
Figure 1: A user using our mixed-reality
coding learning platform to physically in-
teract with a path-finding program and
debug it, by moving an avatar tile (red
virtual avatar anchored on top). Our sys-
tem tracks the avatar’s movement in real
time (with image tracking), to give imme-
diate visual feedback. Correct and incor-
rect code blocks are colored green and red
respectively (on the left). The game board
(i.e., programming problems) are config-
urable, so are all virtual objects (e.g., trees
lining path, motivational green gems and
treasure chest).

Mixed Reality for Learning
Programming

Joonyoung Kim
Georgia Institute of Technology
Atlanta, GA, USA
jkim936@gatech.edu

Sudeep Agarwal
Georgia Institute of Technology
Atlanta, GA, USA
sagarwal88@gatech.edu

Kristina Marotta
Georgia Institute of Technology
Atlanta, GA, USA
kmarotta3@gatech.edu

Siwei Li
Georgia Institute of Technology
Atlanta, GA, USA
robertsiweili@gatech.edu

Jonathan Leo
Georgia Institute of Technology
Atlanta, GA, USA
jleo7@gatech.edu

Duen Horng Chau
Georgia Institute of Technology
Atlanta, GA, USA
polo@gatech.edu

ABSTRACT
We present our ongoing investigation into leveraging mixed reality (MR) to help students learn
coding more easily and with more fun. We have developed an MR coding learning platform using
Apple’s ARKit 2 on iOS, with a physical user-configurable coding game board. Our approach could
provide major benefits over conventional augmented reality (AR) approaches for learning coding
and debugging: (1) allowing teachers to tailor the platform to their instructional needs, and spark
creativity and engagement among students in designing programming problems that interest them;
(2) enabling students to physically interact with a program, concretizing coding errors and providing
real-time visual feedback to aid students’ program understanding and reduce cognitive load. We

IDC’19, June 2019, Boise, US
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in Proceedings of ACM IDC conference, June 2019, https://doi.org/10.475/123_4.

https://doi.org/10.475/123_4


Mixed Reality for Learning Programming IDC’19, June 2019, Boise, US

present our preliminary results that uses ARKit’s image tracking and object detection to enable core
mixed-reality interaction capabilities on our platform.

CCS CONCEPTS
• Applied computing → Interactive learning environments; • Human-centered computing
→ Mixed / augmented reality ;

KEYWORDS
Mixed reality, augmented reality, programming education, coding, ARKit

ACM Reference format:
Joonyoung Kim, Sudeep Agarwal, Kristina Marotta, Siwei Li, Jonathan Leo, and Duen Horng Chau. 2019. Mixed
Reality for Learning Programming. In Proceedings of ACM IDC conference, Boise, US, June 2019 (IDC’19), 6 pages.
https://doi.org/10.475/123_4

Figure 2: Physical user-configurable game
board, with brick path tiles, start and end
tile, and an avatar tile. Cloud tiles fill
empty space to keep path tiles in place.

(a) Physical tile (b) Avatar anchored

Figure 3: ARKit’s image tracking tracks
the image on (a) physical tile and (b) an-
chors virtual avatar on it in real time.

INTRODUCTION
Rapid advances in augmented reality (AR) technologies have created new education possibilities, from
visualizing abstract concepts and scientific phenomena [7], to improving laboratory skills [1]. Our
recent work [3] demonstrated that AR’s benefits could extend to helping students learn coding more
easily and with more fun. However, AR also creates new challenges for students and educators. Some
studies reported that AR systems often cause cognitive overload [2, 4]. AR systems can be difficult for
teachers to adopt to meet their instructional objectives, as the AR content is often fixed [7].

We present our ongoing investigation into leveraging mixed reality (MR) to address some of the
above challenges and to enhance the learning experiences for coding. To evaluate our ideas’ feasibility,
we have developed an MR coding learning platform (Fig. 1) using Apple’s ARKit 2 on iOS, with a
physical user-configurable coding game board, and a tangible avatar object that would navigate
towards a goal on the board. This research builds on our earlier AR work [3]. But unlike conventional
AR, which primarily overlays virtual objects onto the real world and the user would still interact with
them digitally, our MR approach for coding aims to provide major education benefits:

(1) Physical avatar to concretize coding errors.We leverage MR to introduce a novel way for
students to physically interact with the program execution process and to debug it step by step
(see Fig. 1). Students would “trace” a program’s code by physically moving a physical avatar
object. Our system tracks the student’s movements in real time and give immediate visual
feedback, which could help reduce their cognitive load [7] and improve their understanding
of the errors. Debugging is a crucial skill that can greatly improve students’ understanding of
their programs [5, 6].

https://doi.org/10.475/123_4


Mixed Reality for Learning Programming IDC’19, June 2019, Boise, US

(2) Tailored game boards. A main pedagogical challenge that educators face in using AR systems
to accomplish instructional objectives lies in the inflexibility of the system content. Our approach
could help teachers more easily tailor the platform to their instructional needs [7], and spark
creativity and engagement among students (e.g., design coding problems, virtual avatars).

CODE LEARNING PLATFORM

Figure 4: Scanning physical path tiles
(“bricks”) into a virtual path, using image
detection. Successfully scanned tiles are
temporarily highlighted in white.

Using our code learning platform, the user can write a path finding program that builds a path to
guide an avatar to a goal. The user composes the program using commands shown at the bottom of
the user interface (see Fig. 1): turn left, turn right, and move forward.

To execute the code — different from most other systems for learning programming — we leverage
MR to introduce a novel way that engages the user to physically evaluate and debug their program.
Figure 1 shows an example, where the user “traces” the written program, by physically moving the
physical avatar tile. Our system tracks the user’s movements in real time and gives immediate visual
feedback as to whether they match the (virtual) program written. This debugging-like process allows
the user to gain a better understanding of coding errors that they may have made, helping to reduce
their cognitive load [7].

(a) (b) (c)

(d) (e) (f)

Figure 5: Board Tiles: (a) path tile, (b) filler
tile, (c) start tile, and (d) end tile. Start and
end tiles are starting and end point of the
path. Example “bad” tiles: (e) low contrast;
(f) disorienting pattern.

Tailored Game Board. Through different arrangements of physical tiles to create the game board (as
in Fig. 2), users can construct their own learning experience, which offers more flexibility for teachers
to tailor their course content compared to existing AR applications [7]. This is done using image
detection in ARKit, which allows us to identify the position of the tile placements and accordingly
generate a virtual environment around the tiles (Fig. 1).

To build the game board, the user builds a grid using brick tiles (Fig. 5a) and filler tiles (Fig. 5b). The
filler tiles are used to surround the brick path, forming a square or rectangular grid. The contrasting
color between the two types of tiles helps with image detection andmakes the board visually appealing.
A wide range of path complexity can be achieved using these tiles (Fig. 6).

Avatar. After the user completes the coding task, the user is able to move a physical avatar object to
simulate the execution using image tracking. This allows the user to move the physical tile around
and see a virtual character following the direction of the tile in real-time (Fig. 3).

Interface Design. The user interface brings the game board and avatar together, allowing the user to
solve the path finding task. When the interface is launched, the user is asked to scan the tiles in order
to build a map of the game board (Fig. 4). The user then places the physical avatar on the starting
tile, and begins to plan the path using moveForward(), turnLeft(), and turnRight() buttons within the
interface. Each corresponding code block is then added to the left-hand side panel. When the user is
ready to execute their program, they select the runProgram() button, which highlights the first code
block in the panel orange, prompting the user to perform the action. If the performed action leads to



Mixed Reality for Learning Programming IDC’19, June 2019, Boise, US

a correct step in the solution, the highlighted block turns green. However, if the user performs the
wrong action, or the planned step is incorrect, the block turns red, prompting the user to correct the
step (Fig. 1). This process is repeated with each step until the user manages to bring the avatar to the
destination tile, or reaches the end of the planned path.

(a) (b) (c)

Figure 6: Paths with varying complex-
ity can be created for learning different
programming concepts (e.g., for loops, if
statements), from (a–b) simpler paths to
(c) long, complex paths with many turns.

(a) Front (b) Front 45◦ (c) Side

Figure 7: “3D” image tracking of avatar
cube from (a) front, (b) 45 degrees angle
from front, and (c) side.

IMPLEMENTATION
We implemented the above system using Apple’s ARKit 2, which provided us with a real-time image
tracking implementation and, more importantly, the world tracking capability that establishes a
correspondence between real and virtual spaces — a crucial feature required for the system to scan
the user-designed paths and to “anchor” the paths in the physical world to enable our novel learning
approach through MR. World tracking is not available in other popular AR SDKs such as Vuforia.
Below, we described details of our implementation and how it resolved key technical challenges.

Game Board Detection. We created 2.56" × 2.56" square tiles, on which a brick image is printed.
Three important characteristics were used to choose an appropriate image for the path tiles:

(1) High Resolution: 512 × 512 pixels or better
(2) High Contrast: sharp lines and contrasting colors
(3) Wide, Flat Histogram: variety and even distribution of colors

The brick image chosen for our tiles pictured in Figure 5a, has higher contrast and a more appropriate
histogram than that in Figure 5e. The sharp lines throughout the pattern in our chosen image aids
in detection, maximizing the efficiency of ARKit’s recognition of the board. While the tile shown in
Figure 5f satisfies all three characteristics, it would become hard on the user’s eyes in a path. As such,
tile in Figure 5a was chosen.

Avatar Tracking. Throughout the process of tracking the game’s avatar tile, both the distance and
angle at which the device camera is held with respect to the avatar affect its detection speed and
accuracy, ultimately impacting the user experience. Tracking may drop off at longer distances or
at smaller angle of depression between the camera and avatar. To “re-track” the avatar tile, ARKit
requires the user to first move the device camera significantly closer to the avatar tile to “lock it in”
before moving the camera further away. We hypothesized that instead of using a flat 2D avatar tile
(2.25" × 2.25"), using a cube (2.25" on all sides) with different images on its 6 faces would provide
more opportunities for ARKit to track (at different angles and distances), thus improving the tracking
robustness. To better understand the pros and cons of these two physical designs (tile vs. cube), we
tested them against ARKit’s built-in image tracking and object detection functionality. Specifically, we
tested:

(1) 2D Image Tracking: image tracking of a single avatar tile image
(2) “3D” Image Tracking: simultaneous image tracking of all 6 images of the cube



Mixed Reality for Learning Programming IDC’19, June 2019, Boise, US

Table 1: The farthest distances from the physical avatar (tile or cube) in centimeters for
which the device may be held, at angles of depression of 90◦, 60◦, 45◦, 30◦ and 0◦.

Physical Avatar Tracking Method 90◦ 60◦ 45◦ 30◦ 0◦

Tile 2D Image Tracking 96.54cm 73.62cm 58.34cm 44.57cm N/A

Cube “3D” Image Tracking 104.68cm 78.33cm 63.41cm 41.88cm 65.86cm

3D Object Detection 64.59cm 71.47cm 77.84cm 68.44cm 55.89cm

(3) 3D Object Detection: scanning for and detecting the avatar cube, on an interval timer, emu-
lating object “tracking”

We evaluated which approach would be the most optimal to use in our system and summarized our
findings in Table 1. For the avatar tile, the angle of depression and distance were measured from the
midpoint of the avatar (laid flat) to the device camera. For the cube, they were measured from its
center.

(a) Correct orienta-
tion

(b) Incorrect

Figure 8: 3D object detection of avatar
cube. (a) Virtual orientationmatches phys-
ical orientation. (b) When detected from
some angles, virtual orientation does not
match physical counterpart.

For the second approach (“3D” Image Tracking), we simultaneously tracked all 6 sides of the cube
(using same 2D image tracking in our first approach), while displaying the virtual avatar on top of
the cube regardless of which side it was detected from (see Fig. 7a–c). Tracking all sides provided
redundancy. If tracking was lost on the top face image, it could be picked back up from one of the
images on other sides or vice versa. While this approach allowed tracking at low angles of depression
(and our first method did not), tracking still failed at some angles. The biggest drawback of this
approach is the large size of the cube, which blocks much of the user’s view of the game board, both
physically and virtually. Our third approach (3D Object Detection) allowed the avatar to be recognized
at most angles. However, since ARKit 2 only supports 3D object detection and not continuous tracking,
the avatar was not recognized in real time. We also found that ARKit occasionally fails to correctly
detect the avatar cube’s orientation (like in Fig. 8b), thus incorrectly orientating the virtual avatar,
decreasing usability. Comparing all three approaches, we decided the first one was the most efficient,
optimal mechanism for our system.

ONGOINGWORK

User Testing. In order to examine whether mixed reality, specifically the hybrid use of physical and
virtual objects, would enhance the learning experience, we plan to conduct lab studies to evaluate
six areas of usability and effectiveness of our approach: immersiveness, ease of debugging, ease of
planning, likeability, ease of use, and task completion time. We plan to compare these results with
those from our earlier AR-based work [3] that did not evaluate or support any hybrid physical-virtual



Mixed Reality for Learning Programming IDC’19, June 2019, Boise, US

interaction, to assess the value added by the mixed reality. Since this project has been mainly targeting
beginning learners of coding, we plan to recruit participants from middle school and high school
who have little or no previous programming experience. Through discussion and consultation with
Georgia Tech’s Center for Education Integrating Science, Mathematics and Computing (CEISMC), we
have identified a local high school, Grady High School, for our first engagement.
We are also working to support more programming concepts (e.g., loops and conditionals), and

implementing corresponding path finding challenges that stimulate students’ learning interest.

CONCLUSIONS
We presented our ongoing investigation into leveraging mixed reality (MR) to help students learn
coding more easily and with more fun. we have created an MR coding learning platform using Apple’s
ARKit 2 on iOS, with a physical user-configurable coding game board, and a tangible avatar object that
would navigate towards a goal on the board. We believe our MR approach offers major benefits over
conventional augmented reality (AR) approaches: (1) allowing teachers to tailor our platform to their
instructional needs, and spark creativity and engagement among students in coming with program
problems that interest them; (2) enabling users to physically interact with a program, concretizing
coding errors and providing real-time visual feedback that could aid users’ understanding of the
program and lessen cognitive load. As we proceed with our planned user studies, we will better
understand the potential of mixed reality in enhancing beginners’ learning experience for coding.

REFERENCES
[1] Murat Akçayır, Gökçe Akçayır, Hüseyin Miraç Pektaş, and Mehmet Akif Ocak. 2016. Augmented reality in science

laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science
laboratories. Computers in Human Behavior 57 (2016), 334–342.

[2] Kun-Hung Cheng and Chin-Chung Tsai. 2013. Affordances of Augmented Reality in Science Learning: Suggestions
for Future Research. Journal of Science Education and Technology 22, 4 (01 Aug 2013), 449–462. https://doi.org/10.1007/
s10956-012-9405-9

[3] Nathan Dass, Joonyoung Kim, Sam Ford, and Sudeep Agarwal. 2018. Augmenting Coding : Augmented Reality for Learning
Programming. (2018), 156–159. https://doi.org/10.1145/3202667.3202695

[4] Matt Dunleavy, Chris Dede, and Rebecca Mitchell. 2009. Affordances and Limitations of Immersive Participatory
Augmented Reality Simulations for Teaching and Learning. Journal of Science Education and Technology 18, 1 (01 Feb
2009), 7–22. https://doi.org/10.1007/s10956-008-9119-1

[5] Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters, Amber Horvath, Fanny Luor, Jill Cao, Catherine
Law, Michael Beswetherick, et al. 2014. Principles of a debugging-first puzzle game for computing education. In Visual
Languages and Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on. IEEE, 57–64.

[6] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon, Lynda Thomas, and Carol Zander. 2008.
Debugging: a review of the literature from an educational perspective. Computer Science Education 18, 2 (2008), 67–92.

[7] Hsin-Kai Wu, Silvia Wen-Yu Lee, Hsin-Yi Chang, and Jyh-Chong Liang. 2013. Current status, opportunities and challenges
of augmented reality in education. Computers & education 62 (2013), 41–49.

https://doi.org/10.1007/s10956-012-9405-9
https://doi.org/10.1007/s10956-012-9405-9
https://doi.org/10.1145/3202667.3202695
https://doi.org/10.1007/s10956-008-9119-1

	Abstract
	Introduction
	Code Learning Platform
	Implementation
	Ongoing Work
	Conclusions
	References

