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S1 Theoretical background and results

S1.1 Bayesian network primer

We collect here the minimal background on Bayesian networks necessary to make this paper self-
contained. For more details and proofs of the statements below, we refer to existing textbooks, for
instance [1].

A Bayesian network for a set of continuous random variables X, . .., X, represented by nodes 1,...,n,
is defined by a DAG ¥ and a joint probability density function that decomposes as

pxt, x| D) =T]p(xj| {xi: i €Paj}). (S1)
=1

We are interested in linear Gaussian networks, which can be defined alternatively by the set of struc-
tural equations
Xj= ) BijXitej, (52)
icPa;
where Pa; is the set of parent nodes for node j in ¢ and g; ~ .#(0, w]2) are mutually independent
normally distributed variables. The matrix B = (f;;), with B;; = 0 for i & Pa;, can be regarded as a



weighted adjacency matrix for &. With this notation, the conditional distributions in eq. (S1) satisfy

p(Xj | {x,-: iGPaj}): JV( Z ﬁijx,‘,(!)%). (S3)
iePaj
The values of the matrix B and (012, ..., @? are the parameters of the Bayesian network which are to

be determined along with the structure of ¢. The conditional distributions (S3) result in the joint
probability density function being multi-variate normal,

n
p(x1,. . x,) = Hp(xj | {xi: i€ Paj}): A(0,X)
j=1
with inverse covariance matrix

r'=(1-B)Q'1-B)

where Q = diag(a)lz, ..., @?). Tt follows that the gene expression-based term in the log-likelihood of
the full model can be written as (up to an additive constant)

1
Z =logpX1|¥9) = %logdet):_1 — Etr(Z_lXXT) (S4)

where as before X € R"*" is the data matrix for n genes in m independent samples. From these basic
results, the following can be derived easily:

e For a given ¥, there exists a suitable ordering of the variables such that B is lower-triangular.
Then .%x can be written as

n
m ’ 1 2
"iﬂX:Z —Elog(a)j)—z—wzHXj— Z ﬁin,-’ :| (SS)
j=1 i icPa;
where X; € R™ is the expression data vector for gene j. It follows that the maximum-likelihood
parameter values f3;; are the ordinary least-squares linear regression coefficients, (I)j2 = %HX =

YicPa ﬂ inHz are the residual variances, and %y evaluated at these maximum-likelihood values
is the log of the total unexplained variance, up to an additive constant

Zx =3} log(6)). (S6)
j=1

e Adding more explanatory variables always reduces the residual variance in linear regression.
Hence, for a given ¢, %y is maximized by having all lower-triangular elements 3;; # 0. Fur-
thermore, for a nested sequence of DAGs (where one DAG is a subgraph of the next one), %
as a function of ¢ is maximized for the fully connected DAG with n(n—1)/2 edges!. A fully
connected DAG ¥ defines a “topological” node ordering < by the relation

i< j&iePa;.

IWe use the terminology “fully connected DAG” because (i) there exist DAGs with n(n—1)/2 edges, and (ii) any graph
with more than this number of edges contains at least one cycle, that is, is not a DAG.



Equivalently, a node ordering defines a permutation 7 such that nodes are ordered as m; < m, <
-+ < m,. Hence eq. (S5) can also be seen as a function on node orderings or permutations,
and the maximum-likelihood values are then found by linearly regressing each node on its
predecessors (i.e. parents) in the ordering:

n

m 1
Lra=)Y, —Elog(wjg) - ZT)QHXJ' - Y BiX

Jj=1 J T <m;

2
] (S7)

e Conversely, eq. (S4), and hence also eq. (S6), is easily seen to be invariant under any reordering
of the nodes. Hence no edge directions can be inferred unambiguously from observational
expression data without further constraints or information.

S1.2 Pairwise node ordering

To infer Bayesian gene networks, we first consider the log-likelihood score without sparsity con-
straints,

Z =logP(¥ | X,E)=logp(X|¥) +Z Z 8ij

J iePaj

where it is implicitly understood that the maximum-likelihood parameters are used in Zx = log p(X |
¢). Because Zx and £p =Y ; Yicpa, &ij are both maximized for fully connected DAGs, and because
the value of % is the same for all fully connected DAGs, it follows that to maximize ., we need
to find the maximum-weight DAG which maximizes the pairwise score .Zp. As stated in the main
text, this is an NP-hard problem with no known polynomial approximation algorithms with a strong
guaranteed error bound. The greedy algorithm we used is the standard heuristic for this type of
problem [2].

S1.3 Sparsity constraints

Using fully connected DAGs leads to overfitting of the expression-based score ., particularly in the
case where the number of genes n is greater than the number of samples m. The most popular methods
for imposing sparsity in Bayesian networks are:

e Bayesian or Akaike Information Criterion. The BIC or AIC methods augment the likelihood
function .#x with a term proportional to the number of parameters in the model, i.e. the number
of edges |¢| in ¢4 (BIC = —|¥|logm, AIC = —|¥|).

e L1l-penalized lasso regression. In this case, the likelihood Zx  [eq. (S7)] is augmented by
aterm Y A; Y oz, |Bij|, such that finding the maximum-likelihood parameters f3;; becomes
equivalent to performing a series of independent lasso regressions, one for each node on its
predecessors in the ordering 7#. The extra penalty term can be understood as coming from a
double-exponential prior distribution on the parameters f3;;.

An under-appreciated drawback of the BIC/AIC in high-dimensional settings is the fact that with
a sufficient number of predictors it is possible to reduce a); to zero for any gene, and hence make
2% (S6) arbitrarily large. By concentrating all interactions on one or a few target genes, this can



be achieved while still keeping the BIC/AIC small. Hence in high-dimensional settings, use of the
BIC/AIC leads to highly skewed ‘all-or-nothing’ in-degree distributions, as shown in Figure 2C, unless
the maximum allowed number of regulators for each gene is capped at an artificially small number.

Similar problems can occur if lasso regression is used with a fixed A for all j, because the number
of candidate regulators differs greatly among genes that come early or late in the ordering. In [3], a
method was proposed where the value of A; increases with the order of j, but their scaling could not
provide any guarantee for the probability of false positive errors for individual edges in the resultant
sparse graph. We used the lassopv variable selection method [4] instead. In brief, for each gene j and
for each candidate regulator i of j (i.e. predecessor of j in the ordering 7):

e calculate the largest (most stringent) value of A; for which i would be selected as a parent of j
(i.e. have non-zero lasso regression coefficient);

e calculate the probability (p-value) of a randomly generated predictor having the same or larger
‘critical’ A;.

This results in a set of p-values p;; for all pairs 7; < 7;, which achieve optimal false discovery control,
i.e. they can be transformed into g-values g;; by standard FDR correction methods such that if we
keep all g;; < «, the expected FDR is less than . Moreover for sufficiently small thresholds «, there
is a corresponding penalty parameter value A;(c) such that the set of regulators with p;; (or g;;) less
than « is precisely the set of regulators with non-zero lasso regression coefficient [4]. Hence in our
method we can use thresholding on the p;; directly to obtain sparse Bayesian networks.

In addition to the lasso regression based method for inducing sparsity, we also considered a simple
thresholding on the pairwise prior information to obtain a sparse DAG. In the full log-likelihood
function, if we set

) _ )& ifgij>=¢
Y 0 otherwise

then edges with g;; < € are automatically excluded from the maximum-likelihood DAG, and the
pairwise node ordering procedure will automatically result in a sparse DAG. This method does not
provide any guarantee for the false positive control of individual edges in the (multi-variate) Bayesian
network beyond what is provided by the pairwise causal inference test used.

S1.4 Summary of terminology

The following terminology is used repeatedly in this paper:

o “Node ordering”: a permutation of the nodes.

e “Edge constraint”: a set of ordered node pairs C = {(i,j)} in a DAG ¥, that constrains the
edges permitted in ¢ as V i € Paj, (i, j) € C. Each DAG can be subject to more than one edge
constraint.

o “Topological node ordering”: a node ordering < to a DAG ¢, that acts as an edge constraint
C={@Jj)i=<J}



“Fully connected DAG”: a DAG ¢ in which no edge can be added. On a DAG with n nodes and
with no edge constraint, it is fully connected if and only if it has n(n — 1) /2 edges, because the
addition of even a single edge is guaranteed to introduce a cycle, that is, ¢ would cease being

a DAG. There is a one-to-one correspondence between node orderings and fully-connected
DAGs.

“Maximum-weight DAG”: a DAG that solves the maximum acyclic subgraph problem, iden-
tified by its parent sets

Pa™ = argmax Z Z 8ij
Pa, subjectingto C i€Pa;

for some set of non-negative prior weights g;;. As discussed in the manuscript, there is no
known algorithm for solving the maximum acyclic subgraph problem exactly. For simplicity,
we also use the term “maximum-weight DAG” to refer to its heuristic, i.e. the local optima
found by the greedy algorithm.

S1.5 Assessment of predictive power for Bayesian networks

The following 5-fold cross-validation algorithm was used to assess the predictive power of different
Bayesian network inference methods.

Algorithm S1 Cross-validation of predictive power for Bayesian networks

Require: M € R™™ as matrix of normalized expression,

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

B(m) € R"*" as function to infer binary Bayesian network from expression matrix m,
s(9,y) as score function (rmse or mlse) of predicted expression J given true expression y.
function CROSS-VALIDATION(M, B, s)

train_score, test_score < 0
fori< 1to5do
train, test < Random cross-validation split i of training & test data from M
4 + B(train)
for j < 1tondo
model < Fitted linear model to predict train; with traing
train_score < train_score + s(model(traing, ), train )
test_score < test_score +s(model(testy ;),test;)

train_score < train_score/5n
test_score <— test_score/5n
return train_score, test_score
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S2 Supplementary figures and table
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Figure S1: The linearity test of lasso-findr Bayesian networks at 5,000 (A) and 20,000 (B) significant
interactions on DREAM dataset 1.
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Figure S2: The histogram of significant regulator counts for each target gene in the bnlearn-hc
Bayesian networks with AIC penalty 8.5 to 12 (A to H) and step 0.5 on DREAM dataset 1.
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Figure S3: The histogram of significant regulator counts for each target gene in the bnlearn-fi Bayesian
networks with nominal type I error rates 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.2 (A to H) on
DREAM dataset 1.
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Figure S4: The histogram of significant regulator counts for each target gene in the bnlearn-hc-g
Bayesian networks with AIC penalty 9.5 to 13 (A to I) and step 0.5 on DREAM dataset 1.
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Figure S5: The histogram of significant regulator counts for each target gene in the bnlearn-fi-g
Bayesian networks with nominal type I error rates 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.2
(A to H) on DREAM dataset 1.
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Figure S6: The root mean squared error (rmse, A) and mean log squared error (mlse, B) in training
data are shown as functions of the numbers of predicted interactions in five-fold cross validations
using linear regression models. Shades and lines indicate minimum/maximum values and means
respectively. DREAM dataset 1 with 999 samples was used.
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Figure S7: The root mean squared error (rmse, A) and mean log squared error (mlse, B) in training
data are shown as functions of the numbers of predicted interactions in five-fold cross validations
using linear regression models. Shades and lines indicate minimum/maximum values and means
respectively. Root mean squared errors greater than 1 indicate over-fitting. DREAM dataset 1 with
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Figure S8: Conversion to Bayesian network from findr’s predictions breaks its false discovery control.
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Table S2: AUPR of network inference on DREAM dataset 1.

findr 0.237
lasso-findr 0.236

lasso-random 0.213
random 0.002

14



