
Detection of quantitative trait loci from 
RNA-seq data with or without genotypes 
using BaseQTL

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s43588-021-00087-y



Supplementary Information

Supplementary Tables

True External panel
Model Hap Pop RP Sample

β̂aFC ASE 0.27 0.05 0.05 0.12
β̂aFC BI-ASE 0.30 0.18 0.17 0.21
βaFC in 95%CI ASE 0.91 0.94 0.92 0.93
βaFC in 95%CI BI-ASE 0.94 0.92 0.93 0.94
Null in 95%CI ASE 0.68 1.00 1.00 0.95
Null in 95%CI BI-ASE 0.54 0.93 0.94 0.89

Supplementary Table 1: Effect of external panel on eQTL estimates. A
population (Pop) of 50,000 haplotypes of a cis-eQTL and 3 fSNPs were
simulated. The covariance across SNPs was set to 0.2 and the maf for
the fSNPs plus cis-SNP was 0.07, 0.16, 0.31 and 0.42, respectively, with
a βaFC = 0.4. From this population a random sample of 1000 haplotypes
was extracted and was used as reference panel (RP). Samples of 100 hap-
lotypes were also extracted from the population of haplotypes if the sum of
the square difference of haplotype frequencies between the population and
the sample relative to the haplotype frequency on the population was equal
or higher than 0.05, for those haplotypes with frequency above 0.1 in the
population. This procedure was repeated 100 times. For each of the 100
samples, eQTL effects were estimated either with the full model (modelling
both between-individual (BI) and ASE signals) or ASE signals only. Each
model was run with either known sample haplotypes (True haplotypes) or
treating phasing as latent and estimating sample haplotypes using haplo-
types from the population, the reference panel or the sample itself. The
table shows the mean β̂aFC , the proportion of times βaFC is in the 95%
credible interval(CI) and the proportion of times than the null value is within
the 95% CI. This shows that inaccurate haplotype frequencies in the refer-
ence panel may lose power (the 95% CI more often contains the null), but
does not cause bias (the 95% CI has 95% covarage of the true βaFC = 0.4).
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Errors N % % (excluding missing)

0 17151 72.00 99.32
1 116 0.49 0.67
2 1 0.00 0.01
Missing 6554 27.51

Supplementary Table 2: Error rates and missing genotypes for genotyping
by RNA-seq. For the fSNPs used in inference with hidden genotypes, the
number of erroneous calls and missing genotypes across all samples is
shown.

EAF cis-SNP fSNP1 fSNP2 fSNP3

Same 0.30 0.30 0.30 0.30
Different 0.46 0.21 0.41 0.34

Supplementary Table 3: Allele frequency for simulated cis and fSNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.15 0.16 0.16

fSNP1 0.15 1.00 0.16 0.16
fSNP2 0.16 0.16 1.00 0.15
fSNP3 0.16 0.16 0.15 1.00

Supplementary Table 4: LD #1, same EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.12 0.16 0.15

fSNP1 0.12 1.00 0.14 0.14
fSNP2 0.16 0.14 1.00 0.16
fSNP3 0.15 0.14 0.16 1.00

Supplementary Table 5: LD #1, different EAF across SNPs
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cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.23 0.22 0.23

fSNP1 0.23 1.00 0.23 0.23
fSNP2 0.22 0.23 1.00 0.23
fSNP3 0.23 0.23 0.23 1.00

Supplementary Table 6: LD #2, same EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.17 0.24 0.23

fSNP1 0.17 1.00 0.18 0.20
fSNP2 0.24 0.18 1.00 0.22
fSNP3 0.23 0.20 0.22 1.00

Supplementary Table 7: LD #2, different EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.34 0.33 0.33

fSNP1 0.34 1.00 0.34 0.34
fSNP2 0.33 0.34 1.00 0.34
fSNP3 0.33 0.34 0.34 1.00

Supplementary Table 8: LD #3, same EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.23 0.33 0.32

fSNP1 0.23 1.00 0.25 0.29
fSNP2 0.33 0.25 1.00 0.32
fSNP3 0.32 0.29 0.32 1.00

Supplementary Table 9: LD #3, different EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.49 0.49 0.50

fSNP1 0.49 1.00 0.49 0.50
fSNP2 0.49 0.49 1.00 0.50
fSNP3 0.50 0.50 0.50 1.00

Supplementary Table 10: LD #4, same EAF across SNPs
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cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.29 0.50 0.45

fSNP1 0.29 1.00 0.33 0.40
fSNP2 0.50 0.33 1.00 0.48
fSNP3 0.45 0.40 0.48 1.00

Supplementary Table 11: LD #4, different EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 1.00 1.00 1.00

fSNP1 1.00 1.00 1.00 1.00
fSNP2 1.00 1.00 1.00 1.00
fSNP3 1.00 1.00 1.00 1.00

Supplementary Table 12: LD #5, same EAF across SNPs

cis-SNP fSNP1 fSNP2 fSNP3
cis-SNP 1.00 0.31 0.85 0.62

fSNP1 0.31 1.00 0.37 0.51
fSNP2 0.85 0.37 1.00 0.72
fSNP3 0.62 0.51 0.72 1.00

Supplementary Table 13: LD #5, different EAF across SNPs
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Tissue distance sd1 weight1 sd2 weight2

Blood 1MB 0.03 98% 0.30 2%
LCL 1MB 0.03 97% 0.35 3%
Skin 1MB 0.03 97% 0.33 3%
Blood 500KB 0.02 95% 0.25 5%
LCL 500KB 0.04 95% 0.35 5%
Skin 500KB 0.03 94% 0.28 6%
Blood 100KB 0.04 85% 0.25 15%
LCL 100KB 0.07 86% 0.35 14%
Skin 100KB 0.05 84% 0.30 16%

Supplementary Table 14: Gaussian components identified from fitting a
mixture models (Methods) to GTEx eQTL estimates at the indicated dis-
tance from the transcription start site of genes for the indicated tissues.

eQTL effect Mean Variance Probability

Neither tissue 0 2σ20 0.955
Exactly one tissue 0 σ20 + σ21 0.03

Both 0 2σ21 0.015

Supplementary Table 15: Components for the mixture of normal distribution
for the prior of allelic fold change used for the joint model

Decision rule D (0.5MB) D (0.1MB) FDR

null /∈ 99% CI 192 152 0.001
null /∈ 95% CI 346 261 0.012
null /∈ 90% CI 845 510 0.051
null /∈ 85% CI 2083 976 0.097

Supplementary Table 16: Estimated FDR for each decision rule according
to the cis-window distance
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Supplementary Figures

Supplementary Figure 1: Quality control of RNA-seq genotyping errors. (a)
Trade-off between genotype accuracy and number of variants called. Gen-
otype concordance for calling fSNPs with RNA-seq or short read DNA gen-
otyping increases with read depth for homozygous or heterozygous SNPs
(red and blue lines with left y axis), while the proportion of variants with gen-
otype calls decreases (black line with y right axis). (b) Each symbol corres-
ponds to a fSNP genotyped across the 86 samples. The x-axis shows the
-log10 p-value obtained by comparison of the frequency of heterozygous in-
dividuals relative to a reference panel of the same ethnicity (Methods). The
y-axis indicates the proportion of genotyping errors across samples when
calling genotypes with RNA-seq relative to DNA sequencing. The labels
indicate the total number of samples with genotypes called by RNA-seq for
the fSNPs with the highest proportion of errors. The dashed vertical line at
x-axis=2 (p-value = 0.01) is the threshold we selected.
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Supplementary Figure 2: Genotyping fSNPs by RNA-seq. (a) Each sym-
bol corresponds to a fSNP. The plot shows the proportion of samples with
same genotype calls in DNA-seq and RNA-seq (x-axis) relative to the pro-
portion of individuals with missing genotypes in RNA-seq calls (y-axis). As
genotype errors were independent of missing values, we did not apply a 35
threshold based on the number of missing genotypes (b) RNA-seq geno-
typing reduces the number of available fSNPs per gene. For each gene,
the number of fSNPs used for inference was categorized as 1 , 2-5, 6-10,
11-15, 16-20, 21-25, 26-30 both for observed or hidden genotypes. The
bars correspond to the number of genes for a given number of fSNPs. (c)
Distribution of raw AI estimates at each fSNP are similar between DNA-seq
or RNA-seq. The dashed line at logit AI=0 corresponds to no imbalance.
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Supplementary Figure 3: Dissecting the effect of genotyping errors on
eQTL estimates. When running BaseQTL with hidden genotypes for the
cis-SNP we restricted the analysis to cis-SNPs with a quality of imputation
≥ 0.5. (a) BaseQTL was run with fSNPs genotyped by DNA- sequencing
or by RNA-seq. In both cases the same fSNPs were used for inference and
the cis- SNP was imputed. Each symbol corresponds to the eQTL effect
(log2) comparing both conditions with the dashed lines indicating the 99%
credible intervals. (b) Same as (a) except that BaseQTL was run with fS-
NPs genotyped by DNA-sequencing and the genotype for the cis- SNP was
either observed or imputed.
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Supplementary Figure 4: Comparing associations detected with hidden
genotypes on a sub- sample of 86 individuals relative to a large GEUVADIS
study of 462 samples. At each threshold of imputation quality (x axis) the
PPV for associations (a) or eGenes (b) is shown. The values on the graph
correspond to the total number of associations (a) or eGenes (b) called
significant with hidden genotypes.
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Supplementary Figure 5: eQTL examples for the indicated genes. Same
analysis as in Figure 6.
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Supplementary Figure 6: eQTL examples for the indicated genes. Same
analysis as in Figure 6.
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Supplementary Figure 7: eQTL examples for the indicated genes. Same
analysis as in Figure 6.
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Supplementary Figure 8: eQTL examples for the indicated genes. Same
analysis as in Figure 6.
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Supplementary Figure 9: eQTL examples for the indicated genes. Same
analysis as in Figure 6.
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Supplementary Figure 10: eQTL examples for the indicated genes. Same
analysis as in Figure 6.
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Supplementary Figure 11: rs10775583 is likely a splice QTL for SBSN. For
each skin type, the plot shows the logit of the allelic imbalance (y-axis) de-
tected for rs10775583 for each of the 2 fSNPs (x-axis) used by BaseQTL.
The allelic imbalance is calculated as the proportion of reads mapping the
fSNP allele in the same haplotype as the alternative allele for the cis-SNP.
We used the same strategy as in Fig. 6 to represent unobserved phase and
genotype: for each individual we estimated the probability of each phase
and each point corresponds to a possible 45 genotype with the size and
transparency weighted by its probability. Three isoforms of SBSN have
been reported with the bottom panel indicating the location of each of the
fSNPs (ensembl.org). Note that the fSNP showing evidence of strong im-
balance is within a differentially expressed exon, which suggests a splice
QTL effect.
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Supplementary Figure 12: BaseQTL pipeline. Schematic diagram illustrat-
ing the different steps for input preparation and running BaseQTL.
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Supplementary Figure 14: Model assuming genotypes known, phase un-
known
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Supplementary Figure 16: Effect of imputation quality on the power of
BaseQTL without geno-types. We considered 3fSNPs and simulated hap-
lotypes between the cis-SNP and fSNPs with the same allele frequencies or
different (details in Methods). We also considered 5 scenarios of increasing
LD across SNPs to generate a increasing range of imputation qualities for
the cis-SNP. Under these settings we simulated a study population of 100
individuals and true eQTL effect with βaFC of either 0.41, 0.62 and 0.85. We
then estimated the eQTL effect with BaseQTL either with observed or hid-
den genotypes. We repeated the process 100 times to calculate power as
the proportion of simulations in which the null effect was excluded from the
99% posterior credible interval. In each panel we show how power changes
as a function of the imputation quality when BaseQTL is run without gen-
otypes. For comparison purposes we show the equivalent simulation with
observed genotypes.
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Supplementary Section

Supplementary section 1: Comparing BaseQTL with
TReCASE, WASP and RASQUAL

In this section we first describe the model strategies employed by TReCASE
[1], WASP[2] and RASQUAL[3] to then compare the different between them-
selves and with BaseQTL. All these approaches combine models of between
and within-individual variation to map eQTLs.

TReCASE

TReCASE models between individual variation using a negative binomial
distribution. The over-dispersion parameter is independently estimated for
each gene. With the notation used in this paper

ci|Gi,xi ∼ fNB(µi, φ)

log(µi) = γ0 +

j=p∑
j=1

γjxij + g(βaFC , Gi),

g(βaFC , Gi) =


0 if Gi = 0

log(1 + exp(βaFC))− log(2) if Gi = 1

βaFC if Gi = 2

The cis-SNP effect is shared with the ASE count model. To model ASE
TReCASE uses a beta binomial model for aggregated read counts from all
heterozygous fSNPs.
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n1i|mi, (h0i, h1i) ∼ BB (n1i;π, θ,mi|(h0i, h1i))

π =


exp(βaFC)

1 + exp(βaFC)
Gi heterozygous

0.5 Gi homozygous

TReCASE originally assumed that phase of cisSNP and fSNPs is known
with certainty[1] but was later updated[4] to allow unknown phase between
the cisSNP and haplotypes of the fSNPs (the latter are still assumed to be
phased-known). Uncertain phase is accommodated using a mixture model
with likelihood maximised through an E.M. algorithm.

The TReCASE likelihood can be expressed as:

L(βaFC , φ, θ) = Lbetween × Lwithin
Lbetween =

∏
i

fNB(ci|Gi;βaFC , φ)

Lwithin =
∏
i

∑
Hi∼(Gi,H̃i)

p(Hi)fBB(n1i|mi, Hi;βaFC , θ)

with:
H̃i the observed haplotype pair formed by the fSNPs
Hi ∼ (Gi, H̃i) the set of haplotypes compatibles with Gi

Hu et al. [4] implemented a score test to distinguish between cis and
trans effects by running the TReCASE model and the TReC model. TReC
models between individual variation only and therefore it is suitable to identify
cis and trans effects, although less powered to detect cis effects compared
to TReCASE. The authors tested whether the eQTL effects from significant
eQTL detected by the two models are equal (null hypothesis) -indicative of
a cis-effect- or differ -indicative of a trans effect.

23



WASP-CHT

The combined haplotype test (CHT) implemented by WASP [2] models
between individual variation as total read depth using a beta-negative bi-
nomial distribution with two over-dispersion parameters: one gene-specific
and the other individual-specific. The expected number of read counts for
inidivual i within a gene, λi, can be expressed as:

λi =


αTi Gi = 0 (homozygous reference)

(α+ β)Ti Gi = 1 (homozygous)

βTi Gi = 2 (homozygous alternative)

with:
α the expected read depth from chromosomes with the reference al-
lele
β the expected read depth from chromosomes with the alternative al-
lele
Ti genome-wide mapped total counts for individual i
Gi observed genotype for cisSNP for individual i

ASE is modelled by a beta binomial distribution using only the counts
at heterozygous fSNPs for individuals heterozygous for the cis-SNP. The
model assumes the phase of the cisSNP and fSNPs is known with cer-
tainty. The between and within individual components are connected by
π =

α

α+ β
, the expected proportion of ASE reads from the reference allele.

Rather than modelling aggregated haplotypic counts, the CHT assumes
each fSNP is independent of each other so that the likelihood can be ex-
pressed as a product over diplotypes formed by the cisSNP and each fSNP
in turn. This treatment allows modelling genotype errors to account for ho-
mozygous fSNPs erroneously called heterozygous. Specifically, the CHT
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assumes that ASE reads are drawn from a mixture of two beta-binomials
with probabilities Hik and 1−Hik, with Hik the probability that individual i is
heterozygous for SNP k. The test also assumes that homozygous individu-
als may come from the other allele due to sequencing errors with probability
perr = 0.01.

The probability of observing rik counts from the reference allele for in-
dividual i at fSNP k is:

fBB−mix(rik|π, tik, θi, Hik) =

HikfBB(rik|π, tik, θi)

+ (1−Hik)[fBB(rik|perr, tik, θi) + fBB(rik|1− perr, tik, θi)]

with tik the total number of reads overlapping fSNP k in individual i

Initially, Hik = min(0.99, Hobs
ik ) and this probability is updated modelling

sequencing reads from multiple types of experiments (DNA-sequencing,
RNA-seq, ChIP-seq) conducted on the same individual using a binomial
distribution [2] to obtain Ĥik.

The combined CHT likelihood can be expressed as:

L(α, β, φj |D) =∏
i

[
fBNB(cij |λhi,Ωi, φ)×

∏
k

fBB−mix(rik|, π, tik, θi, Ĥik)
]

k the number of fSNPs,
rik the number of reads overlapping the reference allele of fSNP k of
individual i
tik the total number of reads overlapping fSNP k in individual i
π is the eQTL effect that connects ASE with total counts
Ωi is an individual dependent over-dispersion parameter
φ is a gene dependent over-dispersion parameter
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θi is a an individual dependent over-dispersion parameter
Ĥik is the updated probability that individual i is heterozygous for
fSNP k

RASQUAL

RASQUAL [3] models between individual signals by a negative binomial
distribution with an over-dispersion parameter that is gene dependent. The
expected number of read counts for individual i within a gene, µi corres-
ponds to:

µi =


2(1− π)λ Gi = 0 (homozygous reference)

λ Gi = 1 (homozygous)

2πλ Gi = 2 (homozygous alternative)

with λ the absolute mean coverage depth at a gene and π the expected al-
lelic fold change, which connects between and within individual likelihoods.

Similar to WASP, RASQUAL assumes each fSNP is independent of
each other so that the likelihood is expressed as a product over diplotypes
formed by the cisSNP and each fSNP in turn. ASE is modelled assuming
the alternative fragment count aik for individual i and fSNP k follows a beta
binomial distribution. RASQUAL differs from the CHT model as indicated:

• RASQUAL models counts from all cisSNP/fSNP diplotype pairs re-
gardless of the genotype. This allows updating genotype calls after
comparing with the observed read counts during model fitting.

• RASQUAL models genotype and haplotype uncertainty using geno-
type probabilities obtained from standard imputation methods.

• RASQUAL models sequencing error rate and reference mapping bias
in a multiplicative fashion.
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• RASQUAL implements a genotype error correction for cisSNPs and
fSNPs.

• RASQUAL detects strong inconsistencies in allelic imbalance between
diplotypes and switches pairs to maximise imbalance.

• RASQUAL models over-dispersion of total and fSNP overlapping reads
by a single gene-dependent shared parameter.

The RASQUAL likelihood can be expressed as:

L(π, δ, φ, λ, θ) = Lbetween × Lwithin
Lbetween =

∏
i

∑
Gi

p(Gi)fNB(ci|Gi;π, λ, θ)

Lwithin =
∏
k

∑
Dik

p(Dik|Gi)fBB(aik|tik, Dik;π, δ, φ, θ)

π is the eQTL effect that connects between and within individual mod-
elling
δ captures mapping errors. Genotype calls are compared with the
observed read sequences during model fitting
φ is a gene specific parameter to capture reference mapping bias
λ is a parameter for the absolute mean read depth per gene
θ is an over-dispersion parameter shared between the total gene
counts and per fSNP counts
k the number of fSNPs
Dik corresponds to the diplotype formed by the cis-SNP and fSNP k
for individual i
p(Dik|Gi) is the prior probability of genotype and diplotype phase (ob-
tained from phasing and imputation)
aik is the number of reads overlapping the alternative allele of fSNP
k in individual i
tik is the total number of reads overlapping fSNP k in individual i
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Parameter estimates and genotype probabilities are updated during model
fitting by an E.M. algorithm.

Comparing TReCASE, WASP-CHT, RASQUAL and BaseQTL

In this section we highlight the similarities and differences between meth-
ods.

• Count distributions. All models use the beta-binomial distribution to
model allele specific counts. For total gene counts TReCASE, RASQUAL
and BaseQTL use the negative binomial distribution while WASP uses
the beta-binomial distribution.

• ASE count usage. TReCASE and BaseQTL model aggregated hap-
lotypic counts across fSNPs, while WASP and RASQUAL model the
counts overlapping each fSNP independently.

• Modelling over-dispersion. TReCASE and BaseQTL model over-dispersion
with different gene-dependent parameters for total counts and ASE
counts. WASP models the over-dispersion of the total counts by us-
ing one gene dependent parameter and one additional parameter for
each individual. ASE counts over-dispersion is modelled with one
parameter for each individual. RASQUAL uses a single shared gene-
dependent parameter for total counts and ASE counts.

• Haplotype phase. TReCASE[4] assumes that the haplotype formed
by the fSNPs is observed but the cisSNP-fSNP phase is latent. WASP
assumes phase is observed. RASQUAL calculates allelic probabilit-
ies for the two haplotypes from genotype probabilities returned by
imputation software. Also, when there is strong inconsistency in the
direction of the allelic imbalance between fSNPs, RASQUAL switches
haplotypes to maximise imbalance. BaseQTL treats phase as latent
and sampled from a multinomial distribution with parameters estim-
ated using haplotype probabilities from an external reference panel.
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• Reference panel bias. TReCASE does not consider reference panel
bias. WASP filters out reads with evidence of imbalance. RASQUAL
estimates a gene-dependent parameter to capture reference mapping
bias. BaseQTL models a random intercept with a distribution learnt
from re-alignment of observed and pseudo reads.

• Genotyping errors. TReCASE ignores genotyping errors. WASP
models genotype errors for homozygous fSNPs by updating the fSNP
genotype probability using sequencing reads. RASQUAL updates
genotype probabilities for the fSNPs and cisSNP using sequencing
reads during model fitting. BaseQTL minimise genotyping errors by
extensive QC.

• Inference. TReCASE and RASQUAL perform a score test. WASP
implements a likelihood ratio test. BaseQTL uses Bayesian inference.

• cisSNP. All models except BaseQTL require genotypes. RASQUAL
models genotype uncertainty, TRecASE and WASP assumes cisSNP
genotypes are fixed.

• Incorporating external data. BaseQTL uses an external reference
panel to estimate haplotype probabilities and eQTL effects to inform
our priors.

• Distinguishing cis/trans effects. TReCASE implements a score test to
assess whether significant eQTL effects captured by TReCASE or the
TReC only model (between individual variation only) differ. BaseQTL
and WASP allow users to run the full model or between individual
variation only. RASQUAL does not have this functionality.
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Supplementary section 2: Effect of the cis-window
size on the prior of the eQTL effect

BaseQTL shrinks eQTL effects via a prior distribution which was trained us-
ing eQTL estimates within a 1MB cis-window from external datasets (Meth-
ods). We identified a mixture of a narrow distribution (97%, sd=0.03) and a
broader distribution (3%, sd=0.35), both centered on 0 (Supplementary Fig-
ure Figure17)). Similar results were obtained when we used GTEx blood or
skin samples (Supplementary Table 3). This informed prior shrunk 99.7%
of aFC estimates under an uninformed prior towards 0 whilst preserving
a strong correlation (rho=0.98, p<10-16) between eQTL effects at signals
that were significant under the informed prior (Supplementary Figure Fig-
ure17)). Moreover, the positive predictive value (PPV, proportion of signi-
ficant hits detected by each method also detected in the gold standard),
measured against a “gold standard” of a published list generated by con-
ventional eQTL analysis called at 1% FDR from 462 GEUVADIS individuals
increased from 0.25 to 0.9.

Larger cis-windows allow us to assess a higher number of associations
but the number of significant association will not increase proportionally,
as most cis-associations trend to occur in proximity to genes. Thus, the
size of the selected cis-window affects the proportion of significant calls
expected. As the BaseQTL prior was based on eQTL effects within a 1MB
window, we next tested the sensitivity of BaseQTL to different choices of
priors, using cis-windows of 500kB or 100kB (Methods and Supplementary
Table 3). We run BaseQTL with genotypes comparing sensitivity and PPV
relative to our “gold standard” of 462 GEUVADIS individuals. We found
that using our initial prior (SNPs within 1MB of the transcription start site)
resulted in the highest PPV though it did not differ much from the prior
based on eQTL effects within 500kB (Supplementary Figure Figure 18).
For pragmatic reasons we have chosen to use the 1MB prior to minimize
false positives, especially when genotypes are unknown.

30



Supplementary Figure 17: Shrinkage effect of prior on eQTL estimates. (a)
we learnt an informative prior on eQTL effect sizes from GTEx LCL which
is a mixture of a narrow (97%) and a wider (3%) central normal distribu-
tions, with sd=0.03 and 0.35 respectively.(Methods). (b) BaseQTL was run
twice, once with this informative prior and once with an uninformative prior
(N(0, 100)). The informative prior shrinks 92% (1682/1834) of significant
effects so they are no longer significant, which changes the positive pre-
dictive value from 0.25 to 0.90 when using the larger GEUVADIS dataset
of 462 individuals as gold standard. Each point corresponds to the eQTL
effect (log2 allelic fold-change) running BaseQTL with observed genotypes
for expressed 30 genes in chromosome 22 (264) with the informative prior
we derived (y-axis) or an uninformative (x-axis) prior. The gray lines indic-
ate 99% credible intervals.
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Supplementary Figure 18: Prior sensitivity analysis for BaseQTL. BaseQTL
was ran with observed genotypes with priors trained using SNPs within a
1MB, 500kB or 100kB of the transcription start site (d1MB, d500k or d100k,
respectively) on a sub-sample of 86 individuals from the GEUVADIS pro-
ject, for genes expressed within chromosome 22. For associations ran with
each prior, significant eQTLs were called using credible intervals of size
99%, 95%, 90% and 85%, and positive predictive value and sensitivity were
calculated relative to a gold standard of 462 GEUVADIS samples. In ad-
dition, the number of eGenes called by each method was calculated by
counting the number of genes with at least one significant association. The
total number of significant associations or eGenes are shown at each point.
a,c eGenes or associations detected within a 500kB cis-window, or b,d a
100kB cis-window.
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Supplementary section 3: BaseQTL input prepara-
tion and thresholds applied when running BaseQTL

In this note we describe in more detail the tools and filtering steps that we
employed at each step of the pipeline to generate input data for BaseQTL.
The code use to reproduce each command of the pipeline can be found at
https://gitlab.com/evigorito/baseqtl_pipeline/-/blob/master/

input/Snakefile. In addition we detailed the thresholds applied for run-
ning BaseQTL.

RNA variant calling

Variant calling was performed using bcftools [5] (Methods). Briefly, bcftools
computes genotype likelihoods modelling a binomial likelihood allowing for
sequencing and mapping errors and assuming that errors on different reads
are independent.

Filtering steps

1. To minimise mapping errors we selected uniquely mapped reads and
considered reads if the base alignment quality was ≥ 20. These are
recommended settings for calling variants (GATK https://gatk.

broadinstitute.org/hc/en-us and bcftools) and we have not
tested the sensitivity of RNA calls to these variables.

2. To minimise false variants we only kept those whose positions and
alleles matching SNPs reported in the 1000G reference panel phase
3.

3. We restricted our calls to variants with a minor allele frequency ≥
0.05. As we work with a modest sample size, power is limited to
associations of common variants.

4. We imposed a threshold of read depth ≥ 10. We looked at the dis-
tribution of errors by comparing RNA-seq calls to DNA-sequencing
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calls by depth (Supplementary Figure 2a). The greater the depth the
higher the accuracy at the expense of lowering the number of calls.
We decided on this threshold based on the data presented in Supple-
mentary Figure 2a). This is a per SNP per sample filtering step.

5. For each SNP we calculated the frequency of heterozygocity across
samples and compared it to the frequency on the reference panel
data (1000Genome Phase 3 for Europeans). We identified SNPs with
divergent ratio of heterozygocity, likely due to genotyping errors, by
performing a Fisher test of proportions. We selected a p-value ≤ 0.01

for exclusion based on the results presented in Supplementary Figure
2b. This is the default value for exclusion in BaseQTL but it is an
argument that can be changed by the user.

Quantifying ASE per SNP

For each heterozygous fSNP we counted the number of reads overlap-
ping each allele using phASER [6] (Methods). phASER is a python based
tool which phases heterozygous variants within a gene, aggregates counts
across variants within a gene and outputs the gene ASE. Although our aim
is not to obtain ASE per gene, we use the function ’phaser.py’ which outputs
the number of reads overlapping each allele of heterozygous SNPs in each
sample. However, if a read overlaps more than one heterozygous fSNP it
will be counted twice. To correct for double counting we use another output
file from ’phaser.py’. This second file contains the number of unique reads
that map each haplotype formed by fSNPs and the fSNPs ids. We combine
those two files to remove double counting.

Filtering steps

1. Uniquely mapped reads. This is to avoid that no alien reads are er-
roneously assigned to a locus and it is recommended by GATK and
phASER.
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2. Base quality ≥ 10. This is to remove reads with a potentially erro-
neous base over the heterozygous site based on low base quality.
This is the default value from phASER.

3. Excluded regions of high evidence of mapping bias (HLA genes and
others) [6] provided by phASER.

Reference mapping bias estimation

We adapted the WASP mapping pipeline [2] to calculate allelic imbalance
estimates. After initial alignment of RNA-seq the first step is to identify
reads overlapping fSNPs and generate a psuedo read in which the original
alleles are swapped.

Filtering steps

1. Uniquely mapped reads. This is to select the same reads that phASER
will use for calculating allele specific expression (Methods and Sup-
plementary Note 3: Quantifying ASE per SNP).

2. Base quality ≥ 10. This is to select the same reads that phASER will
use for calculating allele specific expression (Methods and Supple-
mentary Note 3: Quantifying ASE per SNP).

The second step is to remap the union of reads filtered in step 1, using
STAR with default parameters.

We then count the number of reads overlapping each SNP and ag-
gregate the counts across samples to finally calculate the allelic imbalance
estimates as the proportion of reads overlapping the alternative allele.

Filtering steps

1. We excluded fSNPs overlapped by less than 100 original reads across
all samples to minimize potentially spurious estimates.
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2. We excluded fSNPs if the estimate of allelic imbalance was signific-
antly higher than 0.5 based on a binomial test and a p-value threshold
of 0.01 (Methods).

Running BaseQTL

BaseQTL with genotypes

When running BaseQTL with genotypes on the GEUVADIS dataset we in-
cluded the following filters:

1. We excluded fSNPs overlapping more than one gene. This was be-
cause we did not have strand information on the RNA-seq experiment
so we could not uniquely assign the reads to the correct gene.

2. We only run associations if the number of individuals heterozygous for
the cis-SNP was at least 5, because we expect information will be too
limited to detect ASE with fewer than 5 heterozygous samples. We
note that TReCASE [4] used the same threshold to ensure numerical
stability.

3. We only model ASE if we had at least 5 heterozygous individuals for
the cis-SNP with at least 5 ASE counts, because otherwise we expect
information will be too limited to detect ASE. We note that TReCASE
used the same threshold to ensure numerical stability.

BaseQTL with hidden genotypes

For reporting eQTL results from BaseQTL without genotypes on the GEUVADIS
or psoriasis datasets we used the following filters:

1. We excluded fSNPs overlapping more than one gene. This was be-
cause we did not have strand information on the RNA-seq experiment
so we could not uniquely assign the reads to the correct gene.
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2. We only run associations with at least 5 individuals with at least 5 ASE
counts, because we expect information will be too limited to detect
ASE with fewer than 5 individuals.

3. We excluded cis-SNPs with imputation quality below 0.5. This value
was chosen to minimize the chance of reporting false positives and
was based on the results presented in Supplementary Figure 5.
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Supplementary section 4: BaseQTL running time

In this note we look at different variables that affect BaseQTL running time.
The bottleneck for running BaseQTL is the ASE modelling. For this analysis
we excluded cis-SNPs that were run modelling between individual variation
only as this model, due to lack of ASE information, is much faster to run.
Each run of BaseQTL tested gene-SNP associations within a 500 kB cis-
window for 86 individuals for genes on chromosome 22. The run time for
modelling ASE depends on:

• Number of possible haplotypes. This is a function of the number of fS-
NPs, their allele frequencies and the regional LD structure. BaseQTL
loops through every possible haplotype for each individual with ASE
counts.

• Number of individuals with ASE counts. For each cis-SNP BaseQTL
loops through each individual.

• Number of cis-SNPs that can be run with the ASE model. Finally,
BaseQTL is run independently for each cis-SNP.

The number of possible haplotypes tend to increase with the number
of fSNPs, depending on LD structure in the region (Supplementary Figure
Figure 19). Of note, the number of possible haplotypes varies between
individuals; for simplicity we represent the mean across individuals for a
given gene.

We next evaluated BaseQTL running time in relation to the number
of possible haplotypes (Supplementary Figure Figure 20). As expected,
BaseQTL takes longer to run as the number of considered haplotypes in-
creases. To assess how the number of fSNPs per gene, the number of
individuals with ASE counts and the number of cisSNPs run using ASE
modelling affect running time, we categorised those variables grouping by
quartiles. Then, we plotted BaseQTL running time versus the number of
possible haplotypes per gene, stratifying by quartiles of the number of fS-
NPs per gene, the number of individuals with ASE counts and the number of
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Supplementary Figure 19: For each gene (represented by a dot) the plot
shows the number of fSNPs and the corresponding number of possible
haplotypes. The number of possible haplotypes is individual dependent, to
ease visualization the mean of the number of possible haplotypes across
individuals is presented.
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cisSNPs run using ASE modelling (Supplementary Figure Figure 20). From
this plot we can see, as expected, that running time increases approxim-
ately linearly with the number of haplotypes, the number of cis-SNPs, and
the number of individuals with ASE counts. The number of fSNPs in a gene
has a more modest effect after accounting for the number of haplotypes. In
addition, genes with a higher number of fSNPs tend to have higher num-
bers of individuals with ASE counts and higher numbers of cis-SNPs with
ASE information. Thus the number of fSNPs is not itself a key determinant
of running time.

Last, we compared the distribution of BaseQTL run time with observed
or hidden genotypes. To ease comparison both models were run using
the same cis-window of 500KB on 86 individuals. The median time was 6
and 10 minutes for observed genotypes and hidden genotypes respectively
using 16 cores (Supplementary Figure Figure 21).
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Supplementary Figure 20: For each gene (represented by a dot) the plot
shows the dependency of the run time on the number of possible haplo-
types formed by the fSNPs. The number of possible haplotypes is individual
dependent, to ease visualization the mean of the number of possible haplo-
types across individuals is presented. Each plot is stratified by quartiles of
the number of fSNPs (top plot), the number of individuals with ASE counts
(middle plot) and the number of cis-SNPs run with ASE modelling (bottom
plot).
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Supplementary Figure 21: BaseQTL running time. The plot on the left
shows the running time for the 264 genes run using the GEUVADIS data-
set with observed genotypes, whereas the plot on the right corresponds
to the 84 genes run with hidden genotypes. Each gene was run assess-
ing candidate cis-SNPs within 0.5MB of gene using 16 cores. The median
time was 6 and 10 minutes per gene for observed genotypes and hidden
genotypes respectively, indicated by the red line.
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