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Abstract—The k-core of a graph is a metric used in a
wide range of applications, including social networks analytics,
visualization, and graph coloring. We present two new parallel
and scalable algorithms for finding the maximal k-core in a
graph. Unlike past approaches, our new algorithms do not rebuild
the graph in every iteration – rather, they use a dynamic graph
data structure and avoid one of the largest performance penalties
of k-core – pruning vertices and edges. We also show how to
extend our algorithmsto support k-core edge decomposition for
different size k-cores found in the graph. While our new algo-
rithms are architecture independent, our implementations target
NVIDIA GPUs. When comparing our algorithms against several
highly optimized algorithms, including the sequential igraph
implementation and the multi-thread ParK implementation, our
new algorithms are significantly faster. For finding the maximal
k-core in the graph, our new algorithm can be up-to 58× faster
the igraph and up-to 4× faster than ParK executed on a 36 core
(72 thread) system. For the k-core decomposition algorithm, we
saw even greater and more consistent speedups for our algorithm
where it was up-to 130× faster than igraph and up-to 8× faster
than ParK. Our algorithms were executed on an NVIDIA P100
GPU.

I. INTRODUCTION

Network graphs are now a ubiquitous data type and model
many natural and synthetic phenomena in our modern world.
However, analyzing graph data to gain insight into a network
remains challenging. In a recent online survey conducted to
gather information about how graphs are used in practice,
researchers discovered that graph analysts rated scalability
and visualization as the most pressing issues to address [1].
Modern day graphs can easily grow to billions of vertices
and edges; therefore, as graphs grow in size and become
more complex, the need for scalable sense-making algorithms
becomes critical for gaining insight into modern day large
graphs.

Modern day graph algorithms, for example edge decomposi-
tion algorithms based on fixed points of degree peeling, show
strong potential in helping people explore unfamiliar graph
data [2]. This decomposition, based on the well-studied k-
core decomposition, has been shown to be useful for graph
exploration, navigation, and visualization [3]. The heart of
this edge decomposition algorithm requires computing the
maximal k-core for a graph. From graph theory, the k-core
of a graph is a maximal subgraph in which all vertices
have degree at least k. k-core is not only vital to edge
decomposition algorithms, but also powers a diverse set of
graph exploration tools and systems with applications in large-

scale visualization [4], [5], graph clustering [6], hierarchical
structure analysis [5], and graph mining [7]. More applications
are discussed in II. It has been shown that k-core can be
computed in linear time by iteratively removing minimum
degree vertices from a graph using a list of vertices per degree
[8]. This process of removing minimum degree vertices is
commonly called pruning, and it is the primary computation
by which k-core and edge decompositions rely on.

In this paper, we present two fast and scalable algorithms
for finding the maximal k-core of a graph, and extend these to
two edge decomposition algorithms for breaking down a graph
into smaller subgraphs based on the k-core sizes. Our new
algorithms do not require rebuilding the graph after pruning in
each iteration of edge composition. Rather, We use a dynamic
graph data structure to avoid one of the largest performance
penalties of k-core decomposition.

While our new algorithms are architecture independent,
our implementations target NVIDIA GPUs. Furthermore, we
run extensive experiments on a wide range of graphs, with
different topological properties and scales, to evaluate our
algorithms. We compare against the current state-of-the-art
results found in literature, including several highly optimized
algorithms: a sequential igraph implementation and a multi-
thread ParK implementation [9].

Contributions

In summary, the contributions of this paper are as follows:
• Scalable, maximal k-core algorithms. We introduce two
fast and scalable algorithms for finding the maximal k-core of
a graph. Both use a dynamic grpah data structure to avoid the
penalty of rebuilding the graph after each pruning phase of the
algorithm. The first has parallel bottlenecks, but would likely
perform well on a sequential processor. The latter performs
much better in parallel and on a GPU. When compared
with a sequential igraph implementation and a multi-threaded
ParK[9] implementation with 72 threads, our second algorithm
can be up to 58× faster than igraph and up to 4× faster than
ParK (though it is sometimes slower than ParK).
• Scalable k-core decomposition. We introduce two different
k-core decomposition algorithms for breaking down the graph
into smaller subgraphs based on the k-core sizes. These
algorithms also use a dynamic graph data structure. Our
first algorithm uses a large number of small edge udpates,
whereas our second algorithm uses a small number of large
edge updates. As a GPU supports thousands of lightweight



threads, our second algorithm performs better in our GPU-
based experiments. Specifically, it is up to 130× faster than
igraph and up to 8× faster than ParK.

II. BACKGROUND

A. k-core Applications and Computation

k-core was first introduced by studying social networks [10],
but has since seen great attention in a diverse set of other
domains. Applications for k-core for graph data include large-
scale visualization [4], [5], graph clustering [6], hierarchical
structure analysis [5], and graph mining [7]. Other applications
that use k-core for understanding particular domains whose
data is represented as network graphs include bioinformat-
ics [11], [12], [13], identifying and understanding Internet
structure [14], studying the spreading of economic crises [15],
identifying influential spreaders in a complex network [16],
and recently, revealing hierarchical cortical organization of the
human brain [17].

From graph theory, the k-core of a graph is a maximal
subgraph in which all vertices have degree at least k. In recent
work using k-core, igraph, a network analysis library, is used
to perform edge decompsition[3]. However, the igraph imple-
mentation of k-core is still sequential [18]. There is, though, a
recent multi-threaded implementation of k-core, called ParK,
which improves upon the state-of-the-art [9] by significantly
reducing the working set size and minimizing the random
accesses to the data structure. In our work, we compare our
algorithms against both the igraph implementation and ParK
and show that we outperform both these algorithms. There is
a GPU implementation of k-core vertex decomposition [19]
we could not compare as it is not open-source.

B. Edge Decompositions

From [2], edge decompositions based on fixed points of
degree peeling divide large graphs into an ordered set of
subgraphs that is dependent only upon the topology of the
graph. In general, the edge decomposition is computed by
finding the maximal k-core of a graph, removing the recently
found k-core from the original graph, and repeating until
the original graph is empty. Therefore, whereas computing a
maximal k-core of a graph relies on graph pruning, computing
an edge decomposition relies on multiple maximal k-core
computations. Each maximal k-core computed is a fixed point
of degree peeling of the graph, i.e., if one were to re-run the
edge decomposition on a particular maximal k-core, the de-
composition would simply return the original graph, therefore
each maximal k-core found in an edge decomposition is fixed.
A result of this is that the edge decomposition is deterministic,
a useful property for sense-making graph algorithms. In the
existing literature for applying edge decompositions to large
scale graph visualization and exploration, each maximal k-core
is called a graph layer [4], [3]. Graph layers help users identify
potentially important substructures (e.g., quasi-cliques, multi-
partite-cores), by automatically separating such patterns from
the majority of the graph. Our algorithms and implementa-
tions presented in this paper will allow future researchers to

TABLE I: List of symbols and notations used by our algorithm
Symbols and Notations

Symbol Description
G Input graph.
V (G) Set of vertices in the input graph.
E(G) Set of edges in the input graph.
Ĝ Separate graph, used for storage in HKS/HDS.
Q Queue of vertices removed per peel.
Vb Batch of vertices to delete.
Eb Batch of edges to delete.
K K-core of G

Notations and Fields
color[v] True if v will be pruned this iteration in HKS/HDS, false otherwise.
flag[v] True if v does not exist in G in HKO/HDO, false otherwise.
peel Max degree value used to determine whether to prune a vertex.

decompose large graphs faster to better understand networks
and gain insights into their complex internal structure.

C. Dynamic Graph Data Structures

Dynamic graph data structures, as opposed to static graph
data structures, deal with graphs that change. Dynamic can
imply that these changes are temporal. Yet, in fact changes
can also be structural, meaning that the structure of the graph
changes. This is the case with k-core where vertices and
edges are pruned from the graph (repeatedly). This process
can also be found for other problems such k-trusses and [20].
Dynamic graph data structures, described below, can help
avoid recreating the graph in every step of the computation as
was done in [2], [4], [3]. Using a dynamic graph data structure
avoids these overheads.

The Hornet [21] data structure is a dynamic graph data
structure designed for dealing with fast and parallel updates
to the graph. Specifically, Hornet was designed to process
numerous insertion and deletion of a large number of vertices
and edges. These types of operations are especially important
for practical purposes as an inefficient dynamic graph data
structure will greatly reduce the overall performance of the
graph algorithm. Hornet support over 150 million updates per
second on current GPU systems. While our implementation
uses the Hornet data structure, we note that our algorithm can
be implemented for other dynamic graph data structures so
long as they support vertex and edge insertions and deletions.
The reader is referred to [21] for more details on the Hornet
data structure and a wider literature survey of dynamic graph
data structures.

a) Batches: Specifically, batches refer to the fact that
there multiple updates are made to the graph and the order
in which they are processed is not important. In the case of
k-core we will show that all the vertices and edges pruned in
every iteration can actually be placed into a single batch and
deleted concurrently.

III. k-CORE NUMBER ALGORITHMS

In this section we present our new algorithms for finding
the largest k − core in a graph. While there has been exten-
sive research in designing algorithms for finding the k-core
numbers, our algorithms are unique as these are the first, to
the best of our knowledge, to take advantage of a dynamic
graph data structure. Whereas many past algorithms need to
rebuild the graph for each iteration of the k-core search, our
algorithm utilizes a data structure designed for dynamic graphs
that is highly optimized for edge insertions and deletions. This



FIG. 1: Finding deg = peel = 1 vertices

FIG. 2: Incrementing peel = 1 when no deg = 1 vertices
remain

Algorithm 1 K-Core Slow - first algorithm for finding the
maximal k-core.
1: peel← 1
2: Q← {}
3: Ĝ← ({}, {})
4: while |V (G)| > 0 do
5: color[v]← 0∀v ∈ V (G)
6: Vb ← {}
7: parallel for v ∈ V (G) do
8: if deg[v] ≤ peel then
9: color[v]← 1
10: Vb.enqueue(v)
11: end parallel for
12:
13: if |Vb| > 0 then
14: Eb ← {}
15: parallel for (u, v) : u ∈ Vb, v ∈ adj(u) do
16: if color[u] ∧ color[v] then
17: Eb.enqueue((u, v))

18: end parallel for
19: G.delete edges(Eb)
20: G.delete vertices(Vb)
21: Ĝ.insert vertices(Vb)
22: Ĝ.insert edges(Eb)
23: Q← Q ∪ Vb
24: else
25: peel← peel + 1
26: Q← {}
27: return (induced subgraph(Ĝ, Q), peel)

allows us to avoid the overhead of rebuilidng the graph in each
iteration of the algorithm. As we will show in this section, in
each iteration of k-core, edges that no longer meet the k-core
requirements are pruned from the graph using these dynamic
graph operations.

In the next section (Sec.IV) we show that these operations
are in fact even more important as the k-core algorithm
will be executed a many times. Here we will show two
different approaches for finding the k-core number of a static
graph using dynamic graph operations. Each approach offers
a different set of advantages and disadvantages, primarily
regarding parallelization. Our first algorithm opts for a large
number of small edge batches, and small edge batches need
fewer cores for parallelization. There is also a fair amount of
synchronization in our first algorithm.

Our second algorithm makes a small number of large edge
batches. These large batches are more easily parallelizable.
Furthermore, our second algorithm does not need as much
synchronization, making it better-suited for GPU acceleration.

Algorithm 2 K-Core Optimized - second algorithm for finding
the maximal k-core.
1: peel← 1
2: Q← {}
3: num active = |V (G)|
4: color[v]← 0∀v ∈ V (G)
5: deg[v]← G.deg(v)∀v ∈ V (G)
6: while num active > 0 do
7: Vb ← {}
8: parallel for v ∈ V (G)∧!flag[v] do
9: if deg[v] ≤ peel then
10: flag[v]← 1
11: Vb.enqueue(v)
12: end parallel for
13: Q← Q ∪ Vb
14: num active← num active− |Vb|
15:
16: if |Vb| > 0 then
17: parallel for (u, v) : u ∈ Vb, v ∈ adj(u) do
18: deg[u]← deg[u]− 1
19: deg[v]← deg[v]− 1
20: end parallel for
21: else
22: peel← peel + 1
23: Q← {}
24: return (induced subgraph(G,Q), peel)

A. First Algorithm

At a high level, our first algorithm works as follows. It
starts off by finding the k-core number of G by incrementally
removing vertices and their incident edges that do meet the
core requirement. Specifically, the algorithms starts with k =
1. This value is incremented as described below. When a vertex
is marked for deletion from G, its respective incident edges
will also be removed. We begin by repeatedly removing all
vertices with degree less than 1 and their edges until there are
no longer degree less than 1 vertices in G as part of a batch.
Once there are no longer vertices with degree 1 in G, we begin
removing vertices with degree at most 2. This is illustrated in
Figure 1.

The removal process is continued until there are no more
vertices and edges in the graph. While it might seem that the
graph is empty and as such we have lost the largest k-core, we
in fact have the set of vertices and edges removed in the last
(and previous) iteration. That is, if we reach an empty graph
with peel = k, then all vertices removed when searching for
vertices with degree at most k form the largest k-core of G. To
find these vertices, whenever we remove vertices with degree
peel, we insert these vertices into a queue Q as shown on
line 23 in Algorithm 1. This queue is emptied when we begin
searching for vertices with degree peel + 1 on line 25. Thus,
once there are no vertices in G remaining, the vertices in the
queue form the largest k-core of G, and the k-core number of
G is peel.

Note that while the queue has the vertices in the largest k-
core of G, we do not have the edges of the k-core. The edges
of the k-core are the edges in the induced subgraph formed
by the vertices of the k-core. However, G is now empty, so
it is impossible to determine what those edges are. To solve
this, we maintain an additional graph Ĝ. Ĝ begins empty, and
whenever a vertex and its edges are deleted from G, we insert
them into Ĝ, as depicted on lines 21 and 22. This way, once
each vertex and edge is removed from G, Ĝ will be equal to
what G was at the beginning of the algorithm. We can find
the induced subgraph in Ĝ to find the largest k-core.

There are certain implementation details that are critical so



this can be parallelized well. For instance, when we iterate
over all vertices to look for those of degree peel = k, we
do not remove vertices immediately. Rather, we simply color
any vertex with degree at most k for now. Then, in a separate
loop, we iterate over all edges in G. Any edge with at least
one colored endpoint is added to a batch to be deleted.

B. Second Algorithm

Recall that this algorithm should perform much more effi-
ciently on a GPU than the former. It has larger parallel sections
with cheap computation, and requires less synchronization.

Similar to the previous algorithm, we start off this algorithm
in the same way as above, initializing peel = 1 and finding
all vertices with degree peel = 1.

Earlier we would find all vertices with degree peel = 1, and
delete them with their incident edges from G. Now, however,
we do not delete the vertices and edges. Instead, when we find
a vertex u, we flag u and decrement the degree of u and all
of u’s neighbors. Vertices that are flagged are not considered
to be present in G, although they are not explicitly deleted.
This is depicted in Algorithm 2.

The remainder of this algorithm is similar to the first. We
terminate once all vertices in G have been flagged, analogous
to terminating when all vertices in G have been deleted. Once
the algorithm terminates, the vertices flagged with the most
recent peel form the largest k-core in G. To keep track of
those vertices, we maintain a queue of removed vertices that
empties each time peel is incremented. The k-core in G will
then be the subgraph of G induced by the vertices in the queue,
and the k-core number is peel. Note that we do not need Ĝ
as we do not remove any vertices or edges from G.

C. Complexity Analysis

1) Work Complexity: We note the following for both algo-
rithms, every edge is accessed exactly only once. The only
time an edges is accessed is prior to its removal. Each edge is
in fact accessed only after the source vertex of the edge has
been marked for removal; this can help no more than once.
Thus, the work complexity for both is O(cV +E), where c is
the number of iterations in the algorithm. In most cases c is
small. Note that in the worst case, we have O(V ) iterations,
since each iteration enqueues at least one vertex. The worst-
case work complexity for both algorithms is, thus, O(V 2+E).

2) Storage Complexity: The first algorithm has a few O(V )
arrays and O(E) arrays. Ĝ will also contribute space. In theory
it should not as every edge inserted into Ĝ has been deleted
from G, but in practice extra space is used to prevent excessive
reallocating. This is an extra O(E) space in worst-case. Thus,
the overall storage complexity adds up to O(V +E) in worst-
case, although this worst-case bound requires a large Eb batch.
Our second algorithm only uses arrays of length O(V ), so it
has O(V ) storage complexity.

IV. k-CORE DECOMPOSITION ALGORITHMS

Every edge in the graph can belong to several k-cores (of
different sizes). The k-core edge decomposition of a graph

Algorithm 3 K-Core Decomposition Slow - first algorithm
for finding the k-core decomposition algorithm.
1: Ĝ← ({}, {})
2: while |V (G)| > 0 do
3: K, k num← KcoreNum1(G, Ĝ)
4: parallel for e ∈ E(K) do
5: peels[e]← k num
6: end parallel for
7: Ĝ.delete edges(E(K))
8: Ĝ.delete vertices(V (K))
9: swap(G, Ĝ)
10: return peels[]

Algorithm 4 K-Core Decomposition Optimized - first algo-
rithm for finding the k-core decomposition algorithm.
1: while |V (G)| > 0 do
2: K, k num← KcoreNum2(G)
3: parallel for e ∈ E(K) do
4: peels[e]← k num
5: end parallel for
6: G.delete edges(E(K))
7: G.delete vertices(V (K))
8: return peels[]

will find the largest k-core that each edge belongs to. The
decomposition for a specific value of k is also known as the
peel.

Computing the k-core decomposition is, however, more
computationally demanding that just finding the maximal k-
core as it also includes just finding the maximal k-core in
addition to the proceeding k-cores. This is especially true for
large graphs with millions of vertices and billions of edges.
For such graphs the number of iterations to run k-core is
equal to the number of graph layers produced by the edge
decomposition, which could be in the hundreds [2], [4] The
current state of the art algorithms generally do not process
large graphs quickly due to several key constraints: 1) they
are not taking full advantage of massively multi-threaded
systems and 2) the primarily use inefficient data structures
for representing the graph. If the data structure is storage
efficient, such as CSR, it is typically immutable and will
require rebuilding the graph in every iteration. Other mutable
data structures such as edges lists are possible but then these
lose locality and are not computationally efficient.

A. K-core Decomposition

The following outlines the approach we take for decom-
posing the graph into various k-cores. First of all, find the
maximal k-core of the graphs (in terms of k) using either
Algorithm 1 or Algorithm 2. Then, for all edges in the this
k-core, set their peel value to k. Then remove the k-core from
the graph while storing these edges in a map peels[] with the
peel values. These three steps are done in an iterative manner
until the graph is empty. These steps are also illustrated in our
k-core decomposition algorithms: Algorithm 3 and Algorithm
4.

Our first k-core decomposition algorithm uses the first k-
core number algorithm, and our second k-core decomposition
algorithm uses the second k-core number algorithm. Numerous
differences in our k-core decomposition algorithm are because
of the corresponding k-core number algorithms. Our first
algorithm has several small vertex and edge batches for our



dynamic graph data structure. When accelerated on a multi-
threaded system, this will show poor scalability, although this
perform well on a small number of cores (or threads). Our
second algorithm, on the other hand, has fewer but larger
batches of vertices and edges, and more SIMD parallelization,
making it well-suited for GPU acceleration.

Note that our dynamic graph data structure is a critical com-
ponent for these algorithms. Both algorithms make heavy use
of dynamic graph operations. Namely, they use a considerable
amount of edge and vertex insertion and deletion. Performing
these algorithms on a data structure meant for static graphs
would prove to be a bottleneck for the algorithms, since a
lot of time will be spent on copying, memory allocation, and
sequentially accessing each edge or vertex in the batch. Thus,
a dynamic graph data structure not only is the appropriate
structure, but also one that is imperative for performance for
both algorithms. As the data structure we will use for exper-
imentation is best-suited for the GPU, our second algorithm
will show to benefit the most from the data structure since it
has more SIMD parallelization.

B. First Algorithm

Our first k-core decomposition algorithm is an adaptation of
our first k-core number algorithm. We refer to this algorithm
as K-Core Decomposition Slow. We repeatedly call the k-
core number algorithm, modify G, call the k-core algorithm
on the modified version of G, and repeat. In this algorithm we
use two graphs, the first graph is the original input graph and
the second graph will be all the vertices and edges removed
from the first graph during the pruning process for finding
the maximal k-core. Thus, the second graph inserts the edges
deleted from the first graph–both of these are dynamic graph
operations.

1) Finding the largest k-core - First, we find the largest the
largest k-core in G simply by calling our first k-core number
algorithm. 2) Setting peel values - In the next phase, we iterate
over the edges found by the maximal k-core algorithm and
mark them with the value of that k-core (lines 4−6 of 3)–this
array stores the output of the algorithm. 3) Removing k-
core from G - After marking all the edges found in the current
maximal k-core, we can remove them from the second graph
Ĝ (lines 7− 8 of 3). Recall, that in the process of finding the
maximal k-core, we have removed all the edges from G and
such it is empty. This leads us to our final phase. 4) Reiterating
on the remainder of the graph - Thus, to continue finding k-
cores, we need to continue iterating over the remaining edges
and we will swap the vertices and edges in G and Ĝ 1.

C. Second Algorithm

Our second k-core decomposition algorithm is an adaptation
of our HKO, second maximal k-core algorithm. We refer to
this decomposition as the optimized algorithm, or K-Core
Decomposition Optimized as it removes many unnecessary
operations/ Much like the first algorithm, we call a k-core

1In practice, this inexpensive and is equivalent to pointer swapping.

number algorithm, set peel values, remove the k-core, and
reiterate until the graph is empty. Yet, the individual step are
slightly different as we only require a single graph (rather than
the two graphs needed by K-Core Decomposition Slow).

1) Finding the largest k-core - We find the largest the
largest k-core in G simply by calling our HKO k-core number
algorithm (line 2 of 4). 2) Setting peel values - Our second
k-core number algorithm also returns both the k-core number
and the corresponding k-core. Thus, we can simply iterate
over all edges of the k-core in parallel and assign the k-core
number as the peel for each edge. Once again, this array
stores the output of the algorithm. 3) Removing k-core from
G - Removing the k-core from G is simpler in our second
k-core decomposition algorithm as no edges were removed in
the maximal k-core functions. This leads to fewer and larger
edge removals from our dynamic data structure. 4) Reiterating
on the remainder of the graph - After removing the k-core
from G, we can simply reiterate on G. This step is also simpler
for our second k-core decomposition algorithm.

D. Comparison

1) Complexity Analysis: First, note that both our new
decomposition algorithms give the same output and have
the same number of iterations. The number of iterations is
dependent on the graph topology.

The complexity of a single iteration of each k-core de-
composition algorithm is dominated by the finding the k-
core number algorithm, as there is not much work done
outside of calls to k-core number functions. Thus, both k-
core decomposition algorithms have a work complexity of
O(V 2 + E) for one iteration.

2) Algorithm Scalability: Both algorithms have a good
amount of parallelism available. Specifically, the second k-
core decomposition algorithm tends to scale better as it uses
a smaller number of large batches used for the dynamic
graph data structure. In contrast, the first algorithm uses a
larger number of small batches. For massively multi-threaded
systems, using smaller batches can underutilize the system due
to workload imbalance, synchronization, and communications
overheads.

E. Sequential Vs. Parallel Algorithms

In this section we presented two algorithms for k-core
decomposition. Throughout the discussion, we did not discuss
the architecture on which these algorithms are executed as
they are in fact architecture agnostic. Specifically, our im-
plementation of these algorithms targets NVIDIA’s GPU, a
massively multithreaded system that can support thousands
of light weight threads. Effective utilization of this system
requires good load-balancing and ensuring that this is enough
work to be dispatched to these threads. In practice, we found
that our first algorithm lacked the scalability needed to utilize
thousands of threads in each phase of the algorithm. This
led to the development of the second algorithm which in
practice significantly outperforms the first. For a sequential
implementation it could be that the first algorithm will perform



TABLE II: Systems used in experiments.
Architecture Micro-architecture Processor Frequency Cores Threads LL-Cache / Total Bandwidth DRAM Size & Type

CPU x86-64 Broadwell Xeon E5-2695 2.1 GHz 36 72 45 MB LLC 1007GB DDR4
GPU Tesla Pascal P100 PCIe 1.13 GHz 56 3584 732GB/s Bandwidth 16GB HBM2

TABLE III: List of networks used in experiments.
Name |V | |E| k-core number

dblp-author 5,425,964 8,649,002 10
patentcite 3,774,769 16,518,947 64
soc-LiveJournal1 4,847,571 42,851,237 372
soc-pokec-relationships 1,632,804 22,301,964 29
trackers 27,665,731 140,613,747 438
wikipedia-link-de 3,225,566 65,759,634 829

as well as the second. However, we are unable to compare
these as we do not have an optimal data structure for the
CPU.

V. EXPERIMENTAL SETUP

In the following section we highlight our experimental setup
for checking the performance of our new algorithms. This
includes the systems, networks, and various benchmarks used.

Our new algorithms were benchmarked on an NVIDIA
P100 GPU connected to an Intel Xeon E5-2695 with 36 cores
72 threads (details in Table II). The P100 is a Pascal based
GPU with 56 SMs and 64 SPs per SM, for a total of 3584
SPs (lightweight threads). The P100 has a total of 16GB of
HBM2 memory. The Intel Xeon E5-2695 is a Broadwell based
processor running at 2.1 GHz with 45MB L3 cache. The server
consists of two such processors with a total of 1TB of memory.
While our new algorithms are architecture independent, the
final implementation targets the GPU as the Hornet [21] data
structure we used targets the GPU.

A. Dataset

For experiments we use a wide range of graphs taken from
the Konect graph database [22], though some of these graphs
are originally from SNAP [23]. Details of these graphs can
be found in Table III. Note, we also include the size of the
maximal k-core for each of these graphs. The benchmarks,
detailed below, require the input in a different format (edge
list and binary format). We ensure that benchmarks receive
the correct inputs and also do not include the time needed to
read the file or pre-process it.

B. Benchmarks

We compare the performance of our algorithms with two
highly optimized implementations. Specifically, we compare
our algorithms against the sequential algorithm found in [24]
which is also implemented in the igraph library [18]–we refer
to this algorithm simply as igraph in our comparison. We
also compare against the multi-threaded ParK algorithm [9]
which extends the igraph algorithm the multi-threaded system.
ParK was able to use all 36 cores and 72 threads of the CPU
used in our experiments. In many cases, ParK shows good
scalability in comparison to its sequential counterpart, yet our
new algorithms are significantly faster.

The igraph library has an implementation of the BZ algo-
rithm as part of its coreness function. However, recall that
BZ computes the k-core vertex decomposition of G. That is,

TABLE IV: k-core number times in seconds.
Name HKO HKS ParK igraph

dblp-author 0.028 0.731 0.105 1.633
58× 2.2× 15.× 1×

patentcite 0.147 2.953 0.253 3.825
26× 1.3× 15× 1×

soc-LiveJournal1 0.838 OOM 0.549 6.191
7.4× OOM 11.3× 1×

soc-pokec-relationships 0.174 4.331 0.155 2.586
15× 0.6× 16.6× 1×

trackers 13.160 OOM 3.052 20.693
1.6× OOM 6.8× 1×

wikipedia-link-de 1.987 OOM 0.764 3.954
2× OOM 5.1 1×

it returns an array with the largest k-core each vertex in G is
contained in, not each edge. Our k-core number implementa-
tion with the igraph library simply calls this coreness function
and returns the largest value in the array. Our k-core edge
decomposition implementation with igraph uses the above as
the k-core number implementation, removes the corresponding
k-core from G, and repeats.

C. New Algorithms

Recall, for both finding the maximal k-core algorithm and
for the k-core decomposition we presented two algorithms.
In both cases, the second algorithm was developed due some
of the performance flaws found in the first algorithm when
on the GPU. We show results for both the slower and faster
instances and compare their performance behavior in addition
to the external benchmarks we used. We note that the slower of
our implementations might in fact be suitable for a sequential
or multi-threaded environment when the number of executing
threads is not to high, but not for systems with high thread
counts.

For finding the maximal k-core we denote our two algo-
rithms, Algorithm 1 and Algorithm 2 as HKS and HKO,
respectively. HKS refers to Hornet K-Core Slow and HKO
refers Hornet K-Core Optimized. For the k-core decomposi-
tion we denote our two algorithms, Algorithm 3 and Algorithm
4 as HDS and HDO, respectively. HDS refers to Hornet
Decomposition Slow and HKO refers Hornet Decomposition
Optimized.

D. Hornet

Our implementation uses the highly-optimized Hornet data
structure [21]. Hornet is the fastest dynamic graph data struc-
ture available for shared-memory systems and can handle over
100 million edges per second for large updates.

VI. PERFORMANCE ANALYSIS

a) Execution Time Analysis: Table IV and Table V depict
the execution for finding the maximal k-core of the graph
and for k-core decomposition, respectively. In both tables we
compare our new algorithms against the multi-threaded ParK
algorithm and the sequential igraph algorithm. Note, all these
timings ignore the time it takes to read the input from disk
and the time it takes to initialize the graphs. Instead we focus
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FIG. 3: Time per peel for k-core decomposition. Notice that the peels are placed in reversed order as the decomposition starts
with the largest peels first. Lower is better.
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FIG. 4: Batch Size vs. Time (ms.) on soc − pokec −
relationships. This plot highlights that smaller batch
updates are slow and are the performance bottlenecks
for HDS as they under-utilize the GPU. Its through this
analysis that we designed HKO and HDO to overcome
the small batch problem.
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FIG. 5: GPU Utilization vs. Time (sec.) for patentcite nor-
malized across execution.

on the time it takes to do the k-core algorithms. In [21], it was
shown the creating a Hornet data structure is not much more
expensive than creating a CSR data structure. Also, the time
it takes to build the graphs is fairly small in comparison to
the time spent finding the maximal k-core or decomposing
the graph. We discuss in more detail in below (and show
experimental results in Fig. 5). Lastly, Figure 3 depicts the
execution time taken per iteration for both HDO and ParK
for the k-core decomposition. Lower times are better. For the
higher peels (beginning of the decomposition) our algorithm
can be more than 10× faster than ParK. In the later iterations,
our algorithm is still faster though the speedup is not as high
as there is less work and we are unable to utilize the GPU to
its full capabilities.

We start off by analyzing the slower of our algorithms, HDS
and HKS. HDS is faster than the igraph by about 3.5×−13×,

TABLE V: k-core decomposition times in seconds.
Name HDO HDS ParK igraph

dblp-author 0.635 6.184 1.595 82.066
129.2× 13.3× 51.5× 1×

patentcite 5.200 91.481 13.294 331.538
63.8× 3.6× 25× 1×

soc-LiveJournal1 60.755 OOM 487.112 1572.985
25.9× OOM 3.3× 1×

soc-pokec-relationships 2.756 50.049 6.488 235.790
85.6× 4.7× 36.3× 1×

trackers 1006.954 OOM 1148.638 4725.317
4.692× OOM 4.113× 1×

wikipedia-link-de 266.923 OOM 1397.323 3003.166
11.3× OOM 2.149 1×

but is 2×−4× worse than ParK. HDS is faster than igraph due
its parallel scalability and its ability to utilize the GPU. HKS is
occasionally faster than igraph, and if so only be 1.1×−2×,
and is worth than ParK by 6 × −32×. The key bottleneck
in HKS is the large number of updates made to Hornet, the
dynamic graph data structure. This also becomes a bottleneck
in HDS, as HDS calls HKS numerous times. Small batches
underutilize the GPU and add considerable overheads such
as kernel launch overhead. This leads to the slowdowns in
comparison to ParK. To overcome these slowdowns algorithms
HDO and HKO were designed to avoid these performance
penalties.

HDO performs quite well compared to the CPU algorithms,
2 × −8× faster than ParK (on 36 cores / 72 threads) and
11 × −130× faster than the sequential and optimized igraph
algorithm. HKO also performs well, hovering between 2 ×
−58× faster than igraph, and is sometimes faster than ParK
by 2 × −4×. Unlike HDS, HDO is able to fully utilize the
GPU. We discuss the GPU utilization below.

Note that while HKO occasionally beats ParK, HDO is
consistently faster than both ParK and igraph by a fair amount.
The reason HDO generally outperforms ParK, despite having
a higher work complexity, is the massive amount of paral-
lelization available and the dynamic graph data structure. The
benefits of the dynamic data structure are only available to
HDO which actually does the edge deletions–HKO does not
remove any edges. Without this dynamic graph data structure,
deletions end up being prohibitive and require rebuilding the
graph which is what ParK is doing. This leads to HDO our
performing better than ParK for k-core decomposition.

b) HDS and HKS analysis: To verify that the bottleneck
for HDS and HKS is numerous small batches, we observe
the time taken by the batches within HKS as a function of
batch size in Figure 4. Note that this is not linear. Most of



the batches fall under 200000 edges, and that many of these
batches take roughly 10ms, no less time than some batches of
size 600000−800000. This implies that the execution of these
batches is dominated by overheads such as kernel instantiation.
This is investigated further in Para. VI-0c.

c) GPU Utilization: We also plot GPU utilization for
the patentcite network for both HDS and HDO, Fig. 5. To
measure the times, we run the nvidia-smi tool concurrently to
our algorithm and sample the utilization. As this adds some
overhead to the execution time, we normalize 2 the execution
time between 0 and 1. For both HDS and HDO, these plots
also includes the time it takes to load the graph from disk,
create the graph in memory, and write the results to disk. For
this reason, its possible to the GPU at 0% utillization at the
beginning and end of the execution. Note, due to normalization
its not possible to see that the HDO’s execution time is roughly
12× lower than the that of HDS.

For the HDO algorithm, the GPU utilization is consistently
above 80% and is many cases is above 90%. In the later phases
of HDO, the utilization goes down as the graph has been
greatly reduced and few vertices and edges remain. This is
not the case for the slower HDS algorithm which suffers from
lower utilization due to a larger number of small updates made
to the graph. The sample points for HDS hover in the range
of 20%− 75% utilization.

VII. CONCLUSIONS

In this paper we presented several new algorithms for find-
ing both the maximal k-core of a graph as well as decomposing
the graph into smaller subgraphs based on various k-core
values. Finding the maximal k-core and decomposing the
graphs into smaller subgraphs are ubiqitious and used across a
wide range of problems: structural analysis, visualization, and
graph clustering. For finding the maximal k-core we showed
that our new algorithm can be up-to 4× faster than ParK and
58× faster than igraph. For the k-core decomposition our new
algorithm was upto 8× faster than ParK and 130× faster than
igraph. As graphs continue to grow in size faster and more
scalable solutions become necessary. Our new algorithms meet
these requirements and can be executed on a massively multi-
threaded systems. We show a detailed performance analysis on
an NVIDIA GPU and show that our algorithm can be executed
across thousands of threads.
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