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A Hierarchical Latent Stochastic Differential Equation Model for

Affective Dynamics
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In this article a continuous-time stochastic model (the Ornstein—Uhlenbeck process) is presented to model
the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our
affective experiences. The process model that we propose can account for the temporal changes in core
affect on the latent level. The key parameters of the model are the average position (also called home
base), the variances and covariances of the process, and the regulatory mechanisms that keep the process
in the vicinity of the average position. To account for individual differences, the model is extended
hierarchically. A particularly novel contribution is that in principle all parameters of the stochastic
process (not only the mean but also its variance and the regulatory parameters) are allowed to differ
between individuals. In this way, the aim is to understand the affective dynamics of single individuals and
at the same time investigate how these individuals differ from one another. The final model is a
continuous-time state-space model for repeated measurement data taken at possibly irregular time points.
Both time-invariant and time-varying covariates can be included to investigate sources of individual
differences. As an illustration, the model is applied to a diary study measuring core affect repeatedly for
several individuals (thereby generating intensive longitudinal data).
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Affective experience colors our lives. Feelings like joy, sadness,
anger, and love are the affective tides of our being. A crucial feature
of affect is that it changes and evolves over time. Hence, a genuine
understanding of our affective system must be based on understanding
the affective dynamics. Prominent researchers in the field consider
this a challenging goal that deserves systematic study. For instance,
Scherer (2000) believed that the study of the time course of emotional
experience could bring about a paradigm shift in emotion psychology,
and Boker (2002) claimed that understanding the dynamics of emo-
tion is a challenging goal deserving a comprehensive investigation.
Referring specifically to research into the patterns of change that are
particular to human emotions, Davidson (2003) even coined a partic-
ular term: affective chronometry.

To make such an endeavor possible, the use of dynamic systems
theory has been put forward by a number of researchers (e.g.,
Lewis, 2005; Scherer, 2000; Shoda, LeeTiernan, & Mischel, 2002;
Witherington & Crichton, 2007). However, there are relatively few
recent studies in which dynamical systems models have been
applied to investigate affective dynamics, although there are some
notable recent exceptions (e.g., Boker, 2002; Boker & Laurenceau,
2006; Chow, Ram, Boker, Fujita, & Clore, 2005; Hamaker, Zhang,
& van der Maas, 2009; Hoeksma, Oosterlaan, Schipper, & Koot,
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2007). Our contribution in the present article is the development of
a specific substantively grounded dynamic systems model with
individual differences for the crucial parameters. Additionally, we
present the necessary methods to apply it to real data.

Specifically, we will focus on the dynamics of core affect, which
has a central role in current emotion theory (Barrett, Mesquita,
Ochsner, & Gross, 2007; Russell, 2003). Core affect lies at the heart
of our affective experience and consists of hedonic (pleasure—displea-
sure) and arousal (deactivated—activated) dimensions. According to
Russell (2003), core affect does not always actively come to the
surface of our consciousness, but it is at all times consciously acces-
sible, so that people can provide information about their current state.
It is assumed that at least part of the momentary emotional experience
relies on the current core affect state.

When we construct a model for temporal fluctuations in the core
affect state over time, three important factors need to be taken into
account in order to have a plausible, realistic model. First, because
the complexity of the subject makes any description necessarily
incomplete, our model should allow for a fair degree of random-
ness. Second, the model should contain an aspect of control and
regulation. Third, although a single model can underlie the core
affect dynamics, quantitative individual differences can show up in
different places and need to be accounted for.

Central Aspects of Affective Changes: Randomness,
Regulation and Individual Differences

Our emotional life in general, and core affect in particular, is
constantly influenced by external and internal factors (Denissen,
Butalid, Penke, & van Aken, 2008; Russell, 2003; Russell &
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Barrett, 1999; Watson, Wiese, Vaidya, & Tellegen, 1999). Listing
all these minor and major impacts would be a cumbersome, if not
an impossible task, and measuring them would be an even greater
challenge. External factors may include environmental effects like
the weather, food intake, drugs, ionization in the air, physical
activity, social company, and so on. Internal effects, on the other
hand, involve important physiological and psychological processes
(e.g., the level of certain critical hormones, perception of one’s
own emotion). Because most of these effects exhibit continuous
change over time, the resultant core affect state will also be subject
to incessant variation. This suggests that, at least in theory, sub-
sequently visited states in the core affect space should form some-
thing like a random trajectory (i.e., a kind of random walk in two
dimensions). Unfortunately, when we attempt to explain such a
core affect trajectory of a person by linking it to external and
internal effects, we may realize that the obtainable information is
very limited: It would be overly optimistic to believe that we are
able to find all events influencing the core affect at a given
moment. As a result, we are left with describing the summed
influence of many contributing unknown factors. The current core
affect state can then be considered the culmination of numerous,
simultaneously occurring small and large impacts. Consequently,
we can assume a considerable degree of uncertainty in the core
affect dynamics, and therefore we will introduce stochastic models
to model the inherent randomness. These models assume that noise
drives the changes in the true score of the variable. Note that in the
model to be presented, measurement noise will also be added, so
that we will be able to distinguish between two sources of random
variation.

A second aspect that we need to consider is the degree of control
present in the emotional life. At the substantive level, our model
should be anchored in the principles of emotion regulation: the
conscious or unconscious efforts people make to exert some in-
fluence on their emotions (Frijda, 2007; Gross, 2007; Gross &
John, 2003; Hemenover, 2003). Many theories based on homeo-
static principles (see, e.g., Carver & Scheier, 1990; Chow et al.,
2005; Forgas & Ciarrochi, 2002; Hemenover, 2003; Larsen &
Prizmic, 2004) suggest that each person has an “ideal point” in the
two-dimensional core affect space to which he or she is drawn
back to a varying extent. If an individual’s current position is
further from the ideal point, the “traction” or restoring force will
become stronger. On a metaphorical level, this assumption might
conjure up the picture of an elastic band connecting the ideal point
with the current position: The force exerted by the elastic will be
stronger for positions farther from the ideal point but will be very
small close to the ideal point.

Finally, individual differences are present at different levels and
locations in the emotion system (see, e.g., Kuppens, Stouten, &
Mesquita, 2009; Kuppens, Van Mechelen, & Rijmen, 2009). To
take the individual differences into account, we could define a
separate model per individual. However, it may happen that the
number of observations for a certain individual is low and the
within-subject estimate might become overly noisy. For this rea-
son, we prefer hierarchical modeling (see also Gelman & Hill,
2007). In a hierarchical model, some of the parameters of the
model can differ across individuals (these parameters are also
called random effects), but given the hierarchical structure of the
model, the parameters of individuals that contribute less informa-
tion to the sample (e.g., because they have fewer measurements)

can nevertheless be reliably estimated. In addition, constraining
parameters to be equal across participants is not problematic, and
one may regress the random effects on covariate information.

Introducing a Dynamical Approach Based on the
Ornstein—Uhlenbeck (OU) Model

On the basis of these important aspects of affective changes, we
turn to the branch of mathematics that deals with random phenom-
ena, namely the theory of stochastic processes. Stochastic pro-
cesses have proven very useful in describing probabilistically
governed change in other domains (e.g., statistical physics, ecol-
ogy), and they seem to be appropriate for modeling complex
human phenomena as well. In the present article, we focus on a
dynamical model built on a particular stochastic differential equa-
tion (SDE), which leads to the OU (Uhlenbeck & Ornstein, 1930)
process. This stochastic process combines elements of stochastic
variability and deterministic control in an elegant way. Moreover,
the OU process is continuous in time (it is the continuous-time
analogue of a first-order autoregressive model), which is appro-
priate for modeling core affect because it does not cease to exist
between observations.' Also, due to the continuous-time property,
the measurements can be taken at person-specific time points, with
varying numbers of observations per person. Our approach also
allows for the data to be unbalanced and unstructured. The afore-
mentioned complications (unequally spaced measurements, unbal-
ancedness and unstructured data) are very common in data stem-
ming from diary studies. Therefore, from a data-analytical
perspective, such flexibility is a key advantage in several applica-
tions in the field of emotion psychology. In our model, the OU
process represents the change in the true core affect position for a
single person over time. However, it is reasonable to assume that
the subjectively reported or observed core affect positions will
typically be perturbed by measurement error. Incorporating mea-
surement error in the OU model results in a model representation
that belongs to the general class of state-space models (see, e.g.,
Fahrmeir & Tutz, 2001; Jazwinski, 1970; Oud & Jansen, 2000;
Ringo Ho, Shumway, & Ombao, 2006). This stochastic process
may be appropriate to describe the core affect dynamics in a single
individual, but an extension is needed to take into account indi-
vidual differences in the parameters governing the process. There-
fore the key parameters of the state-space OU model will be
allowed to differ across persons. In addition, it will be possible to
link them to person-specific covariate information. Because of the
hierarchical extension, we denote our model as the hierarchical OU
(or HOU) model.?

! Moreover, simplifying continuous time to discrete may compromise
the possibilities of inference on the dynamics of change (for an example,
see Delsing, Oud, & De Bruyn, 2005).

2 Readers who are interested in an accessible introduction to the topic of
SDE modeling in general and the OU process in particular are referred to
Tuma and Hannan (1984). More general and detailed introductions to
stochastic processes are in Cox and Miller (1972), Gardiner (2004), Karlin
and Taylor (1981), Lawler (2006), and Ross (1996). In this article, we
explain the HOU model in an informal and intuitive way so that no
previous background in SDE or stochastic processes is required.
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The structure of the remainder of the article is as follows: In the
next section, the basic OU model for a single individual is intro-
duced first. It is followed by a hierarchical extension allowing for
the inclusion of individual differences. Then we describe briefly
how statistical inference can be carried out for this model within a
Bayesian framework. Following that, the HOU model will be
applied to data from a diary study. After a discussion of model fit,
the Conclusion section ends the article.

Modeling the Affect Dynamics of a Single Individual:
The OU Model With Measurement Error

In this section, we describe the OU process with measurement
error as a model for the measured state of a single person. Let us
start with some notation. The true or latent position in a two-
dimensional latent space at time ¢ will be denoted by the vector
O(#) defined as O(t) = O ,(1), ©,(1)", and the superscript T indi-
cates the transpose operation. In the core affect application, ®,(7)
refers to the position on the first dimension (pleasantness) and
O,(?) to the position on the second dimension (arousal). We will
define the model for two dimensions here and we refer specifically
to core affect, but generalizations to more dimensions and other
application areas are possible. In the model formulation, it is
assumed that the true core affect changes continuously throughout
time, but the measurements are taken at a finite number of time
points: ¢y, t,, ..., t, ... t,, where n stands for the number of
measurements (Time O can be defined arbitrarily by, for instance,
setting it equal to the first time point: #; = 0). We define the vector
Y(t,) = (Y,(t,), Y,(t,)" as the observed pleasantness and arousal
scores at time point 7,. The general model can then be written as
follows:

dO(r) = B(p — O(1)dt + cdW()
{Y(f.r) =0() + &) , (H

where p is a vector with two components and o and B are
positive-definite 2 X 2 matrices. The measurement error is repre-
sented by €(z,), which is a random draw from a bivariate normal
distribution with mean (0,0)" and covariance matrix X_. The
component W(?) stands for the standard bivariate Wiener process.
The interpretation of these parameters is elaborated below.

At this point, it is important to note that the model in Equation
1 consists of two parts. The first equation describes the change in
the true core affect position and is therefore a transition equation;
it represents the dynamical aspect of the model. The second
equation maps the true process onto the observed variable and is
called the observation equation.

In the remainder of the section, we explain, step by step, the
model in Equation 1, by first defining the one-dimensional version
of the transition equation. Accordingly, we will introduce the
properties of the full, two-dimensional form. In the end, the role of
the observation equation is clarified.

A Unidimensional SDE

Let us take the transition equation of Equation 1, transform it
into an equation for a unidimensional variable () (e.g., we can
consider either the pleasantness or the activation dimension at

once, but we cannot see how they influence each other). The result
is a linear first-order SDE that describes the dynamics of the OU
stochastic process in one dimension:

dO(r) = B(p — O@))dt + cdW(t), 2)

where we assume that 3 > 0.> The right hand side of Equation 2
can be divided into two parts: The first part of the sum is deter-
ministic, and the second one is stochastic. Considering only the
deterministic part, it can be deduced that the instantaneous change
in O(7), that is, dO(f), depends on how far the current state O(¢) is
from the point . If O(¢) is below w (i.e., . — O(r) > 0), the first
derivative is positive, and consequently ®(7) will increase. The
opposite holds when @ is above p.. Hence, O(r) will always change
in the direction of w and never the other way. Because the process
settles itself at ., this parameter is called a steady state or attractor.
However, we will use the term home base to refer to ., as in the
context of emotions, one may think of  as an ideal point to which
one is drawn. The parameter (3 controls the magnitude of the
“drawing” effect: If 3 is large (3 => 1), the difference between the
actual state and p tends to be magnified; therefore a faster change
will occur in the direction of w. With small Bs (i.e., B close to
zero), the change becomes substantially slower. Based on this
property, the parameter {3 is often called the dampening force or
centralizing tendency. If we considered only this deterministic part
as a model for the core affect dynamics, we would encounter a
major disadvantage: The model assumes a gentle but certain return
to the attractor or home base, and then the process remains there.
This appears unrealistic, because over the course of time, many
effects will lead to a divergence between the home base and the
actual state, as has been pointed out in the introduction. Therefore
a realistic model should incorporate an element of randomness,
like the second, stochastic part of the right side of Equation 2. In
this, parameter W(r) stands for a unidimensional Wiener process or
Brownian motion.* However, it is not the Brownian motion as
such that is added but rather the quantity cdW(¢), where o is the
scale of the stochastic term. The random variable dW(f) can be
interpreted loosely as the change in a standard Brownian motion

3 Note that we put all SDEs in the differential form. This differs from the
prime notation often encountered with deterministic differential equations.
However, when the stochastic term is added, not all derivatives are defined
in the traditional way (see, e.g., Jazwinski, 1970), and therefore we prefer
to keep the differential form.

*In 1828 the English botanist Robert Brown observed that when part
of a pollen of grain is suspended in water, it exhibits an irregular
“animated” motion, and the phenomenon was named after him. The
random Brownian motion was explained by Einstein (1905) by suppos-
ing that the movements are the result of frequent impacts on the particle
by the molecules of the water. Because these impacts are incessant,
complicated, and highly numerous, the resulting movement path of the
particle requires a probabilistic description; a deterministic one is not
feasible. Norbert Wiener (1923) provided a rigorous mathematical
formalization of the Brownian motion, and therefore the Brownian
motion is often called the Wiener process.
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process in very small time interval.”> It can also be written as
dW(t) = &(ndt, where &(r) is called a white noise process, the
simplest stochastic process in continuous time on the real line
(Gardiner, 2004). It is a mathematical model for a continuous-time
process with independent realizations.

In summary, it follows that in the model of Equation 2, the
change in ©(7) is a function of two factors. First, there is stochastic
innovation driving the change process, which is represented by
dW(t). This stochastic innovation term incorporates the multiple
smaller and larger “impacts” that the emotional system undergoes
at a given moment. Second, the control exerted is captured by the
centralizing tendency parameter {3.

The solution of the unidimensional OU process involves inte-
grating over Equation 2 and solving a stochastic integral. The
derivation of this solution, together with a brief overview of the
most important properties of the stochastic integral, can be found
in Appendix A (see also Tuma & Hannan, 1984). The general
solution results in an expression for O(f), given that the process
was at O, at Time 0. However, for our purposes, it is more useful
to condition on the position d time units before, that is, O(t — d),
such that it becomes possible to model a chain of subsequent
measurements. With ®(r — d) as initial value, the solution of
Equation 2 becomes

0_2

O@)|0(r — d) ~ N(M + e PO —d) — ), %(1 _ e—zﬁd))
3)

This conditional normal distribution will turn out to be very
convenient when estimating the parameters of the model, because
it allows us to construct the likelihood.

From Equation 3, we can see that the position at time ¢, that is,
O(r), depends on the already introduced parameters and the pre-
viously measured position O(t — d). Figure 1 displays some
solution curves for this unidimensional OU stochastic process. The
initial values or starting points, that is, ©(t — d), are different, but
the home base, the centralizing tendency, and the scale of the
stochastic term remain the same (w = 0, 3 = 1, and o = 0.1). It
can be seen that for an initial value of ®, = 0, there is no change
at all over time. We can clearly see how the stochastic disturbance
term has a profound influence on the trajectories: The return to the
baseline shows a noisy pattern.

If we let d go to infinity in Equation 3 (i.e., we condition on a
position a very long time ago), then we see that the distribution of
O(r) does not depend on O(r — d) anymore:

2
01 ~ N(M,g—ﬁ>, )

assuming that 3 > 0. This fact indicates that the initial state O(t —
d) is forgotten as d — . Parameter ¢*/2f is the stationary
variance of the process. Because the stationary variance, which we
will denote y = 0?/2, is easier to interpret than the instantaneous
variance o2, as it corresponds directly to the total intraindividual
variance, and because it offers some computational advantages in
the bivariate model, from now on we use a reparameterized version
of the process in which o7 is replaced by 2B-.

The Two-Dimensional SDE

With a two-dimensional model, we can incorporate modeling
pleasantness together with activation in one model, and we can
also investigate how they influence each other. For example, we
can see whether the two dimensions tend to change together, in the
same direction or the opposite, and so on. We have already shown
the SDE of the OU process in two dimensions in the first line of
Equation 1. This equation can also be solved to arrive to a
conditional distributional representation of the two-dimensional
OU process. The derivation of this solution can be found in
Appendix B. Here we present only the solution, which is

OO —d) ~Ny(u + e 2Ot — d) — p), T — e BT 8),
(5)

where N, refers to the bivariate normal distribution. As in the
unidimensional case, the two-dimensional process converges to a
stationary distribution:

A1) ~ No(p, I), (6)

provided that all eigenvalues of B are positive. The latter condition
also ensures that the process is stable (Oud & Singer, 2008).
Equation 6 can be considered as a two-dimensional version of
Equation 4. An informal justification of Equation 6 can be obtained
by letting d go to infinity in Equation 5. The matrix I' is the
stationary covariance matrix.

The Parameters of the Two-Dimensional OU Process

In this section, we study the interpretation of the parameters
(i.e., m, I', and B) of the two-dimensional OU process in detail.
This will be done mainly by making use of simulated trajecto-
ries and varying the parameter of interest so that we can
visualize its effect. Such a study will increase the understanding
of the process and will set the stage for allowing for individual
differences.

To simulate the trajectories, first a set of 200 time differences
(ie., t;, t, — t, etc.) was sampled uniformly between 0.5 and 1.
Next, the two-dimensional process was simulated with the condi-
tional distribution from Equation 5. The vector @(0) was drawn
from the stationary distribution. The specific parameter values for
the parameters are given below.

The home base.  As in the unidimensional case, w is again the
ideal point to which the process is drawn (also called the home
base), with the only difference that p is now a two-dimensional
vector. From Equation 6, one can also infer that the home base is
the average of the stationary distribution.

In Figure 2, two trajectories are simulated with different home
bases, but all other parameters are constant. As expected, it can be
noticed that with different home bases, the visits are concentrated
around different areas. Stated otherwise, the stationary distribu-
tions are just simple translations of one another.

> We use dW(t) notation instead of dW/dt, because the latter would be
undefined, as the path of a Wiener process is not differentiable with respect
to time.
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Figure 1.

Intraindividual variation: Fluctuations around the home
base. The positive-definite matrix I' is the covariance matrix of
the stationary distribution. To simplify the notation of the separate
elements in I', the matrix is decomposed as follows:

Py \"/W2>

Y1
= 7
(py Y1Y2 Y2 @)

The parameters vy, and v, correspond to the variance in the first
and second dimensions, respectively. The parameter p, is the
cross-correlation, and it quantifies the strength of the linear depen-
dency between the two dimensions in the stationary distribution. If
p, is close to I, then positive (negative) displacements on one
dimension go together with positive (negative) displacements on
the other dimension.

In Figure 3, two realized OU processes with different I' matrices
are shown. In Figure 3A, low variance values were used for the
simulation, yielding small changes, and therefore the process tends
to stay near the home base. In contrast, because of the larger
variances used for Figure 3B, the simulated process covers a wider
area (i.e., higher volatility and thus more dramatic changes). More-
over, in Figure 3A, the cross-correlation is set to 0, whereas in
Figure 3B it is equal to 0.5. As can be seen, increasing the
correlation leads to displacements that coincide as the shape of the
trajectory clearly suggests. (Again, the other parameters were kept
fixed across the two simulations.)

Regulation: The centralizing tendency. The matrix B is the
matrix equivalent of the scalar 8 in the unidimensional process,
and as such it governs the strength and the direction with which the

25 3 35 4 45

Time (t)

Solution curves for Equation 3.

process is pulled back to the home base . As stated before, it is
required that B be a positive-definite matrix such that there is
always an adjustment toward the home base (and hence the process
is stable). If B were not positive definite, the process would
become “explosive,” meaning that it would be pushed away from
the home base. The HOU model cannot capture such a phenom-
enon, and constantly being pushed away from the ideal point does
not seem to be very realistic to model affective dynamics.® Besides
positive definite, we will also require that B be symmetric, and we
decompose it in a similar way as was shown for I':

B = < B PB\M )
pe\BiB. B2 '

The symmetry constraint is specific to our model formulation.
One consequence is that the effects of the first process on the
second and vice versa are equal. The reason why we made this
simplifying assumption is that in a later modeling stage, we allow
for individual differences in the elements of B. Without this
assumption, it is extremely difficult to satisfy a basic condition in
the model, namely that B,I', + T',B} has to be positive definite,
because this sum represents the instantaneous covariance matrix,
as shown in Appendix B (see also Dunn & Gipson, 1977). For this
reason we sacrificed the additional level of complexity in the basic

®)

¢ Another possibility could be that B = 0, and in that case the resulting
process is simply the Wiener process or Brownian motion. Then we would
assume only random fluctuations in affect, which also seems unlikely.
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Figure 2. Two simulated two-dimensional Ornstein—Uhlenbeck pro-
cesses with different home bases. For both plots, I' = 2/ and B = 0.11, with
I being the 2 X 2 identity matrix. In Figure 2A, p = (—2, —2)". In Figure
2B, p = (2,2)".

model (i.e., asymmetry) to allow for the study of individual dif-
ferences later on.”

The parameters (3, and (3, correspond to the centralizing ten-
dency in the first and second dimensions, respectively. The param-
eter pg represents a common cross-centralizing tendency. To get a
clear idea of the interpretation of B, we make use of three distinct
ways of visualizing its effects: via simulations, via autocorrelation
functions, and via orbital portraits. The result for three Bs can be
found in Figure 4. In each row a different visualization method is
used. In each column the parameter settings remain constant, but
across columns the Bs differ systematically. In Figures 4A, 4D,
and 4G, we have chosen 3, = 8, = 0.01 and pg = 0 (low beta and
no cross-effects). In Figures 4B, 4E, and 4H, we have set B, =
B, = 0.5 and again pg = 0 (high beta and no cross-effects).
Finally, in Figures 4C, 4F, and 41, 3, = 0.01, B, = 0.1, and P =
—0.4 (mixed betas and cross-effects). For all plots, the home base
is located at the origin, and I' = 27 (with 7 being the 2 X 2 identity
matrix).

Figures 4A—4C contain three simulated trajectories. From Fig-
ure 4A, it can be seen that a low 3 leads to a low centralizing
tendency. The simulated process tends to stay close to the previous
observation and is not strongly attracted by the home base. In
contrast, the simulated trajectory in Figure 4B is based on a large
B, and this corresponds to a large centralizing tendency: The
process fluctuates to a large extent around the mean. Note that for
both simulations, the ultimate (i.e., stationary) covariance matrix is
equal by definition. In Figure 4C, one can see that the small 3,
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Figure 3. Two simulated two-dimensional Ornstein—Uhlenbeck pro-
cesses with different stationary covariance matrices I'. For both plots, p =
(0, 0)" and B = 0.11. In Figure 3A, y, = vy, = 0.5 and py, = 0. In Figure
3B, v, = v, = 4and p, = 0.5.
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Figure 4. Shows the effect of different B matrices.

leads again to a slowly moving process, whereas this does not hold
for the second dimension because [3, is large (and therefore the
centralizing tendency in the direction of the second dimension is
also large). Hence, this third simulated trajectory combines the
features of the previous two.

In Figures 4D—4F, the autocorrelation functions for the two
processes are shown. The autocorrelation function value at time
point 7 can be computed with the matrix exponential (see Appendix
A) as follows: e ™. The result of the matrix exponential is a
matrix itself (of the same size as B), and the autocorrelation
function value at time ¢ for the first (second) dimension is then the
first (second) diagonal element. If we let time ¢ vary from O to 300
min, we can plot the continuous autocorrelation functions. For the
first two settings (first two columns), the two autocorrelation
functions in the two dimensions are the same, because 3, = [3,.
All autocorrelation functions are exponentially decaying. It can be
seen from Figure 4D that if 8 is low (i.e., a low centralizing
tendency), the autocorrelation function shows a slower decay than
if B is high (see Figure 4E). For instance, for the process in Figure
4D, even after 100 min, the autocorrelation is still around 0.4 (i.e.,
if two subsequent states are 100 min separated, they correlate 0.4).
In Figure 4E, the autocorrelation is practically 0 after 15 min
(about 0.015). The fact that a low 3 corresponds with a large
autocorrelation is not surprising if one looks at the simulated
trajectory in Figure 4A: The process tends to stay close to the
previous observation, indicating a large autocorrelation. On the
other hand, a large value for 3 (as in Figures 4B and 4E) leads to
a fast decaying autocorrelation with time. Therefore the simulated
trajectory connects almost independently sampled points from a

7 We tried to remove the symmetry constraint by not taking care of the
Dunn-Gipson condition. However, the numerical algorithm to estimate the
model’s parameters (see below) failed in that case.
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bivariate normal distribution. In Figure 4F, the 3 values for the two
dimensions differ, and thus two autocorrelation functions appear.

Figures 4G—4I contain so-called orbital portraits. In determin-
istic systems of linear differential equations, the matrix B controls
the type of deterministic trajectories traced out in the state space,
that is, the space defined by the axes ®,(f) and ©,(7). A collection
of such deterministic trajectories or orbits is called a portrait.
Although we are working with a stochastic model, it is useful to
look at the orbital portraits in the corresponding deterministic case.
Note that these orbital portraits also correspond to the expected
trajectories resulting from the two-dimensional SDE model: Given
that a point on one of the orbits is the previous observation, the
conditional mean is also located somewhere on the orbit but closer
to the home base. In Figures 4G—4I, we find three orbital portraits
corresponding to the three B matrices. It can be seen that an
isotropic matrix (i.e., of the form 3, as used in the first and second
column) gives rise to a so-called star node: The expected trajec-
tories toward the home base are straight lines (in fact, Figures 4G
and 4H are similar because their B is not qualitatively different). In
Figure 41, the orbital portrait of a model with unequal elements on
the diagonal of B and pgy = 0.4 leads to a so-called improper node.
In the latter situation, the adjustment toward the home base falls
along a curved trajectory. Orbital portraits might reveal interesting
patterns in affect regulation in the core affect, as they display the
way that the centralizing tendency force acts to restore the balance
of the dynamic system.®

A time-varying home base (). Hitherto we have assumed
that the home base is constant over time. However, it seems
reasonable to expect that the ideal point to which the process is
attracted is subject to changes throughout time. For example,
several studies indicate diurnal patterns in how active and how
pleasant people feel throughout the day (Caminada & De Bruijn,
1992; Haug & Fihndrich, 1990; Rusting & Larsen, 1998). To take
such structural changes into account, we extend the model as
follows:

(1) ~ No(n(0), )
and

0O — d)
~ Ny(u() + e *(O(t — d) — (1), T — e ®Te ). (9)

In our application below, p(#) is assumed to be a polynomial (e.g.,
quadratic) function of time of the day. However, in principle one
could take any other function of time (e.g., spline based) or one
could let measured time-varying covariates have an effect on the
home base (e.g., important life events).

It is important to note that we assume the systematic variation
throughout time (as expressed by m(#)) and the stochastic dynam-
ics of the model (i.e., the adjustment to the time-varying home
base) to be two aspects of the model. We have simply changed the
constant value p to the time-varying variant p(¢) without affecting
the stochastics of the model. Stated differently, if the time-varying
home base is subtracted from a simulated trajectory, the result is a
simulated trajectory from a model with a constant home base. A
different type of process would result if the time-varying home
base were inserted in Equation 1, because then it would be part of
the intrinsic dynamics of the model.

The Observation Equation

A final aspect of the model for the within-person dynamics
concerns the measurement error. Almost any measurement in
psychology will be affected with measurement error to some
extent, and therefore it is important to take it into account. By
adding measurement error to the latent process, we have discussed
thus far, we will step down to the observational level. In Equation
1, the first part serves as a transition equation in our model by
describing the changes in the true score vector, that is, @(7). To
link the underlying dynamical change O(z,) to the observed data
Y(z,), we use the following observation equation:

Y(t,) = O(r,) + (1), (10

for observations at time points t, t5, . . . , t,, . . . , t,,. Although the
underlying process is assumed to be continuous in time, it is
impossible to make continuous observations in the contexts we
consider. Therefore the observations will necessarily be restricted
to a discrete set of time points. Jazwinski (1970) called such
models continuous-time models with discrete-time sampling.
The measurement errors €(t,), . . . , €(%,), . . . , €(t,) are assumed
to follow a bivariate normal distribution:
e(t) X N,0.3,), (an

with 0 as mean and 3, as covariance matrix. In the remainder of
the article, we will assume a diagonal matrix for % (i.e., uncor-
related errors for the two dimensions). By establishing the obser-
vation equation, we have completed our description of the OU
model for a single person, as it was given in Equation 1, and now
we move on to the hierarchical part of the model.

The HOU Model

In the previous sections, we have described a model for the affec-
tive dynamics of a single individual. From the interpretation of the
parameters, it becomes clear that they all capture an important aspect
of the dynamics. As argued in the introduction, individual differences
are common in affective processes. More specifically, individual
differences are expected in each of the parameters of the single-person
OU process (with the exception of the measurement error variance).
For instance, in a recent study, Kuppens, Van Mechelen, Nezlek,
Dossche, and Timmermans (2007) found that people differ consis-
tently in the mean level of pleasantness and activation (corresponding
to individual differences in the home base) but also in their variabil-
ities on these dimensions (corresponding to individual differences in
the diagonal elements of I'). Moreover, Gross and John (2003) pro-
vided evidence for individual differences in the regulation of affect
(corresponding to the B matrix).

In order to describe and explain individual differences, a natural
approach is to use a hierarchical model (see, e.g., Gelman & Hill,
2007; Snijders & Bosker, 1999). In a hierarchical model (or
multilevel or mixed model), the parameters that are subject to
individual differences are random effects, sampled from a popu-

8 Many more orbital portraits are possible (e.g., saddle points, spiral
points), if one allows B to be a nonsymmetric positive-definite matrix.
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lation distribution that is characterized by a set of parameters. In
traditional hierarchical models, the random effects are usually
allowed only for the mean structure. In contrast, in the model and
application we consider, it is meaningful to allow for individual
differences in the variability and centralizing tendency parameters
as well. Hence, the variance and centralizing tendency parameters
will be assumed to be sampled from a population distribution as
well. Note that this allows us in a next step to regress the random
person-specific parameters on individual difference covariates.

In the hierarchical model, it is assumed that each parameter
comes from a specific population distribution. For reasons of
computational and interpretational convenience, we assume nor-
mal distributions for all random effects. However, not all param-
eters are defined on the real line (e.g., the diagonal elements of the
covariance matrix of the stationary distribution can assume only
positive values), and for such parameters we will use appropriate
transformations that map them on the real line and then proceed
with a normal distribution.

Let us introduce some new notation: A specific person p (p = 1,
..., P) is measured n, times at the following sequence of time
points: 7.y, 4,5, - . 5 Ly -+ 1,,,. The index s denotes the sth
measurement occasion of that individual. As mentioned in the
introduction, a great strength of our model is that we do not require
that measurements occur at regular time intervals nor that the
measurement occasions be identical across participants. For nota-
tional convenience, we will use p and s as the only indices when
denoting parameters or data that are related to the specific obser-
vation at ... This way, for example, the measured position for
person p in the two-dimensional space at time 7, is denoted as Y,
instead of the more cumbersome notation Y(z,,).

The model for a single person p for whom the observed data are
a function of an underlying OU process and some measurement
error can now be written as follows:

Y, =0, +¢,, (12)

where Y, stands for the observed random vector, @, for the
latent state (or true score), and €, for the measurement error with
the same distributional assumption as presented in Equation 11. As
expressed in Equation 9, the conditional distribution of @,,; given

©, ., is normally distributed as follows (for s > 1):

®ps|®p,571 -~ NZ(p'm + e*B,,(t,,;*t”_, I)((")p,sfl - "’ps)’
r,- efB,,<r,,rt,>,\—l)l"pe*BI(tprr,,,r—u)). 13)

For the first observation, @,,,, it is assumed that @,, ~ N, (@,
I',). Although Equations 12 and 13 are identical to Equations 10
and 9, respectively, we present them again because they are now
defined with a slightly different but more convenient notation.
Note that the presence of the indices p in Equation 13 reflects that
all driving parameters of the OU process are allowed to be person
specific. In the next sections we develop the hierarchical extension
for each of the parameters.

Model for the Person-Specific and Time-Varying
Home Base

As can be deduced from the notation (i.e., the indices s and p),
the home base p, consists of a time-varying and person-specific

aspect. Corresponding to these two aspects, background measure-
ments may be available. Regarding the person-specific aspect, it is
assumed that k covariates are measured and x;, denotes the score
of person p on covariate j (j = 1, ..., k). All person-specific
covariate scores are collected into a vector of length £ + 1, denoted
as X, = (Xp00 Xp1> Xpos + - - > xpk)T, with x,, = 1. Regarding the
time-varying aspect, suppose that we measure for person p the
scores on m time-varying covariates that are collected in a vector
2o = (Zpgrs o - s zpsm)T, where the presence of the index s indicates
that the scores may change from one time point to another. In order
to avoid collinearity problems, no intercept is introduced in the
vector z,..

The regression of m,; onto the two types of covariates and
allowing for a person-specific random deviation is defined as
follows:

m,s=A4A,z,+Ax,+E,, (14)

with E, ~ N,(0, %,). The matrices A, and A, are parameter
matrices of dimension 2 X m and 2 X (k + 1), respectively,
containing the regression weights for the covariates. Furthermore,
the covariance matrix 3, is defined as follows:

Opipy Oy

2
o o
Eu _ ( i L;mz)l (15)
Because the vector p,, is bivariate, it may be illuminating to write
the component regression models in more detail:

<“‘m1 ) _ <8E|> 2, + <a£|> x, + (ePM). (16)
Meps2 Sm ! Qy, ! €pus

One can consider Equation 14 as a decomposition of the person
and time-specific home base p,, into three components. The first
component allows for the home base to fluctuate over time, but it
is constant over all persons (i.e., A,z,). The time-varying cova-
riates in the vector z,; can be anything for which it is meaningful
to assume that it relates to the change of home base across time.
The most straightforward covariates are time and functions of time
itself, which are illustrated in the application section in this article.
However, if one has information on other variables that may be
related to home base and change through time, they can be incor-
porated in as well. A second component allows the home base to
differ because of the effect of person-specific covariates (i.e.,
A, x,). These person-specific effects leave the time-varying part
unaffected. If no person-specific covariates have been collected,
then only the bivariate intercept is present (i.e., the two regression
weights of the constant 1). The last part, E,,, represents the
contribution of a bivariate person-specific random effect that will
make the home base different from one person to another. It
follows a bivariate normal distribution with 0 mean vector and
covariance matrix %, (see Equation 15). The covariance matrix is
the residual covariance matrix, representing the variability and
associations of home base intercepts that exist in the population
between the individual means of the stationary distribution, after
taking into account the effects of the person covariates and of the
time-varying covariates. If only the intercept is present in the
covariate vector, then the model just describes the population mean
vector of the home bases and the variability in the population.
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The so far presented fixed and random effects in the home base
(i.e., mean structure) are strongly related to the so-called growth
curve models (see, e.g., Pan & Fang, 2002). The particular novel
contribution of our HOU model is that also the variance and
centralizing tendency parameters will be turned into random ef-
fects. In this way, individual differences in intraindividual varia-
tion and regulatory dynamics can be described and explained. Such
an extension is covered in the next sections. However, it should be
mentioned that only the home base is allowed to change as a
function of time-varying covariates (and thus time), whereas the
other parameters cannot be affected by time-varying covariates.

Model for the Person-Specific Stationary Variances
and Cross-Correlation

As was clear from Figures 3A and 3B with simulated OU
process, changing the stationary variance matrix has a profound
effect on the appearance of the simulated trajectories. Such inter-
individual differences may even be seen in real data. An example
is shown in the application section (in Figure 5). A convenient way
to model the individual differences in the stationary covariance
matrix I, starts with the decomposition presented in Equation 7, in
which T, is split into two variances (i.e., y,, and v,,) and a
cross-correlation (i.e., py, We will discuss these in turn.

First, the person-specific intraindividual variance v, , is assumed
to be drawn from a population distribution. The most straightfor-
ward choice would be to assume a normal distribution, but vy, , is
constrained to be positive (while the normal distribution has sup-
port on the whole real line). However, we may put a normal
population distribution on a transformation of v,,. The most con-
venient choice is a logarithmic transformation:

log(y,,) = xja,, + ¢

Py

with e,,, ~ N(0, crf“) and x; the vector of covariates with k + 1
components (of which the first one is the constant 1). The vector
a.,; contains the (fixed) regression coefficients for the covariates.
The parameter (rf“ is the residual variance in the random log
variance of the first dimension, after having taken the covariate
effects into account. If only the intercept is present in the model,
03“ reflects the total amount of variance present in the population

in the log variance of the first dimension. A similar logic applies
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Figure 5. Person trajectories in the core affect grid: in the left plot,
participant nr.1 (62 self-reports); in the right plot, participant nr.3 (62
self-reports). The visits falling in the same cell are jittered for a clearer
graphical representation.

to the modeling of +y,,,. The population distributions of vy, , and vy,
are assumed to be log normal on the original scale.

The final parameter of the matrix I', is the person-specific
cross-correlation parameter p, ~Because p,, is a correlation
bounded between —1 and 1, Fisher z transformation is imple-
mented in order to be able to use a normal distribution to model the

random effects. The Fisher z transformation

1 1+p,,
F(p"{p) = Elog 1 — p“f
Yp

to get a function value on the whole real line is

with e,, ~ N(0, o7 ). The density of the original p,, can be derived
by applying the transformation of variables technique (see, e.g.,
Mood, Graybill, & Boes, 1974). Again, «, contains k + 1 regres-
sion coefficients, x,, the k covariate values for person p with 1 for
the intercept, and aﬁy represents the variation in the population in
terms of cross-correlation.

It should be noted that for reasons of simplicity, the population
distributions for the log variance parameters and Fisher z-trans-
formed cross-correlations are modeled unidimensionally. That is,
we do not allow for correlations among e, , e, , and €.,

Py?
Model for the Person-Specific Centralizing Tendencies
and Cross-Centralizing Tendencies

A crucial part of the model is the regulatory mechanism that is
included. It is parameterized by the matrix B,,, which is decom-
posed (see Equation 8) into two centralizing tendencies, one for
each dimension (i.e., B;, and B,,) and a standardized cross-
centralizing tendency parameter (po). As with the stationary vari-
ance matrix, all three elements of B, are assumed to be person
specific. This way some people might show only a mild level of
regulation or almost no regulation, whereas others might have a
very strong regulatory force. The centralizing tendency is a much
less straightforward property of observed core affect trajectories
than, for instance, the home base or the variabilities, because it
affects the trajectories in more subtle ways. In a graphical repre-
sentation of the trajectory, it might be covered by the effects of
measurement noise. Nevertheless, when fitting the model to the
data, one can clearly see there is a considerable amount of inter-
individual variability in this aspect of the model (see the applica-
tion section below). The two centralizing tendencies of each di-
mension will be discussed first and then the cross-centralizing
tendency.

Because the diagonal elements of B,, are required to be positive,
a similar approach for 3,, and B, as for stationary variances is
taken to model the corresponding population distributions:

log(B,,) = XZaB, + e,p, 17)

with e,5, ~ N(0,03,) and x,, the vector of covariates with k + 1
components (of which the first one is the constant 1). The vector
«, contains the (fixed) regression coefficients for the covariates.
The parameter o3, is the residual variance in the random log-
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centralizing tendency specific to the first dimension, after having
taken the covariate effects into account. If only the intercept is
present in the model, Ué, reflects the total amount of variance
present in the population in the log-centralizing tendency of the
first dimension. The model for 3,, is analogous. The population
distributions for 3, and 3, are assumed to be log normal on the
original scale.

The standardized off-diagonal element (pg,) controls the trajec-
tory of the return to the home base (see Figures 4G-—4I). It is
assumed to have the same population distribution as p, ; that is,
after taking the Fisher z transformation, it is normally distributed:

with e, ~ N(O,(r;‘;g). We can interpret the parameters in the same
manner as for Equation 17.

Bayesian Inference for the HOU Model

Although the hierarchical extension is both substantively inter-
esting (because all parameters may differ across persons) and
straightforward (one has to assign population distributions to the
individual difference parameters), statistical inference for such
models is not a trivial task. For the model presented here, statistical
inference with maximum likelihood would involve a high-dimen-
sional integration over the numerous random effect distributions.
Because most of these integrals have no closed-form solutions,
these would have to be approximated by finite sums, which is
computationally prohibitive. An additional problem with the like-
lihood method for this case lies in the nonlinear function of latent
variables (multiplication of latent variables, exponentiation, etc.;
see, e.g., Klein & Moosbrugger, 2000; Schumacker & Marcou-
lides, 1998). The latent variables (parameters that are allowed to
vary in the population) are normally distributed, but because of the
nonlinear functions, the marginal distribution of the data Y (after
integrating out the latent variables) will not be normal anymore. In
frequentist mixed model inference, it is precisely the marginal
likelihood that is maximized (Verbeke & Molenberghs, 2000).
However, these difficulties are avoided in the Bayesian paradigm
in which the explicit integration over the random effects is
avoided, because the inference is based on the full joint posterior
distribution of the parameters (and not on the marginal). Integra-
tion in the Bayesian context typically occurs only to obtain sum-
mary measures of the posterior distribution and is based on pos-
terior samples from a Monte Carlo procedure (Klein &
Moosbrugger, 2000). In sum, choosing for a Bayesian framework
to perform the statistical inference carries some obvious pragmatic
value. But additionally, the Bayesian approach is more appropriate
for investigating problems in behavioral sciences than the classical
statistical inference framework. Parameters in the Bayesian frame-
work have a probability distribution, which offers an intuitively
appealing way of thinking about uncertainty and the knowledge
one has about the parameters. Moreover, the Bayesian framework
is a coherent method for making decisions. A lot of recent meth-
odological work in psychology makes use of the Bayesian frame-
work (see, e.g., Gallistel, 2009; Klein Entink, Kuhn, Hornke, &
Fox, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009;

Rouder, Tuerlinckx, Speckman, Lu, & Gomez, 2008; Smith &
Batchelder, 2010).

An advantage of Bayesian statistical inference is that we can
apply algorithms to sample from the posterior density of the
parameters. The posterior density represents the probability distri-
bution of the parameters given the data, and it is directly propor-
tional to the product of the likelihood of the data (given the
parameters) and the prior distribution of the parameters. Formally,
PEY) = p(Y|E)p(€), where & stands for the vector of all param-
eters in the model and where Y stands for the data.” The prior
distribution incorporates prior knowledge about the parameters,
and if there is none, it is best as vague or diffuse as possible. The
more data one acquires, the less influential the prior becomes on
the posterior. Because the presented model yields a high-dimen-
sional posterior (due to the large number of parameters), we will
opt for Markov chain Monte Carlo (MCMC) methods to draw
values from the posterior. Practically speaking, these algorithms
perform iterative sampling: Values are drawn from approximate
distributions, and they are improved in each step, in such a way
that they converge to the targeted posterior distribution. After a
sufficiently large number of iterations, one obtains a Markov chain
with the posterior distribution as its equilibrium distribution, and
the generated samples can be considered as draws from the pos-
terior distribution (it is said that the Markov chain has converged
to its equilibrium distribution). More details about the Bayesian
methodology and MCMC can be found in Gelman, Carlin, Stern,
and Rubin (2004) and Robert and Casella (2004).

For our model we have implemented a specific MCMC algo-
rithm, the Gibbs sampler. In this algorithm, alternating conditional
sampling is performed: The parameter vector is divided into sub-
parts (a single element or a vector), and in each iteration the
algorithm draws a new sample from the conditional distribution of
each subpart given all the other parameters and data; these condi-
tional distributions are the so-called full conditionals. More details
on the sampling algorithm, as well the derived full conditionals of
each parameter and simulation studies testing the accuracy of the
algorithm, can be found in the supplemental materials.

In the estimation algorithm, several of these Markov chains are
initiated from different starting values, thereby offering a way to
check for convergence of the algorithm (because one has only
draws from the posterior after the Markov chain has converged to
its equilibrium distribution). The particular convergence check
statistic that is used is the Gelman—Rubin R statistic (for more
information, see Gelman et al., 2004).

Sampling from the posterior distribution was performed with a
custom-written MATLAB program.'® To decrease the computa-
tion time, we translated some of the more computationally de-
manding subroutines into C and applied parallel computing where
possible (different sample chains are independent and can be
computed on separate processors). The computation time for the
example shown in the next section (six chains of 10,000 iterations
each) was around 90 min on a computing node with an AMD
Opteron 250 processor and 2 GB RAM.

° The normalization constant, p(Y), does not depend on the parameter
and is therefore not considered.

' The MATLAB codes are available on request from the first or second
author.
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An Experience Sampling Study of the Core Affect

In this section, the HOU is applied to longitudinal core affect
measurements. In the present study (for more information on the
design of the study, see Kuppens et al., 2007), 80 students from the
University of Leuven were paid to provide self-reports about their
position in the core affect space over 1 week. Such a study is called
an experience sampling study (Csikszentmihalyi & Larson, 1987;
Larson & Csikszentmihalyi, 1983). The average age of the partic-
ipants was 22 years (SD = 5), and 60% of them were women. In
practice, participants received special booklets containing the so-
called affect grid (Russell, Weiss, & Mendelssohn, 1989). The
participants carried a preprogrammed wristwatch that beeped nine
times a day (at semirandom moments), and upon beeping, they
were supposed to indicate their emotional position in the grid.
Ideally, each participant completed 63 core affect assessments
during the study.

The time difference between two measurements was semiran-
dom. In an introductory session, the participants provided infor-
mation about their daily routine, more specifically about the time
they wake up and go to sleep. Their awake time was divided into
equal intervals, and a random beep was scheduled into each of
them. As a result of this procedure, the wristwatch did not beep
while the participants were sleeping. Occasionally, a participant
failed to notice the beeping wristwatch. The most frequent reason
for missing a beep was that they simply did not hear the signal
(e.g., they were taking a shower without wearing the wristwatch).
We assume that the core affect is not an influencing factor for
skipping a measurement, and thus the missing data mechanism is
assumed to be ignorable (Little & Rubin, 2002), and such an
occasion was treated as if there had not been an observation at that
particular time. The missingness will create an unbalanced data
structure (not all participants have an equal number of measure-
ments), but this does not present special problems for the HOU
model. On average we acquired 60 measurements (SD = 3) per
person.

Because the HOU parameters can be regressed on covariates,
interindividual differences can be analyzed and related to stable
traits. In this study the five dimensions of the five-factor model of
personality (Big Five) were measured (with the Dutch version
NEO Five-Factor Inventory; see Hoekstra, Ormel, & De Fruyt,
1996). The NEO Five-Factor Inventory consists of 60 items di-
vided equally into five scales assessing Neuroticism, Extraversion,
Openness (to experience), Agreeableness, and Conscientiousness.
All items are rated on a 5-point scale ranging from 1 (strongly
disagree) to 5 (strongly agree). The items are then summarized
into five averaged scores per person, corresponding to the five
dimensions.

The data were subjected to an exploratory analysis; some results
of this analysis are presented here. For instance, the observed
trajectories of two randomly sampled individuals are shown in
Figure 5. The trajectories are obtained by connecting subsequent
measurements. From the figure, it can be seen that the average
position is different for the two persons. Moreover, another obser-
vation is that there are different levels of intraindividual variation
in core affect. Such observations suggest that there is substantial
interindividual variability that can be captured, both in location
and in intraindividual variability. Combining the data from all

participants in a heat map or three-dimensional histogram over the
core affect grid (graph not shown because of space constraints)
reveals that the most frequently visited area ranges from the central
part of the core affect grid (neutral point) to the center of the upper
right quadrant (corresponding to higher activation and pleasant-
ness values).

In Figure 6, an estimated velocity plot is drawn of the core affect
grid based on the data of all the participants: The thick black lines
are the two-dimensional escape velocity vectors for the corre-
sponding cell (the gray lines are explained later). The length of a
vector is proportional to the speed of escape from the cell, and the
direction indicates the area toward which one moves (the begin-
ning of the vector is always the middle of the square). One can
observe that at the average position in the grid, the average speed
is very small (i.e., short vectors), but the farther we move from the
average position, the higher the escape speed becomes. Most
vectors point more or less directly to the central location, and with
increasing distance from the central point, the vector length in-
creases. This observation corresponds to the implied OU model
assumption about the centralizing tendency, which increases as the
distance from the home base extends. However, at the border cells,
we notice more irregularities. These are due to sampling variability
because there are much fewer measurements in these outer cells.

In the next two sections, the fitted model is discussed. First, we
take up the model fit issue: Several models will be compared by
means of the deviance information criterion (DIC), and the best
model will undergo a series of statistical tests to evaluate how well
it fits the data. In the next part, we discuss the interpretation of an
empty model and the best fitting model. The first model is an
empty model, containing only the time-varying home base effect
but no predictors on the level of the individual differences. As can
be judged from the results below, the time effect on the home base
needs to be taken into account. The results from the empty model
can then be used to interpret the size of the individual differences
for the different parameters. In the second, and best fitting, model,
the individual difference covariates will be regressed onto a set of
person-specific covariates (i.e., the Big Five).
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Figure 6. Estimated vector field of the core affect grid. It shows the angle
and speed of leaving core affect grid positions. The black lines are
calculated based on the observed data, and the gray lines are calculated
based on simulated data.
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Application of the HOU Model to the Experience
Sampling Study: Model Fit

Computational Aspects

A series of different HOU models were estimated for the expe-
rience sampling data with a Bayesian procedure. Estimation was
carried out by sampling six chains of 10,000 values from the
posterior distribution via the Gibbs sampler. The six Markov
chains started out from sufficiently different values: These initial
values of the chains are strongly randomly perturbed values de-
rived from the data (e.g., the sample average for the home bases).
The first 5,000 iterations were discarded (the so-called burn-in
period), to avoid any residual influence of the random starting
values on our chain. Inference will be based on a total of 30,000
draws. In the left plot of Figure 7, the first 300 iterations of all six
chains for the parameter c, in a model without person-specific
covariates are shown (in this model ., is then the population
mean of the intraindividual log variance parameter v,, of pleas-
antness). It can be seen that the chains start from fairly different
values, but they all move quickly to the same region, which is an
indication of convergence. It should also be noted that this happens
already within the first 300 iterations. The right plot displays the
smoothed estimated posterior density of the same parameter.

As mentioned above, an appropriate way to check convergence
is to calculate the R value (Gelman et al., 2004), which roughly
equals the ratio of the between- and within-chain variances (from
the left plot in Figure 7, it can be seen that after iteration 200, the
between- and within-chain variances are approximately equal). As
a rule of thumb, the chains are considered converged if the R value
is below 1.1. We use R to assess convergence but also checked the
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chains visually, and there were no problems (all Rs < 1.1).
Convergence was fast for all parameters, typically within the first
500 iterations.

To test goodness of fit, we did not calculate traditional indices
like R? measures. The reason is that it is not fully clear how such
measures should be calculated even in the case of simple linear
multilevel models (for different alternatives, see, e.g., Gelman &
Hill, 2007; Snijders & Bosker, 1999). Because the HOU model is
a hierarchical nonlinear model, it is far more complicated than the
simple multilevel cases, so that finding an appropriate R? type of
measure seems infeasible. Moreover, we do not regard it a good
indication of model fit, since sometimes high R* values can be
associated with relatively poorly fitting models (Ramsey & Scha-
fer, 2002). Our chosen strategies for testing model fit incorporate
relative goodness-of-fit testing and graphical comparison of the
observed data and replicated data sets based on the model param-
eters.

Testing Model Fit With the DIC (Relative Goodness
of Fit)

To compare different models, we will make use of the DIC
statistic (Spiegelhalter, Best, Carlin, & van der Linde, 2002). As its
frequentist counterparts (i.e., Akaike information criterion, Bayes-
ian information criterion), it simultaneously takes into account two
important features of the model: the complexity (based on the
number of parameters) and the fit (typically measured by a devi-
ance statistic). The DIC formula is the sum of the effective number
of parameters and the posterior mean of the deviance (defined as
—2 times log-likelihood). Theoretically, the model with smaller
DIC would better predict a replicate data set of the same structure.
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population mean of the variability in the pleasantness dimension, and the right plot displays its estimated

posterior density.
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For model selection purposes, we have constructed four alter-
native models, which all have the time-varying home base in-
cluded. The first model is an empty model with all parameters
differing across individuals but no person-specific covariates. In
the second model, the covariate information is introduced. The
third model is a variant of the first but without individual differ-
ences in the centralizing tendency (i.e., an equal B matrix for all
persons). In the fourth model, the cross-effects for the variance and
centralizing tendency were set equal to O (i.e., p,, = O and pg, = 0
for all persons). The home bases and stationary variances were
allowed to differ among persons in all models and were not altered,
because the exploratory data analysis suggested that these param-
eters tend to differ substantially between individuals.

The results are displayed in Table 1 (a lower DIC value suggests
a better fit). The best fitting model has all parameters person
specific and covariates included. As one can see, the model with-
out person-specific centralizing force shows a relatively poor fit
(compared with the empty model). The decrease in the fit index is
less dramatic when the person-specific cross-effects are taken out,
but nevertheless it goes down (compared with the first model and
suggesting that the two dimensions are connected).

Testing Model Fit With Graphical Posterior
Predictive Checks

The idea behind posterior predictive checks is that if the
model fits, then replicated data generated under the model
should look similar to observed data (Gelman et al., 2004). On
the basis of the estimated model parameters, we can replicate
observations and see how well they resemble the original data.
With graphical model checking, we display the data alongside
simulated data. If they look similar, we can say that the ob-
served data look plausible under the posterior predictive distri-
bution. Systematic discrepancies indicate poor model fit. In
what follows, we simulated new data sets from the empty model
(instead of the model with covariates) because that gives a
simpler simulation and test procedure.

Comparing observed and replicated trajectories. First, let
us look at the data from individual persons. Plotting a specific
person’s data in the two-dimensional core affect space and
connecting subsequent points with a line results in an observed
person-specific core affect trajectory. Based on the fitted HOU
model, such trajectories can also be simulated from the model
(keeping the same time differences as in the observed data). If
the model fits the data, the replicated trajectories should closely
resemble the observed trajectories with respect to the spatial
characteristics.

Table 1
Deviance Information Criterion (DIC) Values for
the Fitted Models

Number Model type DIC
1 Fully person-specific model without covariates —6524
2 Fully person-specific model with covariates —6834
3 Model without person-specific centralizing tendency —1639
4 Model without cross-effects —5940

In Figure 8, we plotted the observed data of six students in the
first column. In the following four columns, generated data are
displayed based on the estimated person-specific parameters and
population values (for the measurement error and the time-varying
coefficients). It is important to stress that the replicated trajectories
cannot follow exactly the same path as the observed trajectory
because the HOU model is inherently stochastic. However, it is
important that the key characteristics of the trajectories that are
captured by the model parameters are similar. For demonstrational
purposes, we selected the six persons according to their HOU
parameter values. With the first two people (first two rows), the
differences in the home bases are demonstrated: The first person is
below population average with respect to person-specific home
base values (4.65 and 4.95), where the second one is above (6.82
and 6.19). The third and the fourth rows correspond to individuals
with low (0.81 and 1.11) and high (5.64 and 5.58) intraindividual
variance, whereas the fifth and the sixth rows display participants
with low (0.0063 and 0.0103) and high (0.0333 and 0.0199)
centralizing tendencies. The graphs in Figure 8 suggest that the
important characteristics of the observed trajectories are preserved
very well in the replicated ones.

Comparing observed and simulated escape velocities for the
core affect grid. Figure 6 displays the escape velocities from
the core affect grid positions with length proportional to the speed
of escape from the cell and direction indicating to which area it
tends toward. We can also calculate such velocity vectors based on
simulated data. In Figure 6, the black lines correspond to the
vectors calculated from the observed data, and the gray lines
correspond to those of the simulated data.

It can be seen that for the majority of the cells, the observed
velocity vectors (in black) fall nicely within the range of velocity
vectors predicted by the model (in gray). A few exceptions occur,
mostly on the left side (low pleasantness), where there is somewhat
more deviation between the observed and the replicated data. This
is probably due to the fact that there are only a couple of obser-
vations with very low pleasantness values, and the observed data
vectors could therefore be calculated based only on a handful of
data points.

Application of the HOU Model to the Experience
Sampling Study: Interpretation of Two Models

In this section, we discuss more in detail the two best fitting
models from the previous section. Both models allow all OU
parameters to differ across individuals and include a time-varying
home base; the difference lies in the presence of time-invariant
(i.e., person-specific) covariates.

Model 1: Empty Model With a Time-Varying Home
Base but No Time-Invariant Predictors

The first model we investigate is an empty (or unconditional)
model that contains a quadratic time effect for the home base but no
time-invariant individual difference covariates. In the right plot of
Figure 7, an example is given of a smoothed histogram of the samples
of a, from its posterior. Like this one, most parameters have mar-
ginal posteriors that are very close to normal, except for the posteriors
of the two measurement error variances, which are a little bit more
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Figure 8. Observed and simulated person-specific data trajectories. Each row corresponds to a different
individual. The first column depicts the observed data for these individuals, the following four columns display
simulated trajectories based on Ornstein—Uhlenbeck estimates.

skewed to the right. The estimated posterior means, posterior standard
deviations, and associated credibility intervals for all population pa-
rameters are shown in Table 2. In the following three subsections we
interpret the most interesting findings from this model.

The time-varying home base. Both home bases vary as a
quadratic function of time, where time is measured in hours and the
scores were centered around noon, so that z,, = 0 is at 12 noon for all
persons. This means that the person-specific intercepts (contained in
the vector p,) can be considered as the expected pleasantness and
activation scores for the different individuals in the middle of the day

(i.e., at noon). Moreover, the parameters o, and o, are the popula-
tion means of these intercepts (because x,, = 1). We can summarize
the findings about the home base in the core affect space by depicting
how it changes with time for each individual separately and compare
it to an averaged trajectory. In the case of the pleasantness dimension,
as we can see in the left plot of Figure 9, there is a steady increase
during the day that is almost linear. We can observe that during the
course of the day, the students start feeling more and more pleasant.
Because the quadratic time effect for pleasantness is negligible, we
may say that with every 2 hr the average pleasantness increases with
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Table 2

Summary of the Results Estimated With the Hierarchical Ornstein—-Uhlenbeck Model Without Covariates

95% PCI
Model parameter Description Posterior mean LL UL Posterior SD
Pleasantness
Q, Average home base 5.7552 5.5921 5.9160 0.0821
o Variance of the average home base 0.3928 0.2606 0.5733 0.0802
Sr, Linear time effect 0.0715 0.0426 0.1004 0.0148
Sou, Quadratic time effect —0.0012 —0.0048 0.0023 0.0018
s(ey,) Average intraindividual variability 2.7885 2.3995 3.2700 0.2213
s(a?, Variance of the intraindividual variability 3.3927 1.7887 6.2642 1.1847
s(ag,) Average centralizing tendency 0.0187 0.0149 0.0242 0.0024
s(og,) Variance of the centralizing tendency 0.0002 0.0000 0.0006 0.0001
ol Measurement error 0.1291 0.0817 0.1903 0.0277
Activation
a,, Average home base 5.1761 5.0209 5.3316 0.0790
o, Variance of the average home base 0.3388 0.2236 0.4968 0.0700
Sy, Linear time effect 0.2936 0.2606 0.3273 0.0170
Sou, Quadratic time effect —0.0329 —0.0369 —0.0288 0.0021
s(ay,) Average intraindividual variability 3.2714 2.8796 3.7370 0.2174
s(a?,) Variance of the intraindividual variability 3.1039 1.7271 5.5096 0.9782
s(ag,) Average centralizing tendency 0.0209 0.0165 0.0275 0.0028
s(o-fh) Variance of the centralizing tendency 0.0003 0.0001 0.0008 0.0002
R Measurement error 0.1069 0.0633 0.1678 0.0267
Cross-effects

Ouipa Covariance between the home bases 0.0568 —0.0447 0.1680 0.0534
o, Average Fisher z-transformed cross-correlation 0.0227 —0.0460 0.0912 0.0349
Qs Average Fisher z-transformed off-diagonal of B —0.0494 —0.1329 0.0357 0.0431

Note. The s(.) notation stands for a scale transformation for that model parameter. The reason for this notation is that the population distributions for -y
and 3 are normal on the log scale. However, in this table we transformed these values back to the original scale of y and 3, but because no specific notation
was introduced for the corresponding population parameters on the original scale, we simply indicate them by adding an s(.) operator to the log-scale
notation. PCI = posterior credibility interval; LL = lower limit; UL = upper limit.

0.14 units. There is substantial interindividual variability with respect pant’s mood is pleasant and that it increases slightly during the day in
to the intercept of pleasantness: The estimated population standard a linear way.

deviation equals \0.3928 = 0.63, which is considerably larger than Unlike the home base of pleasantness, the home base of activa-
the average increase. On the whole, we can conclude that a partici- tion clearly shows a quadratic evolution during the day, as we can
] 9
8t 8t
7t 7t
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[¢,]

Activation
(¢, ]
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Figure 9. Home base of the pleasantness (left plot) and the activation dimensions (right plot) evolving with time.
The thick line depicts the averaged trajectory over persons, and the thin lines correspond to the person-specific values.
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see in the right plot of Figure 9. This pattern is not surprising: In
the literature on diurnal variation, it is often found that daily
variation in the self-reported arousal level shows an inverted
U-shaped function (for a summary on these findings, see Caminada
& De Bruijn, 1992). In our student population, the average arousal
home base starts low in the morning: At 7 a.m., for example, it is
on average 2.97. In the next 5 hr, the activation level increases by
more than 2 points, so that at noon the intercept is o, = 5.17. The
activation home base reaches its apex around 4:50 p.m., and
afterward it decreases when evening comes. It may appear that this
daily maximum falls late during the day, but we have to keep in
mind that the examined population consists of college-aged stu-
dents (who tend to be awake later than people in the general
population). Also, the individual differences in the intercept of the
time-varying activation component of home base are shown. Based
on the spread of the person-specific lines around the population
mean, it appears that the interindividual variability is substantial
here as well: The estimated population standard deviation equals
VU3388 ~ 0.58. The source of the individual variation with
respect to the person-specific intercepts of both dimensions may be
explored by time-invariant covariates, as we see later when esti-
mating the second model.

To get a better idea of the individual differences in the home
base intercept, we will use some simulated trajectories. In Figure
10, several simulated OU processes based on the estimated OU
population values from Table 2 are displayed (but without the
structural time-varying home base, which we left out when simu-
lating the trajectories). Figures 10A—10C contain three simulated
trajectories in which the home base is varied. In Figure 10B, a
trajectory was simulated with the mean home base in the population.
In Figure 10A, one population standard deviation was subtracted from
each of the two components of the mean home base vector (i.e., 0.63
and 0.58 for pleasantness and activation, respectively). In Figure
10C, the above-mentioned two population standard deviations
were added to the two components of the mean home base vector.
It can be seen that this variation in the home base has a profound
effect on the simulated curves: The majority of the visits in Figure
10C are concentrated in a slightly more pleasant and activated area
(compared with Figure 10B), whereas in Figure 10A the OU
process tends to be drawn more into a slightly unpleasant and
deactivated area.

Stationary variance matrix and measurement error vari-
ance. Looking at Table 2, we can see that overall there is
substantial intraindividual variation in the core affect space and
that it is slightly larger with respect to arousal (i.e., 2.79) than with
respect to valence (i.e., 3.27). If we compare the intraindividual
variabilities of the two dimensions with the measurement error
variances, it turns out that the latter are relatively small in both
dimensions: o3, = 0.13 and o3, = 0.11, suggesting that the
variability in the data is mainly due to the intraindividual varia-
tions of the OU process.

As emphasized before, an important aspect of the model is that
it allows for interindividual variability in the intraindividual vari-
ation. The existence of such individual differences was already
visible during data exploration in a simple plot of the core affect
measurements of two participants (see Figure 5). Now from Table
2, we can see that in terms of HOU model parameters, in both
dimensions the population variance of the intraindividual variation

is quite large (i.e., 3.39 and 3.10 for pleasantness and activation,
respectively). The size of these individual differences was illus-
trated again by means of simulation. In Figures 10C-10F, we
graphically display three simulated OU processes in which the
intraindividual variability is systematically changed. Figure 10E is
a trajectory simulated with the means of the population distribu-
tions of the parameters; in Figures 10D and 10F, a standard
deviation was subtracted from (added to) the intraindividual log
variances (we performed the calculations on the scale in which the
statistical inference is done). The figures suggest that individual
differences are indeed quite substantial. A further step after dis-
covering such variation is to try to tie the person-specific intrain-
dividual variabilities onto predictors.

As part of the intraindividual stationary variance matrix I, we also
estimate the cross-correlation between the measurements. On average,
this correlation between the changes in the two dimensions is not
substantial: «, equals 0.0227, on the Fisher z-transformed scale,
which corresponds roughly to the same value on the normal scale, as
the transformation is close to linear around zero. However, with the
person-specific correlation values, there is considerable variability
among them: Although their mean value is almost zero, the popula-
tion standard deviation is 0.27 (not shown in Table 2 because of space
limitations), which suggests sizable interindividual differences. In the
next subsection, we also look into the explanation of this individual
variability with the second model.

The centralizing tendency. Taking into account individual
differences in the centralizing tendency matrix B,, is one of the
most interesting parts of the model. First, let us look at the
population means and variances of the diagonal elements of B,
(i.e., By, and B,,). There does not seem to be any substantial
difference in these values between the two dimensions. Both
population variances again show the existence of some individual
variability, which we displayed again in the same manner as before
in Figures 10G-10I. The construction of Figures 10G—-10I is sim-
ilar as before: Figure 10G shows an OU process with one popu-
lation standard deviation subtracted from the mean centralizing
tendencies; Figure 10H is simulated with the population means; in
Figure 101, the trajectory is based on the mean centralizing ten-
dencies plus one population standard deviation. Comparing Fig-
ures 10G-10I, we see that in Figure 10G, with the lower central-
izing tendency, when the process moves away from the home base,
the return is not fast, whereas in Figure 101, the visits are more
concentrated around the population home base, leading to a density
in the home base area. In core affect terms, this means that when
our mood changes in terms of pleasantness or activation, with low
centralizing tendency we will be staying longer in that state, and
the adjustment to our comfort zone is slower. As before, finding
connections between the different levels of regulation and stable
personality traits might lead to interesting new discoveries; an
attempt for that will be made by adding covariates to the model in
the next subsection.

With the third element of the centralizing tendency matrix B,
the cross-centralizing tendency p,g, it turns out that the population
mean of the off-diagonal element «, . equals —0.05, and applying
the inverse Fisher z transformation yields roughly the same value.
This small off-diagonal value suggests that there is on average no
strong dependence between the two dimensions in the adjustment.
Described in terms of orbital portraits, the current population
would have a very similar picture for its expected dynamics around
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Figure 10. Simulated Ornstein—Uhlenbeck processes based on the estimated population values. B, E, and H
show processes based on the estimated OU parameters in Table 2. The home bases (A—C), intraindividual
variances (D-F), and centralizing forces (G-I) are manipulated by first subtracting (first column) and then adding
(third column) one population standard deviation to these parameters in both dimensions.

the home base as it is shown in Figure 4G. Also, there is some intuitively: If the adjustment to the average level in the process is
degree of individual difference in the cross-centralizing tendency large, the autocorrelation function will decrease quickly (because
(population standard deviation equals 0.21, not displayed in Table the next value does not influence the current one substantially);
2 because of space limitations). whereas if the adjustment is small, there will be a strong relation

As mentioned before, we can also look at the centralizing between the current and next observation (implying a high auto-
tendency from another perspective, as is graphically done in Figure correlation). In Figure 11, the person-specific autocorrelation func-
11: The centralizing tendency values can be converted into auto- tions are shown together with the autocorrelation functions for the
correlation functions (see, e.g., Oravecz, Tuerlinckx, & Vandeker- two dimensions based on the average (3 value. We can see a high

ckhove, 2009). The reason for this relationship can be understood degree of individual variability here. Although the autocorrelation
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pleasantness and activation (black lines) with all person-specific autocorrelation functions (gray lines). The
higher black line corresponds to pleasantness, and the lower corresponds to activation.

is not substantial after 2 hr for many students, some of them do
tend to stay in the same core affect region for a longer period. With
the help of the covariates, we can see whether these people share
some other features as well. This question is investigated in the
next subsection.

Model 2: Predicting Core Affect Characteristics From
Person-Specific Covariates

In the second estimated model, all the person-specific parameters
(i.e., the home bases, intraindividual variances, the cross-correlation,
the centralizing tendencies, and the cross-centralizing tendency) were
regressed on person-specific predictors. In the presented experience
sampling study, these predictors were the five personality dimensions
of the Big Five. We discuss only the regression coefficients for which
the 95% posterior credibility interval did not contain 0. Table 3
summarizes these coefficients.

With respect to the home base, we have the rather unsurprising
finding that neurotic individuals tend to have a lower level of
pleasantness. A similar finding can be found in Kuppens et al.
(2007), although they use the raw sample average of the pleasant-
ness ratings as outcome (and not a model-based parameter). From
Table 3, it can also be deduced that students who score high on
neuroticism tend to show higher variability with respect to their
pleasantness level—a finding that is consistent with the research of
Kuppens et al.

A more surprising result is that neuroticism is positively asso-
ciated with a higher degree of association between the two dimen-
sions. On the other side, conscientiousness is inversely related to
the cross-correlation, which is also new. This means that for highly
conscientious people, when their mood becomes more pleasant,
their arousal levels drop, and vice versa. For neurotic individuals
with a positive cross-correlation coefficient, higher activation lev-
els are associated with more pleasant feelings. These findings are,

Table 3
Summary of the Regression Coefficients With a 95% Posterior Credibility Interval Not Containing Zero
95% PCI
Model parameter Description Covariate Posterior mean LL UL Posterior SD
Pleasantness
Oy Home base Neuroticism —0.32 —0.58 —0.07 0.13
iy Variability Neuroticism 0.26 0.01 0.51 0.12
Cross-effects
QN Cross-correlation Neuroticism 0.13 0.01 0.25 0.06
Qe Cross-correlation Conscientiousness —-0.18 —0.30 —0.05 0.06
Qo Off-diagonal of B Agreeableness —0.25 —0.45 —0.07 0.09

Note.  Model parameters refer to the regression weights. For example e, » is the regression weight for neuroticism relating to the home base in the

pleasantness dimension ().
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to the best of our knowledge, new and have not yet been described
in the literature.

The current study did not find any remarkable connection be-
tween the Big Five personality dimensions and the centralizing
force in the core affect space. However, the results did show an
effect on the off-diagonal element of the centralizing tendency
matrix: Agreeable persons seem to have a lower off-diagonal
value. This might mean that when their regulation in one dimen-
sion increases, the level of centralizing tendency in the other one
decreases. Also, the orbital portrait of agreeable individuals would
be more like the improper node as in Figure 41.

Conclusion

In this article, we have introduced a hierarchical model for
analyzing change in longitudinal variables. The model is based on
the stochastic OU process, which can represent latent states that
change over time. Although the model comprises many attractive
features, it has not been introduced in psychology so far for
modeling affective dynamics. The most important assets of the
model are the following. First, the dynamics of the OU process
provide a sound theoretical framework: We can account for the
observed changes with an underlying dynamical concept. The OU
process-based parameterization offers a reasonable description of
the dynamics of change and is especially fit for modeling core
affect variation. By conceptualizing the parameters of the OU
process as random effects, we are able to account for interindi-
vidual differences. Furthermore, we may attempt to explain this
variability by introducing covariate information. Because we
model two longitudinal variables simultaneously, we can also
investigate cross-effects. Finally, the time-varying nature of the
home base parameter allows us to readily include explanatory
variables that are functions of time.

Our approach has many links to other types of models. For
example, because we incorporate both structural and random ef-
fects, there is a clear connection with mixed or multilevel models
(e.g., Diggle, Heagerty, Liang, & Zeger, 2002; Verbeke & Molen-
berghs, 2000). But several things set the HOU model apart from
the traditional mixed models. First, we do not focus exclusively or
even primarily on the mean structure but rather on the dynamical
aspects of the model. The former is usually the point of attention
in mixed modeling. Second, our model is derived from a stochastic
process, and it has substantive roots in emotion theory. Because of
the specific assumptions from which it is derived, its applicability
is not as general as for a linear mixed model (see below). Third, all
parameters of the model, including the variance and (auto)corre-
lation parameters, are allowed to vary randomly over persons,
whereas traditional mixed models typically allow individual dif-
ferences only in the mean structure. As a consequence, individual
differences at different locations in the model can be investigated
with the HOU model.

The HOU model also shares some similarities with structural
equation models (Bollen, 1989) because of the presence of a
measurement (or observation) model and a structural (or transi-
tion) model. However, the HOU model is based on a continuous-
time stochastic process that cannot as such be represented in a
structural equation model. Moreover, our type of data can be
highly unbalanced and very unequally spaced. In addition, there
may be many more measurements for each person than there are

persons. Such situations are typically hard to handle for structural
equation models, but the HOU model does not have any problem
with them. Besides these constraints, it iS not conventional in
structural equation models to allow all driving parameters to vary
randomly.

SDE models have been used before in different areas in the
behavioral sciences. Oud (2007) and Singer (2007) demonstrated
the use of a stochastic second-order differential equation to model
oscillatory patterns in the data. Compared with their approach,
ours assumes a more simple first-order SDE on the latent level.
However, we allow for individual differences in all aspects of the
model, also in the dynamical part, which is rather exceptional.
Moreover, our model is fitted with methods from the Bayesian
framework, whereas Oud and Singer use classical techniques.

The HOU model can be applied to other areas beyond emotion
psychology, but it is not a data-analytical panacea. First, the
theoretical assumptions about the modeled psychological construct
should be in line with the specific assumptions of the stochastic
model. For instance, it should be reasonable to assume the exis-
tence of a centralizing tendency or a regulatory mechanism such
that the process reverts to the mean. Such an assumption may not
be realistic for various learning or developmental processes. In
addition, there is a considerable computational cost that comes
with fitting the model, because we make use of computationally
intensive MCMC techniques. Therefore, if one is interested mainly
in individual differences in the mean structure, traditional methods
(mentioned above) should be considered first.

Concerning the issue of regulation, its parameter B also has
some constraints. Because our focus was also on modeling inter-
individual differences, we sacrificed the asymmetry property of B
to be able to allow for interindividual differences. However, in
other areas, like autoregressive cross-lagged panel designs (Oud &
Delsing, 2010), an asymmetric B is estimated. However, in such
approaches, modeling interindividual differences in I' or B is
generally not considered.

Overall, we find that the OU diffusion process is an intuitively
appealing way of describing the continuous change of certain
phenomena over time, certainly for constructs related to emotion
and mood. Future challenges that may lead to new model exten-
sions may consist of measuring important impacts on the modeled
processes and possibly discovering physiological connections. The
HOU model allows such information to be entered into the model
in a time-dependent fashion as well, which makes it especially
useful when the emphasis lies on the dynamical aspects of the
psychological constructs.
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Appendix A

Properties of the Stochastic Integral and the Solution of the Stochastic Differential Equation for One-Dimensional
Ornstein—Uhlenbeck Process

First, we discuss some properties of the standard Brownian
motion process:

1. For every t, W(¢) has a normal distribution.
2. E(W(t) = 0 and Cov(W(s), W(¢)) = min(s,?).

3. It has independent increments: For every ordered se-
quence t, < t, < t; < t, of four time points, W(z,) —
W(t,) is independent of W(z,) — W(t5).

Note that a direct consequence of the second property is that
Cov(W(r), W(£)) = Var(W(r)) = t, and consequently a Brownian
motion process is not stationary because its variance changes over
time. However, the increments of the Brownian motion process are
stationary; hence, the distribution of W(r + h) — W(¢) does not
depend on ¢, only on the time difference 4, and is thus identical for
all 7.

The solution of a stochastic integral relies on a specific calculus,
mostly Itd calculus, although other possibilities exist (see, e.g.,
Arnold, 1974). To define the stochastic integral, suppose G(f) is an
arbitrary function of time and W(r) is the standard Brownian
motion. The stochastic integral [} G(u)dW(u) is defined (Gardiner,
2004) as a limit of the partial sums:

S, = 2G(r)[W(t) — Wi, — 1)],

i=1

where it holds that 7,_, < 7, < t; and t, = ¢ so that

lim S, = er(u)dW(u).

to
In principle, the function G( - ) could be deterministic or (nonan-
ticipatory) stochastic, but we consider in this article only the first
option.
Here we highlight three important properties. For the full de-
scription of properties, we refer to Arnold (1974) and Tuma and
Hannan (1984). The first one is the following:

E f Gu)dW(u) | =0,

10

(Appendices

which is to say that the expected mean of the stochastic integral is
0. This property can be understood easily by taking the expectation
of lim,,_,..S,,. The second property states that

E[( f tG(u)dW(u))( j S G(u)dW(u))] - f Gy,

to

where t, = s = t, which is an ordinary integral of time. As a third
property, we mention that the distribution of the stochastic integral
with respect to a Wiener process is normally distributed (and the
mean and variance of this distribution are derived above).

Let us consider now the specific case of the solution of the
stochastic differential equation for the Ornstein—Uhlenbeck pro-
cess:

dO(1) = B(n — O(1)dt + cdW(1).

First, we integrate over this equation, which results in

O)=pn+e PO, — )+ (reB’J P dW(u),

0

where the last term in the solution is a stochastic integral (it is an
integral with respect to the Brownian motion process W(t)).

We will often not condition on the position at Time O but on the
position d time units before, that is, ®(t — d), so that the solution
then becomes

O)=pn+ePOfr—d —pn + Ueﬁ’f’ P dW(u).

(A1)

From Equation A1, we can see that the position at time ¢, that is,
O(r), depends on the already introduced parameters and the pre-
viously measured position O(r — d).

Making use of the properties of the stochastic integral as intro-
duced above, the conditional distribution of ®(z) given O(r — d)
can be derived from Equation Al, and is as follows:

0_2

@(t)|®(t - d) ~ N(“‘ + e’B"(@)(t — d) — M), ﬁ(l _ 672[351))

continue)
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Appendix B

Solution of the Stochastic Differential Equation for Two-Dimensional Ornstein—-Uhlenbeck Process

Based on the extensive treatment of the unidimensional case, the
two-dimensional process will not appear entirely novel. As estab-
lished before, O(f) represents the position in a two-dimensional
space at time 7. The stochastic differential equation describing the
change in the vector O(¢) is then as follows:

dO() = B(p — O(1))dt + odW(2). B1)
The vector p now stands for the home base in a two-dimensional
space. The adjustment to w is no longer determined by a single
scalar (3 but the matrix B. The dW(#) represents the already
introduced white noise in two dimensions. The matrix ¢ controls
the variances and covariances of the two driving white noise
processes. The instantaneous covariance matrix % can be derived
from o as follows: 3 = oo’

The solution of the two-dimensional stochastic differential
equation in Equation B1 is very similar to the unidimensional
solution (assuming we condition on Ot — d)):

ON=p+e®O(t—d —p)+oe®| LHdW(),
t—d

where d denotes the time difference and e~
nential defined as

X is the matrix expo-

‘X:I—X+£2—X—3+£4—§5+
21 31 41 5!

We follow the reparameterization that was already introduced in
the case of a unidimensional process. Instead of using the
Cholesky decomposition of the instantaneous covariance matrix
(i.e., o), we prefer the parameterization based on the stationary
covariance matrix I' (see Gardiner, 2004):

3 =00 =BI' + I'B,

where 2, is the instantaneous covariance matrix and o its Cholesky
decomposition. Then the conditional distribution of @(r) given
Ot — d) equals

OO — d) ~ Ny( + e POt — d) — ), I' — ¢ B B9,

where N, refers to the bivariate normal distribution. Also in this
two-dimensional case, the process converges to a stationary dis-
tribution:

xO(1) ~ Ny(w, ).
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