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S1 Methods Details

S1.1 Multinomial logistic regression for fragment selection and external
molecule classification

We assume that a large number of the Nf fragments will not be relevant to the response variable
and therefore we initially perform feature selection by seeking a set of sparse classifiers that will
retain only a small number of features. A “sparse classifier” is a classifier with an additional
regularization parameter that can be tuned to find solutions with only a small number of non-zero
parameters. In addition to cutting down on the number of relevant variables, such an approach
improves interpretability and helps prevent overfitting, a problem in which a model shows high
performance on the dataset for which it is trained, but poor performance when asked to generalize
to new data points.
To fit initial sparse classifiers for a single run of the Hunting FOX algorithm, we employed

stratified 5-fold cross-validation followed by multinomial logistic regression (see also Sec. S2) on
595 molecules for which the MIC ratio

(
µP∆6-Pore
µP∆6

)
was measured and identified as a definite value

as described in Sec. 2.2. The data was curated and organized by employing the CDD Vault from
Collaborative Drug Discovery (Burlingame, CA. www.collaborativedrug.com)1. We define the
classes as follows, based on the approximate “streaking” in the data, which we expect to indicate
drastically different molecular classes. If µP∆6-Pore

µP∆6
< 0.2, Class

(
µP∆6-Pore
µP∆6

)
= 0; if 0.2 ≤ µP∆6-Pore

µP∆6
<

0.4, Class
(
µP∆6-Pore
µP∆6

)
= 1; if 0.4 ≤ µP∆6-Pore

µP∆6
< 0.6, Class

(
µP∆6-Pore
µP∆6

)
= 2; if 0.6 ≤ µP∆6-Pore

µP∆6
< 0.8,

Class
(
µP∆6-Pore
µP∆6

)
= 3; and if µP∆6-Pore

µP∆6
> 0.8, Class

(
µP∆6-Pore
µP∆6

)
= 4, where µP∆6-Pore is the MIC of the

compound in the P∆6-Pore mutant and µP∆6 is the MIC of the compound in the P∆6 mutant.
The class breakdown is as follows: ≈ 48% of MIC ratios fall into class 0, 10% into class 1, 9% into
class 2, 10% into class 4, and 22% into class 4.
We employed the StratifiedKFold class with a random seed from the python scikit-learn

package2 to split each of the two groups into five training and testing sets wherein the testing
sets were disjoint and both training and testing sets approximately reproduced the distribution
of different classes of the original group. For each split, we employed the cvglmnet function from
glmnet-python package with family=‘multinomial’, mtype=‘grouped’, and α = 1 to fit a sparse
multinomial logistic regression model on the training set with regularization parameter λ controlling
the strength of the LASSO penalty for sparsification3. Employing the built-in cross-validation from
the package, we identified λ = λmin and λ = λ1se wherein λmin corresponds to the regularization
parameter with minimum deviance and λ1se corresponds to the maximum regularization parameter
with deviance within one standard deviation of the minimum. The potential benefit of employing
λ1se is that it forces the model to be sparser and may therefore reduce overfitting3, and all trained
classifiers we discuss from now on are those employing λ = λ1se. For the fitting of the non-sparse
predictive models, the only difference in the fitting procedure besides using different descriptors
was that we employed α = 0 instead of α = 1 in the cvglmnet function to change from LASSO to
ridge regression.

S2 Theory of multinomial logistic regression
We chose to fit our classifiers by employing the multinomial logistic regression technique, since it is
well-known and therefore easily employed, provides an easily-interpretable model and, in addition
to projected compound classes, the probabilities of a compound belonging to each class. It is
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a method employing maximum likelihood estimation to solve a multiclass problem in which, in
essence, we seek to find the probability of a particular outcome being in class C, C ∈ [0, 4] given a
molecular vector, ~̀,

P

(
Class

(
µP∆6-Pore

µP∆6

)
= C|~̀

)
=

1/
∑4

k=0 exp
(
gk(~̀),

)
C = 0

exp
(
gC(~̀)

)
/
∑4

k=0 exp
(
gk(~̀),

)
else

(1)

where gC(~̀) is the logit function, which is the particular form of the fit chosen in general logistic
regression,

gC(~̀) = ln

P (Class
(
µP∆6-Pore
µP∆6

)
= C|~̀)

P (Class
(
µP∆6-Pore
µP∆6

)
= 0|~̀)

 = βC0 +

p∑
k=1

βCk`k, (2)

where βCk are a set of coefficients to be fitted, and m is the length of the molecular descriptor
vector. The logit expresses the log of the ratio of the probabilities of being in class C versus
class 0. Employing this expression of the probabilities results in the following expression for the
log-likelihood function3,

L = −

[
1

N

N∑
i=1

(
K∑
k=1

I(gi = C)
(
β0k + `Ti βk

)
− ln

(
K∑
k=1

exp
(
β0k + `Ti βk

)))]
, (3)

where I(gi = L) is an indicator function, and βk is the kth column of the p×K coefficient matrix,
where K is the number of classes and p is the length of the molecular descriptor vector ~̀. Then
multinomial logistic regression is the procedure of maximizing the log-likelihood of this function,
potentially subject to additional constraints such as regularization for sparsification. Specifically,
the cvglmnet function solves the optimization problem,

min
{β0k,βk)}K1

−

[
1

N

N∑
i=1

(
K∑
k=1

I(gi = C)
(
β0k + `Ti βk

)
− ln

(
K∑
k=1

exp
(
β0k + `Ti βk

)))]

+ λ

[
(1− α)||β||2F + α

p∑
j=1

||βj||q

]
,

(4)

where α = 1, q = 2 was used for sparse classification and α = 0 for non-sparse classification.

S3 Parallel-tempered well-tempered Metadynamics (PtWt-
MET)

In order to enhance the convergence of the membrane-translocation free energies, we have employed
a metadynamics protocol making use of both parallel tempered and the well-tempered approach.
In a regular metadynamics calculation, a desired set of collective variables (CV) are affected by a
bias potential so a free energy landscape may be fully mapped in terms of the relevant reaction
coordinates driving a process. The bias potential is built as a sum of Gaussian kernels deposited
along the trajectory of the CVs. In the well-tempered approach, the Gaussian heights are affected
during the simulation time according to,

W (kτ) = W0 exp

(
−V (s(q(kτ)))

kB∆T

)
, (5)
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whereW0 is an initial Gaussian height, ∆T the temperature of annealing, k the strength of the bias
potential, V (s(q), kτ) is the potential measured along the collective variable (CV) s dependent on
the molecular coordinates q, kB is the standard Boltzmann constant, and τ = T+∆T

T
is a bias term

compensating for the underlying changes in the free energy landscape, defined as the ratio between
the temperature of the CVs (T + ∆T ) and the temperature of the system. Often, metadynamics
displays reduced convergence due to large system hysteresis or complicated energetic pathways.
To overcome this situation, the well-tempered metadynamics approach can be effectively combined
with the replica exchange protocol. Thus, a single metadynamics calculation can be performed
by N replicates in parallel and at different temperatures, using the same set of CVs. Under these
circumstances, the standard parallel-tempered (PT) acceptance probability4 must be modified to
account for the presence of the bias potential in the following manner,

∆PTMetaD
ij = ∆PT

ij +
1

kBTi

[
V i
G (s(Ri), t)− V i

G (s(Rj), t)
]

+
1

kBTj

[
V j
G (s(Rj), t)− V j

G (s(Ri), t)
]
, (6)

where V i
G and V j

G are bias potentials corresponding to Ri and Rj, the ith and jth replicas, re-
spectively. For a more complete description of the method, we refer the reader to the following
references: Laio and Gervasio 5 , Barducci et al. 6 , Sutto et al. 7 , Abrams and Bussi 8 , Bussi et al. 9

S4 Future improvements
One major difficulty with the Hunting FOX algorithm stems from the fact that fragments are
combinatorial in nature, which means that to describe a larger compound library a huge number
of fragments will be necessary. Due to the sparsity of the representation, it is difficult to apply
standard statistical techniques to the regression results. Furthermore, we note that the fragments
identified and hence the molecules that the final classifiers identify change not insignificantly when
the training/testing split is changed. This observation implies that the current representation is
insufficiently robust to changes in the dataset, which we hypothesize is a consequence of (i) mag-
nification of noise due to an overly high-dimensional representation, (ii) lack of incorporation of
hierarchical and locational relationships among fragments in the initial construction of the repre-
sentation, and (iii) uncertainties in experimental measurements of MICs. This is similar to the
difficulties encountered when attempting to employ one-hot-encoding to learning on textual data.
With respect to fragment representation, work on word and sentence embeddings provide a good

source of how to compress highly sparse, combinatorial representations in a meaningful way; com-
bining, for example, the word2vec10 or more recent graph2vec11 approach with an autoencoder12

would provide a compact representation that is reconstructible with the fragment composition, as
well as potentially identifying a latent space of meaningful variables. An additional limitation of
the current representation is that it contains geometric information only implicitly, which leads to
difficulty in the direct assessment of relevant fragment properties and the potential of losing impor-
tant information such as enantiomerism. For example, the molecule OU-315 studied in detail is,
in fact, a stereoisomer of OU-313, and OU-313 could as easily have been chosen for analysis based
on fragment composition. Therefore we also plan to pursue the incorporation of three-dimensional
information into our representation.
There are several limitations associated with the use of solely coarse-grained molecular dynamics.

Drug pKa can change in the membrane, but this behavior cannot be captured by a fixed-charge
model. We note also that the calculated free energies are rather high, which may be related to the
unrealistic charge representation. Having said this, the force field is expected to capture the relative
behavior of the different drugs and give a reasonable qualitative assessment of the mechanism. In
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the future, we plan to use a combination of constant-pH atomistic molecular dynamics with a
coarse-grained approach to more fully characterize the proposed mechanism.
Additionally, as the discussion in Sec. 3.3 highlighted, our experimental assays are currently

insufficient to identify molecules that permeate well but do not have antibiotic action, a necessary
development to test the full suite of predicted hits from the Hunting FOX algorithm, as well as a
necessary step in the understanding of mechanisms of antibiotic resistance in isolation. Development
of direct assays to analyze permeation across the outer membrane of P. aeruginosa is in progress.

Table S1: List of unique fragments of radius 1 and unique fragments of radius 2 contained in OU-31237.

SMILES Radius

C=O 1
CC(N)=O 1
CCc 1
CF 1
CNC 1
CO 1
cCN 1
cOC 1
cc(c)C 1
cc(c)O 1
ccc 1
cC(F)(F)F 1
cC(F)(F)F 2
cc(c)C(F)(F)F 2
ccc(cc)C(F)(F)F 2
cccc(c)C 2
ccccc 2
ccc(cc)CN 2
cc(C)cc(c)C 2
cc(c)CNC 2
cCNC(C)=O 2
cCC(=O)NC 2
CC(N)=O 2
cc(c)CC(N)=O 2
ccc(cc)CC 2
cccc(c)O 2
ccc(cc)OC 2
cc(c)OC 2
COc 2
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Figure S1: Example of fragment identification on the arbitrarily chosen molecule OU-31237 for fragments of
radius k = 2. Green dots represent the central atom and red bonds represent the fragments. In the first frame
the three green dots demonstrate that there are three central atoms corresponding to the same fragment. Arrows
guide the eye in the direction of the sliding window along the molecule.

Figure S2: Physicochemical properties of external testing library (blue) and train/test set (orange) for Hunting
FOX algorithm. (a) Molecular weight versus log P; (b) pKa versus log P.
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Figure S3: Illustration of class assignment for MIC ratio response variables. In a) we show the actual MIC ratio
µP∆6Pore
µP∆6

for each compound considered in a training or testing simply versus its index DI . In b) we show the
corresponding class assignment. Note the discreteness of the data.
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Amber Martini

Θ
δ

a)

b)

Figure S4: Martini parametrization and metadynamics setup. a) structural representation of OU-315 both
at atomic resolution (Amber) and CG (Martini), with parametrization performed by using standard MARTINI
procedures13. b) Metadynamics system setup using MARTINI. Both angle (θ) and COM-COM bias (δ) CVs
are displayed. θ was defined to be the angle formed between the read bead, the blue bead and the COM of
the membrane. Color scheme: Gray:LPS, Green:DPPE, Pink spheres: CA++ cations. The drug (OU-315) is
displayed as white spheres. Images rendered with VMD14.
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Figure S5: ROC curves for classes 0-4 resulting from classifiers trained on top fragments produced by a single
iteration of the Hunting FOX algorithm. Error bars indicate standard deviation across the five disjoint training
sets. Different colors indicate different runs. The black dashed line along y = x is the ROC curve of a random
classifier.
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Figure S6: ROC curves for classes 0-4 resulting from classifiers trained on top 9 fragments displayed in Fig. 3.
Error bars indicate standard deviation across the five disjoint training sets. Different colors indicate different
runs. The black dashed line along y = x is the ROC curve of a random classifier.
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Figure S7: Enrichment versus percent ranking for classes 0-4 resulting from classifiers trained on top fragments
produced by a single iteration of the Hunting FOX algorithm. Error bars indicate standard deviation across the
five disjoint training sets. Different colors indicate different runs.
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Figure S8: Enrichment versus percent ranking for classes 0-4 resulting from classifiers trained on top 9 fragments
displayed in Fig. 3. Error bars indicate standard deviation across the five disjoint training sets. Different colors
indicate different runs.
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