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SI Methods
Epitope Support Vector Machine Construction Details. One support
vector machine (SVM) model was trained for each major his-
tocompatibility complex (MHC) using publicly available peptide–
MHC binding constants for 29 human and mouse MHC alleles.
15mer Peptide sequences were first aligned and then encoded
into numerical feature vectors. Amino acid sequence encoding re-
lied on two sources: BLOSUM62 amino acid transition probabilities
and position-specific scoring matrix (PSSM) values derived from the
initial sequence alignment. After encoded, support vector regres-
sion (nu-SVR) models were trained using libSVM to recapitulate
log-transformed IC50 values by minimizing mean-squared error in
fivefold cross-validation tests.

Alignment of SVM Training Data Sequences. MHC peptide-binding
training data for 29 MHC alleles were downloaded from the
Immune Epitope Database, non-15mers were discarded, and
sequences were split into binder and nonbinder groups for each
allele with a 1,000-nM cutoff. Peptides in each group were aligned
using NetMHCII version 2.2 to find the highest scoring peptide
core frame in each 15mer. Aligned 15mers were then extracted
by including the 9mer core and three residues upstream and
downstream, substituting X for gapped termini positions.

Calculation of MHC Allele-Specific PSSMs.For each allele, a position–
frequency matrix was calculated by counting residue frequencies
from all aligned 9mer cores from peptides with IC50 < 1,000 nM.
Values less than 0.001 in the matrix were given a pseudovalue of
0.001, and columns were renormalized. PSSM values were calcu-
lated as the log odds ratio of each amino acid position frequency
to the baseline frequency of that amino acid in the host organism.

Peptide Sequence SVM Encoding. Each 15mer sequence was enco-
ded as a 240-element feature vector for SVM training as follows.
Each amino acid of the 9mer core sequence is represented by a
21-element vector from the corresponding row of the probability-
transformed BLOSUM62 matrix. Additionally, the upstream and
downstream 3mers, the peptide-flanking residues, were similarly
encoded as a weighted average over three positions with N-terminal
weights of (1/6, 2/6, 3/6) and C-terminal weights of (3/6, 2/6, 1/6).
Another nine features are added by including the score for each
9mer core position from the PSSM described above.

SVM Training. SVM models were created using libSVM. A re-
gression model was trained (nu-SVR) to recapitulate log-trans-
formed IC50 values from the feature vectors described above.
IC50 values were transformed into scores according the same
manner as in the work by Nielsen et al. (1), where each score
S = 1 − log(IC50)/log(50,000), such that the strongest binder
receives a score of 1.0 and the weakest binder receives a score of
0.0. libSVM models were generated using the radial basis func-
tion kernel with the shrinking heuristic, and c, f parameters were
chosen for each MHC allele model to minimize the average
mean-squared error in fivefold cross-validation tests.

Deimmunization Design Simulation Details. Rosetta greedy optimization
design. All design simulations were implemented using Rosetta
Scripts (2). Greedy sequence design and rotamer optimization
were carried out using the Rosetta greedy descent optimization
algorithm as previously described (3). First, every amino acid point
mutant and rotamer state at every position is sampled inde-
pendently, and after rotamer optimization and gradient minimi-

zation of all neighbor side chains within an 8-Å sphere, the total
energy is stored. After every position’s point mutants have been
evaluated, substitutions at each position are sorted by energy, and
positions are rank-ordered by the value of the optimal substitution
at each position. Substitutions are combined by first attempting
placement of the optimal substitution at the optimal position,
evaluating the total energy, and accepting if the total score im-
proves. The substitution at the second ranked position is then
attempted and so on until substitutions have been attempted. This
approach converges reliably to identical solutions, although mul-
tiple diverse solutions can be generated by optionally attempting
combination of near-optimal substitutions at each position and
only considering substitutions with scores that remain within a
certain threshold from the position’s optimal substitution.
Large-scale design benchmarking. The crystal structures of eight pro-
teins isolated from human pathogens, all containing known T-cell
epitopes, were downloaded from the Protein Data Bank. Target
protein sequences were scanned for MHC-binding sequences
using Rosetta as described above. Each sequence was scanned for
eight human leukocyte antigen DR beta (HLA-DRB) alleles
(HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*11:01, HLA-
DRB1*13:02, and HLA-DRB1*15:01). Epitopes were identified
as those with a log-averaged predicted IC50 less than or equal to
1,500 nM. The predicted 15mer cores of all these epitopes were
targeted for design. For the SVM score term, design simulations
were carried out with varying score weights using the greedy
optimization scheme described above. For host genome 9mer
score term, three design simulations were carried out using
Monte Carlo with 150 steps per designable position. Human 9mer
content as a fraction of total epitopes subject to design and Rosetta
energy values were averaged from these simulations. Final pre-
dicted epitope count was calculated as those with a log-averaged
predicted IC50 less than or equal to 500 nM.
L-asparaginase II design simulations. The crystal structure of
L-asparaginase II [Protein Data Bank (PDB) ID code 1NNS] was
downloaded from the Protein Data Bank as the homotetrameric
biological assembly. Design positions were restricted to those
9mer epitope regions identified by Cantor et al. (4). The design
simulation was carried out with greedy sequence optimization as
mentioned above, with a subsequence SVM score weight of 1.0.
Epitopes were designed using the SVM for HLA-DRB1*04:01.
[L-asparaginase simulations only used one allele predictor to better
match the experiment in the work by Cantor et al. (4). This single
allele has lower average binding affinity and thus, higher average
scores than the eight-allele set used in the erythropoietin simu-
lations, and therefore, its weight was decreased to compensate.]
Predicted IC50 values are reported as the strongest binding
epitope that overlaps the design target 9mer. Rank is reported
as the highest-ranking epitope frame that encompasses all design
positions. Rosetta energies for epitope regions are calculated by
summing intra- and interresidue energies over the target segment.
Erythropoietin design simulations. The crystal structure of erythro-
poietin complexed to the binding domain of the erythropoietin
receptor (PDB ID code 1EER) was downloaded from the Protein
Data Bank. Design positions were restricted to those chosen by
Tangri et al. (5) for mutation (residues 102, 103, 104, 107, 141,
143, 144, 146, and 147) using a subsequence SVM score weight of
3.5. Epitopes were redesigned using SVMs corresponding to eight
HLA-DR alleles (HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-
DRB1*04:01, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-
DRB1*11:01, HLA-DRB1*13:02, and HLA-DRB1*15:01).
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Predicted IC50 values are reported as the strongest binding epitope
that overlaps the design target 9mer. Rank is reported as the highest-
ranking epitope frame that encompasses all design positions. Pre-
dicted allele binders were calculated using an IC50 cutoff of 500 nM.
Superfolder GFP design simulations. Superfolder GFP (sfGFP) design
simulations used the available sfGFP crystal structure (PDB ID
code 2B3P). Eight designs were calculated using Rosetta for pre-
dicting both epitopes and the mutations’ effects on MHC binding.
To generate multiple design sequences, candidate mutations at
each design position included all amino acids within 1.5 Rosetta
energy units of the lowest-energy mutation. Candidate mutations
at each position were chosen randomly during the greedy opti-
mization design stage as described above.

Exotoxin A design simulations. Exotoxin A design simulations used
the available exotoxin-eEF2 cocrystal structure (PDB ID code
1ZM4). Epitopes were redesigned using SVMs corresponding
to 14 HLA alleles (HLA-DRB1*01:01, HLA-DRB1*03:01,
HLA-DRB1*04:01, HLA-DRB1*07:01, HLA-DRB1*08:02,
HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*13:02,
HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB4*01:01,
HLA-DRB5*01:01, HLA-DQA1*05:01-DQB1*03:01, and HLA-
DQA1*03:01-DQB1*03:02). Three designs were calculated using
Rosetta for predicting the mutations’ effects on MHC binding
of the known residues 466–480 and 547–564 epitope region.
Candidate mutations at each position were chosen randomly
during the greedy optimization design stage as described above.
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sfGFP Deimmunization Design Sequences Alignment.
sfgfp SKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v2.2 SKGEELFKGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v1.2 SKGEELFLGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v4.2 SKGEELFLGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v4.1 SKGEELFLGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v1.1 SKGEELFLGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v3.1 SKGEELFLGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v3.2 SKGEELFKGRVPIQVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
sfgfp.di.v2.1 SKGEELFTGVVQILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV
******* * * * **********************************************
sfgfp TTLGYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v2.2 TTLGYGVQCFSRYPDHMKRHDFFKSSMPDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v1.2 TTLGYGVQCFSRYPDHMKRHDFFKSAQPDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v4.2 TTLGYGVQCFSRYPDHMKRHDFFKSAMSDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v4.1 TTLGYGVQCFSRYPDHMKRHDFFKSAMSDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v1.1 TTLGYGVQCFSRYPDHMKRHDFFKSAQPDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v3.1 TTLGYGVQCFSRYPDHMKRHDFMKSAMPDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v3.2 TTLGYGVQCFSRYPDHMKRHDFMKSAMPDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
sfgfp.di.v2.1 TTLGYGVQCFSRYPDHMKRHDFFKSSMPDGYVQERTISFKDDGTYKTRAEVKFEGDTLVN
**********************:**::*******************************
sfgfp RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v2.2 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v1.2 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v4.2 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v4.1 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v1.1 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v3.1 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v3.2 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
sfgfp.di.v2.1 RIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH
************************************************************
sfgfp YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHG
sfgfp.di.v2.2 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGIDDG
sfgfp.di.v1.2 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVRAAGITDQ
sfgfp.di.v4.2 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVRAAGITDG
sfgfp.di.v4.1 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVEAAGIQEQ
sfgfp.di.v1.1 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAGGIQEE
sfgfp.di.v3.1 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVRAAGIQEE
sfgfp.di.v3.2 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVRAAGIQEE
sfgfp.di.v2.1 YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVRAAGIDEG
******************************************* *.** .
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Fig. S1. Native and deimmunized sfGFP excitation and emission spectra for all eight sfGFP designs in arbitrary units (AU). (A) Excitation spectrum measured at
510-nm emission. (B) Emission spectra measured at 488-nm excitation.

Fig. S2. Rosetta design model for immunotoxin deimmunization. Cyan, design mutations; green, endotoxin A; magenta, T-cell epitopes; orange, eEF-2.

Table S1. Rosetta deimmunization of crystal structures with known MHC epitopes

Source PDB ID code
Known epitopes
(design/native)

Predicted epitopes
(design/native)

Human 9mers
(design/native)

ΔRosetta
energy

Sequence
identity

Influenza Matrix M1 1EA3 0/7 40/154 0/0 −33.769 0.68
Tuberculosis MPT63 1LMI 1/17 21/75 0/0 −16.962 0.74
SARS Nucleocapsid 2CJR 0/3 14/72 0/0 −3.281 0.739
SARS ORF9-B 2CME 0/3 2/81 0/0 −29.654 0.436
Malaria AMA1 2Q8A 1/1 58/171 0/0 −43.004 0.778
Tuberculosis esxB 3FAV 0/13 3/28 0/0 −9.108 0.486
Arenavirus L-protein 3JSB 2/21 32/129 0/0 −21.934 0.717
HSV envelope protein D 3U82 2/13 38/165 0/0 −27.104 0.697

The numbers of known and predicted epitopes (from the eight HLA-DR allele set described in the text) after design (design) and in the original native
sequence (native) are shown for each target protein along with the change in Rosetta energy (ΔRosetta energy) and the fraction of residues not changed
during design (Sequence identity). Known epitope data were excluded from the simulation to provide an unbiased measure of the prediction and design. This
table corresponds to Fig. 2A.
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Table S2. Rosetta native sequence content design of crystal structures with known MHC epitopes

Source PDB ID code
Known epitopes
(design/native)

Predicted epitopes
(design/native)

Human 9mers
(design/native)

ΔRosetta
energy

Sequence
identity

Influenza Matrix M1 1EA3 3.33/7 135.33/154 6.33/0 16.58 0.76
Tuberculosis MPT63 1LMI 3.67/17 81.67/75 3.33/0 13.48 0.79
SARS Nucleocapsid 2CJR 0/3 65.67/72 4/0 2.74 0.8
SARS ORF9-B 2CME 0/3 68.33/81 15/0 10.65 0.32
Malaria AMA1 2Q8A 1/1 170.67/171 0/0 −18.59 0.98
Tuberculosis esxB 3FAV 0/13 55.33/28 10/0 11.92 0.32
Arenavirus L-protein 3JSB 1.33/21 120.33/129 19.67/0 66.21 0.45
HSV envelope protein D 3U82 8/13 168.33/165 0/0 −7.98 0.98

Values are averaged from three simulations. The numbers of known and predicted epitopes (from the eight HLA-DR allele set described in the text) after
design (design) and in the original native sequence (native) are shown for each target protein along with the change in Rosetta energy (ΔRosetta energy) and
the fraction of residues not changed during design (Sequence identity). Known epitope data were excluded from the simulation to provide an unbiased
measure of the prediction and design. This table corresponds to Fig. 2B.
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