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Supporting Information Text

1. Random Utility Models satisfying Definition 1

Theorem 4. Let f be the pdf of E. The family of RUMs Fθ given by ranking xi + εi
θ

with εi ∼ E satisfies the conditions of
Definition 1 if:

• f is differentiable

• f has positive support on (−∞,∞)

Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 1.
Differentiability: The probability density of any realization of the n noise samples εi/θ is

∏n

i=1 f(εi/θ). Let ε =
[ε1/θ, . . . , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produces the
ranking π. The probability of any permutation π is

Pr
θ

[π] =
∫
M(π)

n∏
i=1

f
(
εi
θ

)
dnz.

Because f is differentiable,
d

dθ
f
(
x

θ

)
= f ′

(
x

θ

)
·
(
− x

θ2

)
Because Pr θ(π) is an integral of the product of differentiable functions over a fixed region, it is differentiable.

Asymptotic optimality: We will show that for any pair of elements and any δ > 0, there exists sufficiently large θ such
that the probability that they incorrectly ranked is at most δ. We will conclude with a union bound over the n− 1 pairs of
adjacent candidates that there exists sufficiently large θ such that the probability of outputting the correct ranking must be at
least 1− (n− 1)δ.

Consider two candidates xi > xi+1. Let ν be the difference xi − xi+1. Then, they will be correctly ranked if
εi
θ
> −ν2

εi+1

θ
<
ν

2
Let q and q be the 1− δ

2 and δ
2 quantiles of E respectively, and let q = max(|q|, |q|). For θ > 2q

ν
,

Pr
[
εi
θ
< −ν2

]
= Pr

[
εi < −

νθ

2

]
< Pr [εi < −q]

≤ Pr
[
εi < q

]
= δ

2

Pr
[
εi+1

θ
>
ν

2

]
= Pr

[
εi+1 >

νθ

2

]
< Pr [εi+1 > q]
≤ Pr [εi+1 > q]

= δ

2
Thus, for sufficiently large θ, the probability that xi and xi+1 are incorrectly ordered is at most δ.

Repeating this analysis for all n − 1 pairs of adjacent elements, taking the maximum of all the θ’s, and taking a union
bound yields that the probability of incorrectly ordering any pair of elements is at most (n− 1)δ, meaning the probability of
outputting the correct ranking is at least 1− (n− 1)δ. Since δ is arbitrary, this probability can be made arbitrarily close to 1,
satisfying the asymptotic optimality condition.

Monotonicity: The removal of any elements does not alter the distribution of the remaining elements, meaning that the
distribution of π(−S) is equivalent to a RUM with n− |S| elements. Thus, it suffices to show that for a RUM with positive
support on (−∞,∞), the probability of ranking the best candidate first strictly increases with θ.

Recall that by definition, the candidates are ranked according to xi + εi
θ
. The probability that x1 is ranked first is

Pr
[
x1 + ε1

θ
> max

2≤i≤n
xi + εi

θ

]
= Pr

[
ε1

θ
> max

2≤i≤n
xi − x1 + εi

θ

]
= Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi

]
= Eε2,...,εn Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
[1]
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We want to show that Eq. (1) is increasing in θ. Intuitively, this is because as θ increases, the right hand side of the inequality
inside the probability decreases. To prove this formally, it suffices to show that the subderivative of Eq. (1) with respect to θ
only includes strictly positive numbers. First, we have

∂

∂θ
Eε2,...,εn Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
⊂ R>0 ⇐⇒

∂

∂θ
Pr
[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
⊂ R>0

Let F and f be the cumulative density function and probability density function of E respectively. Then,

Pr
[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
= 1− F

(
max

2≤i≤n
θ(xi − x1) + εi

)
Note that F (·) is strictly increasing (since f is assumed to have positive support on (−∞,∞)), so it suffices to show that

∂

∂θ
max

2≤i≤n
θ(xi − x1) + εi ⊂ R<0

For any i,
d

dθ
θ(xi − x1) + εi = xi − x1 < 0.

Thus, the subderivative of the max of such functions includes only strictly negative numbers, which completes the proof.

2. 3-candidate RUM Counterexamples

A. Violating Definition 2. Here, we provide a noise mode E , accuracy parameter θ, and candidate distribution D such that
UAH < UAA.

Choose the noise distribution E and accuracy parameter θ such that

ε

θ
=


1 w.p. δ2
0 w.p.1− δ
−1 w.p. δ2

Note that this distribution does not satisfy Definition 1 because it is neither differentiable nor supported on (−∞,∞); however,
we can provide a “smooth” approximation to this distribution by expressing it as the sum of arbitrarily tightly concentrated
Gaussians with the same results.

We choose the candidate distribution D such that x1 − 1 > x2 > x3 > x1 − 2. For example,

x1 = 7
4

x2 = 1
2

x3 = 0

Under this condition, assuming x3 = 0 without loss of generality,

UAH(θ, θ)− UAA(θ, θ) = δ2

32
(
δ3x1 − 4δ2x1 + 4δx1 + 2δ3x2 − 14δ2x2 + 20δx2 − 8x2

)
Notice that the lowest-power δ term is − δ

2x2
4 . Therefore, for sufficiently small δ, this is negative. For example, plugging in the

values given above with δ = .1, UAH(θ, θ)− UAA(θ, θ) ≈ −0.00076.

B. Violating Definition 3. Next, we’ll give a 3-candidate RUM for which UAH < UHH does not hold in general. Consider the
following 3-candidate example.

x1 = 3
x2 = 2
x3 = 0

Choose E and θ such that

ε

θ
=


1 w.p. 1−δ

2
−1 w.p. 1−δ

2
10 w.p. δ2
−10 w.p. δ2
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Again, while this noise model doesn’t satisfy Definition 1, we can approximate it arbitrarily closely with the sum of tightly
concentrated Gaussians. Let the θA = 1.1θ and θH = 0.9θ.

We will show that for these parameters, UAH(θA, θH) > UHH(θA, θH), i.e., it is somehow better to choose after a better
opponent than after a worse opponent. At a high level, the reasoning for this is as follows:

1. When choosing first, the only difference between the algorithm and the human evaluator is that the algorithm is more
likely to choose x2 than x3. Both strategies have identical probabilities of selecting x1.

2. When choosing second, the human evaluator’s utility is higher when x2 has already been chosen than when x3 has already
been chosen. This is because when x2 is unavailable, the human evaluator is almost guaranteed to get x1; when x3 is
unavailable, the human evaluator will choose x2 with probability ≈ 1/4.

Let τ and π be rankings generated by the algorithm and human evaluator respectively. First, we will show that

Pr[τ1 = x1] = Pr[π1 = x1] [2]
Pr[τ1 = x2] > Pr[π1 = x2] [3]

To do so, consider the realizations of ε1, ε2, ε3 that result in different rankings under θA and θH . In fact, the only set of
realizations that result in different rankings are when ε2/θ = −1 and ε3/θ = 1. Thus, the algorithm and human evaluator
always rank x1 in the same position, conditioned on a realization, which proves Eq. (2); the only difference is that the algorithm
sometimes ranks x2 above x3 when the human evaluator does not. Moreover, whenever ε1/θ = −10, x2 is more strictly more
likely to be ranked first under the algorithm than the human evaluator, which proves Eq. (3).

Next, we must show that when choosing second, the human evaluator is better off when x2 is unavailable than when x3 is
unavailable. This is clearly true because for the human evaluator,

Pr
[
x1 + ε1θH

θ
> x3 + ε3θH

θ

]
≈ 1−O(δ)

Pr
[
x1 + ε1θH

θ
> x2 + ε3θH

θ

]
≈ 3

4

Thus, conditioned on x2 being unavailable, the human evaluator gets utility ≈ 3, whereas when x3 is unavailable, the human
evaluator gets utility ≈ 2.75. Let u−i be the expected utility for the human evaluator when xi is unavailable. Putting this
together, we get

UAH(θA, θH)− UHH(θA, θH) =
3∑
i=1

(Pr[τ1 = xi]− Pr[π1 = xi])u−i

= (Pr[τ1 = x1]− Pr[π1 = x1])u−1 + (Pr[τ1 = x2]− Pr[π1 = x2])u−2 + (Pr[τ1 = x3]− Pr[π1 = x3])u−3

= (Pr[τ1 = x2]− Pr[π1 = x2])u−2 + (Pr[τ1 = x3]− Pr[π1 = x3])u−3 [Pr[τ1 = x1 = Pr[π1 = x1]]

= (Pr[τ1 = x2]− Pr[π1 = x2])(u−2 − u−3) [
∑3

i=1 Pr[τ1 = xi] =
∑3

i=1 Pr[π1 = xi]]
> 0

The last step follows from Eq. (3) and because u−2 > u−3.

3. Proof of Theorem 2

A. Verifying Definition 2. By Eq. (2) from the main paper, we can equivalently show that for any θ, UAH(θ, θ) > UAA(θ, θ).
Let τ and π be the algorithmic and human-generated rankings respectively. Note that they’re identically distributed because
θA = θH . Define

Y ,

{
π1 π1 6= τ1

π2 otherwise

Note that UAH(θ, θ) = E [Y ] and UAA(θ, θ) = E [τ2]. We want to show that UAH(θ, θ) − UAA(θ, θ) = E [xY − xτ2 ] > 0. It is
sufficient to show that for any k, E [Y − τ2 | τ1 = xk] > 0. Let Xi = xi + εi/θ. Note that for distinct i, j, k and xi > xj ,

E [Y − τ2 | τ1 = xk] > 0⇐= Pr[Y = xi | τ1 = xk]
Pr[Y = xj | τ1 = xk] >

Pr[τ2 = xi | τ1 = xk]
Pr[τ2 = xj | τ1 = xk]

⇐⇒ Pr[Y = xi | τ1 = xk] > Pr[τ2 = xi | τ1 = xk] [numerator and denominator sum to 1]
⇐⇒ Pr[Xi > Xj ] > Pr[Xi > Xj | Xk > Xi ∩Xk > Xj ]
⇐⇒ Pr[Xi > Xj ] > EXk [Pr[Xi > Xj | Xk = a,Xi < a,Xj < a]].

Thus, it suffices to show that for any a,

Pr[Xi > Xj ] > Pr[Xi > Xj | Xi < a,Xj < a]. [4]
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Since Pr[Xi > Xj ] = lima→∞ Pr[Xi > Xj | Xi < a,Xj < a], it suffices to show that for all a,

d

da
Pr[Xi > Xj | Xi < a,Xj < a] ≥ 0, [5]

and that it is strictly positive for some a. In other words, the higher a is, the more likely i and j are to be correctly ordered.
In Theorems 6 and 7, we show that Eq. (5) holds for both Laplacian and Gaussian noise respectively, which proves that RUMs
based on both distributions satisfy Definition 2.

B. Verifying Definition 3. Next, we show that for both Laplacian and Gaussian distributions, UAH(θA, θH) < UHH(θA, θH) for
all θA > θH . In fact, for 3-candidate RUM families, we will show that this is always true for any well-ordered distribution,
defined as follows.

Definition 4. A noise model with density f(·) is well-ordered if for any a > b and c > d,

f(a− c)f(b− d) > f(a− d)f(b− c).

In other words, for a well-ordered noise model, given two numbers, two candidates are more likely to be correctly ordered
than inverted conditioned on realizing those two numbers in some order. Lemma 1 shows that both Gaussian and Laplacian
distributions are well-ordered.

Thus, it suffices to show that for any 3-candidate RUM with a well-ordered noise model, UAH(θA, θH) < UHH(θA, θH) when
θA > θH .

Theorem 5. For 3 candidates with unique values x1 > x2 > x3 and well-ordered i.i.d. noise with support (−∞,∞), if θA > θH ,
then UAH(θA, θH) < UHH(θA, θH).

Proof. Define u−i to be the expected utility of the maximum element of the human-generated ranking when i is not available.
Because we’re in the 3-candidate setting, we have

u−1 = λ1x2 + (1− λ1)x3

u−2 = λ2x1 + (1− λ2)x3

u−3 = λ3x1 + (1− λ3)x2

where 1/2 < λi < 1. This is because the noise has support everywhere, so it is impossible to correctly rank any two candidates
with probability 1, and any two candidates are more likely than not to be correctly ordered:

Pr
[
εi
θ
− εj

θ
> −δ

]
= Pr[εi − εj ≥ 0] + Pr

[
0 > εi − εj

θ
> −δ

]
>

1
2

Note that λ2 > λ1 and λ2 > λ3, since

λ2 = Pr[ε1 − ε3 > −θ(x1 − x3)] > max {Pr[ε1 − ε3 > −θ(x2 − x3)],Pr[ε1 − ε3 > −θ(x1 − x2)]} = max{λ1, λ3}.

Let τ ∼ FθA and π ∼ FθH . With this, we can write

UAH(θA, θH) =
3∑
i=1

Pr[τ1 = i]u−i

UHH(θA, θH) =
3∑
i=1

Pr[π1 = i]u−i

Define
∆pi = Pr[τ1 = i]− Pr[π1 = i]

Using Lemmas 2, and 3, we have

∆p1 > 0 [By monotonicity of RUM families, see Appendix 1]
∆p1 ≥ ∆p2

∆p3 ≤ 0

Also, ∆p1 + ∆p2 + ∆p3 = 0. We must show that

UAH(θA, θH)− UHH(θA, θH) =
3∑
i=1

∆piu−i < 0.

We consider 2 cases.
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Case 1: ∆p2 ≤ 0.
Then, ∆p1 = −(∆p2 + ∆p3). This yields

3∑
i=1

∆piu−i = ∆p1u−1 + ∆p2u−2 + ∆p3u−3

≤ ∆p1u−1 −∆p1 min(u−2, u−3)
= ∆p1 (λ1x2 + (1− λ1)x3 −min {λ2x1 + (1− λ2)x3, λ3x1 + (1− λ3)x2})
≤ ∆p1 (λ1x2 + (1− λ1)x3 −min {λ2x1 + (1− λ2)x3, x2})

We can show that this is at most 0 regardless of which term attains the minimum. Because λ2 > λ1,

λ1x2 + (1− λ1)x3 − λ2x1 − (1− λ2)x3 = λ1x2 + x3 − λ1x3 − λ2x1 − x3 + λ2x3

= λ1x2 − λ1x3 − λ2x1 + λ2x3

= λ1(x2 − x3) + λ2(x3 − x1)
< λ1(x2 − x3) + λ1(x3 − x1)
= λ1(x2 − x1)
< 0

For the second term, we have
λ1x2 + (1− λ1)x3 − x2 = (1− λ1)(x3 − x2) < 0.

Thus,

3∑
i=1

∆piu−i < 0.

Case 2: ∆p2 > 0. Note that u−1 < x2 < u−3. Then, using ∆p3 = −(∆p1 + ∆p2),

3∑
i=1

∆piu−i = ∆p1u−1 + ∆p2u−2 + ∆p3u−3

= ∆p1(u−1 − u−3) + ∆p2(u−2 − u−3)
≤ ∆p2(u−1 − u−3) + ∆p2(u−2 − u−3) [∆p1 ≥ ∆p2 and u−1 < u−3]
= ∆p2(u−1 + u−2 − 2u−3)
≤ ∆p2(x2 + x1 − 2(λ3x1 + (1− λ3)x2))

< ∆p2

(
x2 + x1 − 2

(1
2x1 + 1

2x2

))
[λ3 >

1
2 ]

= 0

Thus, UAH(θA, θH) < UHH(θA, θH).

C. Supplementary Lemmas for Random Utility Models.

Lemma 1. Both Gaussian and Laplacian distributions are well-ordered.

Proof. The Gaussian noise model is well-ordered:

f(a− c)f(b− d) = 1
2σ2π

exp(−(a− c)2 − (b− d)2)

= 1
2σ2π

exp(−(a− d)2 − (b− c)2 − 2(ac+ bd− ad− bc))

= f(a− d)f(b− c) exp(−2((a− b)(c− d)))
< f(a− d)f(b− c)

Laplacian noise is as well:

f(a− c)f(b− d) = 1
4 exp(−|a− c| − |b− d|)

f(a− d)f(b− c) = 1
4 exp(−|a− d| − |b− c|)
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It suffices to show that for a > b and c > d, |a− c|+ |b− d| < |a− d|+ |b− c|. To show this, plot (a, b) and (c, d) in the (x, y)
plane. Note that they’re both below the y = x line, and that the `1 distance between them is |a− c|+ |b− d|. Moreover, the `1
distance between any two points must be realized by some Manhattan path, which is a combination of horizontal and vertical
line segments. Consider the point (b, a), which is above the y = x line. Any Manhattan path from (b, a) to (c, d) must cross
the y = x line at some point (w,w). Since (b, a) and (a, b) are equidistant from (w,w), for any Manhattan path from (b, a) to
(c, d), there exists a Manhattan path from (a, b) to (c, d) passing through (w,w) of the same length, meaning the `1 distance
from (a, b) to (c, d) is smaller than the `1 distance from (b, a) to (c, d). As a result, |a− c|+ |b− d| < |a− d|+ |b− c|.

Next, we show a few basic facts. Let fA(r) be the density function of the joint realization R = [X1, . . . , Xn] = [x1 +
ε1/θA, . . . , xn + εn/θA] under the algorithmic ranking and fH(r) be the similarly defined density function under the human-
generated ranking. Consider the “contraction” operation r′ = cont(r) such that r′i = xi + (ri − xi) · θHθA . Essentially, the
contraction defines a coupling between fA(·) and fH(·), since for r′ = cont(r), fA(r′) dr′ = fH(r) dr. Let π(r) be the ranking
induced by r. Note that contraction cannot introduce any new inversions in π(r)—that is, if i is ranked above j in π(r) for
i < j, then i is ranked above j in π(cont(r)). Intuitively, this is because contraction pulls values closer to their means, and can
therefore only correct existing inversions, not introduce new ones. This fact will allow us to prove some useful lemmas.

Lemma 2. If Fθ is a RUM family satisfying Definition 1, then for τ ∼ FθA and π ∼ FθH ,

Pr[τ1 = xn] ≤ Pr[π1 = xn]

Proof. Consider any realization r. Because inversions can only be corrected, not generated, by contraction, if π1(r′) = n, then
π1(r) = n where r′ = cont(r). Since r′ and r have equal measure under fA and fH respectively, we have

Pr[π1 = xn] =
∫
Rn
fH(r)1π1(r)=xn dr

=
∫
Rn
fA(cont(r))1π1(r)=xn d cont(r)

≥
∫
Rn
fA(cont(r))1π1(cont(r))=xn d cont(r)

=
∫
Rn
fA(r)1π1(r)=xn dr

= Pr[τ1 = xn]

Next, we prove the following result for well-ordered noise models.

Lemma 3. For any i > 1, if the noise model E is well-ordered, for θA ≥ θH , τ ∼ FθA , and π ∼ FθH ,

Pr[τ1 = x1]− Pr[π1 = x1] ≥ Pr[τ1 = xi]− Pr[π1 = xi]

Proof. For j 6= i, let Sj→i ⊆ Rn be the set of realizations r such that π1(r) = xj and π1(cont(r)) = xi. Note that Sj→i = ∅ for
j < i because contraction cannot create inversions. Then, we have that

Pr[τ1 = xi]− Pr[π1 = xi] =
∑
j>i

∫
Rn
fH(r)1r∈Sj→i dr −

∑
j<i

∫
Rn

fH(r)1r∈Si→j dr ≤
∑
j>i

∫
Rn
fH(r)1r∈Sj→i dr

Define
swapi(r) = r′,

where

r′j =


rj j /∈ {1, i}
r1 j = i

ri j = 1

Intuitively, the swapi operation simply swaps the realizations in positions 1 and i. Note that this is a bijection. Also, if
r ∈ Sj→i, then swapi(r) ∈ Sj→1, since

cont(swapi(r))1 ≥ cont(r)i ≥ max
j

cont(r)j ≥ max
j /∈{1,i}

cont(swapi(r))j

cont(swapi(r))1 ≥ cont(r)i ≥ cont(r)1 ≥ cont(swapi(r))i
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Furthermore for r ∈ Sj→i, fH(r) ≤ fH(swapi(r)) since

fH(swapi(r))
fH(r) = f(ri − x1)f(r1 − xi)

f(r1 − x1)f(ri − xi)
≥ 1

because the noise is well-ordered and r ∈ Sj→i implies ri > r1. Thus,∑
j>i

∫
Rn
fH(r)1r∈Sj→i dr ≤

∑
j>i

∫
Rn
fH(swapi(r))1r∈Sj→i dr

≤
∑
j>i

∫
Rn
fH(swapi(r))1swapi(r)∈Sj→1 dr

≤
∑
j>i

∫
Rn
fH(r)1r∈Sj→1 dr

≤
∑
j>1

∫
Rn
fH(r)1r∈Sj→1 dr

= Pr[τ1 = x1]− Pr[π1 = x1]

Finally, we show that Eq. (5) holds for both Laplacian and Gaussian noise.

Theorem 6. For any a ∈ R and Xi = xi + σεi where εi is Laplacian with unit variance,

d

da
Pr[Xi > Xj | Xi < a,Xj < a] ≥ 0.

Moreover, it is strictly positive for some a.

Proof. First, we must derive an expression for Pr[Xi > Xj | Xi < a,Xj < a]. Recall that the Laplace distribution parameterized
by µ and λ has pdf

f(x;µ, λ) = λ

2 exp(−λ|x− µ|)

and cdf

F (x;µ, λ) =
{ 1

2 exp (−λ(µ− x)) x < µ

1− 1
2 exp (−λ(x− µ)) x ≥ µ

Note that xi and xj be the respective means of Xi and Xj , with xi > xj . Because the Laplace distribution is piecewise defined,
we must consider 3 cases and show that in all 3 cases, Eq. (5) holds. Note that

Pr[Xi > Xj | Xi < a,Xj < a] =

∫ a
−∞ f(x;xi, λ)F (x;xj , λ) dx
F (a;xi, λ)F (a;xj , λ) [6]

Case 1: a ≤ xj .
Then, the numerator of Eq. (6) is∫ a

−∞

λ

2 exp (−λ(xi − x)) · 1
2 exp(−λ(xj − x)) dx = λ

4

∫ a

−∞
exp(−λ(xi + xj − 2x)) dx

= λ exp(−λ(xi + xj))
4

∫ a

−∞
exp(2λx) dx

= λ exp(−λ(xi + xj))
4

1
2λ exp(2λa)

= exp(−λ(xi + xj − 2a))
8

The denominator is
1
2 exp(−λ(xi − a)) · 1

2 exp(−λ(xj − a)) = 1
4 exp(−λ(xi + xj − 2a)).

Thus,
Pr[Xi > Xj | Xi < a,Xj < a] = 1

2 ,

so its derivative is trivially nonnegative.
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Case 2: xj < a ≤ xi.
Then, the numerator of Eq. (6) is∫ xj

−∞

λ

2 exp (−λ(xi − x)) · 1
2 exp(−λ(xj − x)) dx+

∫ a

xj

λ

2 exp (−λ(xi − x))
(

1− 1
2 exp(−λ(x− xj))

)
dx

= exp(−λ(xi − xj))
8 + λ

2

∫ a

xj

exp(−λ(xi − x)) dx− λ

4

∫ a

xj

exp(−λ(xi − xj)) dx

= exp(−λ(xi − xj))
8 + λ

2
1
λ

(exp(−λ(xi − a))− exp(−λ(xi − xj)))−
λ

4 (a− xj) exp(−λ(xi − xj))

= 1
2 exp(−λ(xi − a))−

(3
8 + λ

4 (a− xj)
)

exp(−λ(xi − xj))

The denominator is(
1− 1

2 exp(−λ(a− xj))
)
· 1

2 exp(λ(xj − a)) = 1
2 exp(−λ(xi − a))− 1

4 exp(−λ(xi − xj))

We can factor out 1
4 exp(−λ(xi − xj)) from both, so

Pr[Xi > Xj | Xi < a,Xj < a] =
2 exp(λ(a− xj))−

( 3
2 + λ(a− xj)

)
2 exp(λ(a− xj))− 1

=
2 exp(λ(a− xj))− 1−

( 1
2 + λ(a− xj)

)
2 exp(λ(a− xj))− 1

= 1−
1
2 + λ(a− xj)

2 exp(λ(a− xj))− 1

Thus,

d

da
Pr[Xi > Xj | Xi < a,Xj < a] > 0

⇐⇒ d

da

1
2 + λ(a− xj)

2 exp(λ(a− xj))− 1 < 0

⇐⇒(2 exp(λ(a− xj))− 1)λ <
(1

2 + λ(a− xj)
)

2λ exp(λ(a− xj))

⇐⇒2− exp(−λ(a− xj)) < 2
(1

2 + λ(a− xj)
)

⇐⇒1− exp(−λ(a− xj)) < 2λ(a− xj)
⇐⇒ exp(−λ(a− xj)) > 1− 2λ(a− xj)

This is true because λ(a− xj) > 0, and for z > 0,

exp(−z) > 1− z > 1− 2z.

Case 3: a > xi.
Then, the numerator of Eq. (6) is∫ xj

−∞

λ

2 exp (−λ(xi − x)) · 1
2 exp(−λ(xj − x)) dx+

∫ xi

xj

λ

2 exp (−λ(xi − x))
(

1− 1
2 exp(−λ(x− xj))

)
dx

+
∫ a

xi

λ

2 exp(−λ(x− xi))
(

1− 1
2 exp(−λ(x− xj))

)
dx

= 1
2 −

(3
8 + λ

4 (xi − xj)
)

exp(−λ(xi − xj)) + 1
2(1− exp(−λ(a− xi)))−

λ

4

∫ a

xi

exp(−λ(2x− xi − xj)) dx

= 1−
(3

8 + λ

4 (xi − xj)
)

exp(−λ(xi − xj))−
1
2 exp(−λ(a− xi))

+ 1
8 exp(λ(xi + xj))(exp(−2λa)− exp(−2λxi))

= 1−
(1

2 + λ

4 (xi − xj)
)

exp(−λ(xi − xj))−
1
2 exp(−λ(a− xi)) + 1

8 exp(−λ(2a− xi − xj))
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The denominator is (
1− 1

2 exp(−λ(t− xi))
)(

1− 1
2 exp(−λ(t− xj))

)
= 1− 1

2 exp(−λ(a− xi))−
1
2 exp(−λ(a− xj)) + 1

4 exp(−λ(2a− xi − xj))

Thus,

Pr[Xi > Xj | Xi < a,Xj < a]

=
1−

( 1
2 + λ

4 (xi − xj)
)

exp(−λ(xi − xj))− 1
2 exp(−λ(a− xi)) + 1

8 exp(−λ(2a− xi − xj))
1− 1

2 exp(−λ(a− xi))− 1
2 exp(−λ(a− xj)) + 1

4 exp(−λ(2a− xi − xj))

∝ 8− (4 + 2λ(xi − xj)) exp(−λ(xi − xj))− 4 exp(−λ(a− xi)) + exp(−λ(2a− xi − xj))
4− 2 exp(−λ(a− xi))− 2 exp(−λ(a− xj)) + exp(−λ(2a− xi − xj))

We’re interested in

d

da
Pr[Xi > Xj | Xi < a,Xj < a] > 0

⇐⇒ (4− 2 exp(−λ(a− xi))− 2 exp(−λ(a− xj)) + exp(−λ(2a− xi − xj)
· (4λ exp(−λ(a− xi))− 2λ exp(−λ(2a− xi − xj)))
> (8− 4 exp(−λ(a− xi)) + exp(−λ(2a− xi − xj))− (4 + 2λ(xi − xj)) exp(−λ(xi − xj)))
· (2λ exp(−λ(a− xi)) + 2λ exp(−λ(a− xj))− 2λ exp(−λ(2a− xi − xj)))

⇐⇒16 exp(−λ(a− xi))− 8 exp(−λ(2a− xi − xj))− 8 exp(−2λ(a− xi)) + 4 exp(−λ(3a− 2xi − xj))
− 8 exp(−λ(2a− xi − xj)) + 4 exp(−λ(3a− xi − 2xj)) + 4 exp(−λ(3a− 2xi − xj))
− 2 exp(−2λ(2a− xi − xj))
> 16 exp(−λ(a− xi)) + 16 exp(−λ(a− xj))− 16 exp(−λ(2a− xi − xj))
− 8 exp(−2λ(a− xi))− 8 exp(−λ(2a− xi − xj)) + 8 exp(−λ(3a− 2xi − xj))
+ 2 exp(−λ(3a− 2xi − xj)) + 2 exp(−λ(3a− xi − 2xj))− 2 exp(−2λ(2a− xi − xj))
− 2(4 + 2λ(xi − xj)) exp(−λ(a− xj))− 2(4 + 2λ(xi − xj)) exp(−λ(a+ xi − 2xj))
+ 2(4 + 2λ(xi − xj)) exp(−2λ(a− xj))

⇐⇒ exp(−λ(3a− xi − 2xj))
> 8 exp(−λ(a− xj))− 4 exp(−λ(2a− xi − xj)) + exp(−λ(3a− 2xi − xj))
− (4 + 2λ(xi − xj)) exp(−λ(a− xj))− (4 + 2λ(xi − xj)) exp(−λ(a+ xi − 2xj))
+ (4 + 2λ(xi − xj)) exp(−2λ(a− xj))

⇐⇒ exp(−λ(2a− xi − xj))
> 8− 4 exp(−λ(a− xi)) + exp(−λ(2a− 2xi))
− (4 + 2λ(xi − xj))− (4 + 2λ(xi − xj)) exp(−λ(xi − xj)) + (4 + 2λ(xi − xj)) exp(−λ(a− xj))

⇐⇒ exp(−λ(2a− xi − xj))− 8 + 4 exp(−λ(a− xi))− exp(−2λ(a− xi))
+ (4 + 2λ(xi − xj))(1 + exp(−λ(xi − xj)))− (4 + 2λ(xi − xj)) exp(−λ(a− xj))
> 0 [7]

Note that for any z ≥ 0, we have

(4 + 2z)(1 + e−z)− 8 ≥ 0⇐⇒ (2 + z)(1 + e−z) ≥ 4
⇐⇒ z + 2e−z + ze−z ≥ 2

For z = 0, this holds with equality, and the left hand side is increasing since

d

dx
z + 2e−z + ze−z ≥ 0⇐⇒ 1− 2e−z + e−z − ze−z ≥ 0

⇐⇒ 1 ≥ e−z + ze−z

⇐⇒ 1
1 + z

≥ e−z

⇐⇒ 1 + z ≤ ez
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Therefore, choosing z = λ(xi − xj) and plugging back to Eq. (7), we have

exp(−λ(2a− xi − xj))− 8 + 4 exp(−λ(a− xi))− exp(−2λ(a− xi))
+ (4 + 2λ(xi − xj))(1 + exp(−λ(xi − xj)))− (4 + 2λ(xi − xj)) exp(−λ(a− xj)) > 0

⇐= exp(−λ(2a− xi − xj)) + 4 exp(−λ(a− xi))− exp(−2λ(a− xi))− (4 + 2λ(xi − xj)) exp(−λ(a− xj)) > 0
⇐⇒ exp(−λ(a− xj)) + 4− exp(−λ(a− xi))− (4 + 2λ(xi − xj)) exp(−λ(xi − xj)) > 0
⇐⇒4(1− exp(−λ(xi − xj))) + exp(−λ(a− xi))(exp(−λ(xi − xj))− 1)− 2λ(xi − xj) exp(−λ(xi − xj)) > 0
⇐⇒(4− exp(−λ(a− xi)))(1− exp(−λ(xi − xj)))− 2λ(xi − xj) exp(−λ(xi − xj)) > 0
⇐=3(1− exp(−λ(xi − xj)))− 2λ(xi − xj) exp(−λ(xi − xj)) > 0 [exp(−λ(a− xi)) < 1]

Again letting z = λ(xi − xj), this is true if and only if

3(1− e−z) > 2ze−z ⇐⇒ 3(ez − 1) > 2z
⇐⇒ 3ez > 3 + 2z

which is true because ez > 1 + z for z > 0. This completes the proof for Case 3.
As a result, we have that

d

da
Pr[Xi > Xj | Xi < a,Xj < a] ≥ 0

for all a, with strict inequality for some a, which proves the theorem.

Theorem 7. For any a ∈ R and Xi = xi + σεi where εi ∼ N (0, 1),

d

da
Pr[Xi > Xj | Xi < a,Xj < a] > 0.

Proof. Assume σ = 1/
√

2. This is without loss of generality because for any instance with arbitrary σ′, there is an instance
with σ = 1/

√
2 that yields the same distribution over rankings (simply by scaling all item values by σ/σ′). First, we have

Pr[Xi > Xj | Xi < a,Xj < a] =

∫ a
−∞ Pr[Xi = x] Pr[Xj < x] dx
Pr[Xi < a] Pr[Xj < a]

=

∫ a
−∞ exp(−(x− xi)2)/

√
π · (1 + erf(x− xj))/2 dx

(1 + erf(a− xi))/2 · (1 + erf(a− xj))/2

= 2√
π

∫ a
−∞ exp(−(x− xi)2)(1 + erf(x− xj)) dx

(1 + erf(a− xi)) · (1 + erf(a− xj))

The derivative with respect to a is positive if and only if

(1 + erf(a− xi))(1 + erf(a− xj)) exp(−(a− xi)2)(1 + erf(a− xj))

>

∫ a

−∞
exp(−(x− xi)2)(1 + erf(x− xj)) dx

· 2√
π

(
(1 + erf(a− xi)) exp(−(a− xj)2) + (1 + erf(a− xj)) exp(−(a− xi)2)

)
[8]

Let t = a− xi and δ = xi − xj . Then, using the fact that∫ a

−∞
exp(−(x− xi)2)(1 + erf(x− xj)) dx =

∫ a−xi

−∞
exp(−x2) dx+

∫ a−xi

−∞
exp(−x2) erf(x+ δ) dx

=
√
π

2 (1 + erf(a− xi)) +
∫ a−xi

−∞
exp(−x2) erf(x+ δ) dx,

Eq. (8) becomes
√
π

2 · (1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)
(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2) >

√
π

2 (1 + erf(t)) +
∫ t

−∞
exp(−x2) erf(x+ δ) dx

⇐⇒ (1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)
(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2) − (1 + erf(t))− 2√

π

∫ t

−∞
exp(−x2) erf(x+ δ) dx > 0 [9]

To show that this is true, we will use the fact that f(t) > 0 whenever the following conditions are met:
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1. f(t) is continuous and differentiable everywhere

2. limt→−∞ f(t) = 0

3. d
dt
f(t) > 0

We’ll show that these conditions hold for the LHS of Eq. (9).

lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)
(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2) − (1 + erf(t))− 2√

π

∫ t

−∞
exp(−x2) erf(x+ δ) dx

= lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)
(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2) [10]

Observe that both the numerator and denominator of Eq. (10) are positive, so this limit must be at least 0. We can upper
bound it by

lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)
(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2) ≤ lim

t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)
(1 + erf(t+ δ)) exp(−t2)

= lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))

= 0

Thus, the limit is 0. Now, we must show that the derivative is positive. The derivative is

d

dt

[
(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2) − (1 + erf(t))− 2√
π

∫ t

−∞
exp(−x2) erf(x+ δ) dx

]
= d

dt

[
(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)

]
− 2√

π
exp(−t2)− 2√

π
exp(−t2) erf(t+ δ) [11]

Taking this derivative and factoring out

2(1 + erf(t))(1 + erf(t+ δ)) exp(4t2)
√
π
(
(erf (t) + 1) et2 + (erf (δ + t) + 1) e(δ+t)2)2 ,

we get that Eq. (11) is positive if and only if

δ
√
π exp((t+ δ)2)(1 + erf(t))(1 + erf(t+ δ))− exp(2δt+ t2)(1 + erf(t+ δ)) + (1 + erf(t)) > 0

⇐⇒δ
√
π exp((t+ δ)2)(1 + erf(t)) + 1 + erf(t)

1 + erf(t+ δ) − exp(2δt+ t2) > 0

⇐⇒δ
√
π exp(t2)(1 + erf(t)) + exp(−2δt− t2) 1 + erf(t)

1 + erf(t+ δ) − 1 > 0

⇐⇒(1 + erf(t))
[
δ
√
π exp(t2) + exp(−2δt− δ2)

1 + erf(t+ δ)

]
− 1 > 0

⇐⇒1 + erf(t)
exp(−t2)

[
δ
√
π + exp(−(t+ δ)2)

1 + erf(t+ δ)

]
− 1 > 0 [12]

Define
g(t) , 1 + erf(t)

exp(−t2) .

Then, Eq. (12) is

g(t)
[
δ
√
π + 1

g(t+ δ)

]
− 1 > 0

⇐⇒ 1
g(t) −

1
g(t+ δ) < δ

√
π

By the Mean Value Theorem,
1
g(t) −

1
g(t+ δ) = −δ d

dt

1
g(t)

∣∣∣∣
t=t∗

for some t ≤ t∗ ≤ t+ δ. Thus, it suffices to show that

d

dt

1
g(t) > −

√
π [13]
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for all t. To do this, consider Mills Ratio (1)

R(t) , exp(t2/2)
∫ ∞
t

exp(−x2/2) dx.

Note that this is quite similar in functional form to g(t), and with some manipulation, we can relate the two:

R(t) = exp(t2/2)
∫ ∞
t

exp(−x2/2) dx

R(
√

2t) = exp(t2)
∫ ∞
√

2t
exp(−x2/2) dx

=
√

2 exp(t2)
∫ ∞
t

exp(−x2) dx

=
√

2 exp(t2)
∫ −t
−∞

exp(−x2) dx [exp(−x2) is symmetric]

R(−
√

2t) =
√

2 exp(t2)
∫ t

−∞
exp(−x2) dx

=
√

2 exp(t2) ·
√
π

2 (1 + erf(t))

=
√
π

2

(
1 + erf(t)
exp(−t2)

)
R(−
√

2t) =
√
π

2 g(t)

Sampford (2, Eq. (3)) proved that d
dt

1
R(t) < 1 for any t. Thus,

d

dt

1
g(t) = d

dt

1√
2
π
R(−
√

2t)
=
√
π

2
d

dt

1
R(−
√

2t)
>

√
π

2 · 1 · −
√

2 = −
√
π,

which proves Eq. (13) and completes the proof.

4. Verifying that the Mallows Model Satisfies Definition 1

Theorem 8. The family of distributions Fθ produced by the Mallows Model with Kendall tau distance with θ = φ− 1 satisfies
the conditions of Definition 1.

Proof. We must show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions of Definition 1.
Differentiability: Let Π be the set of all permutations on n candidates. The probability of a realizing a particular

permutation π under the Mallows model is

Pr
θ

[π] = φ−d(π,π
∗)∑

π′∈Π φ
−d(π′,π∗)

Both the numerator and denominator are differentiable with respect to θ = φ− 1, so Prθ[π] is differentiable with respect to θ.
Asymptotic optimality: For the correct ranking π∗,

Pr
θ

[π∗] = 1
Z
,

where the normalizing constant Z is
Z =

∑
π∈Π

φ−d(π,π
∗)

In the limit,

lim
θ→∞

Z = lim
φ→∞

Z

= lim
φ→∞

∑
π∈Π

φ−d(π,π
∗)

= lim
φ→∞

1 +
∑

π 6=π∗∈Π

φ−d(π,π
∗)

= 1 +
∑

π 6=π∗∈Π

lim
φ→∞

φ−d(π,π
∗)

= 1
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because for any π 6= π∗, d(π, π∗) ≥ 1. Therefore,

lim
θ→∞

Pr
θ

[π∗] = lim
θ→∞

1
Z

= 1

Monotonicity: We must show that for any S ⊂ x, if π(−S)
1 denotes the value of the top-ranked candidate according to π

excluding candidates in S,
EFθ′

[
π

(−S)
1

]
≥ EFθ

[
π

(−S)
1

]
.

For any i /∈ S, let j be the smallest index such that j > i and j /∈ S. Consider any π such that π(−S)
1 = xj . Then, swapping i

and j yields a permutation π̂ such that π̂(−S)
1 = xi. Moreover,

Pr[π̂] = Pr[π] · φinv(π)−inv(π̂).

Since i < j, inv(π)−inv(π̂) ≥ 1. Finally, note that swapping i and j is a bijection between {π : π(−S)
1 = xj} and {π : π(−S)

1 = xi}.
Thus,

Pr[π(−S)
1 = xi]

Pr[π(−S)
1 = xj ]

=
∑

π:π(−S)
1 =xj

Pr[π]
Pr[π(−S)

1 = xj ]
· φinv(π)−inv(π̂)

Note that the terms Pr[π]
Pr[π(−S)

1 =xj ]
sum to 1, so this is sum is some polynomial in φ with nonnegative weights and integer powers

of φ. As a result, it must have a positive derivative with respect to φ, i.e., for i < j,

d

dφ

Pr[π(−S)
1 = xi]

Pr[π(−S)
1 = xj ]

> 0

Let φ′ > φ. Then,

Prφ[π(−S)
1 = xi]

Prφ[π(−S)
1 = xj ]

<
Prφ′ [π(−S)

1 = xi]
Prφ′ [π(−S)

1 = xj ]

Rearranging,
Prφ[π(−S)

1 = xi]
Prφ′ [π(−S)

1 = xi]
<

Prφ[π(−S)
1 = xj ]

Prφ′ [π(−S)
1 = xj ]

[14]

For θ′ − φ′ − 1 and θ = φ− 1,

EFθ
[
π

(−S)
1

]
=
∑
i/∈S

Pr
φ

[
π
−(S)
1 = xi

]
xi

EFθ′
[
π

(−S)
1

]
=
∑
i/∈S

Pr
φ′

[
π
−(S)
1 = xi

]
xi

By Lemma 4,

EFθ′
[
π

(−S)
1

]
> EFθ

[
π

(−S)
1

]
,

which completes the proof. Note that we apply Lemma 4 indexing backwards from n to 1, ignoring elements in S, with
pi = Prφ

[
π
−(S)
1 = xi

]
and qi = Prφ′

[
π
−(S)
1 = xi

]
. Eq. (14) provides the condition that pi/qi is decreasing (as i decreases,

since we are indexing backwards).

5. Proof of Theorem 3

A. Verifying Definition 2. We must show that when π, τ ∼ Fθ,

E [π1 − π2 | π1 6= τ1] > 0. [15]

We begin by expanding:

E [π1 − π2 | π1 6= τ1] =
n∑
i=1

n∑
j=1

(xi − xj) Pr[π1 = xi ∩ π2 = xj | π1 6= τ1]

=
n−1∑
i=1

∑
j>i

(xi − xj) (Pr[π1 = xi ∩ π2 = xj | π1 6= τ1]− Pr[π1 = xj ∩ π2 = xi | π1 6= τ1])
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Since xi > xj for i < j, it suffices to show that for all i < j,

Pr[π1 = xi ∩ π2 = xj | π1 6= τ1] ≥ Pr[π1 = xj ∩ π2 = xi | π1 6= τ1], [16]

and that this holds strictly for some i < j. We simplify Eq. (16) as follows:

Pr[π1 = xi ∩ π2 = xj | π1 6= τ1] > Pr[π1 = xj ∩ π2 = xi | π1 6= τ1]

⇐⇒ Pr[π1 = xi ∩ π2 = xj ∩ π1 6= τ1]
Pr[π1 6= τ1] >

Pr[π1 = xj ∩ π2 = xi ∩ π1 6= τ1]
Pr[π1 6= τ1]

⇐⇒ Pr[π1 = xi ∩ π2 = xj ∩ π1 6= τ1] > Pr[π1 = xj ∩ π2 = xi ∩ π1 6= τ1]
⇐⇒ Pr[π1 = xi ∩ π2 = xj ∩ τ1 6= xi] > Pr[π1 = xj ∩ π2 = xi ∩ τ1 6= xj ]
⇐⇒ Pr[π1 = xi ∩ π2 = xj ] Pr[τ1 6= xi] > Pr[π1 = xj ∩ π2 = xi] Pr[τ1 6= xj ] [17]

We can simplify Eq. (17) using Lemmas 5 and 6. Let |i− j| denote the difference in rank between xi and xj .

Pr[π1 = xi ∩ π2 = xj ] Pr[τ1 6= xi]− Pr[π1 = xj ∩ π2 = xi] Pr[τ1 6= xj ]
= Pr[π1 = xi ∩ π2 = xj ](1− Pr[τ1 = xi])− φ−1 Pr[π1 = xi ∩ π2 = xj ](1− Pr[τ1 = xj ])

= Pr[π1 = xi ∩ π2 = xj ](1− Pr[τ1 = xi])− φ−1 Pr[π1 = xi ∩ π2 = xj ](1− φ−|i−j| Pr[τ1 = xi])

= Pr[π1 = xi ∩ π2 = xj ](1− Pr[τ1 = xi]− φ−1 − φ−|i−j|−1 Pr[τ1 = xi]))

This is positive if and only if

1− Pr[τ1 = xi]− φ−1 − φ−|i−j|−1 Pr[τ1 = xi] > 0

⇐⇒ Pr[τ1 = xi]
(
1− φ−|i−j|−1) < 1− φ−1

⇐⇒ Pr[τ1 = xi] <
1− φ−1

1− φ−|i−j|−1

⇐⇒ 1− φ−1

φi−1(1− φ−n) <
1− φ−1

1− φ−|i−j|−1

⇐⇒ φi−1(1− φ−n) > 1− φ−|i−j|−1

This is weakly true for any i < j because φi−1 ≥ 1 and |i− j|+ 1 ≤ n, and it is strictly true for any i, j other than 1 and n.
Thus, E [π1 − π2 | π1 6= τ1] > 0.

B. Verifying Definition 3. Recall that Definition 3 is equivalent to UAH(θA, θH) < UHH(θA, θH) for θA > θH . Let τ be the
algorithmic ranking, and let π be a ranking from a human evaluator. Recall that UH(θA, θH) = E [π1]. Throughout this proof,
we will drop the (θA, θH) notation and simply write UH , UAH , and UHH .

UAH =
n∑
i=1

(Pr[π1 = xi ∩ τ1 6= xi] + Pr[π2 = xi ∩ π1 = τ1])xi

=
n∑
i=1

Pr[π1 = xi ∩ τ1 6= xi]xi +
n∑
i=1

Pr[π2 = xi ∩ π1 = τ1]xi

=
n∑
i=1

(Pr[π1 = xi]− Pr[π1 = xi ∩ τ1 = xi])xi +
n∑
i=1

∑
j 6=i

Pr[π1 = xj ∩ τ1 = xj ∩ π2 = xi]xi

= UH −
n∑
i=1

Pr[π1 = xi ∩ τ1 = xi]xi +
n∑
i=1

Pr[π1 = xi ∩ τ1 = xi]E [π2 | π1 = xi ∩ τ1 = xi]

= UH +
n∑
i=1

Pr[π1 = xi] Pr[τ1 = xi] (E [π2 | π1 = xi]− xi)

Similarly, because two human evaluators are independent,

UHH = UH +
n∑
i=1

Pr[π1 = xi]2 (E [π2 | π1 = xi]− xi) .

Let V−i = E [π2 | π1 = xi]. Note that conditioned on π1 = xi, the remaining elements of π1 follow a Mallows model distribution
over n− 1 candidates. Because the Mallows model is value-independent, increasing any item value increases the expected value
of the top-ranked item (and in fact, the item ranked at any position). Thus, V−i increases as i increases (since xi, the value of
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the unavailable candidate, decreases). Moreover, xi is strictly decreasing in i, so V−i − xi is strictly increasing in i. With this,
we have

UAH − UH =
n∑
i=1

Pr[π1 = xi] Pr[τ1 = xi] (V−i − xi)

UHH − UH =
n∑
i=1

Pr[π1 = xi]2 (V−i − xi)

Let CA = Pr[π1 = τ1] =
∑n

i=1 Pr[π1 = xi] Pr[τ1 = xi], and similarly let CH =
∑n

i=1 Pr[π1 = xi]2. CA > CH by Lemma 4 with
y′i = Pr[π1 = xn−i+1], p′i = Pr[π1 = xn−i+1] and q′i = Pr[τ1 = xn−i+1].

Let pi = Pr[π′1 = i] Pr[π1 = i]/CA, qi = Pr[π′1 = i]2/CH , and yi = V−i − xi. Then, we have

UAH − UH
CA

=
n∑
i=1

piyi

UHH − UH
CH

=
n∑
i=1

qiyi

With φA = θA + 1 and φH = θH + 1,

pi
qi

= CH
CA
·

1−φ−1
A

φi−1
A

(1−φ−n
A

)

1−φ−1
H

φi−1
H

(1−φ−n
H

)

∝
φi−1
H

φi−1
A

,

which is decreasing in i since φH < φA. By Lemma 4,
∑n

i=1 piyi <
∑n

i=1 qiyi. Finally, note that UHH − UH < 0 by Lemma 7,
so

n∑
i=1

piyi <

n∑
i=1

qiyi

UAH − UH
CA

<
UHH − UH

CH
CH(UAH − UH)

CA
< UHH − UH

UAH − UH < UHH − UH [CA > CH , and UHH − UH < 0]
UAH < UHH

6. Supplementary Lemmas for the Mallows Model

Lemma 4. Let {yi}ni=1, {pi}ni=1, and {qi}ni=1 be sequences such that

• yi is strictly increasing.

•
∑n

i=1 pi =
∑n

i=1 qi = 1.

• pi
qi

is decreasing.

Then,
∑n

i=1 piyi <
∑n

i=1 qiyi.

Proof. First, note that there exists j such that pi > qi for i < j and pi ≤ qi for i ≥ j. To see this, let j be the smallest index
such that pj ≤ qj . Such a j must exist because pi and qi both sum to 1, so it cannot be the case that pi > qi for all i. This
implies pi/qi ≤ 1, and since pi/qi is decreasing, pi ≤ qi for i ≥ j.

Next, note that

0 =
n∑
i=1

(pi − qi)

=
j−1∑
i=1

(pi − qi) +
n∑
i=j

(pi − qi),

meaning
j−1∑
i=1

(pi − qi) =
n∑
i=j

(qi − pi).
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Using this choice of j, we can write

n∑
i=1

piyi −
n∑
i=1

qiyi =
n∑
i=1

(pi − qi)yi

=
j−1∑
i=1

(pi − qi)yi −
n∑
i=j

(qi − pi)yi

≤
j−1∑
i=1

(pi − qi)yj−1 −
n∑
i=j

(qi − pi)yj

=
j−1∑
i=1

(pi − qi)yj−1 −
n∑
i=j

(qi − pi)yj

=
j−1∑
i=1

(pi − qi)yj−1 −
j−1∑
i=1

(pi − qi)yj

=
j−1∑
i=1

(pi − qi)(yj−1 − yj)

< 0

Lemma 5. For xi > xj,
Pr[π1 = xi ∩ π2 = xj ] = φPr[π1 = xj ∩ π2 = xi]. [18]

Proof. Let π−ij be a permutation of all of the candidates except xi and xj . Then, we have

Pr[π1 = xi ∩ π2 = xj ] =
∑
π−ij

Pr[π1 = xi ∩ π2 = xj | π−ij ] Pr[π−ij ]

=
∑
π−ij

φPr[π1 = xj ∩ π2 = xi | π−ij ] Pr[π−ij ]

= φPr[π1 = xj ∩ π2 = xi]

Intuitively, given that xi and xj are in the top 2 positions, xi followed by xj is φ times more likely than xj followed by xi
regardless of the remainder of the permutation, and therefore, xi followed by xj is φ times more likely overall.

Lemma 6. For 1 ≤ i ≤ n,

Pr[π1 = xi] = 1− φ−1

φi−1(1− φ−n) . [19]

Proof. Let π−i be a permutation over all items except i. Then,

Pr[π1 = xi] =
∑
π−i

Pr[π1 = xi | π−i] Pr[π−i]

=
∑
π−i

φ−(i−1) Pr[π−i]

= φ−(i−1)
∑
π−i

Pr[π−i]

Note that Pr[π−i] doesn’t depend on which n − 1 items are being ranked, so this term appears for any i. Moreover,∑n

i=1 Pr[π1 = xi] = 1. Therefore, we have

Pr[π1 = xi] ∝ φ−(i−1).

Normalizing, we get
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Pr[π1 = xi] = φ−(i−1)∑n

j=1 φ
−(j−1)

= φ−(i−1)

1−φ−n
1−φ−1

= 1− φ−1

φi−1(1− φ−n)

Intuitively, any permutation over n− 1 items is equally likely regardless of what those items are, and inserting any item at the
front of this permutation yields a likelihood proportional to the number of additional inversions this causes, which is equal to
the item’s position on the list.∗

Lemma 7. For the Mallows Model, UH(θA, θH) > UHH(θA, θH).

Proof. Intuitively, this is because selecting first is better than selecting second. To prove this, let π and τ be ranking generated
by independent human evaluators under the Mallows Model, i.e., π, τ ∼ FθH .

UH(θA, θH)− UHH(θA, θH) = E [π1]− E [τ1 · 1π1 6=τ1 + τ2 · 1π1=τ1 ]
= E [(π1 − τ2) · 1π1=τ1 ]
= E [(π1 − π2) · 1π1=τ1 ]

For any i < j, conditioned on π1 = τ1, they are more likely to be correctly ordered than not:

E [(π1 − π2) · 1π1=τ1 ] =
∑
i<j

(Pr[π1 = xi ∩ τ1 = xi ∩ π2 = xj ]− Pr[π1 = xj ∩ τ1 = xj ∩ π2 = xi]) (xi − xj)

=
∑
i<j

(Pr[π1 = xi ∩ π2 = xj ] Pr[τ1 = xi]− Pr[π1 = xj ∩ π2 = xi] Pr[τ1 = xj ]) (xi − xj)

>
∑
i<j

(Pr[π1 = xi ∩ π2 = xj ] Pr[τ1 = xj ]− Pr[π1 = xj ∩ π2 = xi] Pr[τ1 = xj ]) (xi − xj)

=
∑
i<j

(Pr[π1 = xi ∩ π2 = xj ]− Pr[π1 = xj ∩ π2 = xi]) (xi − xj)

≥
∑
i<j

(φH Pr[π1 = xj ∩ π2 = xi]− Pr[π1 = xj ∩ π2 = xi]) (xi − xj)

> 0
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∗Alternatively, we could prove this by showing that for any permutation with i in front, the permutation in which i and i− 1 are swapped is φ times more likely, and thus, i− 1 is φ times more likely to be
in front than i.
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