benchmark datasets for pain detection: the UNBC-

McMaster Shoulder Pain Archive [20] and the Biovid Heat Pain dataset [26]. Description of 

the data, the adopted protocols, and the results are reported in Section 6.1 and Section 6.2, 

respectively, for the two datasets.

Since the prediction of the VAS score is a continuous value, the evaluation of our approach 

is obtained by computing two error measures: the Mean Absolute Error (MAE) and the Root 

Mean Square Error (RMSE) between the predicted pain scores and the ground-truth. The 

MAE is computed as follows:

MAE = 1
nseq

∑
i = 1

nseq
yi − yi , (15)

and the RMSE is given by:

RMSE =
∑i = 1

nseq yi − yi
2

nseq
, (16)

where nseq is the number of sequences considered, yi is the ground truth (i.e., self-reported 

VAS pain score), and yi is the predicted pain score.

6.1 The UNBC-McMaster Shoulder Pain Archive

The UNBC-McMaster Shoulder Pain Archive [20] is a widely used dataset for pain 

expression recognition and intensity estimation. The dataset contains 200 video recordings 

of 25 subjects performing a series of active and passive range-of-motion of their affected 
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and unaffected shoulders. Each video sequence is annotated for pain intensity score at the 

sequence-level using three self-reported scales (including the VAS) and an Observer Pain 

Rating scale. The video recordings are also annotated at the frame-level using the manual 

FACS. The facial landmarks are available with the dataset and are extracted using an Active 

Appearance Model (AAM). In total, 66 landmarks are available at the jaw, the mouth, the 

nose, the eyes and the eyebrows. Figure 3 shows two images from a sequence of the dataset 

with their corresponding facial landmarks, colored by their velocities. Our goal is to estimate 

the self-reported pain score (VAS).

Figure 4 shows the distribution of the VAS score across the dataset. One can observe that 

the number of available sequences per VAS score is not uniformly distributed: 50% of the 

sequences have a VAS pain score of {0, 1, 2}, while only 11% of the sequences have a VAS 

pain score of {8, 9, 10}. Also, the number of sequences per subject is not uniform, as shown 

in Figure 5. This bias, both in terms of number of sequences per VAS score and number of 

sequences per subject, hampers accurate learning and prediction of the VAS score, making 

the estimation more challenging.

6.1.1 Estimation of the Best Configuration—The process of estimating the pain 

index by the analysis of face dynamics depends on two main hyper-parameters that 

determine the amount of smoothing of trajectories on the manifold, and the number of 

frames that are actually used to compute these trajectories. In fact, reducing the number of 

frames for each sequence allows us to speed up the computation time because we need to 

compare fewer frames to calculate the similarity score between any two sequences in the 

dataset. To identify a convenient choice of these hyper-parameters, a grid search strategy is 

adopted. For this purpose, the value of the parameter lambda (Section 4.1) is discretized into 

four reference values {Nofitting, 10, 100, 1000}, with 10 meaning we apply a fairly strong 

amount of smoothing of the trajectories and 1000 a soft application of smoothing (this value 

is closer to no fitting than 10). As for the number of frames that are used to compute the 

trajectory, three different frame subsampling rates were explored: 25%, 50% and 100% of 

the frames, with 25% meaning that we kept only 1 frame out of 4 and 50% meaning that we 

kept 1 frame out of 2.

The best configuration was identified by computing the prediction accuracy on the validation 

set of the UNBC-McMaster Shoulder Pain Archive dataset using the Leave-One-Subject-Out 

and a 5-fold cross validation protocol as described in Section 5.1. The late fusion method 

was used to estimate the pain scores, as presented in Section 5.4. Table 1 reports the 

prediction accuracy in terms of MAE for the different configurations.

Results shown in Table 1 show that the best configuration on the validation set correspond to 

a lambda value of 100 (i.e., soft smoothing of the trajectories), with a sub sampling of 50% 

when using the Leave-One-Subject-Out protocol. Using the total amount of available frames 

did not improve the results. This can be explained by the fact that 80% of the frames in this 

dataset are non pain frames. A reduction of the frame sampling rate is also beneficial to the 

overall computation time as a lower number of frame comparisons is necessary to estimate 

the similarity between two sequences.
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6.1.2 Results on the Testing Set—Our goal here is to estimate the VAS pain score 

for each video sequence. We tested our method with the two protocols described above: 

the Leave-One-Subject-Out, and a 5-fold cross validation. Results are reported in Table 

2. We chose to use 5-folds for the k-folds cross validation protocol as reported in the 

state-of-the-art for better comparison.

For each protocol, we fixed the value of the parameters according to the results reported 

in Section 6.1.1: curve fitting parameter lambda (λ in Section 4.1) equal to 100, because 

the data are well acquired, and we do not need a strong smoothing of the curves and a 

sub sampling of 50%. Columns in Table 2 have the following meaning: Protocol indicates 

the protocol used for training and testing our method; MAE and RMSE are the two error 

measures of our estimation. Furthermore, we report results for the whole face as baseline for 

comparison.

From Table 2, we notice the best MAE was obtained with the late fusion strategy and the 

5-fold cross validation protocol, with an error of 1.59. The best MAE with the Leave-One-

Subject-Out cross validation protocol is 1.61, also obtained with the late fusion strategy. 

The weights for the late fusion were estimated during the cross-validation rounds on the 

validation set as mentioned in Section 5.4. Values of the weights are as follow: 0.39 for the 

jaw region, 0.56 for the nose region, 0.88 for the mouth region and 0.94 for the eyes region. 

The relative values of these weights can be regarded as an index of how much relevant is 

each part of the face for the prediction of the pain level. The relevance of the eyes region is 

34%, the mouth region 32%, the nose region 20% and the jaw region 14%. For every tested 

protocol, we obtained a better MAE using facial decomposition compared to the baseline 

using the whole face. The late fusion approach gives better results than the early fusion 

strategy. Therefore, training one SVR for each region is more effective than combining the 

similarity matrices of the regions in one similarity matrix that represents the whole face 

and train one SVR on that. This observation is also valid for the Cartesian product of the 

manifolds, where one SVR is trained after the computation of the similarity matrix between 

the trajectories in the result of the manifold product. However, the manifold product strategy 

yields better results than early fusion. We report the RMSE as a second error measure of our 

estimation. Results show the same trend as for the MAE with the best RMSE observed while 

applying the late fusion strategy.

To cope with the non-uniform distribution of videos per class of pain level on the prediction 

accuracy, we augmented the number of videos of the pain classes where the number of 

sequences is below the mean number of sequences per class, represented by the red dashed 

line in Figure 4 (the classes concerned are {5, 6, 7, 8, 9, 10}). Accordingly, data for 

sequences with VAS label greater than or equal to 5 have been augmented by first flipping 

the landmark coordinates along the horizontal axis, i.e., x coordinate; Then, each sequence 

was modeled as a trajectory on the manifold by also applying curve fitting to it. This 

augmentation allows us to have 58 new sequences with high level of pain (above 5). The 

new data distribution can be seen in Figure 6. Augmenting the data in this way allowed us 

to improve the prediction accuracy for all protocols used for testing (see underlined scores in 

Table 2). We improved our results of about 15%, leading to a MAE of 1.36 with the 5-fold 
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cross validation protocol and a MAE of 1.41 with the Leave-One-Subject-Out protocol, by 

only considering augmentation of the sequences with pain level greater than 5.

Figure 7 and Figure 8 show the MAE per intensity with the Leave-One-Subject-Out and 5-

folds cross validation protocols, respectively, with and without data augmentation (i.e., green 

bars show the MAE from original data and orange bars show the MAE from augmented 

data). From both figures, we can notice that the higher the VAS score is, the higher the MAE 

is. This can be explained by the fact that there is a limited amount of sequences with high 

pain scores, as reported in Figure 4. It is also worth noticing that augmenting the data in the 

dataset, as described above, significantly reduces the MAE per intensity for the sequences 

with a higher VAS, highlighting the fact that having a more balanced dataset can improve the 

prediction accuracy.

In Table 3, we also summarize the computation time for each step of our approach, with the 

different sub-samplings and with or without the application of the curve fitting algorithm. 

Testing is performed on the entire dataset with the Leave-One-Subject-Out protocol and 

the late fusion pain estimation, after the estimation of the best combination of weights 

for each region. Tests were conducted on a laptop, equipped with a 6 cores CPU, 16GB 

RAM, running MatLab 2020b. Columns have the following meaning: Sampling indicates 

the number of frames that are kept in each sequence of the dataset; Trajectory Computation 
corresponds to the computation of the Gram matrices, trajectory modeling (separate columns 

are used to report data corresponding to the adoption or not of the curve fitting algorithm); 

Similarity Computation indicates the time to compute the similarity scores between all 

the sequences in the dataset, including the computation of the distance matrix between all 

frames of 2 sequences and the application of GAK; SVR Training corresponds to the time 

to train the 4 SVR models, one per region, from the similarity matrix, and Prediction is the 

time to predict the self-reported pain score. From Table 3, we can see the impact of reducing 

the number of frames for each sequence, especially to build the trajectories on the manifolds 

and on the computation of the similarity matrix. This is explained by the fact that each 

trajectory contains less points as we reduce the number of frames, and so, a lower number 

of distance computations is required to measure the similarity between two sequences. We 

can also note that the application of the curve fitting algorithm can have a strong impact on 

the computation time. This impact is more significant when we use all the frames available, 

further demonstrating that processing the video sequences at a reduced frame rate yields 

computational savings without affecting the prediction accuracy. However, the application of 

the fitting algorithm or the sub-sampling of the sequences does not impact the computation 

time for the SVR training or the prediction of the pain scores. This behavior is desired, 

as the size of the similarity matrix used for SVR training remains the same (i.e., a square 

matrix of size nseq × nseq, with nseq the number of sequences in the dataset).

6.1.3 Comparison with state-of-the-art—We compared our approach to several state-

of-the-art methods for VAS pain intensity measurement from videos (see Table 4). We 

focused our comparison with other approaches that estimated the pain index at sequence 

level, but we also reported some results of methods estimating pain index at frame level. 

The main difference between the two strategies is the use of a different label for training 

(VAS for sequence level, and PSPI for frame level estimation) and the amount of data used. 
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In order to estimate pain at sequence level, we have to rely on 200 annotated sequences, 

whereas pain estimation at frame level can leverage on the use of 48,398 annotated frames. 

Here, we report the best results for DeepFaceLift [22] for the case where only the VAS 

scores were used as training labels (in that work authors also presented results, while 

combining VAS and OPI labels). They obtained a MAE of 2.3 using a 5-fold cross validation 

protocol. Our best result for MAE with the same protocol is 1.59, while only using a 

geometry based formulation of the dynamics of facial landmarks. We also compare our 

results to the RNN-HCRF method [21]. In that work, authors used a different protocol for 

testing as data have been randomly split by taking the sequences of 15 subjects for training 

and the remaining 10 sequences for testing. They also used two different labels, the VAS 

and the PSPI (frame-level label), to train their network to estimate pain at sequence-level. 

They obtained a MAE of 2.46 with this configuration. It is important to highlight that in [21] 

the authors used the face appearance, while our method only considers the shape of the face 

through facial landmarks. The manifold trajectories proposed in [31] allow the authors to 

obtain a MAE of 2.44 when they performed the 5-fold cross validation protocol and a MAE 

of 2.52 using the Leave-One-Sequence-Out protocol. Our approach is based on the same 

structure, but we estimate the self-reported pain level by decomposing the face, whereas in 

[31] the estimation was performed on the whole face, demonstrating the effectiveness of 

our proposed facial decomposition. Recently, Xu et al. [23] obtained a MAE of 1.95 using 

the 5-fold cross validation protocol and this result was further refined in [24] with a MAE 

of 1.73, using the same protocol. In the first work, the authors estimated the frame-level 

label before estimating the sequence-level pain. In the second work, they used the different 

labels available in the UNBC-McMaster Shoulder Pain Archive to estimate the VAS at 

sequence-level. Finally, we report the best results for CNN-RNN [25], when the authors 

combined different labels for training. A MAE of 2.34 was obtained using a two-level 5-fold 

cross validation scheme.

6.2 The Biovid Heatpain Dataset

The Biovid Heat Pain dataset [26] is widely used for pain expression recognition and pain 

intensity estimation. This dataset contains 8,700 videos of 87 different subjects. The dataset 

is composed of 5 pain classes (pain level from 0 to 4), with 20 samples per class and subject, 

with a time window of 5.5 seconds. The dataset consists of 5 different parts, containing pain 

stimulation (parts A, B and C), posed expression (part D) and emotion elicitation (part E). 

We worked with part A of the dataset, characterized by the absence of electromyography 

sensors (EMG) on the user face. In the videos, the subjects are asked to put a hand on a 

heat source, while the heat sensation increases with the time lapse. The thresholds for the 

minimum and maximum temperature is determined for each subject on a scale of {0, …, 4}, 

with 0 meaning no pain and 4 meaning worst possible pain level. Our goal is to estimate 

the pain intensity scores consistently with the self-reported pain level over the dataset. This 

dataset is larger and more balanced than the UNBC-McMaster Shoulder Pain Archive, as 

every subject has 100 sequences, with 20 sequences per pain class.

This dataset only contains videos and annotations, so we used the OpenPose framework 

[52] to extract 70 facial landmarks from each frame of each video in the dataset. The main 

difference between the landmarks extracted with OpenPose and those distributed with the 
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UNBC-McMaster Shoulder Pain Archive dataset is the addition of 4 landmarks (2 at the 

extremity of the mouth and 2 at the center of the eyes). Moreover, the landmarks that come 

with the UNBC-McMaster dataset are extracted using an Active Appearance Model (AAM), 

that is a semi-automatic algorithm with human in the loop annotation, compared to the fully 

automatic algorithm proposed by OpenPose. Figure 9 shows two frames from a sequence of 

the Biovid Heat Pain dataset with their corresponding extracted facial landmarks.

6.2.1 Results—The goal here is to estimate the self-reported pain level for each 

sequence of the dataset. The results of our method are obtained using the same two protocols 

described in the previous section: the Leave-One-Subject-Out protocol and a 3-fold cross 

validation. The results are summarized in Table 5. For each of these protocols, the curve 

fitting parameter λ and the sampling of each sequence are the same we used on the 

UNBC-McMaster Shoulder Pain Archive. This means that lambda is equal to 100 and the 

sampling rate is set to 50%, by taking out one frame every two consecutive frames. Since 

we observed that face decomposition leads to better results, we only report here our results 

using the early and late fusion methods, described in Section 5.

Using the Leave-One-Subject-Out cross validation protocol, we obtained a MAE of 1.13, 

while we got a MAE of 1.06 using the 3-fold cross validation protocol with the late 

fusion strategy. In the same way as with the UNBC-McMaster dataset, we observe an 

improvement of the results using the late fusion strategy over the early fusion, showing the 

effectiveness facial decomposition and training of one SVR per region. The overall MAE 

is lower for the Biovid dataset as there are only 5 different levels of pain, compared to 11 

for the UNBC-McMaster dataset and the dataset is larger, meaning that at each round of 

the cross validation, there are more training data. Figure 10 shows the MAE per intensity 

obtained using the late fusion strategy and both protocols (i.e., blue bars correspond to the 

Leave-One-Subject-Out protocol and yellow bars to the 3-folds cross validation protocol).

6.2.2 Comparison with state-of-the-art—As mentioned, the goal of our proposed 

method is to estimate the pain scores at sequence level for each video of the Biovid Heat 

Pain dataset. From [8], most of previous works using this dataset considered the pain 

estimation as a binary classification problem (presence of pain vs. different intensities of 

pain) or classified pain intensity in binary pairs. However, some of the approaches focused 

on continuous pain estimation at sequence level and we report their results in Table 6.

Kächele et al. [29] reported multiple results using different modalities to estimate pain 

indexes. First, the result using early fusion of multiple physiological signals (skin 

conductance, ECG and EMG) with video features was reported, with a MAE of 0.99. They 

also reported a result using statistical geometric features computed after extracting facial 

landmarks with OpenFace and obtained a MAE of 1.13. Both these results were obtained 

by applying the Leave-One-Subject-Out cross validation protocol. For a fair analysis, we 

compared our results with their second result, as it is not using physiological signals. 

However, their statistical features were extracted from the landmark coordinates, whereas 

we only used the landmark coordinates and their velocities. Despite of this, we obtained 

competitive results with a MAE of 1.13. Pouromran et al. [27] obtained a MAE of 0.93 

with the Leave-One-Subject-Out protocol, while using skin conductance as input features. 

Szczapa et al. Page 17

IEEE Trans Affect Comput. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The advantage of the methods using physiological signals can be observed in the different 

results. However, they required intrusive instruments to be recorded. Landmark coordinates 

can be obtained using a simple camera, without entering the privacy of each subject.

7 Discussion and Conclusions

We proposed a model for predicting the level of pain based on the dynamics of facial 

landmarks. The model is based on the decomposition of facial landmarks in different regions 

of the face and representation of the motion dynamics of these landmarks as trajectories 

on the Riemannian manifold of fixed rank symmetric positive semi-definite matrices. We 

have demonstrated the effectiveness of our approach through extensive experiments on the 

UNBC-McMaster Shoulder Pain Archive dataset and the Biovid dataset. Our approach is 

competitive with the state-of-the-art on the UNBC-McMaster Shoulder Pain Archive dataset 

among the approaches that predict the VAS pain score based only on the shape of the face at 

sequence level.

The main issue with the proposed method is the time required to compute the kernel of 

the SVR model. As the size of the dataset increases, the time to compute the similarity 

matrix used kernel increases as well. Future work will investigate solutions to speed-up this 

computation, for example by clustering the training sequences so as to reduce the number 

of sequences used to build the kernel. One solution could be based on computing a mean 

trajectory to represent each pain level index, thus reducing the size of the similarity matrix 

to compute. Finally, we also plan to learn the weights for the late fusion strategy, allowing 

us to better understand the contribution of each region of the face for pain assessment as this 

remains an open question. This could be addressed through the adoption of a more effective 

strategy than the grid search approach currently adopted.
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Fig. 1: 
Method overview: (a) Detection and extraction of facial landmarks; (b) Split of the landmark 

configurations in different regions and computation of their velocities; (c) Computation 

of Gram matrices and modeling of their temporal dynamics as trajectories on the +(2, 

m) manifold; (d) Application of curve fitting for noise reduction and smoothing of the 

trajectories; (e) Alignment of the trajectories with the Global Alignment Kernel (GAK); (f) 
Similarity matrix computation for all the regions; (g) Pain estimation for each region and 

late fusion of the scores for the final pain level.
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Fig. 2: 
Example of a trajectory of Gram matrices for the eyes region.
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Fig. 3: 
UNBC-McMaster Shoulder Pain Archive [20]: (a) and (c) show two example images from 

a sequence; In (b) and (d) the landmark coordinates for images in (a) and (b) are reported, 

with velocities evidenced by different colors (best viewed in color).
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Fig. 4: 
Distribution of the VAS Pain Scores for the UNBC-McMaster Shoulder Pain Archive.
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Fig. 5: 
Number of sequences per subject for the UNBC-McMaster Shoulder Pain Archive
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Fig. 6: 
New Distribution of the VAS Pain Scores after data augmentation for the UNBC-McMaster 

Shoulder Pain Archive.
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Fig. 7: 
MAE per intensity for the Leave-One-Subject-Out protocol. Green bars represents original 

data, Orange bars represents augmented data.
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Fig. 8: 
MAE per intensity for the 5-fold cross validation protocol. Green bars represents original 

data, Orange bars represents augmented data.
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Fig. 9: 
Biovid Heat Pain dataset [26]: Sample images are shown in (a) and (c). In (b) and (d) their 

corresponding landmark coordinates are evidenced using a different color for each region 

(best viewed in color).
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Fig. 10: 
MAE per intensity on the Biovid Heat Pain dataset.
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TABLE 1:

Results of our proposed method on a validation set on the UNBC-McMaster Shoulder Pain Archive dataset

Protocols Lambda Sampling MAE

Leave-One-Subject-Out

No fitting

25% 1.72

50% 1.69

100% 1.74

1000

25% 1.71

50% 1.67

100% 1.66

100

25% 1.65

50% 1.63

100% 1.66

10

25% 1.68

50% 1.66

100% 1.72

5-fold cross validation

No fitting

25% 1.65

50% 1.69

100% 1.75

1000

25% 1.75

50% 1.68

100% 1.79

100

25% 1.77

50% 1.72

100% 1.76

10

25% 1.76

50% 1.71

100% 1.77
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