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The IceCube Neutrino Observatory is also a very unique extensive air shower (EAS) detector,
that simultaneously measures the EAS footprint on the surface and the high-energy muons in
deep ice. The surface array - IceTop, comprising of ice-Cherenkov tanks, will be enhanced in
the coming years with scintillation detectors and radio antennas. The hybrid detection enables
the reconstruction of EAS parameters based on different underlying signal distributions. A new
framework within the IceCube software allows for a flexible implementation of signal and time
models for different detector components and a combination of resulting likelihood functions. The
in-ice muon signal can serve as an anchor for the reconstruction of the EAS axis, resulting in an
improved reconstruction resolution. Moreover, it makes it possible to reconstruct EASs with an
impact point outside the IceTop array, opening a larger zenith-angle range for analyses of IceTop
and in-ice coincident events. In this contribution, we present the capabilities of the combined
reconstruction for different classes of EAS events with various detector configurations.
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A multi-detector EAS reconstruction framework for IceCube

1. Introduction

Over the last decades, EAS experiments have been continuously improving their detection and
calibration techniques, as well as the accuracy of the measurements. The results of EAS arrays and
particle accelerators have deepened our understanding of the air-shower development, allowing for
better modeling of the particle distributions, and in turn more precise estimations of the primary
cosmic-ray (CR) properties [1]. Further improvements can be achieved by probing different EAS
components simultaneously with different detector types. The IceCube Neutrino Observatory is
already uniquely equipped to detect not only the footprint of abundant particles on the surface, but
also the high-energy muons (≳ 300 GeV) penetrating the in-ice optical array. The surface part of
IceCube, IceTop, an array of ice-Cherenkov tanks, detects mainly electromagnetic particles and
low-energy muons. It provides a good estimate of the CR energy and EAS geometry for events
that are well-contained within the 1 km2 array [2]. For EAS experiments, the CR mass is typically
inferred using measurements of the muon content in the air shower or the atmospheric depth of the
maximum number of particles; it also impacts the shape of the particle distributions on the ground.
Measurements of the ∼ 1 GeV muon content are performed using IceTop [3], and the high-energy
muons (≳ 300 GeV) are measured with the in-ice array. The CR composition analysis at IceCube is
currently obtained using mainly the in-ice signals [2]. However, to provide information from both
IceTop and the in-ice array, only events intersecting both detectors can be analyzed, significantly
limiting the accessible solid angle. This could be solved by utilizing, in the EAS reconstruction,
the high-energy muons which closely follow the EAS axis, opening the possibility to reconstruct
events that are not well contained within the IceTop array [4].

IceTop is planned to be enhanced with additional detector types, scintillation detectors and
radio antennas [5]. The response of the scintillator panels and IceTop tanks to the various classes
of secondary particles is different, and the overall variations between these detectors result in
small differences in the observed lateral distributions. Orthogonally, the radio antennas can detect
the radio-frequency emission that is generated by moving charged EAS particles. This technique
provides a good estimate of the atmospheric depth of the maximal number of electromagnetic
particles (𝑋max) as well as a measurement of the electromagnetic EAS energy. The multi-detector
measurements will allow us to study air showers from complementary perspectives. Additional
measurement points can improve the current reconstruction accuracy, as well as extend the event
sample. This motivated the effort to create a common framework for multi-detector EAS recon-
struction at IceCube - a code structure that is flexible enough to accommodate any combination of
the detector components depending on the class of events.

In this work, we study two classes of events. The first comprises contained events, those that
have their EAS axis passing through the surface array. All IceTop analyses exclusively use events
that are selected based on this containment criterion. The second class comprises uncontained
events. This set generally contains the EASs that produce signals in the IceTop tanks and are
not limited by the containment criterion. However, in this work, we will adopt the definition that
uncontained events have some signals in both, the surface and the in-ice detectors.
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2. Reconstruction framework
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Figure 1: Example of a contained multi-detector EAS-
event simulation. Signals at the surface from IceTop tanks
and below the surface from the optical array are marked in
blue, and from the scintillation detectors in maroon. The
shades indicate the arrival times, and the size of the markers
scales with signal strength. No background noise is plotted.
The red line indicates the EAS axis. The radio signals are
not shown.

The basis of this new framework is a
construction of the likelihoods and param-
eter space for individual detector-arrays
and linking them into one global mini-
mization. The expected response of any
individual array can be modeled by a distri-
bution of signal strengths and arrival times
in the EAS coordinate system (refer to as
the lateral distribution function, or LDF,
and the EAS front), as well as their re-
spective probability distributions. These
model functions are generic and can be
populated with user-defined values. All
the likelihood functions and models are de-
rived from the same base class, such that
new detectors and reconstructions can be
easily added. During the fitting routine,
the hypothesis of the geometry of the EAS
(orientation and trajectory) is given to each
array’s likelihood routine, from which the
expected signals and timing can be cal-
culated using that array’s LDF and EAS
front expectation. From this, the likeli-
hoods from all the detector components
(involved in a given reconstruction) of the
current event hypothesis are combined.

Two limited sets of simulated EAS
events propagated through different detec-
tor arrays were prepared to study the capa-
bilities of this multi-detector reconstruc-
tion. The IceTop enhancement assumes 32 stations of 8 scintillation detectors and 3 radio an-
tennas [5]. All EASs were generated using CORSIKA [6] with FLUKA [7, 8] and Sibyll 2.3d [9]
for low- and high-energy hadronic interactions, respectively. The radio emission generated by the
EASs was simulated using CoREAS [10]. The energy depositions from the EAS particles in the
IceTop tanks and scintillation detectors were calculated with the Geant4 toolkit [11], for details
see [12, 13]. IceTop has a time-dependent nature due to the snow accumulation on top of the
tanks [14]. The tanks were thus simulated with snow heights extrapolated for the year 2025 from
previous years’ measurements at the South Pole, resulting in an overburden of ≈3.3 m of snow
on average. High-energy muons were propagated in the ice using PROPOSAL [15], and photon
propagation to the optical modules was done with a simulation package based on OpenCL [16]
embedded in the IceCube software. The simulation of the antennas generally follows the scheme
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outlined in [17]. The voltage waveforms were generated by folding in the response of the SKALAv2
antennas [18] with the simulated electric fields via an interpolation method. Likewise, the response
of the readout electronics (cables, amplifiers, digitizer, etc.) was included to produce realistic
waveforms. Noise was added to the waveforms using a combination of Johnson-Nyquist noise and
the Cane model of (extra-)galactic emission [19].

An example of a multi-detector simulated event induced by a 10 PeV proton is shown in
Figure 1. The colors reflect the arrival times, while the sizes of the markers indicate the signal
strength. The EAS axis, marked as a red line, is well anchored by the in-ice array response. The
addition of the scintillation detectors increases sampling of the particle footprint close to the impact
point and extends it to larger distances.

For simulating contained events, CORSIKA simulations were re-sampled ten times with impact
points randomly distributed on a circle with a 400 m radius from the IceTop center. For the
uncontained case, the impact points were chosen randomly within 1 km distance from the IceTop
border and the EAS axis was chosen to pass through the in-ice volume to maximize the event
generation. This volume is defined by a 3D convex hull that encloses all but the outer layer of the
in-ice detectors.

3. Reconstruction using multiple detectors

For both the contained and uncontained events, the multi-detector reconstruction method
yields improved resolutions on the EAS parameters. It should be noted that with a multi-detector
reconstruction, the quantity of the minimization settings (step sizes, boundaries etc.) is essentially
a separate optimization problem, and here we report only the currently selected version.
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Figure 2: Reconstruction performance for single (IceTop/scintillator array) and combined reconstructions.
Left: the displacement of the simulated vs reconstructed impact points. Right: the angle between the
simulated and reconstructed arrival directions. The resolution using only the IceTop tanks (blue) and
scintillator panels (yellow) is shown, along with the reconstruction using the combined information (maroon).
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3.1 Contained events with IceTop and scintillation detectors

An increased number of sampling points, by including different detectors, can improve the EAS
geometry reconstruction, which in turn improves the reconstruction of physics-relevant observables
such as CR energy and mass. We first studied the improvement using only surface information,
i.e. from IceTop and scintillator array (and their combination) as most air showers, particularly the
inclined ones, do not have corresponding in-ice signals. For this study, we use proton-induced EASs
with PeV energies and zenith angles ranging from vertical up to 45◦. Both arrays’ reconstructions
use LDF in this form: S (r) = Sref (r/Rref)−𝛽−^ log10 (r/Rref ) , where Rref is a reference distance and
𝑆ref is expected signal at this distance. The scintillator EAS front is described by a simple parabolic
shape, while IceTop one has additional Gaussian structure close to the axis. For more details about
the models and the likelihood functions see [20] and [12].

Figure 2 shows the reconstruction performance on the parameters that define the EAS axis.
The improvement when combining information from two arrays is clearly visible for both variables,
particularly for the tails in the distribution of the impact-point differences. For these ≈1 PeV events,
the resolution (defined as the 68th percentile) of the impact point for the combined reconstruction
improves by ∼ 1 m with respect to the scintillator-only case, and almost 20 m with respect to the
IceTop-only one. The larger improvement for IceTop is expected since 1 PeV is below the full
efficiency of the array for the simulated snow heights, and thus individual events include only a few
tanks. At higher energies, 10 PeV, the resolutions of the EAS impact point and direction are even
better, 4 m and 0.5◦, for the combined reconstruction.

When combining different arrays in one minimization routine, one of the difficulties is that
the hypothesis of the EAS arrival time is shared. Ideally, the reconstruction of the EAS front
would describe when the first particles arrived at/near a given detector. However, due to the timing
delays in the detector’s response (e.g. from cables, digitization, light collection time, etc.), sharing
a common time-base requires detailed knowledge of the detector response and readout hardware.
Only some of these time delays have been incorporated for the scintillator simulation, since the
operational settings have not been finalized. So for the combined reconstruction with the IceTop
tanks, an extra parameter was fit to account for a time offset relative to the EAS arrival time.

3.2 Impact on the resolution of 𝑋max

The reconstruction of events using radio antennas requires a good estimate of the position and
orientation of the EAS axis. Unlike in the case of the particle detectors, the lateral distribution of
the radio emission is non-monotonic. The coherent emission is beamed at the Cherenkov angle
and produces a ring of enhanced emission. For the South Pole, these Cherenkov peaks occur at
distances of up to hundreds of meters [21].

Events were reconstructed using a model for the reconstructed energy fluence (energy-per-area)
that is received by the antenna. This is done by unfolding the antenna response function from the
observed voltage waveforms. This procedure, described in [17], produces an estimate of the electric
field components at the antenna location. The likelihood is then calculated by transforming into the
�̂� × �̂� coordinate system, where 𝑣 is the propagation direction and 𝐵 is the local magnetic field (see
e.g. [22]), and calculating the fluence of the �̂� × �̂� and �̂� × (�̂� × �̂�) components of the electric field.

5



P
o
S
(
I
C
R
C
2
0
2
3
)
3
6
6

A multi-detector EAS reconstruction framework for IceCube

100 50 0 50 100

Xmax / (g cm 2)

0.000

0.005

0.010

0.015

0.020

N
o
rm

a
li

ze
d

 C
o
u

n
ts

Ic
e
C

u
b

e
 W

o
rk

 i
n

 P
ro

g
re

ss

AxisMC

AxisScint. + IceTop

Figure 3: The resolution on 𝑋max, as reconstructed using
the radio antennas, is shown for 50 PeV air showers. During
the reconstruction, the EAS axis was fixed to either the
reconstructed or true (MC) one.

These observed energy fluences are com-
pared to the expected one given by an LDF,
whose shape depends only on an overall
normalization and the slant depth from the
observation point to 𝑋max [21]. Using such
a formalism, the reconstruction directly
produces the two parameters of interest,
𝑋max and the total amount of radiated en-
ergy, of which the latter is proportional to
the number of electrons and positrons in
the air shower.

Figure 3 shows the resolution on
the reconstructed 𝑋max values for 50 PeV
EASs with zenith angles of 45◦–57◦ using
this likelihood method. The reconstruc-
tions have been performed by using the
EAS axis identified by either the true one
(MC) or the one from the combined surface reconstruction, as detailed in section 3.1. The recon-
structions on 𝑋max are 20.3 ± 0.6 g/cm2 when using the true EAS axis and 24.9 ± 0.8 g/cm2 when
using the axis from the combined reconstruction. That the resolution of the combined reconstruc-
tion is almost as good as that of using the true impact point is unsurprising as there are many tens
of detectors triggered in both arrays. In these cases, the large amount of data ensures a high-quality
reconstruction with a resolution of the EAS impact point and direction of 5 m and 0.5◦, respectively.

3.3 Uncontained events with the in-ice array

Uncontained events, in general, refer to air showers that impact the surface outside of the IceTop
boundary. They pose a challenge for data analysis because the surface detectors are not capturing
sufficient information about the EAS footprint. Hence, relevant observables, such as CR energy, are
underestimated or distorted as there is a degeneracy between the reconstructed impact parameter and
the EAS size. However, the reconstruction using the combination of surface and in-ice information
can break this degeneracy. In this study, we first infer the impact point on the surface from the in-ice
reconstructed axis, and then combine surface and in-ice signals in a minimization routine.

Since most of the particles in uncontained events land outside of the surface array, the energy
threshold to trigger IceTop increases and depends on the zenith angle, \. For this study, only EAS
simulations with an energy of 10 PeV and a zenith angle up to 40◦ were considered. The difference
between simulated and reconstructed impact points and directions, using IceTop-only as well as
IceTop and in-ice combined reconstruction, are shown in figure 4. Only events with an impact point
outside of IceTop were selected. However, due to the applied pulse cleaning they span only up to
≃ 100 m from the array border. The resolution with a combined reconstruction improves by around
30% for these events. Further work on adjusting the current processing will allow for an extension
of the event sample to larger distances.
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Figure 4: Reconstruction performance for uncontained events that use signals from IceTop-only as well as
from the in-ice detectors. Left: the displacement of the simulated vs reconstructed impact points. Right: the
angle between the simulated and reconstructed arrival directions.

4. Outlook

The distinctive construction of IceTop, located above the in-ice detector array, enables the
analysis of the events that are not contained within the IceTop area by including the in-ice signals
from high-energy muons. Moreover, the planned IceTop enhancement foresees the deployment of
scintillation panels and radio antennas, which will provide additional information about the EAS
footprint. A new reconstruction framework allows us to effectively combine all measured data in
a minimization routine of a negative log-likelihood. A preliminary hybrid reconstruction based on
IceTop and the planned scintillator array shows an improvement in the estimation of EAS geometric
parameters, which translates to the CR observables’ resolutions. The EASs which are not contained
within the IceTop array typically would not be included for further analysis due to deteriorated
reconstruction. Utilizing the in-ice track reconstruction and combining it with the IceTop one,
allows for successful reconstruction of these events. While a more systematic investigation is
required, this study demonstrates the feasibility to include uncontained events in EAS analyses.

Another reconstruction technique that this framework allows for is the use of multiple LDFs
to describe a single array’s observations of a given event. Such a technique is currently being
explored to describe the total observed signal in the IceTop tanks as the combination of a muon and
electromagnetic LDF [23]. Such a technique enables measurements of the muon content in EASs
on an event-by-event basis.

Future work will explore the possibility to reconstruct sub-threshold events wherein there are
not enough triggered detectors in a single array to fully constrain the EAS axis and the LDF. While
the scintillator array requires at least five detectors and IceTop at least five pairs of neighboring
tanks, it would be possible with this reconstruction framework to recover these sub-threshold events
by the combination of information from both arrays. This would enhance the number of both low-
energy and high zenith-angle events where the scintillator array and IceTop have better efficiency,
respectively.
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