
https://doi.org/10.1007/s10278-022-00678-9

ORIGINAL PAPER

A New Collaborative Classification Process for Microcalcification 
Detection Based on Graphs and Knowledge Propagation

Asma Touil1,2,3 · Karim Kalti1,2,4 · Pierre‑Henri Conze3 · Basel Solaiman3 · Mohamed Ali Mahjoub1,2

Received: 21 October 2021 / Revised: 31 May 2022 / Accepted: 4 June 2022 
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022

Abstract
In this paper, we propose a new collaborative process that aims to detect macrocalcifications from mammographic images 
while minimizing false negative detections. This process is made up of three main phases: suspicious area detection, candi‑
date object identification, and collaborative classification. The main concept is to operate on the entire image divided into 
homogenous regions called superpixels which are used to identify both suspicious areas and candidate objects. The col‑
laborative classification phase consists in making the initial results of different microcalcification detectors collaborate in 
order to produce a new common decision and reduce their initial disagreements. The detectors share the information about 
their detected objects and associated labels in order to refine their initial decisions based on those of the other collaborators. 
This refinement consists of iteratively updating the candidate object labels of each detector following local and contextual 
analyses based on prior knowledge about the links between super pixels and macrocalcifications. This process iteratively 
reduces the disagreement between different detectors and estimates local reliability terms for each super pixel. The final result 
is obtained by a conjunctive combination of the new detector decisions reached by the collaborative process. The proposed 
approach is evaluated on the publicly available INBreast dataset. Experimental results show the benefits gained in terms of 
improving microcalcification detection performances compared to existing detectors as well as ordinary fusion operators.
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Introduction

Mammography is a radiography technique used by radi‑
ologists to interpret and identify potential breast cancer 
lesions. The microcalcifications’ (MCs) appearance is 

considered among the main early indirect visible signs of 
breast cancer’s production [1]. They constitute small depos‑
its of calcium with diameters ranging between 0.1 and 1 mm 
[2] and appear on mammographic images as small bright 
spots grouped together and occupying one or several areas 
of the breast. The automatic detection of MCs represents a 
challenging task [3] for radiologists as well as researchers. 
Indeed, mammographic images are the result of the super‑
imposition of the 3D breast tissues with their different types, 
structures, and scales through a 2D projection process. Also, 
MCs acquire the structure of their mammary superimposi‑
tion tissues [2]. Thus, the characterization of breast tissues 
leads to a diversity of MC characteristics, even within the 
same image. On the other hand, MCs appear superimposed 
on breast tissues with small sizes and low contrasts. As a 
result, a great confusion appears between MCs and their 
superimposition tissues as well as other neighboring breast 
tissues.

In the literature, several researches tried to propose reli‑
able approaches to detect MCs from mammographic images. 
Their classification can be carried out according to two 
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aspects: the analysis level (local or global) and the type of 
supervision (supervised or unsupervised). The global‑based 
analysis approaches [4–6] operate on the entire image while 
local‑based analysis approaches [7–9] operate on regions 
of interest which are previously selected by radiologists. 
The anatomical diversity of MCs leads to a great sensitiv‑
ity of the global analysis approaches to the choice of the 
parameters used to detect MCs. Limiting the research of 
MCs to the regions of interest provided by the radiologists, 
in local‑based approaches, can reduce the sensitivity to the 
model parameters. However, it omits the semantic knowl‑
edge exploited by the global‑based approaches.

Unsupervised techniques solve the MC detection 
issue using standard segmentation techniques such as 
mathematical morphology [10, 11], active contours [9, 12, 
13], or clustering [14–17]. Each of these techniques uses 
a specific approach related to some MC characteristics. 
For instance, morphology‑based methods use structuring 
elements and morphological operations to enhance MCs’ 
appearance. Active contour‑based methods delineate MCs 
starting from selected seed regions. Unsupervised clustering 
techniques detect targeted MC regions by dividing the input 
image into homogeneous clusters. Conversely, supervised 
techniques solve the MC detection issue using machine [7, 
18, 19] and deep learning methodologies [20–23]. They 
are based on trained classifiers and a set of features to 
characterize MCs.

The major drawback of unsupervised techniques is their 
sensitivity to the MC anatomical diversities, even on the 
same mammographic image. The major drawback of super‑
vised techniques is related to the reliability of the data 
employed to train classifiers. These drawbacks may cause 
false detections including false positives (FP) or negatives 
(FN). In the context of MC detection, a false negative is a set 
of adjacent pixels referring to MC but considered as normal 
breast tissue pixels. Conversely, a false positive is a set of 
normal breast tissue pixels considered as MC pixels.

In this study, we are interested in unsupervised techniques 
with both global and local analyses. Our main goal is to 
develop an approach that produces a low number of false 
negative detections. Indeed, the morphology and the number 
of MCs are the most important factors in the decision made 
by radiologists [24, 25]. Thus, a detection with a low number 
of false negatives is more important than with false positives. 
A false positive detection may be at most filtered through 
postprocessing. On the contrary, a lost MC will no longer 
be possible to be recovered and may reduce the reliability 
of the obtained results. In this context, we propose a new 
collaborative classification process which takes advantage 
of different unsupervised MC detection techniques. Indeed, 
a single unsupervised technique is unable to deal with 
MC diversities in terms of characteristics. Therefore, it 
will generate false detections which will be different from 

those obtained by another technique, and hence the interest 
in having a new approach that collaborates the results of 
different techniques to retain their relevant ones and to 
generate a more reliable result. The proposed approach 
consists in a mutual and automatic refinement of the initial 
decisions made by a set of several collaborators based on 
the information shared between them. The main idea is to 
exchange the knowledge between collaborators to reduce 
their initial disagreements towards a new common and 
reliable decision. The applied refinement is conducted at 
two main levels of analysis: local and contextual levels. It 
allows an estimation of local reliability degrees and is on the 
basis of a prior knowledge about the searched objects (MCs) 
and the processed image.

The outline of this paper is as follows. "Section  2" 
describes the overall proposed methodology. "Section 3", "4" 
and "5" detail, each of them, a specific phase of the proposed 
approach. "Experimental Results and Discussion section" 
presents experimental results and comparisons to show the 
strength and benefits of the proposed approach with respect 
to standard detectors as well as ordinary fusion operators.

Proposed Approach: Overall Description

Collaboration is a process where at least two actors work‑
ing together and sharing their knowledge to refine the ini‑
tial results and achieve a common goal. The basic idea of 
the proposed approach is to operate through a collaborative 
process that allows for different unsupervised MC detection 
techniques, called detectors, to work together and review 
their initial decisions based on information shared with other 
detectors. It is made up of three main phases: suspicious 
areas detection, candidate objects identification, and col‑
laborative classification (Fig.  1).

In this work, the M used detectors process the pixels of 
mammograms and generate, each of them, two pixelic maps: 
thematic and suspicion maps:

• The “thematic map” ( TMi , i = 1 ... M) is a map that asso‑
ciates a binary value (0 or 1) to each pixel P. Pixels with 
the value 1 are suggested to belong to a true MC. A set 
of connected pixels with values equal to 1 is considered 
as a region of interest (called suspicious area) that refers 
to a potential MC. However, pixels with the value 0 are 
suggested to refer to normal breast tissue pixels and are 
considered background pixels. Such a representation 
offers a thematic segmentation of the mammographic 
image that provides the potential MCs.

• The suspicion map ( SMi , i = 1 ... M) is a map that associ‑
ates a continuous value (ranging between 0 and 1) to each 
pixel P. Pixels with low suspicion degree values (close 
to 0) could possibly refer to normal breast tissue pixels. 
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Fig. 1  Global flowchart of the proposed approach
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Pixels with high suspicion degree values could possibly 
refer to a suspicious tissue and should always be worthy 
of interest by the radiologists. Such a representation is 
a kind of changeover from the standard gray level to a 
semantic representation space. It offers the opportunity to 
reduce the impact of the uncertain gray‑level information 
on the decision process. Moreover, it can be used with 
the binary representation to classify the suspicious areas 
to be considered as MCs to benign or malignant based on 
their morphologies as well as distribution appearances.

Suspicious Areas Detection

The detection phase aims to select from a mammographic 
image the connected pixels to be considered as suspicious 
areas which can refer to MCs. It is divided into two steps: 
superpixel generation and suspicious areas identification. Its 
key features deal with:

• Providing global results relative to the entire image, 
based on local decisions from homogeneous regions 
(superpixels).

• Operating with different detectors to reduce the sensitiv‑
ity to MC characteristic diversities and, thus, to avoid 
false negative detections.

Superpixel Generation

The principle of the proposed approach is to process on the 
entire mammographic image divided into homogeneous regions 
called superpixels. The main idea is to work with small regions 
that present the same tissue type to deal with the MC and breast 
tissue characteristic diversity. In this study, we consider two 
types of superpixels: SP1 and SP2 superpixels (Fig.  2).

• SP1 superpixels refer to local homogeneous regions gen‑
erated from the mammographic image and used to iden‑
tify suspicious areas. These superpixels are constructed 
in such a way that they respect a specific gray‑level 
homogeneity criterion and can contain more than a single 
MC. The set of MCs that belong to the same superpixel is 

called “group of MCs.” In this study, SP1 superpixels are 
generated from the SLIC over‑segmentation algorithm 
[26] applied to the mammographic image.

• SP2 superpixels refer to small regions that are very close 
in size and shape to those of MCs. These regions are used 
to convert the obtained suspicious areas into “candidate 
objects” and to make a decision if they could, or not, 
correspond to potential MCs within the collaborative 
classification process. In this study, SP2 superpixels are 
generated from the watershed algorithm [27] applied to 
the mammographic image’s complement Eq. (1) where 
local maxima became local minima. The advantage of 
such superpixels lies in their abilities to comply with the 
granularity of MCs in terms of shape and size. 

Figure 2 displays the SP1 and SP2 superpixel contours 
(blue contours) generated from a small region of a mammo‑
graphic image with MCs. The enlarged zones show the rela‑
tionship, described above, between MCs and the employed 
superpixels.

Suspicious Areas Identification

The detection of suspicious areas consists in applying dif‑
ferent MC detection techniques. These latter are separately 
applied to SP1 superpixels for the purpose of identifying 
regions that could refer, or belong, to MCs. A suspicious 
area is a set of adjacent pixels that responds to the MCs’ 
characterization adopted by an applied detector. In order to 
reduce the sensitivity to the diversity of MC characteristics, 
four different detectors are used in this study. Each detector 
follows a specific reasoning to model and search potential 
MC pixels from SP1 superpixels:

• A morphological‑based detector that uses structuring ele‑
ments and morphological operations to search connected 
pixels that could correspond to MCs

• A conditional region growing detector that iteratively 
delineates MCs starting from selected seed points. It 

(1)(I ⊗ B)(P) = inf{I(pi), pi ∈ BP}

Fig. 2  Samples of SP1‑ and 
SP2‑generated superpixels (blue 
contours) with superimposition 
of MC contours (red contours)
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integrates prior knowledge‑based criteria to the grow‑
ing process instead of the simple homogeneity‑based 
criterion.

• A possibilistic fuzzy c‑mean‑based detector (PFCM) 
which models MCs as sets of adjacent “outlier” pixels 
compared to the superimposed breast tissue pixels.

• A detector based on a Butterworth band‑pass filter 
applied in the Fourier domain to enhance MC contours 
and correctly detect them.

The first two detectors are our well‑known proposals and are 
respectively published in [11] and [28]. The third and fourth 
detectors ([15] and [29]) are selected from the literature and 
adapted to be applied to the entire image with respect to SP1 
superpixels. The next subsections present a general descrip‑
tion of each of these detectors.

First Detector: Morphological‑based Detector

The first detector is based on an unsupervised detection 
technique using morphological operations and the structural 
similarity index (SSIM) [30]. The use of mathematical mor‑
phology makes it easy to deal with the issue of low contrast 
between MCs and their surrounding pixels. The key features 
of this detector concern:

• The use of various structuring elements to reduce the 
sensitivity to the low and various contrast between MCs 
and their surrounding pixels.

• The generation of a suspicion map using structural simi‑
larity indices.

• The automatic estimation of threshold values locally 
determined from the SP1 superpixels using a dispersion 
analysis of both grayscale and suspicion maps to generate 
a thematic map.

Second Detector: Conditional Region Growing Detector

The conditional region growing (CRG) technique is based 
on the standard region growing [31] algorithm. Its main idea 
is to integrate prior knowledge‑based criteria to control the 
growing process and correctly delineate MCs starting from 
selected seed points. These latter are selected based on the 
analysis of SP1 superpixels and a regional maxima detec‑
tion. The criteria used to control the growing process are 
derived from the MC descriptions arising from radiolo‑
gists and can be divided into two categories. The first one 
analyzes the neighborhood searching size. The second one 
exploits the gradient information and the shape evolution of 
the segmented region within the growing process. The key 
feature of this detector is to analyze below each individual 
MC to estimate the adequate criteria for an accurate deline‑
ation and not to use the same parameters for all of them. The 

SP2 superpixels are used by this detector to select the initial 
seed points for growing process purposes. However, the SP1 
superpixels are used to estimate an intensity‑based criterion 
as well as to select the set of candidate pixels for a possible 
evolution starting from a seed point.

Third Detector: PFCM‑based Detector

The third detector is based on the possibilistic fuzzy C‑means 
(PFCM) [32] algorithm. PFCM is an iterative unsupervised 
clustering algorithm that combines the advantages of both 
fuzzy C‑means (FCM) [33] and possibilistic C‑means 
(PCM) [34] algorithms. Indeed, it generates a fuzzy partition 
and associates to each pixel a membership and a typicality 
value. Membership values indicate the degrees to which 
pixels belong to each cluster. Typicality values indicate the 
degree of compatibility that a pixel has with respect to the 
cluster to which it belongs. The use of both membership and 
typicality values allows PFCM to solve the noise sensitivity 
issue of the FCM and to avoid the coincident cluster issue 
of the PCM [35].

MCs in mammographic images acquire the characteristics 
of the breast tissues on which they are superimposed. How‑
ever, they appear with higher intensity values compared to 
them. Thus, they present low typicality degrees with respect 
to the cluster that represents their superimposed breast tis‑
sues. In order to identify these atypical pixels, the baseline 
technique [15] was based on PFCM algorithm and a static 
threshold value to segment the region of interest selected 
by the radiologists and where all presented MCs belong to. 
The change we have made, in this technique, consists of 
applying the PFCM algorithm to each SP1 superpixel in the 
entire mammographic image and to automatically estimate a 
threshold value per superpixel instead of using a single static 
value. Indeed, a mammographic image presents various 
breast tissues and the appearance of MCs is not restricted to 
only one breast tissue type. Thus, the use of a static thresh‑
old value makes the reliability of the results sensitive to the 
homogeneity of the superimposition tissues. Given that each 
SP1 superpixel refers to a homogeneous region and, thus, 
to a unique breast tissue type, the segmentation result will 
have a semantic signification and a local analysis will be 
able to estimate an accurate threshold value. Used threshold 
values are estimated on the basis of an intensity distribution 
analysis, inside each superpixel using John Wilder Tukey’s 
criterion [36].

Fourth Detector: Band‑pass Fourier Filtering Detector

The last detector is an edge finder technique based on a But‑
terworth Band‑Pass (BBP) filter in the Fourier domain. The 
BBP filter has the ability to properly control the frequencies 
by assigning the accurate low and high cutoff frequencies 
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as well as the slope rate [29]. Thus, by applying the BBP 
filter to a mammographic image, fibroglandular tissue pix‑
els are considered as background pixels and will be then 
removed. Also, MC edges will be considered foreground 
pixels and will be enhanced. To further improve the contrast 
of detected edges and reduce background noise, the result‑
ing edge image is enhanced by applying a median filter and 
a gamma correction. The final image segmentation results 
from applying morphological operations.

Analyzing the descriptions of the four used detectors, 
we can notice that there is an implicit relationship between 
the thematic and suspicion maps generated by each of them 
where each of them can be derived from the other. The con‑
version, we propose, from one map to another is based on 
prior knowledge (Fig. 3). It is to analyze the gray‑level dis‑
tribution of the connected pixels in the thematic map and the 
suspicion degree distributions in the SP1 superpixels from 
the suspicion map.

From the thematic map, the obtained suspicious areas are 
selected and the gray‑level distribution of the pixels in each 
of them is extracted. These distributions are shown to cor‑
respond to symmetrical Gaussian distributions with respect 
to regional maxima pixels. The suspicion degree values are 
estimated by transforming these distributions to probabilities 
based on the z‑score table.

To transform a suspicion map into a thematic map, we 
start by projecting the SP1 superpixel boundaries on this 
latter. With such projection, the suspicion map is divided 
into local regions with homogeneous grayscale values. Adja‑
cent pixels, which will be considered as potential MC pixels, 
are the outlier pixels in a considered superpixel. Therefore, 
we propose to estimate an adaptive threshold value for each 
superpixel based on modelling outlier pixels in it. In our 
study, the threshold value (for which a pixel P is considered 
a potential MC pixel on a given superpixel) is based on John 
Wilder Tukey’s criterion [36]. This latter is based on con‑
structing boxplot on a given dataset.

The results of each of the used detectors are sensitive 
to the MC characteristic diversities. They usually generate 

false detections (FP, FN). Hence, combining these detectors 
is required to exchange their own knowledge and to reduce 
the overall FN rate.

Candidate Object Identification

Identification Issues

In the previous phase, pixel‑based processes without con‑
straints about the geometrical features of the obtained 
regions were applied. Thus, we have no information about 
the shapes and sizes of the generated suspicious areas com‑
pared to those of MCs. However, these latter are the starting 
point to decide if their pixels correspond or not to MC pix‑
els. Therefore, it is in our interest to identify from them the 
set(s) of adjacent pixels that follow the geometric features 
of MCs in terms of sizes and shapes.

The identification phase is, allowing, to convert the the‑
matic maps, results from the detectors, into a set of candi‑
date objects with associated features. A “candidate object” 
is defined as the set of adjacent pixels which belong to a 
suspicious area in a thematic map and which can refer to a 
potential MC. Thus, it can cover the hole or only a part of 
a suspicious area in a thematic map. The major constraints 
at this level are to:

• Ensure that the sizes of the identified objects conform 
to those of MCs while we have no knowledge about the 
accuracy of contours of the generated suspicious areas 
from each thematic map.

• Take into account the heterogeneity of the thematic maps 
generated by the detectors in terms of characteristics of 
the generated objects.

Figure 4 provides an illustration of the different possi‑
ble scenarios that may occur when identifying the objects 
from the thematic maps. It represents a thematic map with 
black and white pixels. Black pixels refer to normal breast 

Fig. 3  Conversions of the the‑
matic and suspicion maps
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tissue pixels (background) whereas white pixels correspond 
to potential MC pixels. Each set of connected white pixels 
corresponds to a suspicious area. In this thematic map, we 
represent the suspicious areas result from two detectors Di 
and Dj delineated by respectively red and green contours.

As previously mentioned, the used detectors, in this work, 
exploit different strategies and parameters to identify poten‑
tial MC pixels. Thus, two Ri and Rj regions that refer to 
two suspicious areas in the thematic maps of the ith and jth 
detectors can be:

• Overlapped: The region Ri obtained by the ith detector 
presents common pixels with the Rj region (cases 1 and 
2 in Fig.  4).

• Distinct: The pixels which represent the Ri region in the 
ith thematic map are associated to the background class 
in the jth thematic map (case 3 in Fig. 4).

At this level, several questions are raised:

• Do obtained regions fulfill the MC granularities?
• What are the contours for the object(s) to be considered if 

two detectors present some overlapping regions, knowing 
that we cannot justify the reliability of any of the used 
detectors? Thus, can we prefer the use of the contours 
given by one detector to those given by another one?

• Which regions to consider as candidate objects if the 
detectors generate different regions (the set of all the 
regions or a selection and on what basis these decisions 
are made)?

Proposed Identification Scheme

In order to deal with the abovementioned issues, we pro‑
pose an identification scheme that uses three different types 
of information: SP2 superpixels, and global thematic and 
suspicion maps.

The global thematic map is the union of the thematic 
maps obtained by the different detectors. Using such maps, 

we suppose that all the detector results are of interest while 
we are not able to decide which of them presents the best 
performances. Moreover, we can use the overall generated 
objects which will allow us to reduce the FN detections. 
Indeed, the generated objects which seem to be potential 
MCs are collected from all detectors. Therefore, the issue 
of FN detection can be reduced while these latter present 
different results in terms of FN and FP detections.

The SP2 superpixel map is used to define the object con‑
tours since SP2 superpixels respect the MC granularities 
(sizes and shapes). Using this map will enable us to solve 
the problems associated with overlapped or large suspicious 
areas.

The suspicion maps generated by the detectors offer a 
semantic description of their initial results. Such maps give 
us the opportunity to explore this new knowledge represen‑
tation space and reduce the impact of the uncertainty of the 
grayscale representation.

The identification phase proceeds as follows. First, the 
initial detector results are modelled as thematic maps where 
the suspicious areas appear. Each of these maps is converted 
into a list of candidate objects. The global list is then gener‑
ated from the union of all the previously generated ones. 
Using this latter, the candidate objects from each detector 
are refined and labelled based on the frequency of their 
detection.

Step 1: Generation of Initial Candidate Object Lists

The transformation of the thematic maps into lists of can‑
didate objects is based on the SP2 map that associates a 
label to each superpixel. The number of different labels in 
this map is equal to that of the superpixels it contains. The 
proposed transformation is to project the SP2 map onto the 
different generated thematic maps. To accurately outline the 
identified objects starting from the suspicious areas, we pro‑
pose to analyze the regions they occupy compared to those 
of the SP2 superpixels to which they belong. Figure 5 repre‑
sents three samples of suspicious areas (white regions with 
red contour) in a thematic map (left image in each line). It 
illustrates the two possible situations when comparing a sus‑
picious area to the SP2 superpixels (dashed blue contours):

• The suspicious area intersects only one superpixel (first 
line).

• The suspicious area intersects two (second line) or more 
(third line) superpixels.

White regions with red contours, in this figure, represent 
samples of suspicious areas in a thematic map (left image 
in each line).

For the first situation, we consider the suspicious area 
as a single candidate object. Its contours are those of this 

Fig. 4  Different possible scenarios when identifying candidate 
objects from two thematic maps (red and green contour regions)
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area while they do not extend those of the SP2 superpixel 
to which it belongs. For the second situation, we divide the 
suspicious area into different objects (two objects for the 
second line and nine objects for the third line). The inter‑
sections of the SP2 superpixel contours with the suspi‑
cious area define those associated to the identified objects. 
For instance, the second line in Fig. 5, the suspicious area 
(white region with red contour) intersects two different 
superpixels SPi and SPj . The contour dividing these two 
superpixels (blue dashed contour) is the one that defines 
the outlines of the two identified objects (regions with 
green and yellow contours in the right image).

This configuration gives the opportunity to deal with all 
the issues of selecting the best contours of an object start‑
ing from a suspicious area. It also normalizes the object 
identification process for all the detectors and ensures that 
all the considered objects comply with or at least show 
very close shapes and sizes to those of MCs. Thus, the 
largest object we accept corresponds to an SP2 superpixel 
(ex. O3 , O5 and O7 from the third line in Fig. 5).

An object Oi will be identified by its gravity center and 
a label inherent from that of the SP2 superpixel to which 
it belongs. Once these objects are identified, some charac‑
teristics are computed from the suspicion degree as well 
as the grayscale (mammographic image) maps and will be 
used in the collaborative process.

Step 2: Unification

The global list of candidate objects is the union of the lists 
identified from the different thematic maps arising from 
each detector. The objects with the same SP2 label will be 
considered a unique object. Their characterization results 
from projecting the SP2 superpixel map to the union the‑
matic map. With this configuration, the same object can 
be differently characterized if it is not uniformly detected 
by the different detectors. Also, an object that was not 
detected by a given detector will inherit its properties from 
those associated in the global list. To resume, this list is 
a kind of a unifying result representing all the other ones.

Step 3: Refinement and Initial Classification

Once the global list of candidate objects is generated, we 
look back at the ones initially generated by the first step 
in order to:

• Display the identified objects from a same suspicious 
area relative to each list.

• Add the objects that do not appear in a list (not detected 
by a given detector).

• Associate a class label to each object.

Fig. 5  Samples of identifying candidate objects from three different suspicious areas
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In this work, we define three different class labels (Fig. 6), 
for the candidate objects, based on their occurrence among 
the detector results:

• The “absolute certainty” class label ( CAC ) which is 
assigned to the candidate objects detected by at least 
M − m + 1 detectors. M refers to the number of used 
detectors and m (integer with m < M ) refers to the quality 
parameter based on which the decision about a candidate 
object can be considered certain. In this work, M is equal 
to 4 and m is equal to 1.

• The “partial certainty” class label ( CPC ) which is 
assigned to the candidate objects detected by [ m + 1 , ..., 
M − m ] detectors.

• The “uncertainty” class label ( CU ) which is assigned to 
the candidate objects detected by [1, ..., m] detectors.

Such labelling follows the ordinary reasoning. Indeed, it 
affirms that a decision coming with detectors’ agreement is 
a reliable decision ( m = 1).

Collaborative Classification Process

Motivations

The entire collaborative classification process we propose is 
presented in Fig. 7. It is decomposed into three main steps 
that will be detailed in the next subsections.

During this collaborative process, we propose to find a 
single decision from all the ones initially obtained by the 
used detectors. For that, the different lists of candidate 
objects (obtained from the previous step) will be compared 
with each other. Such comparisons allow evaluating the pair‑
wise similarities and dissimilarities (will be called conflicts) 
between the decisions taken by the detectors on each SP1 
superpixel. These similarity studies constitute the first step 
to analyze and relabel the candidate objects. Such a relabel‑
ling task consists in updating the class labels associated to 

objects in disagreement by the detectors. It starts from the 
fact that the candidate objects with detector agreements 
describe the first kernel of potential MCs in a given super‑
pixel and that those with disagreement should present some 
similarities to them in order to change their labels. Indeed, 
analyzing the characteristic similarities of the objects in 
agreement gives us an idea about a starting kernel supposed 
to characterize the potential MCs present in a given SP1 
superpixel (group of MCs). In this work, we propose to rep‑
resent this kernel as a geometric graph G = (N,E) with 
nodes N and edges E (Fig.  8). G is initialized as an 
unweighted graph. N Eq. (2) is defined as the set of nodes 
that correspond to the candidate objects Oi from the list of 
objects ( Li

Obj
 ) belonging to AC or PC classes. The position 

of each node corresponds to the gravity center position of 
the object to which it refers. E is defined as the set of edges 
( Eij ) between the pairs of nodes ni and nj in N Eq. (3).

Fig. 6  Sample of an initial classification of the candidate objects rep‑
resented by their positions in the image (gravity center): C

AC
 , C

PC
 and 

C
U

 objects are respectively colored by red, green, and blue colors

Fig. 7  Global flowchart of the collaborative classification process

Fig. 8  Illustration of a sample graph generated from a set of candi‑
date objects. The objects that belong to the uncertainty class (blue 
circled objects) are not considered as nodes for the graph
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This representation, although it can increase the com‑
plexity of the treatment, is very adequate to our problem. 
Indeed, the geometrical representation of the nodes in the 
graph makes it able to preserve the knowledge resulting from 
the pixel level and, also, allows us to take advantage of this 
knowledge in the process to be followed.

To update the initial graph, generated from each detec‑
tor, we proceed by two types of refinements. They consist 
on connecting the objects that belong to the CU class to the 
current graph if they comply with the similarity criteria with 
the connected nodes. Once connected, they will update their 
previously associated class labels. The similarity criteria we 
define are prior knowledge‑based and model the groups of 
MCs. The two refinements we propose are:

• A local refinement that concerns the candidate objects 
detected within the same SP1 superpixel. It decides 
on their geometrical similarities to add new objects to 
the current graph. The reasoning is built on the basis 
that a group of MCs are usually distributed with regu‑
lar distances from each other [37]. From another side, it 
remains to the sensitivity of detectors to the small gray‑
level variations in an SP1 superpixel which can affect the 
similarities of the presented MCs (such as the contrast) 
in such region.

• A contextual refinement that concerns the candidate 
objects within the immediate neighbors of an SP1 super‑
pixel. It opts for a compromise between geometric and 
grayscale similarities to decide whether or not to add an 
object to the current graph. This defined similarity meas‑
ure extends the reasoning made by the local refinement, 
namely the geometric distance regularity of objects, into 
the contextual level of superpixels. However, it reduces 
the importance of this latter if it is not associated with a 
numerical one which refers to the grayscale similarities 
of the objects in the neighboring superpixels to others in 
the analyzed one. This similarity, if it exists, reflects the 
homogeneity between the superpixels themselves.

The contextual refinement, as opposed to the local one, 
addresses the fact that the group of MCs can be dispersed 
into a large region and so occupies more than a single super‑
pixel. It characterizes a group of MCs on the basis of the spa‑
tial knowledge issued from the SP1 neighborhood. Indeed, it 
imposes that MCs within the same group must have similar 
numerical characteristics together with the geometrical ones 
as well as they appear in homogeneous superpixels. Such 

(2)N = {Oi in LiObj and Oi ∈ CAC or Oi ∈ CPC}

(3)E = {Eij , where ni and nj ∈ N}

characterization will reduce the probability of selecting equi‑
distant objects regardless of their numerical characteristics 
and so to reduce the number of FP detections.

The proposed refinements can be considered as a revision 
of the detector decisions based on the information shared by 
the other collaborators. They are repeated until the conver‑
gence of a given graph which is reached if this latter remains 
stable or the change in the confidence degrees ( Wk

i
(t) ) Eq. 

(4) estimated for the SP1 superpixels between two iterations 
(t) and ( t − 1 ) is smaller than a given threshold ( �).

where:

• The index k refers to the kth SP1 superpixel.
• The index i refers to the ith detector.
• |E| refers to the cardinality of set of edges E of the graph.
• Tk

i
(t) refers to the weight of the new edges added to the 

previous graph.
• CCk

i
 refers to the maximum conflict degree associated to 

the kth superpixel and the ith detector. Its mathematical 
expressions will be presented in the next subsection.

With convergence, the set of nodes in each graph will 
compose the new list of candidate objects by the detector. 
Theoretically, these sets are more similar than the initial 
ones. Thus, the final combination of these new results could 
be simplified using a conjunctive operator while the agree‑
ment between them increases.

Detailed Mathematical Description

Estimation of Confidence Degrees

This step consists on observing the objects’ labels in each 
SP1 superpixel and to compare their characteristics. The main 
idea is to estimate a confidence degree per detector and SP1 
superpixel and to update the labels associated to the objects 
in order to reduce the disagreements they present between the 
detectors. The estimation of the confidence degrees per SP1 
superpixel enhances the interest of the semantic information 
it produces for a better decision‑making. Indeed, these regions 
present a grayscale homogeneity which refers to a semantic 
homogeneity in the image (the same breast tissue type pixels 

(4)
|||W

k
i
(t) −Wk

i
(t − 1)

||| = �

(5)Wk
i
(t) = Tk

i
(t) ∗ T

V(k)

i
(t) ∗ CCk

i

(6)Tk
i
(t) =

|||E(Gk
(t−1)

)
|||

|||E(Gk
(t)
)
|||
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appear with similar gray‑level values on the mammographic 
image). And therefore, MCs that appear in the same superpixel 
usually present similar characteristics, at least those detected 
by the same detector (Fig. 9).

The starting point for the confidence degree estimations 
is to compare the pairs of candidate object lists for each SP1 
superpixel relatively to two detectors ( Di and Dj ). The similarity 
matrix ( Sk ) of the kth superpixel Eq. (7) we define evaluates the 
agreement between each Di and Dj detector and is expressed as 
the proportion of their common detected objects (Os).

where

Once the similarity is calculated, we define the conflict 
degree ( Ck

ij
 ), which evaluates the disagreement between the 

Di and Dj detectors Eq. (9), as well as the maximum conflict 
CCk Eq. (10) for the kth SP1 superpixel and thus to initialize 
the corresponding confidence degree Wk

i
 Eq. (11) for each 

detector Di . The maximum conflict degree CCk
i
 matches for 

a given detector Di its least correspondent detector Dj in 
terms of common detected objects and will be used in the 
re‑labeling process.

(7)Sk =

⎛
⎜⎜⎜⎜⎝

Sk
1,1

. . Sk
1,4

. . . .

. . . .

Sk
4,l

. . Sk
4,4

⎞⎟⎟⎟⎟⎠

(8)Sk
ij
= Sim(Dk

i
,Dk

j
) =

���Oski
⋂

Osk
j

���
���Oski

���

(9)Ck =

⎛
⎜⎜⎜⎜⎝

Ck
1,1

. . Ck
1,4

. . . .

. . . .

Ck
4,l

. . Ck
4,4

⎞
⎟⎟⎟⎟⎠
where Ck

ij
= 1 − Sk

ij

(10)CCk
i
(Dk

i
,Dk

j
i≠j

) = argmax
l≠i

(Ck
il
)

The estimated confidence degree plays an important role 
in selecting the superpixels to treat as well as fusing the 
final results.

Re‑labelling/Classification of Candidate Objects

The iterative re‑labeling step is applied for each SP1 super‑
pixel and each Di detector. It aims to improve the quality of 
the results of each detector in order to reduce the conflict 
it presents with the others and, thus, to have objects with 
identical labels. It starts by selecting the SP1 superpixels 
( SPi

Cand
 ) with objects belonging to the CAC or CPC classes 

Eq. (12).

It is based on the fact that superpixels with objects presenting 
an absolute or a partial agreement by the detectors provide rel‑
evant information for better decision‑making. It consists in updat‑
ing the initial obtained graphs Gi,k

Init
 generated on the SPk super‑

pixels from SPi
Cand

 with applying the intra‑ and inter‑superpixel 
analyses. These analyses calculate the similarities between the 
candidate objects ( OsCi ), to be linked, and the nodes of the graph 
to be refined. These similarities are the weights of the new links 
added between the selected candidates and the old graph nodes.

(a) Intra‑superpixel Analysis

Figure 10 illustrates an example of the intra‑superpixel 
refinement.

A candidate object in an SPk superpixel, associated to the 
CU class, is added to the initial graph ( Gi,k

Init
 ) if and only if it 

satisfies the following condition:

(11)Wk
i
(t = 0) = 1 − avg

j

(Ck
ij
)

(12)
SPi

Cand
=
{
SPk, k ≤ Nk∕∃!O ∈ Osk

i
belong to CPC and/or CAC}

(13)

SimLi,k( OIn,OIc
OIc ∈ CU

OIn ∈ G
i,k

Init

) ≤ mean

OIn1,OIn2 ∈ G
i,k

Init

n1 ≠ n2

(SimGk(OIn1,OIn2 ))

Fig. 9  Sample of a group of 
MCs present in the same SP1 
superpixel
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where:

• SimLi,k refers to the local similarity between the objects 
OIn and OIc

• SimGk refers to the normalized Euclidean distance 
between the OIn1 and OIn2 objects from the list of nodes 
of the GInit

i,k
 graph Eq. (14).

(b) Inter‑superpixel Analysis

The inter‑superpixel refinement (Fig. 11) is applied to the 
G

i,k

L
 graph result from the local refinement. A new node (can‑

didate object) which belongs to the immediate neighbors 
( V(SPk) ) of the SPk superpixel and associated to the CU 
class is accepted to be added to the Gi,k

L
 graph only and only 

if it fulfills the following similarity criterion defined as the 
average of the normalized geometrical ( SimGk ) and feature 
( SimFk ) similarities Eq. (15):

where “Feat(OI)” is the feature’s value of the candidate 
object OI. In this work, we adopted the standard gray‑level 

(14)SimGk(OIn1,OIn2 ) = d(OIn1,OIn2 )

(15)
SimCi,k( OIn,OIc

OIc ∈ V(SPk )

OIc ∈ CU

) ≤ mean

OIn1,OIn2 ∈ G
i,k

L

i ≠ j

(SimGk(OIn1,OIn2 ) + SimFk(OIn1,OIn2 ))

(16)SimFk(OIn1,OIn2) =
||Feat(OIn1) − Feat(OIn2)

||

deviation of the pixels constituting an object is considered 
as the feature.

Considering the new retained Gi,k

Cont
 graph, with the tth 

iteration (t>1), the local and contextual refinements are 
applied to the one retained with the previous iteration ( t − 1 ) 
and not the Gi,k

Init
 graphs of the t=1 iteration.

Overall Algorithm Description

The proposed approach, in this study, operates through 
a collaborative process that allows different detectors to 
iteratively review their initial decisions based on the infor‑
mation shared with other collaborators.

The supplementary section presents the detailed algo‑
rithms which describe the overall steps of this classifica‑
tion process Algorithm 3 as well as the different steps 
of the local Algorithm 1 and the contextual Algorithm 2 
applied refinements.

Fig. 10  A sample of an intra‑
superpixel refinement

Fig. 11  A sample of an inter‑
superpixel refinement
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Experimental Results and Discussion

In this study, 50 images extracted from the publicly avail‑
able INBreast database [38] are used to evaluate the proposed 
approach. Selected mammograms belong to different breast 
densities and present various MC types. The validation is 
made on the basis of the comparisons with the ground truth 
(GT) masks defined by an expert in radiology from the Uni‑
versity Hospital of Brest, France. A GT mask is built for each 
mammographic image, for a total of 50 GT masks, with all 
finding MCs. It is important to note here that the average of 
MC is around 125 per image for a total of 7000 MCs with all 
the images.

The evaluation we made is based on the reliability analysis 
and divided into two main parts. The first concerns an overall 
assessment of the obtained results. The second concerns the 
comparison of these latter with those of standard combination 
operators (union, intersection, etc.).

Evaluation Situations

The evaluation is made on the three different situations illus‑
trated by the next figure: the true positive (TP), false positive 
(FP), and true negative (TN) situations (Fig. 12):

• True positive situation refers to the MCs correctly identi‑
fied as candidate objects by the proposed approach

• False positive situation refers to the normal breast tissues 
considered candidate MCs by the proposed approach

• False negative situation refers to the true MCs who are 
missed by the proposed approach

The main goal of the proposed approach is to decrease the 
false negative detection while increasing the number of true 
positives.

Performance Evaluation

Overall Assessment

The true positive rates Eq. (17) resulting from applying the 
proposed collaborative process are presented in Fig. 13. 
Obtained measures prove the reliability of the proposed 
approach to identify the MCs. Indeed, it is able to iden‑
tify more than 70% (respectively 90%) of MCs for 58% 
(respectively 80%) of the analyzed images. It is important 
to note here that the average of MCs per image is around 
125 MCs. On the other side, the MC detection rate is lower 
than 50% for less than 4% of the images.

Performance Evaluation Compared to the Used Detectors

In order to evaluate the robustness of the proposed approach, 
it is important to prove its reliability compared to the used 
detectors. Table  1 displays the TP average detection rates 
obtained for each detector ( Di , i=1...4). It shows that the 
highest value (i.e., 85%) is derived from the proposed 
approach.

(17)TP rate =
TP

TP + FN

Fig. 12  Illustration of the possible evaluation situations

Fig. 13  Percentages of the TP rates resulted obtained by the applica‑
tion of the proposed approach

Table 1  Average of the obtained TP rates compared to each of the 
used detectors

D
1
 [11] D

2
 [28] D

3
 [15] D

4
 [29] Proposed 

approach

Average of the 
TP rate

75.29% 68.42% 83% 79.22% 85%

Table 2  Percentages of the improved TP rates compared to each of 
the used detectors

D
1
 [11] D

2
 [28] D

3
 [15] D

4
 [29] Best detector

Improvement of 
the TP rate

68% 72% 52% 56% 44%
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Table  2 presents the percentage analysis of the improved 
TP rates by the proposed approach compared to each of the 
used detectors.

The results in Table  2 indicate that more than the half of 
each of the initial detector results are improved by the pro‑
posed collaborative process. It also shows that the obtained 
TP rates are improved for 44% of the cases compared to 
those obtained by the best detector that returns the most 
relevant results for a given image. Such results highlight also 
the importance of adopting a collaborative fusion process 
instead of a simple detector to detect MCs. Indeed, even 
though the third detector ( D3 ) shows a comparable aver‑
age of TP rate to that of the proposed approach, we have 
improved its TP rates for 52% of the cases.

Performance Evaluation Compared to Other Fusion 
Operators

In this study, the standard union (U) and intersection (I) 
operators for comparisons are used. This choice can be justi‑
fied in particular by the features of the detectors as well as 
the mammographic image diversities. Indeed, no prior infor‑
mation is made about the global accuracy or reliability of the 
detector decisions. It depends on many factors such as the 
breast density and the MC feature diversities. From another 
side, the reliability of the used detectors depends on their 
reasoning compared to the MC appearances. For instance, 
the third detector describes the MCs as a set of adjacent 
“outlier” pixels in an SP1 superpixel. Despite the fact that 
it presents a concurrent average of TP rates, it shows some 
weaknesses with regard to MCs with various contrasts [29].

Figure 14 presents the boxplots of the different TP rates 
result from the intersection operator applied to combine the ini‑
tial detectors’ decisions. It is clear that the proposed approach 
has successfully reduced the initial disagreements between the 
detectors and has improved the reliability of the intersection 
operator. However, the first assessment of the same figure with 
Table  3 suggests that the union operator presents higher TP rates 
compared to the proposed approach. Its average value is about 
92% compared to 85% for the proposed approach.

In contrast, according to the quantitative analysis dis‑
played in Table 4, the conjunctive operator, we applied, is a 
real competitor and even more reliable than the disjunctive 
operator applied to the initial detector results for 48% of 
the cases.

In addition to be competitive to the union operator, the 
proposed approach is able to reduce the false positive rates 
by an average of 32% for all the images. Such reduction 
helps discarding false positive objects with similar MC char‑
acteristics and, thus, to improve the reliability of a possible 
classification step which will discriminate the real MCs from 
the false positive ones. They also prove that the proposed 
approach was able to achieve its main objective, namely 
reducing the FN detections and reaching a competitive TP 
rated compared to those of the union operator.

Conclusion

In this paper, we have addressed the problem of a reli‑
able detection of MCs from mammographic images while 
minimizing the false negative detections. In this context, 
we have proposed a collaborative process that makes dif‑
ferent MC detection methods collaborate to refine their ini‑
tial decisions and produce a new common decision able to 
reduce the disagreements they present and therefore the false 
negative detections. These refinements are applied for each 
superpixel and follow local and contextual analyses based on 
some prior knowledge about the links between superpixels 
and MCs. These analyses also iteratively estimate local reli‑
ability terms per superpixel. The final result is simplified to 
a conjunctive combination of the new detector decisions.

The obtained results, relative to the INBreast database, 
have proved the ability of the proposed collaborative process 
to improve the MC detection rates compared to the detectors 
as well as to some standard fusion operators.

Fig. 14  Boxplots of the obtained true positive rates from the intersec‑
tion operator applied to the initial detector results and after the pro‑
posed collaborative process

Table 3  Average of the obtained TP rates compared to the union and 
intersection operators

Union operator Intersection 
operator

Proposed 
approach

Average of the TP 
rate

92.05% 42.2% 85%

Table 4  Percentages of the improved TP rates compared to the union 
and intersection operators

Union operator Intersection 
operator

Best detector

Improvement of 
the TP rate

48% 96% 44%
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As future works, we are planning to increase the size of the 
evaluation database in order to compare the proposed approach 
with a supervised MC detection approach. Moreover, the main 
goal of this study was to reduce the number of FN detections 
compared to a single detector. Nevertheless, the execution time 
has to be considered in parallel with the important advantage 
of reducing FNs. On the other side, reducing the FP detections 
is also of interest while it affects the reliability of the obtained 
results and so the experts’ diagnosis. The next steps are, then, 
to reduce the execution time, so that could be acceptable for the 
radiologists and to propose a classification scheme to distinguish 
the true MCs from the FP detections retained as potential MCs.

Supplementary Information The online version contains supplemen‑
tary material available at https:// doi. org/ 10. 1007/ s10278‑ 022‑ 00678‑9.
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