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ABSTRACT

AN INFORMATION GEOMETRIC PICTURE OF THE SPACE OF TASKS

Yansong Gao

Pratik Chaudhari

This dissertation seeks to address why deep learning models can be effectively applied to a wide

range of tasks. Understanding the space of tasks lays the foundation for answering this question.

We leverage information geometry—a well-established set of tools to gain a deeper understanding

of the space of typical tasks and make the following contributions.

In Chapter 2, we formalize the free energy principle that addresses how to perform pre-training

effectively. The free energy principle identifies reconstruction as the canonical task

that pre-training procedures should consider to improve the representation quality for

multiple other tasks. Leveraging insights from variational inference, the free energy principle

foretold the effectiveness of reconstruction pre-training prior to its widespread adoption.

By leveraging optimal transportation, Chapter 3 establishes a sequence of interpolated tasks that

evolves from pre-training to target tasks. The representation is then updated to align with the

evolving data distribution. We refer to this process as optimal coupled transfer. The optimal

coupled transfer enables the pre-trained model to traverse the shortest path in the space of tasks.

From an information geometric perspective, the length of this shortest path connecting

two tasks gives rise to a unique definition of the distance between them.

In the context of learning with unlabeled data p(x) (Chapter 4), we can also harness the power of

reconstruction. A canonical approach to explore unlabeled data is to directly reconstruct

the potential downstream tasks p(x, y) in the space of tasks. By leveraging the power of a

reference prior, we reconstruct a pool of diverse tasks that encompass the typical downstream tasks

without knowing the actual labels. Through empirical experiments, we demonstrate the effectiveness

of our approach, achieving state-of-the-art results in self-supervised learning.
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Statistical learning theory insights suggest that building a single model for all tasks (e.g., foundation

models) may not be ideal. Instead, it is more appropriate to consider a mixture of experts

selected based on priors. In Chapter 5, we propose a mechanism to explore representative expert

models trained on typical learnable tasks, and the combined recorded expert models form a powerful

prior known as the foundation prior. We also design an algorithm to utilize the foundation prior

efficiently and effectively.
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CHAPTER 1

INTRODUCTION

This dissertation aims to understand the space of the machine learning tasks. Why is it important

to investigate? Deep learning has achieved remarkable success in recent years. The AI field has

flourished with many concepts and advancements (e.g., foundation models and multi-modality). In

the past, researchers primarily regarded deep learning or machine learning algorithms as techniques

for building models tailored to solve specific tasks. However, the current trend is to not only excel

in a single task but also to build models that can handle multiple diverse tasks. This represents a

significant shift in thinking over the past few years.

Furthermore, notable success has been achieved through this approach. Researchers have observed

that language models (e.g., GPT) achieve impressive performance when trained on vast and diverse

datasets. Integrating vision and language in multi-modality models (e.g., CLIP) is particularly

powerful. However, based on statistical learning theory, we understand that training a model on

multiple tasks does not guarantee a desired model that performs well on all given tasks. Nevertheless,

researchers have developed models that can be fine-tuned and adapted to many diverse tasks in

practice. This thesis seeks to address why machine learning can be effectively applied to a wide

range of tasks. Understanding the space of tasks lays the foundation for answering this question.

In this thesis, we define a task as a joint probability distribution of inputs and labels, denoted

as p(x, y). We focus on researching the properties of typical learning tasks. It is important to

differentiate between typical learning tasks and the entire set of all tasks. The set of all tasks

encompasses arbitrary joint distributions that are highly complex. Instead, our interest lies in

investigating the space of typical learning tasks encountered in practical scenarios. To clarify,

we define typical tasks as those currently addressed by researchers, such as image classification,

image captioning, and reconstruction. Each individual researcher addresses a specific task, and the

collection of these tasks forms a set of typical tasks. It is evident that large models trained on these

typical tasks collectively achieve impressive results. Therefore, our objective is to gain a deeper
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understanding of this space of typical tasks.

If we aim to understand the space of tasks — particularly the joint probability distributions of

typical task data, we can leverage information geometry—a well-established set of tools designed

precisely for this purpose. The choice of information geometry stems from its explicit focus on

understanding the geometric properties of probability distributions. Having defined our approach,

next, we present our contributions cohesively.

In Chapter 2, we formalize the free energy principle that addresses how to perform pre-training

effectively. The Information Bottleneck (IB) principle defines a minimal sufficient statistic of the

data, proposing a representation that discards information not correlated with predicting labels.

While such a representation is unique to the chosen task, it may perform poorly in predicting other

labels that are correlated with the discarded information. On the other hand, if the representation

contains redundant information about the data, it has the potential to predict other labels correlated

with this extra information. We extend the concept of the information bottleneck and propose the

notion of a world representation that adheres to the free energy principle. The free energy

principle identifies reconstruction as the canonical task that pre-training procedures

should consider to preserve information and improve the representation quality for

multiple other tasks. Today, reconstruction has become a successful mechanism for pre-training

models, such as language models (e.g., BERT) trained to reconstruct the next token in an auto-

regressive fashion. Leveraging insights from variational inference, the free energy principle foretold

the effectiveness of reconstruction pre-training prior to its widespread adoption. Representations

learned through this principle exhibit remarkable transferability, allowing for flexible adaptation to

new tasks. Our experiments provide evidence of the effectiveness of the algorithm. This result is

published in Gao and Chaudhari (2020b).

A representation that adheres to the free energy principle preserves the additional information and

models the data-generating process aligned with the pre-training source task, denoted as p(x, y).

To better transfer such a representation to adapt to a new target task pnew(x, y), it requires us

to navigate the tasks from p(x, y) to pnew(x, y) properly in the space of the tasks. This serves
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as our motivation for our second contribution Chapter 3. By leveraging optimal transportation

(OT), we establish a sequence of interpolated tasks that evolves from p(x, y) to pnew(x, y). The

representation is then updated to align with the evolving data distribution. We refer to this process

as optimal coupled transfer. Optimal coupled transfer facilitates model transfer, surpassing the direct

fine-tuning approach on the target task. It enables the pre-trained model to traverse the shortest

path in the space of tasks, thereby adapting to the new task efficiently. From an information

geometric perspective, the length of this shortest path connecting two tasks gives

rise to a unique definition of the distance between them. Consequently, we address a

longstanding open question: how to define the distance between tasks theoretically soundly. We

provide experimental evidence to support our viewpoints. Through minor modifications in the

code, we update models to adapt to the sequential interpolated tasks. The results outperform the

fine-tuning approach. These findings have been published in Gao and Chaudhari (2021).

The free energy principle highlights the effectiveness of reconstruction in pre-training. In the context

of learning with unlabeled data p(x), we can also harness the power of reconstruction. Successful

algorithms in self-supervised learning ( e.g., SimCLR ) intuitively design the tasks to pre-train the

models using the unlabelled data (e.g., representations invariant to the data augmentations ) prior

to knowing the actual downstream task p(x, y). Instead of artificially designing tasks, a more

canonical approach to explore unlabeled data is to directly reconstruct the potential

downstream tasks p(x, y) in the space of tasks. We frame this question as the choice of the

prior in Bayesian statistics Chapter 4. By leveraging the power of a reference prior, we reconstruct

a pool of diverse tasks that encompass the typical downstream tasks without knowing the actual

labels. Through empirical experiments, we demonstrate the effectiveness of our approach, achieving

state-of-the-art results. These findings have been published in Gao et al. (2022).

Over the past year, we have observed that our previous results can be formalized as constructions

in the prediction space. Chapter 5 introduces an information-geometric technique for analyzing

the probabilistic models underlying deep neural networks. We present key information geometric

concepts, including prediction space, divergence, infinitesimal distance, and visualization methods.
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Utilizing this new language allows us to interpret our previous results more simply and elegantly.

Currently, many researchers are pursuing the development of foundation models. However, statis-

tical learning theory insights suggest that building a single model for all tasks may not be ideal.

Instead, it is more appropriate to consider a mixture of experts selected based on pri-

ors, as opposed to relying solely on an overconfident point estimator. In Chapter 5, we

propose a mechanism to explore representative expert models trained on typical learnable tasks, and

the combined recorded models form a powerful prior known as the foundation prior. We also design

an algorithm to utilize the foundation prior efficiently, and our experimental results demonstrate the

algorithm’s effectiveness. It is important to note that while foundation models may not be suitable

for all tasks, the foundation prior, formally a mixture of experts, is expected to perform better.
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CHAPTER 2

INFORMATION THEORETICAL PRINCIPLES FOR REPRESENTATION

LEARNING

This chapter presents an information-theoretic principle for pre-training representations that aligns

with various existing information criteria in machine learning. We established a formal connection

between this framework and the free energy principle in physics, highlighting the relationship and

effectiveness.

2.1. Information Bottleneck Principle for Representation Learning

The information bottleneck method is a technique in information theory introduced by (Tishby et al.,

2000). Given a joint probability distribution p(x, y) between input data x and an observed rele-

vant label y. The information bottleneck method is designed to find the best trade-off between

classification accuracy and compression complexity of the data representation z.

The information bottleneck can also be viewed as a rate-distortion problem, with a distortion func-

tion that measures how well the label y is predicted from a compressed representation z compared

to its direct prediction from input x. This interpretation provides a general algorithm for solving

the information bottleneck trade-off and calculating the information curve from the given joint dis-

tribution p(x, y). Let e(z|x) denote an encoder that encodes input x into a latent representation z.

Let c(y|z) denote a classifier that predicts y given a representation z. The information bottleneck

method minimizes the following functions:

min
e(z|x),c(y|z)

I(x ; z)− λI(z ; y). (2.1)

where I(x ; z) and I(z ; y) are the mutual information of x and z, and of z and y, respectively,

and λ is a Lagrange multiplier.

The information bottleneck generalized the classical notion of minimal sufficient statistics from

parametric statistics to arbitrary distributions. The representation z is useful to predict the correct
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label y by maximizing the mutual information I(z ; y). Such a representation z is thus a statistic of

the data sufficient for the task of classification. While z is also minimal—say in its size—it would

discard information in the data that is not correlated with the labels by minimizing I(x ; z).

Information Bottleneck is used to open the black box of Deep Neural Networks (DNN).

Let z be any hidden layer of the network. (Shwartz-Ziv and Tishby, 2017) proposed the information

bottleneck that expresses the trade-off between the mutual information measures I(x ; z) and

I(z ; y). In this case, I(x ; z) and I(z ; y) respectively quantify the amount of information that

the hidden layer contains about the input and the output. They conjectured that the training process

of a DNN consists of two separate phases; 1) an initial fitting phase in which I(z ; y) increases,

and 2) a subsequent compression phase in which I(x ; z) decreases. (Saxe et al., 2019) countered

the claim of (Shwartz-Ziv and Tishby, 2017), stating that this compression phenomenon in DNNs is

not comprehensive and it depends on the particular activation function. In particular, they claimed

that compression does not happen with ReLu activation functions. However, (Noshad et al., 2019)

used a rate-optimal estimator of mutual information to explore this controversy, observing that the

optimal hash-based estimator reveals the compression phenomenon in a wider range of networks

with ReLu and max-pooling activation. Recently, (Goldfeld et al., 2018; Geiger, 2021) argue that

the observed compression is a result of geometric instead of information-theoretic phenomena.

2.2. Free Energy Principle for Representation Learning

The minimal sufficient representation z in (2.1) is unique to the chosen task p(x, y). It discards

information not correlated with predicting labels and may perform poorly in predicting other labels

that are correlated with the discarded information. In addition, this representation in (2.1) does not

offer a complete modeling of the real-world data generating process p(x, y)–it completely ignores

information of p(x).

If, instead, the representation were to model the world and have lots of redundant information about

the data, it could potentially predict other labels correlated with this extra information. Therefore,

we are primarily interested in learning a world representation z that encodes and compress the

information from the real-world data-generating process p(x, y), based on a fundamental assumption.
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We will denote expectation over data using the notation ⟨φ⟩p(x) =
∫

dx p(x)φ.

Assumption 1. We accept a traditional variational inference modeling assumption, in which repre-

sentation z acts as a latent factor for generating x and y, rendering them conditionally independent,

leaving no unexplained correlations. We assume the latent factor z is generated from a margin π(z).

Then a decoder d decodes z back into the original data x, and a classifier c(y|z) creates label y from

z. Let e(z|x) denote an encoder that encodes data x into a latent code z. e(z|x), d(x|z), together

with c(y|z) model the data generating process q(x, y) satisfying the Bayesian rule,

q(x, y)e(z|x) = m(z)d(x|z)c(y|z). (2.2)

We align the modeling data-generating process q(x, y) (2.2) with the real data process p(x, y) by

minimizing the cross-entropy loss,

−Ex,y∼p(x,y) log q(x, y) = Ex,y∼p(x,y) [log e(z|x)− logm(z)− log d(x|z)− log c(y|z)]

= Ex,y∼p(x,y)

[∫
dz e(z|x)

(
log

e(z|x)
m(z)

− log d(x|z)− log c(y|z)
)]

= Ex∼p(x)

[∫
dz e(z|x) log e(z|x)

m(z)

]
+ Ex∼p(x)

[
−
∫

dz e(z|x) log d(x|z)
]

+ Ex,y∼p(x,y)

[
−
∫

dz e(z|x) log c(y|z)
]

= R+D + C. (2.3)

The rate

R := Ex∼p(x)

[∫
dz e(z|x) log e(z|x)

m(z)

]
(2.4)

is a Kullback-Leibler (KL) divergence; it measures the average excess bits used to encode samples

from e(z|x) using a code that was built for our approximation of the true marginal on the latent

factors m(z). The distortion

D := Ex∼p(x)

[
−
∫

dz e(z|x) log d(x|z)
]

(2.5)
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measures the quality of reconstruction of the decoder d(x|z) and

C = Ex,y∼p(x,y)

[
−
∫

dz e(z|x) log c(y|z)
]

(2.6)

measures the classification loss of the classifier c(y|z). This also leads to the study of the following

Lagrangian, which is similar to the Information Bottleneck of Tishby et al. (2000),

F (λ, γ) = min
e(z|x),d(x|z),c(y|z)

R+ λD + γC. (2.7)

As Alemi and Fischer (2018) show, this Lagrangian can be formally connected to ideas in thermody-

namics. We will heavily exploit and specialize this point of view. In particular, the objective F (λ, γ)

can be rewritten as maximizing the log-partition function (2.14), also known as the free-energy in

statistical physics (Mezard and Montanari, 2009). (2.7) extends the concept of the information bot-

tleneck and defines a mechanism for pre-training representations. We refer to this as the free energy

principle for representation learning.

The rate R (2.4) and the classification loss C (2.6) are the building blocks of the deep variational

information bottleneck (Alemi et al., 2016). The cool part is the free energy principle identi-

fies reconstruction D (2.5) as the canonical task that pre-training procedures should

consider to preserve information and improve the representation quality. Today, re-

construction has become a successful mechanism for pre-training models, such as language models

(e.g., BERT) trained to reconstruct the next token in an auto-regressive fashion. Leveraging insights

from variational inference (2.2), the free energy principle foretold the effectiveness of reconstruction

pre-training prior to its widespread adoption.

2.2.1. Rate-Distortion curve

Let

H := Ex∼p(x) [− log p(x)]

8



denote the Shanon entropy of the true data distribution; it quantifies the complexity of the data.

The functionals R, D in (2.2), and H come together to give the inequality,

H −D ≤ Ie(x; z) ≤ R (2.8)

where mutual information Ie = Ex∼p(x)KL(e(z|x) || m(z)) is the KL-divergence between the learned

encoder and the true (unknown) conditional of the latent factors.

The outer inequality H ≤ D + R forms the basis for a large body of literature on Evidence Lower

Bounds (ELBO, see Kingma and Welling (2013)). Consider Fig. 2.1a, if the capacity of our candi-

date distributions e(z|x),m(z) and d(x|z) is infinite, we can obtain the equality H = R +D. This

is the thick black line in Fig. 2.1a.

For finite capacity variational families, say parameterized by θ, which we denote by eθ(z|x), dθ(x|z)

and mθ(z) respectively, as Alemi et al. (2017) argue, one obtains a convex RD curve (shown in red

in Fig. 2.1a) corresponding to the Lagrangian

F (λ) = min
eθ(z|x),mθ(z),dθ(x|z)

R+ λD. (2.9)

(a) (b)

Figure 2.1: Schematic of the equilibrium surface. Fig. 2.1a shows that rate (R) and distortion
(D) trade off against each other on the equilibrium surface. Similarly in Fig. 2.1b, the equilibrium
surface is a convex constraint that joins rate, distortion and the classification loss. Training objec-
tives with different (λ, γ) (shown in red and blue) reach different parts of the equilibrium surface.
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This Lagrangian is the relaxation of the idea that given a fixed variational family and data distri-

bution p(x), there exists an optimal value of, say, rate R = f(D) that best sandwiches (2.8). The

optimal Lagrange multiplier is λ = ∂R
∂D evaluated at the desired value of D.

2.2.2. Rate-Distortion-Classification surface

If the parameters of the model—which now consists of the encoder e(z|x), decoder d(x|z) and the

classifier c(y|z)—are denoted by θ, the training process for the model (minθ R+ λD + γC) induces

a distribution p(θ| {(x, y)}) where {(x, y)} denotes a finite dataset. In addition to R,D and C, the

authors in Alemi and Fischer (2018) define

S = Ex∼p(x),y∼p(y|x)

[
log

p(θ| {x, y})
m(θ)

]
(2.10)

which is the relative entropy of the distribution on parameters θ after training compared to a prior

distribution m(θ) of our choosing. Using a very similar argument as Sec. 2.2.1 the four functionals

R,D,C and S form a convex three-dimensional surface in the RDCS phase space. A schematic is

shown in Fig. 2.1b for σ = 0. We can again consider a Lagrange relaxation of this surface given by

F (λ, γ, σ) = min
e(z|x),m(z),d(x|z),c(y|z)

R+ λD + γC + σS. (2.11)

Remark 2 (‘The ‘First Law” of learning). Alemi and Fischer (2018) draw formal connections

of the Lagrangian in (2.11) with the theory of thermodynamics. Just like the first law of thermo-

dynamics is a statement about the conservation of energy in physical processes, the fact that the

four functionals are tied together in a smooth constraint f(R,D,C, S) = 0 leads to an equation of

the form

dR = −λ dD − γ dC − σ dS (2.12)

which indicates that information in learning processes is conserved. The information in the latent

representation z is kept either to reconstruct back the original data or to predict the labels. The

former is captured by the encoder-decoder pair, the latter is captured by the classifier.
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Remark 3 (Setting σ = 0). The distribution p(θ| {(x, y)}) is a posterior on the parameters of the

model given the dataset. While this distribution is well-defined under minor technical conditions,

e.g., ergodicity, performing computations with this distribution is difficult. We therefore only

consider the case when σ = 0 in the sequel and leave the general case for future work.

The following lemma (proved in Sec. 2.6.2) shows that the constraint surface connecting the information-

theoretic functionals R,D and C is convex and its dual, the Lagrangian F (λ, γ) is concave.

Lemma 4 (The RDC constraint surface is convex). The constraint surface f(R,D,C) = 0 is

convex and the Lagrangian F (λ, γ) is concave.

We can show using a similar proof that the entire surface joining R,D,C and S is convex by

considering the cases λ = 0 and γ = 0 separately. Note that the constraint is convex in R,D and

C; it need not be convex in the model parameters θ that parameterize eθ(z|x),mθ(z), etc.

2.2.3. Equilibrium surface of optimal free-energy

We next elaborate upon the objective in (2.11). Consider the functionals R,D and C parameterized

using parameters θ ∈ Θ ⊆ RN . First, consider the problem

F (λ, γ) = min
e(z|x), θ∈Θ

R+ λD + γC. (2.13)

We can solve this using calculus of variations to get the optimal encoder,

e(z|x) ∝ mθ(z) dθ(x|z)λ exp
(
γ

∫
dy p(y|x) log cθ(y|z)

)
.

We assume in this paper that the labels are a deterministic function of the data, i.e., p(y|x) =

δ(y − yx) where yx is the true label of the datum x. We therefore have

e(z|x) = mθ(z)dθ(x|z)λcθ(yx|z)γ

Zθ,x

11



where the normalization constant is

Zθ,x =

∫
dz mθ(z)dθ(x|z)λcθ(yx|z)γ . (2.14)

The objective F (λ, γ) can now be rewritten as maximizing the log-partition function, also known

as the free-energy in statistical physics (Mezard and Montanari, 2009),

F (λ, γ) = min
θ∈Θ

−⟨logZθ,x⟩p(x) . (2.15)

Remark 5 (Why is it called the “equilibrium” surface?). Given a finite dataset {(x, y)}, one

may minimize the objective in (2.13) using stochastic gradient descent (SGD, Robbins and Monro

(1951)) on a Hamiltonian

H(z;x, θ, λ, γ) ≡ − logmθ(z)− λ log dθ(x|z)− γ log cθ(y|z) (2.16)

with updates given by

θk+1 = θk − σ ∇θ Ex∼p(x)

[∫
dz eθk(z|x)H(z;x, θk, λ, γ)

]
(2.17)

where σ > 0 is the step-size; the gradient ∇θ is evaluated over samples from p(x) and eθ(z|x). Using

the same technique as that of Chaudhari and Soatto (2017), one can show that the objective

Eθ∼p(θ|{x,y})

[
⟨− logZθ,x⟩p(x)

]
− σH(p(θ | {x, y})).

decreases monotonically. Observe that our objective in (2.13) corresponds to the limit σ → 0

of this objective along with a uniform non-informative prior m(θ) in (2.10). In fact, this result

is analogous to the classical result that an ergodic Markov chain makes monotonic improvements

in the KL-divergence as it converges to the steady-state, also known as, equilibrium, distribu-

tion (Levin and Peres, 2017). The posterior distribution of the model parameters induced by the

stochastic updates in (2.17) is the Gibbs distribution p∗(θ | {(x, y)}) ∝ exp (−2(R+ λD + γC)/σ).
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It is for the above reason that we call the surface in Fig. 2.1b parameterized by

Θλ,γ =
{
θ ∈ Θ : −⟨logZθ,x⟩p(x) = F (λ, γ)

}
(2.18)

as the “equilibrium surface”. Learning, in this case minimizing (2.13), is initialized outside this

surface and converges to specific parts of the equilibrium surface depending upon (λ, γ); this is

denoted by the red and blue curves in Fig. 2.1b. The constraint that ties results in this equilibrium

surface is that variational inequalities such as (2.8) (more are given in Alemi and Fischer (2018))

are tight up to the capacity of the model. This is analogous to the concept of equilibrium in

thermodynamics (Sethna, 2006)

2.3. Dynamical Processes on the Equilibrium Surface

This section prescribes dynamical processes that explore the equilibrium surface. For any parameters

θ ∈ Θ, not necessarily on the equilibrium surface, let us define

J(θ, λ, γ) = −⟨logZθ,x⟩p(x) . (2.19)

If θ ∈ Θλ,γ we have J(θ, λ, γ) = F (λ, γ) which implies

∇θ J(θ, λ, γ) = 0 for all θ ∈ Θλ,γ . (2.20)

Quasi-static process. A quasi-static process in thermodynamics happens slowly enough for a

system to remain in equilibrium with its surroundings. In our case, we are interested in evolving

Lagrange multipliers (λ, γ) slowly and simultaneously keep the model parameters θ on the equi-

librium surface; the constraint (2.20) thus holds at each time instant. The equilibrium surface is

parameterized by R,D and C so changing (λ, γ) adapts the three functionals to track their optimal

values corresponding to F (λ, γ).

Let us choose some values (λ̇, γ̇) and the trivial dynamics d
dtλ = λ̇ and d

dtγ = γ̇. The quasi-static

13



constraint leads to the following partial differential equation (PDE)

0 ≡ d
dt
∇θ J(θ, λ, γ) = ∇2

θ J θ̇ + λ̇
∂

∂λ
∇θ J + γ̇

∂

∂γ
∇θ J (2.21)

valid all θ ∈ Θλ,γ . At each location θ ∈ Θλ,γ the above PDE indicates how the parameters

should evolve upon changing the Lagrange multipliers (λ, γ). We can rewrite the PDE using the

Hamiltonian H in (2.16) as shown next.

Lemma 6 (Equilibrium dynamics for parameters θ). Given (λ̇, γ̇), the parameters θ ∈ Θλ,γ

evolve as
θ̇ = A−1bλ λ̇+A−1bγ γ̇

= θλλ̇+ θγ γ̇

(2.22)

where H is the Hamiltonian in (2.16) and

A = ∇2
θ J = Ex∼p(x)

[〈
∇2

θ H
〉
+ ⟨∇θ H⟩ ⟨∇θ H⟩⊤ −

〈
∇θ H ∇⊤

θ H
〉]

;

bλ = − ∂

∂λ
∇θ J = −Ex∼p(x)

[〈
∂∇θ H

∂λ

〉
−
〈
∂H

∂λ
∇θ H

〉
+

〈
∂H

∂λ

〉
⟨∇θ H⟩

]
;

bγ = − ∂

∂γ
∇θ J = −Ex∼p(x)

[〈
∂∇θ H

∂γ

〉
−
〈
∂H

∂γ
∇θ H

〉
+

〈
∂H

∂γ

〉
⟨∇θ H⟩

]
.

All the inner expectations ⟨·⟩ above are taken with respect to the Gibbs measure of the Hamiltonian,

i.e., ⟨φ⟩ =
∫

φ exp(−H(z)) dz∫
exp(−H(z)) dz . The dynamics for the parameters θ is therefore a function of the two

directional derivatives

θλ = A−1 bλ, and θγ = A−1 bγ (2.23)

with respect to λ and γ. Note that A in (2.22) is the Hessian of a strictly convex functional.

This lemma allows us to implement dynamical processes for the model parameters θ on the equi-

librium surface. As expected, this is an ordinary differential equation (2.22) that depends on our

chosen evolution for (λ̇, γ̇) through the directional derivatives θλ, θγ . The utility of the above lemma

therefore lies in the expressions for these directional derivatives. Sec. 2.6.3 gives the proof of the

above lemma.
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Remark 7 (Implementing the equilibrium dynamics). The equations in Lemma 6 may seem

complicated to compute but observe that they can be readily estimated using samples from the

dataset x ∼ p(x) and those from the encoder z ∼ eθ(z|x). The key difference between (2.22)

and, say, the ELBO objective is that the gradient in the former depends upon the Hessian of the

Hamiltonian H. These equations can be implemented using Hessian-vector products (Pearlmutter,

1994). If the dynamics involves certain constrains among the functionals, as Rem. 8 shows, we

simplify the implementation of such equations.

2.3.1. Iso-classification process

An iso-thermal process in thermodynamics is a quasi-static process where a system exchanges en-

ergy with its surroundings and remains in thermal equilibrium with the surroundings. We now

analogously define an iso-classification process that adapts parameters of the model θ while the

free-energy is subject to slow changes in (λ, γ). This adaptation is such that the classification loss

is kept constant while the rate and distortion change automatically.

Following the development in Lemma 6, it is easy to create an iso-classification process. We simply

add a constraint of the form

d
dt
∇θ J = 0 (Quasi-Static Condition)

d
dt

C = 0 (Iso-classification Condition).
(2.24)

Using a very similar computation (given in Sec. 2.6.4) as that in the proof of Lemma 6, this leads

to the constrained dynamics

0 = Cλλ̇+ Cγ γ̇

θ̇ = θλλ̇+ θγ γ̇.

(2.25)

The quantities Cλ and Cγ are given by

Cλ = −Ex∼p(x)

[〈
∂H

∂λ

〉
⟨ℓ⟩ −

〈
∂H

∂λ
ℓ

〉
+
〈
θ⊤λ ∇θ H

〉
⟨ℓ⟩ −

〈
ℓθ⊤λ ∇θ H

〉
+
〈
θ⊤λ ∇θ ℓ

〉]
Cγ = −Ex∼p(x)

[〈
∂H

∂γ

〉
⟨ℓ⟩ −

〈
∂H

∂γ
ℓ

〉
+
〈
θ⊤γ ∇θ H

〉
⟨ℓ⟩ −

〈
ℓθTγ ∇θ H

〉
+
〈
θ⊤γ ∇θ ℓ

〉] (2.26)
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where ℓ = log cθ(yx|z) is the logarithm of the classification loss. Observe that we are not free to

pick any values for (λ̇, γ̇) for the iso-classification process anymore, the constraint dC
dt = 0 ties the

two rates together.

Remark 8 (Implementing an iso-classification process). The first constraint in (2.25) allows

us to choose

λ̇ = −α∂C

∂γ
= −α∂2F

∂γ2

γ̇ = α
∂C

∂λ
= α

∂2F

∂λ∂γ

(2.27)

where α is a parameter to scale time. The second equalities in both rows follow because F (λ, γ) is

the optimal free-energy which implies relations like D = ∂F
∂λ and C = ∂F

∂γ . We can now compute

the two deriatives in (2.27) using finite differences to implement an iso-classification process. This

is equivalent to running the dynamics in (2.25) using finite-difference approximation for the terms

∂H
∂λ , ∂H

∂γ , ∂∇θ H
∂λ , ∂∇θ H

∂γ . While approximating all these listed quantities at each update of θ would

be cumbersome, exploiting the relations in (2.25) is efficient even for large neural networks, as our

experiments show.

Remark 9 (Other dynamical processes of interest). In this chapter, we focus on iso-classification

processes. However, following the same program as that of this section, we can also define other

processes of interest, e.g., one that keeps C + β−1R constant while fine-tuning a model. This is

similar to the alternative Information Bottleneck of Achille and Soatto (2017) wherein the rate is

defined using the weights of a network as the random variable instead of the latent factors z. This is

also easily seen to be the right-hand side of the PAC-Bayes generalization bound (McAllester, 2013).

A dynamical process that preserves this functional would be able to control the generalization error

which is an interesting prospect for future work.

2.3.2. Experimental validation: Iso-classification process on the equilibrium surface

This section implements the dynamics in Sec. 2.3 that traverses the equilibrium surface.

Setup We use the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) datasets for

our experiments. We use a 2-layer fully-connected network (same as that of Kingma and Welling
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Figure 2.2: Iso-classification process for MNIST. We run 5 different experiments for initial
Lagrange multipliers given by λ = 0.25 and γ ∈ {4, 6, 8, 10, 15}. During each experiment, we
modify these Lagrange multipliers (Fig. 2.2b) to keep the classification loss constant and plot the
rate-distortion curve (Fig. 2.2a) along with the validation loss (Fig. 2.2c). The validation accuracy
is constant for each experiment; it is between 92–98% for these initial values of (λ, γ). Similarly
the training loss is almost unchanged during each experiment and takes values between 0.06–0.2 for
different values of (λ, γ).
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Figure 2.3: Iso-classification process for CIFAR-10. We run 4 different experiments for initial
Lagrange multipliers λ = 0.5 and γ ∈ {5, 10, 15, 20}. During each experiment, we modify the
Lagrange multipliers (Fig. 2.3b) to keep the classification loss constant and plot the rate-distortion
curve (Fig. 2.3a) along with the validation accuracy (Fig. 2.3c). The validation loss is constant
during each experiment; it takes values between 0.5–0.8 for these initial values of (λ, γ). Similarly,
the training loss is constant and takes values between 0.02–0.09 for these initial values of (λ, γ).
Observe that the rate-distortion curve in Fig. 2.3a is much flatter than the one in Fig. 2.2a which
indicates that the model family Θ for CIFAR-10 is much more powerful; this corresponds to the
straight line in the RD curve for an infinite model capacity is as shown in Fig. 2.1a.

(2013)) as the encoder and decoder for MNIST; the encoder for CIFAR-10 is a ResNet-18 (He et al.,

2016a) architecture while the decoder is a 4-layer deconvolutional network (Noh et al., 2015). Full
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details of the pre-processing, network architecture and training are provided in Sec. 2.6.1.
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Figure 2.4: Variation of the free-energy F (λ, γ) across the equilibration and the iso-
classification processes. Fig. 2.4a shows the free-energy during equilibration between small
changes of (λ, γ). The initial and final values of the Lagrange multipliers are (0.5, 1) and (0.51, 1.04)
respectively and the free-energy is about the same for these values. Fig. 2.4b shows the free-energy
as (λ, γ) undergo a large change from their initial value of (0.25, 4) to (3.5, 26) during the iso-
classification process in Fig. 2.2. Since the rate-distortion change a lot (Fig. 2.2a), the free-energy
also changes a lot even if C is constant (Fig. 2.2c). Number of steps in Fig. 2.4b refers to the number
of steps of running (2.28).

This experiment demonstrates the iso-classification process in Rem. 8. As discussed in Rem. 5,

training a model to minimize the functional R+ λD+ γC decreases the free-energy monotonically.

Details Given a value of the Lagrange multipliers (λ, γ) we first find a model on the equilibrium

surface by training from scratch for 120 epochs with the Adam optimizer (Kingma and Ba, 2014);

the learning rate is set to 10−3 and drops by a factor of 10 every 50 epochs. We then run the

iso-classification process for these models in Rem. 8 as follows. We modify (λ, γ) according to the

equations

λ̇ = −α∂C

∂γ
and γ̇ = α

∂C

∂λ
. (2.28)

Changes in (λ, γ) cause the equilibrium surface to change, so it is necessary to adapt the model

parameters θ so as to keep them on the dynamically changing surface; let us call this process of

adaptation “equilibriation”. We achieve this by taking gradient-based updates to minimize J(λ, γ)

with a learning rate schedule that looks like a sharp quick increase from zero and then a slow

annealing back to zero. The learning rate schedule is given by η(t) = (t/T )2 (1− t/T )5 where t is
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the number of mini-batch updates taken since the last change in (λ, γ) and T is total number of

mini-batch updates of equilibration. The maximum value of the learning rate is set to 1.5× 10−3.

The free-energy should be unchanged if the model parameters are on the equilibrium surface after

equilibration; this is shown in Fig. 2.4a. Partial derivatives in (2.28) are computed using finite-

differences.

Fig. 2.2 shows the result for the iso-classification process for MNIST and Fig. 2.3 shows a similar

result for CIFAR-10. We can see that the classification loss remains constant through the process.

This experiment shows that we can implement an iso-classification process while keeping the model

parameters on the equilibrium surface during it.

2.4. Transferring Representations to New Tasks

Sec. 2.3 demonstrated dynamical processes where the Lagrange multipliers λ, γ change with time

and the process adapts the model parameters θ to remain on the equilibrium surface. This section

demonstrates the same concept under a different kind of perturbation, namely the one where the

underlying task changes. The prototypical example one should keep in mind in this section is that of

transfer learning where a classifier trained on a dataset ps(x, y) is further trained on a new dataset,

say pt(x, y). We will assume that the input domain of the two distributions is the same.

2.4.1. Changing the data distribution

If i.i.d samples from the source task are denoted by Xs =
{
xs1, . . . , x

s
ns

}
and those of the target

distribution are Xt =
{
xt1, . . . , x

t
nt

}
the empirical source and target distributions can be written as

ps(x) =
1

ns

ns∑
i=1

δx−xs
i
, and pt(x) =

1

nt

nt∑
i=1

δx−xt
i

respectively; here δx−x′ is a Dirac delta distribution at x′. We will consider a transport problem

that transports the source distribution ps(x) to the target distribution pt(x). For any t ∈ [0, 1] we

interpolate between the two distributions using a mixture

p(x, t) = (1− t)ps(x) + tpt(x). (2.29)
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Observe that the interpolated data distribution equals the source and target distribution at t = 0

and t = 1 respectively and it is the mixture of the two distributions for other times. We keep the

labels of the data the same and do not interpolate them. As discussed in Sec. 2.6.6 we can also

use techniques from optimal transportation (Villani, 2008) to obtain a better transport; the same

dynamical equations given below remain valid in that case.

2.4.2. Iso-classification process with a changing data distribution

The equilibrium surface Θλ,γ in Fig. 2.1b is a function of the task and also evolves with the task. We

now give a dynamical process that keeps the model parameters in equilibrium as the task evolves

quasi-statically. We again have the same conditions for the dynamics as those in (2.24). The

following lemma is analogous to Lemma 6.

Lemma 10 (Dynamical process for changing data distribution). Given (λ̇, γ̇), the evolution

of model parameters θ for a changing data distribution given by (2.29) is

θ̇ = θλλ̇+ θγ γ̇ + θt (2.30)

where

θt = A−1 bt =: −A−1

∫
∂p(x, t)

∂t
⟨∇θ H⟩ dx (2.31)

and the other quantities are as defined in Lemma 6 with the only change that expectations on data

x are taken with respect to p(x, t) instead of p(x). The additional term θt arises because the data

distribution changes with time.

A similar computation as that of Sec. 2.3.1 gives a quasi-static iso-classification process as the task

evolves
θ̇ = θλλ̇+ θγ γ̇ + θt

0 = Cλλ̇+ Cγ γ̇ + Ct

(2.32)

where Cλ and Cγ are as given in (2.26) with the only change being that the outer expectation is
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taken with respect to x ∼ p(x, t). The new term that depends on time t is

Ct = −
∫

∂p(x, t)

∂t
⟨ℓ⟩ dx− Ex∼p(x,t)

[〈
θ⊤t ∇θ H

〉
⟨ℓ⟩ −

〈
θ⊤t ∇θ H ℓ

〉
+
〈
θ⊤t ∇θ ℓ

〉]
(2.33)

with ℓ = log cθ(yxt |z). Finally get

θ̇ =

(
θλ −

Cλ

Cγ
θγ

)
λ̇+

(
θt −

Ct

Cγ
θγ

)
=: θ̂λλ̇+ θ̂t

. (2.34)

This indicates that θ = θ(λ, t) is a surface parameterized by λ and t, equipped with a basis of

tangent plane (θ̂λ, θ̂t).

2.4.3. Geodesic transfer of representations

The dynamics of Lemma 10 is valid for any (λ̇, γ̇). We provide a locally optimal way to change

(λ, γ) in this section.

Remark 11 (Rate-distortion trade-off). Note that

Ċ = 0,

Ḋ =
∂D

∂λ
λ̇+

∂D

∂γ
γ̇ = −α

(
∂2F

∂λ2

∂2F

∂γ2
−
(

∂2F

∂λ∂γ

)2
)

= −α det (Hess(F )) ,

Ṙ =
∂R

∂D
Ḋ +

∂R

∂C
Ċ = −λḊ.

(2.35)

The first equality is simply our iso-classification constraint. For α > 0, the second one indicates that

Ḋ < 0 using Lemma 4 which shows that 0 ≻ Hess(F ). This also gives λ̇ > 0 in (2.27). The third

equality is a powerful observation: it indicates a trade-off between rate and distortion, if Ḋ < 0 we

have Ṙ > 0. It also shows the geometric structure of the equilibrium surface by connecting Ṙ and

Ḋ together, which we will exploit next.

Computing the functionals R,D and C during the iso-classification transfer presents us with a curve

in RDC space. Geodesic transfer implies that the functionals R,D follow the shortest path in this
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space. But notice that if we assume that the model capacity is infinite, the RDC space is

Euclidean and therefore the geodesic is simply a straight line. Since we keep the classification loss

constant during the transfer, Ċ = 0, straight line implies that slope dD/dR is a constant, say k.

Thus Ḋ = kṘ. Observe that Ṙ = ∂R
∂D Ḋ+ ∂R

∂C Ċ + ∂R
∂t = −λḊ+ ∂R

∂t . Combining the iso-classification

constraint and the fact that Ḋ = kṘ = −kλḊ + k ∂R
∂t , gives us a linear system:

∂D

∂t
+

∂D

∂λ
λ̇+

∂D

∂γ
γ̇ =

k ∂R
∂t

1 + kλ
;

∂C

∂λ
λ̇+

∂C

∂γ
γ̇ +

∂C

∂t
= 0

(2.36)

We solve this system to update (λ, γ) during the transfer.

2.4.4. Experimental validation: transferring representations to new data

Representations learned through this principle exhibit remarkable transferability, allowing for flexi-

ble adaptation to new tasks. Our experiments provide evidence of the effectiveness of the algorithm.

This section present experimental results of an iso-classification process for transferring the learnt

representation.

Setup We use the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) datasets for

our experiments. We use a 2-layer fully-connected network (same as that of Kingma and Welling

(2013)) as the encoder and decoder for MNIST; the encoder for CIFAR-10 is a ResNet-18 (He et al.,

2016a) architecture while the decoder is a 4-layer deconvolutional network (Noh et al., 2015). Full

details of the pre-processing, network architecture and training are provided in Sec. 2.6.1.

We first pick the source dataset to be all images corresponding to digits 0–4 in MNIST and the

target dataset is its complement, images of digits 5–9. Our goal is to adapt a model trained on the

source task to the target task while keeping its classification loss constant. We run the geodesic

transfer dynamics from Sec. 2.4.3 and the results are shown in Fig. 2.5.

It is evident that the classification accuracy is constant throughout the transfer and is also the same

as that of training from scratch on the target. MNIST is an simple dataset and the accuracy gap
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Figure 2.5: Transferring from source dataset of MNIST digits 0–4 to the target dataset
consisting of digits 5–9. Fig. 2.5a shows the variation of rate and distortion during the transfer;
as discussed in Sec. 2.4.3 we maintain a constant dR/dD during the transfer; the rate decreases and
the distortion increases. Fig. 2.5b shows the validation accuracy during the transfer. The orange
curve corresponds to geodesic iso-classification transfer; the blue curve is the result of directly fine-
tuning the source model on the target data (note the very low accuracy at the start); the green
point is the accuracy of training on the target task from scratch.

between iso-classification transfer, fine-tuning from the source and training from scratch is minor.

The benefit of running the iso-classification transfer however is that we can be guaranteed about

the final accuracy of the model. We expect the gap between these three to be significant for more

complex datasets.

The iso-classification process is a quasi-static process, i.e., the model parameters θ are lie on the

equilibrium surface at all times t ∈ [0, 1] during the transfer. Note that both the equilibrium surface

and the free-energy F (λ, γ) are functions of the data and change with time. Let us write this

explicitly as

F (t) := R(t, λ(t), γ(t)) + λD(t, λ(t), γ(t)) + γC0

where C0 is the classification loss. We prescribed a geodesic transfer above where the Lagrange

multipliers λ, γ were adapted simultaneously to confirm to the constraints of the equilibrium surface

locally. We can forgot this and instead adapt them using the following heuristic. We let λ̇ = k for

some constant k and use
∂C

∂λ
λ̇+

∂C

∂γ
γ̇ +

∂C

∂t
= 0, (2.37)
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to get the evolution curve of γ(t).

We next present experimental results of an iso-classification process for transferring the learnt

representation. We pick the source dataset to be all vehicles (airplane, automobile, ship and truck)

in CIFAR-10 and the target dataset consists of four animals (bird, cat, deer and dog). We set the

output size of classifier to be four. Our goal is to adapt a model trained on the source task to the

target task while keeping its classification loss constant. We run the iso-c transfer dynamics (2.37)

and the results are shown in Fig. 2.6.
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Figure 2.6: Transferring from source dataset of CIFAR-10 vehicles to the target dataset
consisting of four animals. Fig. 2.6a shows the variation of validation loss during the transfer.
Fig. 2.6b shows the validation accuracy during the transfer. The orange curve corresponds to iso-
classification transfer; the blue curve is the result of directly fine-tuning the source model on the
target data (note the very low accuracy at the start); the green point is the accuracy of training on
the target task from scratch.

It is evident that both the classification accuracy and loss are constant throughout the transfer.

CIFAR-10 is a more complex dataset as comparing with MNIST and the accuracy gap between iso-

classification transfer, fine-tuning from the source and training from scratch is significant. Observe

that the classification loss gap between iso-classification transfer and training from scratch on the

target is also significant. The benefit of running the iso-classification transfer is that we can be

guaranteed about the final accuracy and validation loss of the model.

2.5. Related work and Discussion

We are motivated by the Information Bottleneck (IB) principle of Tishby et al. (2000); Shwartz-Ziv and Tishby

(2017), which has been further explored by Achille and Soatto (2017); Alemi et al. (2016); Higgins et al.
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(2017). The key difference in our work is that while these papers seek to understand the representa-

tion for a given task, we focus on how the representation can be adapted to a new task. Further, the

Lagrangian in (2.13) has connections to PAC-Bayes bounds (McAllester, 2013; Dziugaite and Roy,

2017) and training algorithms that use the free-energy (Chaudhari et al., 2019). Our use of rate-

distortion for transfer learning is close to the work on unsupervised learning of Brekelmans et al.

(2019); Ver Steeg and Galstyan (2015).

This paper builds upon the work of Alemi et al. (2017); Alemi and Fischer (2018). We refine some

results therein, viz., we provide a proof of the convexity of the equilibrium surface and identify it with

the equilibrium distribution of SGD (Rem. 5). We introduce new ideas such as dynamical processes

on the equilibrium surface. Our use of thermodynamics is purely as an inspiration; the work

presented here is mathematically rigorous and also provides an immediate algorithmic realization

of the ideas.

This paper has strong connections to works that study stochastic processes inspired from statistical

physics for machine learning, e.g., approximate Bayesian inference and implicit regularization of

SGD (Mandt et al., 2017; Chaudhari and Soatto, 2017), variational inference (Jordan et al., 1998;

Kingma and Welling, 2013). The iso-classification process instantiates an “automatic” regularization

via the trade-off between rate and distortion; this point-of-view is an exciting prospect for future

work. The technical content of the paper also draws from optimal transportation (Villani, 2008).

A large number of applications begin with pre-trained models (Sharif Razavian et al., 2014; Girshick et al.,

2014) or models trained on tasks different (Doersch and Zisserman, 2017). Current methods in

transfer learning however do not come with guarantees over the performance on the target dataset,

although there is a rich body of older work (Baxter, 2000) and ongoing work that studies this (Zamir et al.,

2018). The information-theoretic understanding of transfer and the constrained dynamical processes

developed in our paper is a first step towards building such guarantees. In this context, our theory

can also be used to tackle catastrophic forgetting Kirkpatrick et al. (2017) to “detune” the model

post-training and build up redundant features.
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We presented dynamical processes that maintain the parameters of model on an equilibrium surface

that arises out of a certain free-energy functional for the encoder-decoder-classifier architecture. The

decoder acts as a measure of the information discarded by the encoder-classifier pair while fitting on

a given task. We showed how one can develop an iso-classification process that travels on the equilib-

rium surface while keeping the classification loss constant. We showed an iso-classification transfer

learning process which keeps the classification loss constant while adapting the learnt representation

from a source task to a target task.

The information-theoretic point-of-view in this paper is rather abstract but its benefit lies in its

exploitation of the equilibrium surface. Relationships between the three functionals, namely rate,

distortion and classification, that define this surface, as also other functionals that connect to the

capacity of the hypothesis class such as the entropy S may allow us to define invariants of the

learning process. For complex models such as deep neural networks, such a program may lead an

understanding of the principles that govern their working.

2.6. Appendix

2.6.1. Details of the experimental setup

Datasets. We use the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) datasets

for these experiments. The former consists of 28 ×28-sized gray-scale images of handwritten digits

(60,000 training and 10,000 validation). The latter consists of 32×32-sized RGB images (50,000

training and 10,000 for validation) spread across 10 classes; 4 of these classes (airplane, automobile,

ship, truck) are transportation-based while the others are images of animals and birds.

Architecture and training. All models in our experiments consist of an encoder-decoder pair

along with a classifier that takes in the latent representation as input. For experiments on MNIST,

both encoder and decoder are multi-layer perceptrons with 2 fully-connected layers, the decoder

uses a mean-square error loss, i.e., a Gaussian reconstruction likelihood and the classifier consists of

a single fully-connected layer. For experiments on CIFAR-10, we use a residual network (He et al.,

2016a) with 18 layers as an encoder and a decoder with one fully-connected layer and 4 deconvo-
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lutional layers (Noh et al., 2015). The classifier network for CIFAR-10 is a single fully-connected

layer. All models use ReLU non-linearities and batch-normalization (Ioffe and Szegedy, 2015). Fur-

ther details of the architecture are given in Sec. 2.6.1. We use Adam (Kingma and Ba, 2014) to

train all models with cosine learning rate annealing.

The encoder and decoder for MNIST has 784–256–16 neurons on each layer; the encoding z is thus

16-dimensional which is the input to the decoder. The classifier has one hidden layer with 12 neurons

and 10 outputs. The encoder for CIFAR-10 is a 18-layer residual neural network (ResNet-18) and

the decoder has 4 deconvolutional layers. We used a slightly larger network for the geodesic transfer

learning experiment on MNIST. The encoder and decoder have 784–400–64 neurons in each layer

with a dropout of probability 0.1 after the hidden layer. The classifier has a single layer that takes

the 64-dimensional encoding and predicts 10 classes.

2.6.2. Proof of Lemma 4

The second statement directly follows by observing that F is a minimum of affine functions in (λ, γ).

To see the first, evaluate the Hessian of R and F

Hess(R) Hess(F ) =

 ∂2R
∂D2

∂2R
∂D∂C

∂2R
∂C∂D

∂2R
∂C2


 ∂2F

∂λ2
∂2F
∂λ∂γ

∂2F
∂γ∂λ

∂2F
∂γ2


Since we have F = mineθ(z|x),dθ(x|z),mθ(z)R+ λD + γC, we obtain

λ = −∂R

∂D
, γ = −∂R

∂C
, D =

∂F

∂λ
, C =

∂F

∂γ
.

We then have

dλ = −d
(
∂R

∂D

)
= −∂2R

∂D2
dD − ∂2R

∂D∂C
dC

= −∂2R

∂D2

(
∂D

∂λ
dλ+

∂D

∂γ
dγ

)
− ∂2R

∂D∂C

(
∂C

∂λ
dλ+

∂C

∂γ
dγ

)
= −

(
∂2R

∂D2

∂2F

∂λ2
+

∂2R

∂D∂C

∂2F

∂γ∂λ

)
dλ−

(
∂2R

∂D2

∂2F

∂λ∂γ
+

∂2R

∂D∂C

∂2F

∂γ2

)
dγ;
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dγ = −d
(
∂R

∂C

)
= − ∂2R

∂C∂D
dD − ∂2R

∂C2
dC

= − ∂2R

∂C∂D

(
∂D

∂λ
dλ+

∂D

∂γ
dγ

)
− ∂2R

∂C2

(
∂C

∂λ
dλ+

∂C

∂γ
dγ

)
= −

(
∂2R

∂C∂D

∂2F

∂λ2
+

∂2R

∂C2

∂2F

∂γ∂λ

)
dλ−

(
∂2R

∂C∂D

∂2F

∂λ∂γ
+

∂2R

∂C2

∂2F

∂γ2

)
dγ.

Compare the coefficients on both sides to get

∂2R

∂D2

∂2F

∂λ2
+

∂2R

∂D∂C

∂2F

∂γ∂λ
=

∂2R

∂C∂D

∂2F

∂λ∂γ
+

∂2R

∂C2

∂2F

∂γ2
= −1;

∂2R

∂D2

∂2F

∂λ∂γ
+

∂2R

∂D∂C

∂2F

∂γ2
=

∂2R

∂C∂D

∂2F

∂λ2
+

∂2R

∂C2

∂2F

∂γ∂λ
= 0,

therefore

Hess(R) Hess(F ) = −I.

Since 0 ≻ Hess(F ), we have that Hess(R) ≻ 0, then the constraint surface f(R,D,C) = 0 is convex.

2.6.3. Proof of Lemma 6

Recall the definition of the objective function (2.19), first we compute the gradient of the objective

function as following:

∇θ J(θ, λ, γ) = −Ex∼p(x)∇θ logZθ,x

= −Ex∼p(x)
1

Zθ,x
∇θ Zθ,x

= −Ex∼p(x)
1

Zθ,x

∫
(−∇θ H) exp(−H) dz

= Ex∼p(x) ⟨∇θ H⟩
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Then with some effort of computation, we get

A = ∇2
θ J(θ, λ, γ) = ∇θ Ex∼p(x)

[
1

Zθ,x

∫
∇θ H exp(−H) dz

]
= Ex∼p(x)

[〈
∇2

θ H
〉
+ ⟨∇θ H⟩ ⟨∇θ H⟩⊤ −

〈
∇θ H ∇⊤

θ H
〉]

;

bλ = − ∂

∂λ
∇θ J = − ∂

∂λ
Ex∼p(x)

[
1

Zθ,x

∫
∇θ H exp(−H) dz

]
= −Ex∼p(x)

[〈
∂∇θ H

∂λ

〉
−
〈
∂H

∂λ
∇θ H

〉
+

〈
∂H

∂λ

〉
⟨∇θ H⟩

]
;

bγ = − ∂

∂γ
∇θ J = − ∂

∂γ
Ex∼p(x)

[
1

Zθ,x

∫
∇θ H exp(−H) dz

]
= −Ex∼p(x)

[〈
∂∇θ H

∂γ

〉
−
〈
∂H

∂γ
∇θ H

〉
+

〈
∂H

∂γ

〉
⟨∇θ H⟩

]
.

According to the quasi-static constraints (2.21), we have

Aθ̇ − λ̇bλ − γ̇bγ = 0,

that implies

θ̇ = A−1bλ λ̇+A−1bγ γ̇ = θλλ̇+ θγ γ̇. (2.38)

2.6.4. Computation of Iso-classification constraint

We start with computing the gradient of classification loss, clear that

C = Ex∼p(x)

[
−
∫

dz e(z|x) log c(y|z)
]
= −Ex∼p(x) ⟨ℓ⟩ ,
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where ℓ = log cθ(yx|z) is the logarithm of the classification loss, then

∇θ C = −∇θ Ex∼p(x)

[
1

Zθ,x

∫
ℓ exp(−H) dz

]
= −Ex∼p(x) [⟨∇θ ℓ⟩+ ⟨∇θ H⟩ ⟨ℓ⟩ − ⟨ℓ ∇θ H⟩] ;

∂

∂λ
C = − ∂

∂λ
Ex∼p(x)

[
1

Zθ,x

∫
ℓ exp(−H) dz

]
= −Ex∼p(x)

[
− 1

Z2
θ,x

(∫
−∂H

∂λ
exp(−H) dz

)(∫
ℓ exp(−H) dz

)
− 1

Zθ,x

∫
ℓ
∂H

∂λ
exp(−H) dz

]

= −Ex∼p(x)

[〈
∂H

∂λ

〉
⟨ℓ⟩ −

〈
ℓ
∂H

∂λ

〉]
;

The iso-classification loss constrains together with quasi-static constrains imply that:

0 ≡ d
dt

C

= θ̇⊤ ∇θ C + λ̇
∂C

∂λ
+ γ̇

∂C

∂γ

= λ̇

(
θ⊤λ ∇θ C +

∂C

∂λ

)
+ γ̇

(
θ⊤γ ∇θ C +

∂C

∂γ

)
= Cλλ̇+ Cγ γ̇,

where the third equation is followed by the equilibrium dynamics (2.22) for parameters θ. So far

we developed the constrained dynamics for iso-classification process:

0 = Cλλ̇+ Cγ γ̇

θ̇ = θλλ̇+ θγ γ̇.

(2.39)

2.6.5. Iso-classification equations for changing data distribution

In this section we analyze the dynamics for iso-classification loss process when the data distribution

evolves with time. ∂p(x)
∂t will lead to additional terms that represent the partial derivatives with

respect to t on both the quasi-static and iso-classification constrains. More precisely, the new terms
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are
bt = −

∂

∂t
∇θ J = −

∫
∂p(x)

∂t
⟨∇θ H⟩ dx;

∂

∂t
C = −

∫
∂p(x)

∂t
⟨ℓ⟩ dx,

then the quasi-static and iso-classification constraints are ready to be modified as

0 ≡ d
dt
∇θ J(θ, λ, γ)⇐⇒ 0 = ∇2

θ F θ̇ + λ̇
∂∇θ F

∂λ
+ γ̇

∂∇θ F

∂γ
+

∂∇θ F

∂t

⇐⇒ θ̇ = λ̇ A−1 bλ + γ̇ A−1 bγ +A−1 bt

⇐⇒ θ̇ = λ̇ θλ + γ̇ θγ + θt;

0 ≡ d
dt

C ⇐⇒ 0 = θ̇⊤ ∇θ C + λ̇
∂C

∂λ
+ γ̇

∂C

∂γ
+

∂C

∂t

⇐⇒ 0 = λ̇

(
θ⊤λ ∇θ C +

∂C

∂λ

)
+ γ̇

(
θ⊤γ ∇θ C +

∂C

∂γ

)
+

(
θ⊤t ∇θ C +

∂C

∂t

)
⇐⇒ 0 = λ̇ Cλ + γ̇ Cγ + Ct,

where A, bλ, bγ , Cλ and Cγ where Cλ and Cγ are as given in lemma 6 and (2.26) with the only

change being that the outer expectation is taken with respect to x ∼ p(x, t). The new terms that

depends on time t are

Ct = −
∫

∂p(x, t)

∂t
⟨ℓ⟩ dx− Ex∼p(x,t)

[〈
θ⊤t ∇θ H

〉
⟨ℓ⟩ −

〈
θ⊤t ∇θ H ℓ

〉
+
〈
θ⊤t ∇θ ℓ

〉]
(2.40)

with ℓ = log cθ(yxt |z). We can combine modified quasi-static and iso-classification constraints to

get

θ̇ =

(
θλ −

Cλ

Cγ
θγ

)
λ̇+

(
θt −

Ct

Cγ
θγ

)
=: θ̂λλ̇+ θ̂t

. (2.41)

This indicates that θ = θ(λ, t) is a surface parameterized by λ and t, equipped with a basis of

tangent plane (θ̂λ, θ̂t).

2.6.6. Optimally transporting the data distribution

We first give a brief description of the theory of optimal transportation. The optimal transport

map between the source task and the target task will be used to define a dynamical process for the
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task. We only compute the transport for the inputs x between the source and target distributions

and use a heuristic to obtain the transport for the labels y. This choice is made only to simplify the

exposition; it is straightforward to handle the case of transport on the joint distribution p(x, y).

If i.i.d samples from the source task are denoted by
{
xs1, . . . , x

s
ns

}
and those of the target distribution

are
{
xt1, . . . , x

t
nt

}
the empirical source and target distributions can be written as

ps(x) =
1

ns

ns∑
i=1

δx−xs
i
, and pt(x) =

1

nt

nt∑
i=1

δx−xt
i

respectively; here δx−x′ is a Dirac delta distribution at x′. Since the empirical data distribution is

a sum of a finite number of Dirac measures, this is a discrete optimal transport problem and easy

to solve. We can use the Kantorovich relaxation to denote by B the set of probabilistic couplings

between the two distributions:

B =
{
Γ ∈ Rns×nt

+ : Γ1ns = p,Γ⊤1nt = q
}

(2.42)

where 1n is an n-dimensional vector of ones. The Kantorovich formulation solves for

Γ∗ = argmin
Γ∈B

ns∑
i=1

nt∑
t=1

Γij κij (2.43)

where κ ∈ Rns×nt
+ is a cost function that models transporting the datum xsi to xtj . This is the metric

of the underlying data domain and one may choose any reasonable metric for κ = ∥xsi − xtj∥22. The

problem in (2.43) is a convex optimization problem and can be solved easily; in practice we use the

Sinkhorn’s algorithm (Cuturi, 2013) which adds an entropic regularizer −h(Γ) =
∑

ij Γij log Γij to

the objective in (2.43).

2.6.7. Changing the data distribution

Given the optimal probabilistic coupling Γ∗ between the source and the target data distributions,

we can interpolate between them at any t ∈ [0, 1] by following the geodesics of the Wasserstein
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metric

p(x, t) = argmin
p

(1− t)W 2
2 (p

s, p) + tW 2
2 (p, p

t).

For discrete optimal transport problems, as shown in Villani (2008), the interpolated distribution

pt for the metric κij = ∥x2i − xtj∥22 is given by

p(x, t) =

ns∑
i=1

nt∑
j=1

Γ∗
ij δx−(1−t)xs

i−txt
j
. (2.44)

Observe that the interpolated data distribution equals the source and target distribution at t = 0

and t = 1 respectively and it consists of linear interpolations of the data in between.

Remark 12 (Interpolating the labels). The interpolation in (2.44) gives the marginal on the

input space interpolated between the source and target tasks. To evaluate the functionals in Sec. 2.3

for the classification setting, we would also like to interpolate the labels. We do so by setting the

true label of the interpolated datum x = (1−t)xsi +txtj to be linear interpolation between the source

label and the target label.

y(x, t) = (1− t)δy−yxs
i
+ tδy−y

xt
j

for all i, j. Notice that the interpolated distribution p(x, t) is a sum of Dirac delta distributions

weighted by the optimal coupling. We therefore only need to evaluate the labels at all the interpo-

lated data.

Remark 13 (Linear interpolation of data). Our formulation of optimal transportation leads

to a linear interpolation of the data in (2.29). This may not work well for image-based data where

the square metric κij = ∥xsi − x − kt∥22 may not be the appropriate metric. We note that this

interpolation of data is an artifact of our choice of κij , other choices for the metric also fit into the

formulation and should be viable alternatives if they result in efficient computation.

2.6.8. Details of the experimental setup for CIFAR transferring

At moment t, parameters λ, γ determine our objective functions. We compute iso-classification loss

transfer process by first setting initial states: (λ = 4, γ = 100). We train on source dataset for 300
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epochs with Adam and a learning rate of 1E-3 that drops by a factor of 10 after every 120 epochs

to obtain the initial state. We change λ, γ with respect to time t and then apply the equilibration

learning rate schedule of Fig. 2.4a to achieve the transition between equilibrium states. We compute

the partial derivatives ∂C
∂t , ∂C

∂λ and ∂C
∂γ by using finite difference. At each time t, solving (2.37) with

the partial derivatives leads to the solution for γ̇, where λ̇ is a constant. In our experiment we set

λ̇ = −1.5.

2.6.9. Transfer learning with fine-tuning

A popular machine learning strategy is the transfer of a model learned on a source task to a target

task. Examples include the re-use of neural network weights. In this section, we consider using the

model from the source task to construct a prior, which is fine-tuned using target task data. We give

a PAC-Bayes target task risk bound in this setting.

For target task we learn a posterior given a prior and training data. The quality of the prior

affects the learner’s performance. We proposes using source task to learn a ‘hyperposterior’. Such

a hyperposterior may focus the learner on a representation shared across source and target domain.

More precisely, solving the Lagrangian in eq (2.11) gives the hyperposterior

p(θ|Ds(θ)) ∝ m(θ)e−[R̂s(θ)(θ)+λD̂s(θ)(θ)+γĈs(θ)(θ)]/σ, (2.45)

we denote Ds(θ) and Dt(θ) as the source and target dataset respectively. Additionally, given the

network parameter θ, R̂s(θ)(θ), D̂s(θ)(θ) and Ĉs(θ)(θ) are empirical functional on source dataset.

Let Z be the partition function, the normalization constant for the hyperposterior

Z :=

∫
m(θ)e−[R̂s(θ)(θ)+λD̂s(θ)(θ)+γĈs(θ)(θ)]/σdθ. (2.46)

Suppose Ds(θ) and Dt(θ) are consisted of mS and mT samples respectively. In case of the classifi-

cation loss function is always bounded by 1. For θ ∈ Θ, let Ct(θ)(θ) denote expected classification

performance of model specified by θ on target domain.

We will consider the case that classification loss function is between 0 and 1, the general case follows
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by rescaling the loss function.

For positive ϵ, the Chernoff bound gives

P (|Ct(θ)(θ)− Ĉt(θ)(θ)| > ϵ) ≤ 2e−2mT ϵ2 . (2.47)

According to Lemma 17 in "PAC bayesian Model Averaging", we have

EDt(θ)e
(2mT −1)|Ct(θ)(θ)−Ĉt(θ)(θ)|2 ≤ 4mT .

Therefore

EDt(θ)Eθ|Ds(θ)e
(2mT −1)|Ct(θ)(θ)−Ĉt(θ)(θ)|2 ≤ 4mT . (2.48)

By Markov’s inequality, for 1 > δ > 0, with prbability at least 1− δ,

Eθ|Ds(θ)e
(2mT −1)|Ct(θ)(θ)−Ĉt(θ)(θ)|2 ≤ 4mT /δ. (2.49)

We now consider selecting a posterior distribution (or density) Q(θ) on Θ, Jensen’s inequality implies

EQ

[
(2mT − 1)|Ct(θ)(θ)− Ĉt(θ)(θ)|2 − ln

Q(θ)

p(θ|Ds(θ))

]
≤ lnEQ

[
p(θ|Ds(θ))

Q(θ)
e(2mT −1)|Ct(θ)(θ)−Ĉt(θ)(θ)|2

]
≤ ln(4mT /δ).

Finally, with probability at least 1− δ, we have

Eθ∼Q|Ct(θ)(θ)− Ĉt(θ)(θ)|2 ≤
DKL(Q(θ)∥p(θ|Ds(θ))) + ln 4mT

δ

2mT − 1
.

The dominant term in right hand side of the above inequality is the KL divergence between posterior

Q and the prior pretrained on source task. With some effort of computation, we have

DKL(Q(θ)∥p(θ|Ds(θ)) =
1

σ
Eθ∼Q[R̂s(θ)(θ) + λD̂s(θ)(θ) + γĈs(θ)(θ)] +DKL(Q(θ)∥m(θ)) + logZ
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Furthermore, we see that minimizing the train error Eθ∼QĈt(θ)(θ) together with DKL(Q(θ)∥p(θ|Ds(θ)))

can be interpreted as minimizing an upper-bound on the test error Eθ∼QCt(θ)(θ) of the model,

rather than directly minimizing the train error. This observation inspires us a new fine tune frame-

work, by introducing a hyper parameter β

min
Q

Eθ∼Q

[
Ĉt(θ)(θ) +

β

σ
(R̂s(θ)(θ) + λD̂s(θ)(θ) + γĈs(θ)(θ))

]
+ βDKL(Q(θ)∥m(θ))

This is in accordance with the intuition developed earlier, that minimizing

Eθ∼Q

[
β

σ
(R̂s(θ)(θ) + λD̂s(θ)(θ) + γĈs(θ)(θ))

]

forces the model to capture the information from source domain that would be potentially useful in

target domain, and DKL(Q(θ)∥m(θ)) reduce the model complexity.
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CHAPTER 3

AN INFORMATION GEOMETRIC DISTANCE ON THE SPACE OF

TASKS

A representation that adheres to the free energy principle (2.7) preserves the additional information

and models the data-generating process aligned with the pre-training source task, denoted as p(x, y).

To better transfer such a representation to adapt to a new target task pnew(x, y), it requires us to

navigate the tasks from p(x, y) to pnew(x, y) properly in the space of the tasks. In Sec. 2.4, we

transport the task from p(x, y) to pnew(x, y) using the mixture interpolation,

pt = (1− t)p+ tpnew,

for 0 ≤ t ≤ 1. However, the mixture interpolation can not represent the optimal way to move the

tasks. This problem serves as our motivation for this chapter. By leveraging optimal transportation

(OT), we establish a sequence of interpolated tasks that evolves from p(x, y) to pnew(x, y). The

representation is then updated to align with the evolving data distribution. We refer to this process

as optimal coupled transfer. Optimal coupled transfer facilitates model transfer, surpassing the

direct fine-tuning approach on the target task. It enables the pre-trained model to traverse the

shortest path in the space of tasks, thereby adapting to the new task efficiently.

From an information geometric perspective, the length of this shortest path connecting

two tasks gives rise to a unique definition of the distance between them. Consequently,

we address a longstanding open question: how to define the distance between tasks theoretically

soundly. We provide experimental evidence to support our viewpoints. Through minor modifications

in the code, we update models to adapt to the sequential interpolated tasks. The results outperform

the fine-tuning approach.

We are interested in the supervised learning problem in this chapter. Consider a source dataset

Ds =
{
(xis, y

i
s)
}Ns

i=1
and a target dataset Dt =

{
(xit, y

i
t)
}Nt

i=1
where xis, x

i
t ∈ X denote input data
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and yis, y
i
t ∈ Y denote ground-truth annotations. Training a parameterized classifier, say a deep

network with weights w ∈ Rp, on the source task, involves minimizing the cross-entropy loss ℓs(w) =

− 1
Ns

∑Ns
i=1 log pw(y

i
s|xis) using stochastic gradient descent (SGD):

w(τ + dτ) = w(τ)− ∇̂ℓs(w(τ)) dτ ; w(0) = ws; (3.1)

The notation ∇̂ℓs(w) indicates a stochastic estimate of the gradient using a mini-batch of data. The

parameter dτ is the learning rate. Let us define the distribution p̂s(x, y) = 1
Ns

∑Ns
i=1 δxi

s
(x)δyis(y)

and its input-marginal p̂s(x) = 1
Ns

∑Ns
i=1 δxi

s
(x); distributions p̂t(x, y), p̂t(x) are defined analogously.

3.1. An Overview of Measuring the Distances between Tasks

A part of the success of Deep Learning stems from the fact that deep networks learn features that are

discriminative yet flexible. There is a prevailing belief in the research community that deep learning

tasks exhibit inherent relationships that signify similarities or dissimilarities in underlying patterns.

Therefore, Models pre-trained on a particular task could be easily adapted to perform well on other

tasks. The transfer learning literature forms an umbrella for such adaptation techniques, and it

works well, see for instance Mahajan et al. (2018); Dhillon et al. (2020); Kolesnikov et al. (2019);

Joulin et al. (2016); Song et al. (2020) for image classification or Devlin et al. (2018) for language

modeling, to name a few large-scale studies. There are also situations when transfer learning does

not work well, e.g., a pre-trained model on ImageNet is a poor representation to transfer to MRI

data (Merkow et al., 2017).

It stands to reason that if source and target tasks are "close" to each other then we should expect

transfer learning to work well. It may be difficult to transfer across tasks that are "far away".

Researchers should not be satisfied with the ambiguous and empirical descriptions such as: "Task

A is close with Task B, but far away with Task C". However, the vast diversity in deep learning

configurations, including dataset composition, network architectures, optimization methods, and

transfer learning mechanisms, presents a major challenge in studying the relationship among typical

learning tasks. This diversity complicates the building of a universal framework that quantifies task

relationships. This section introduces the previous research works on defining the similarity between
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tasks.

3.1.1. Discrepancy measures on the input space

The natural language processing literature presents several methods to directly compute the similar-

ity between task input data (Mikolov et al., 2013; Pennington et al., 2014). These methods think

of the tasks as data distributions and then compute Wasserstein distance, Maximum Mean Discrep-

ancy (MMD), Hellinger distance, or other f -divergences to measure distances between probability

distributions. In this section, we only introduce the method for computing Wasserstein distance.

We focus on the marginals on the input data p̂s(x) and p̂t(x) for the source and target tasks,

respectively. We compute the Wasserstein distance between the source marginal and the target

marginal and will use tools from optimal transportation (OT) for this purpose; see Santambrogio

(2015); Peyré and Cuturi (2019); Fatras et al. (2020) for an elaborate treatment.

OT for continuous measures Let Π(ps, pt) be the set of joint distributions (also known as

couplings or transport plans) with the first marginal equal to ps(x) and the second marginal pt(x).

The Kantorovich relaxation of OT solves for

inf
γ∈Π(ps,pt)

∫
c(x, x′) dγ(x, x′)

to compute the best coupling γ∗ ∈ Π. The cost c(x, x′) ∈ R+ is called the ground metric. It gives

the cost of transporting unit mass from x to x′. The popular squared-Wasserstein metric W 2
2 (ps, pt)

uses c(x, x′) = ∥x − x′∥22. Given the optimal coupling γ∗, we can compute the trajectory that

transports probability mass using displacement interpolation (McCann, 1997). For example, for the

Wasserstein metric, γ∗ is a constant-speed geodesic, i.e., if pτ is the distribution at an intermediate

time instant τ ∈ [0, 1] then its distance from ps is proportional to τ

W2(ps, pτ ) = τW2(ps, pt).

OT for discrete measures In case of the discrete measures p̂s(x) and p̂t(x), the set of transport

39



plans in this case is Π(p̂s, p̂t) =
{
Γ ∈ RNs×Nt

+ : Γ1Ns = p̂s,Γ
⊤1Nt = p̂t

}
and the optimal coupling

is given by

Γ∗ = argmin
Γ∈Π(p̂s,p̂t)

{⟨Γ, C⟩ − ϵH(Γ)} ; (3.2)

here Cij is a matrix that defines the ground metric in OT. For instance, Cij = ∥xi − x′j∥22 for

the Wasserstein metric. The first term above measures the total cost
∑

ij ΓijCij incurred for the

transport. The second term is an entropic penalty H(Γ) = −
∑

ij Γij log Γij popularized by Cuturi

(2013) that accelerates the solution of the OT problem. McCann’s interpolation for the discrete

case with Cij = ∥xis−xjt∥22 can be written explicitly as a sum of Dirac-delta distributions supported

at interpolated inputs xijτ = (1− τ)xis + τxjt

p̂τ (x) =

Ns∑
i=1

Nt∑
j=1

Γ∗
ij δ

(1−τ)xi
s+τxj

t
(x). (3.3)

We can also create pseudo labels for samples from pτ by linear interpolation of the one-hot encoding

of their respective labels to get

p̂τ (x, y) =

Ns∑
i=1

Nt∑
j=1

Γ∗
ij δ

(1−τ)xi
s+τxj

t
(x) δ

(1−τ)yis+τyjt
(y). (3.4)

Remark 14 (Measuring distance between learning tasks is different than measuring

distances between the respective data distributions). The above discrepancy concepts can

only measure distances between data distributions. They do not consider the hypothesis class used

to transfer across the two distributions and therefore do not reflect the true difficulty of transfer.

The experiment in Fig. 3.7 demonstrates this. This point, in fact, is the central motivation of this

chapter.

3.1.2. Task2Vec

Task2Vec (Achille et al., 2019a) provide vectorial representations of visual classification tasks, which

can be used to reason about the nature of those tasks and their relations. The definition of task2vec

is grounded in the Fisher information matrix (FIM). Not all combinations of the network weights
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are equally important in predicting the task variable: the importance, or "informative content," of

weight for the task can be quantified by considering a small perturbation w+dw of the weights and

measuring the average Kullbach-Leibler (KL) divergence between the original output distribution

pw(y |x) and the perturbed one pw+dw(y |x). To second-order approximation, this is

Ex∼p̂KL(pw+dw(y |x), pw(y |x)) = dwTGdw + o(∥dw∥2),

p̂ is an empirical distribution of the input data, and G is the Fisher information matrix (FIM):

G = Ex∼p̂Ey∼pw(·|x)
[
∇w log pw(y |x)∇w log pw(y |x)T

]
FIM G is the expected covariance of the scores (gradients of the log-likelihood) with respect to the

model parameters. FIM provides a measure of the information a particular parameter (weight or

feature) contains about the joint distribution p̂(x) · pw(y |x): If the classification performance for

a given task does not depend strongly on a parameter, the corresponding entry in the FIM will be

small.

While the network activations capture the information in the input image which is needed to infer

the image label, the FIM indicates the set of feature maps that are more informative for solving the

current task. Following this intuition, Task2Vec uses the FIM to represent the task itself. However,

the FIMs computed on different networks are not directly comparable. To address this, Task2Vec

uses single probe network pre-trained on ImageNet as a feature extractor and re-train only the

classifier layer on any given task, which usually can be done efficiently. After training is complete,

we compute the FIM for the feature extractor parameters.

Let dcos denote the cosine distance between two vectors. Let Gs and Gt denote the task embedding

(i.e., the diagonal of the Fisher Information computed on the same probe network) for the source

and target tasks, respectively. Task2Vec distances compute the cosine distance between normalized

FIM embedding,

dcos

(
Gs

Gs +Gt
,

Gt

Gs +Gt

)
, (3.5)
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and the division is element-wise.

Remark 15 (Task2Vec does not align with the fine-tuning difficulty). The FIM is also

related to the (Kolmogorov) complexity of a task(Achille et al.). The norm of the embedding cor-

relates with the complexity of the task, while the distance between embeddings captures semantic

similarities between tasks. The main hurdle in Task2Vec and similar approaches is to design the

architecture for computing FIM: a small model will indicate that tasks are far away. This is what

we always claim: defining the distance between learning tasks needs to take the hypothesis class

into consideration. In addition, our experimental results indicate that Task2Vec does not align well

with the fine-tuning difficulty.

3.1.3. Other measurements on the distances between tasks

Taskonomy (Zamir et al., 2018) focuses on the network architectures consisting of the feature ex-

tractor and the linear classifier. It pre-trains a model on the source task, then freezes the feature

extractor and re-trains a linear classifier to adapt the target task. The prediction performance on

the target task measures the similarity between the source and target tasks.

There are also classical trivial measurements such as the number of epochs to reach a standard

accuracy while transfer learning from the source to the target task, the length of trajectories in the

weight space
∫ wt

ws
|dw|, and the discrepancy measures on the representation space computed on a

shared probe network.

3.2. An Information Geometric Distance Between the Tasks

We regard the tasks as the joint probability distributions p(x, y) between the inputs and labels.

Let z = {x, y} denote the collection of the input and the output if we do not wish to distinguish

inputs and labels. Information geometry is a well-established set of tools designed precisely for

understanding the geometric properties of probability distributions. Consider a manifold M =

{pw(z) : w ∈ Rp} of probability distributions parameterized by w. Information Geometry (Amari,

2016b) studies invariant geometrical structures on such manifolds. For two points w,w′ ∈ M, we
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can use the Kullback-Leibler (KL) divergence

KL [pw, pw′ ] =

∫
dz pw(z) log

pw(z)

pw′(z)
,

to obtain a Riemannian structure on M . This allows the infinitesimal distance ds on the manifold

to be written as

ds2 = 2KL [pw, pw+dw] =

p∑
i,j=1

gij dwidwj (3.6)

gij(w) =

∫
dz pw(z) (∂wi log pw(z))

(
∂wj log pw(z)

)
(3.7)

are elements of the Fisher Information Matrix (FIM) g. Weights w play the role of a coordinate

system for computing the distance. The FIM is the Hessian of the KL-divergence; we may think

of the FIM as quantifying the amount of information present in the model about the data it was

trained on. The FIM is the unique metric onM (up to scaling) that is preserved under diffeomor-

phisms (Bauer et al., 2016), in particular under representation of the model.

Given a continuously differentiable curve {w(τ)}τ∈[0,1] on the manifold M , we can compute its

length by integrating the infinitesimal distance |ds| along it. The shortest length curve between two

points w,w′ ∈M induces a metric onM known as the Fisher-Rao distance (Rao, 1945)

dFR(w,w
′) = min

{w(τ)}: w(0)=w
w(1)=w′

∫ 1

0

√
⟨ẇ(τ), g(w(τ))ẇ(τ)⟩ dτ (3.8)

The shortest paths on a Riemannian manifold are geodesics, i.e., they are locally "straight lines".

Computing the Fisher-Rao distance by integrating the KL-divergence Let us focus on the

conditional distribution pw(y |x). For the factorization p(x, y) = p(x)p(y |x) where only the latter

is parametrized, the FIM in (3.7) is given by

gij(w) = Ex∼p(x), y∼pw(y|x)
[
∂wi log pw(y|x) ∂wj log pw(y|x)

]
here the input distribution p(x) and the weights w will be chosen in the following sections. The
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FIM is difficult to compute for large models, and approximations often work poorly (Kunstner et al.,

2019). For our purposes, we only need to compute the infinitesimal distance |ds| in (3.6) and can

thus rewrite (3.8) as

dFR(w,w
′) = min

{w(τ)}: w(0)=w
w(1)=w′

∫ 1

0

√
2Ex∼p(x)KL[pw(τ)(· |x), pw(τ+dτ)(y |x)]. (3.9)

We next combine the development of measuring the length of curves (3.9) and optimal transportation

for discrete measures (3.4). We transport the margin on the data and modify the model weights

simultaneously. We call this method the coupled transfer process and the corresponding task distance

as the coupled transfer distance. We also discuss techniques to efficiently implement the process and

make it scalable to large deep networks.

3.2.1. Uncoupled transfer distance

We first discuss a simple transport mechanism instead of OT and discuss how to compute a transfer

distance. For τ ∈ [0, 1], consider the mixture distribution

p̂τ (x, y) = (1− τ)p̂s(x, y) + τ p̂t(x, y). (3.10)

Samples from p̂τ can be drawn by sampling an input-output pair from p̂s with probability 1− τ and

sampling it from p̂t otherwise. At each time instant τ , the uncoupled transfer process updates the

weights of the classifier using SGD to fit samples from p̂τ

w(τ + dτ) = w(τ)− ∇̂ℓτ (w(τ)) dτ ; w(0) = ws. (3.11)

Weights w(τ) are thus fitted to each task pτ as τ goes from 0 to 1. In particular for τ = 1, weights

w(1) are fitted to p̂t. As dτ → 0, we obtain a continuous curve {w(τ) : t ∈ [0, 1]}. Computing the

length of this weight trajectory gives a transfer distance analogy to (3.9),

∫ 1

0

√
Ex∼p̂τ 2KL

[
pw(τ)(· |x), pw(τ+dτ)(· |x)

]
. (3.12)
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Remark 16 (Uncoupled transfer distance entails longer weight trajectories). For uncou-

pled transfer, although the task and weights are modified simultaneously, their changes are not

synchronized. We, therefore, call this the uncoupled transfer distance. To elucidate, changes in the

data using the mixture (3.10) may be unfavorable to the current weights w(τ) and may cause the

model to struggle to track the distribution p̂τ . This forces the weights to take a longer trajectory in

prediction space, i.e., the analogy to be measured by the Fisher-Rao distance in (3.9). If changes in

data were synchronized with the evolving weights, the weight trajectory would be necessarily shorter

in prediction space because the KL-divergence in (3.9) is large when the conditional distribution

changes quickly to track the evolving data. We therefore expect the task distance computed using

the mixture distribution to be larger than the coupled transfer distance, which we will discuss next;

our experiments in Sec. 3.4 corroborate this.

3.2.2. Modifying the task and classifier synchronously

Our coupled transfer distance that uses OT to modify the task and updates the weights syn-

chronously (as shown in Fig. 3.1) to track the interpolated distribution is defined as follows.

Figure 3.1: Coupled transfer of the data and the conditional distribution. We solve an opti-
mization problem that transports the source data distribution ps(x) to the target distribution pt(x)
as τ → 1 while simultaneously updating the model using samples from the interpolated distribution
pτ (x). This modifies the conditional distribution pws(y |x) on the source task to the corresponding
distribution on the target task pwt(y |x). The coupled transfer distance between source and target
tasks is the length of the shortest such weight trajectory under the Fisher Information Metric.

Definition 17 (Coupled transfer distance). Given two learning tasks Ds and Dt and a w-

parametrized classifier trained on Ds with weights ws, the coupled transfer distance between the
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tasks is

min
Γ,w(·)

Ex∼p̂τ

∫ 1

0

√
2KL

[
pw(τ)(· |x), pw(τ+dτ)(· |x)

]
(3.13)

where and couplings Γ ∈ Π(p̂s(x), p̂t(x)) and w(·) is a continuous curve which is the limit of

w(τ + dτ) = w(τ)− ∇̂ℓτ (w(τ)) dτ ; w(0) = ws.

as dτ → 0. The interpolated distribution p̂τ (x, y) at time instant τ ∈ [0, 1] for a coupling Γ is given

by (3.4) and the loss ℓτ is the cross-entropy loss of fitting data from this interpolated distribution.

In comparison of (3.12), we move the expectation

Ex∼p̂τ outside the square root for simplifying the computation. The following remarks discuss the

rationale and the properties of this definition.

Remark 18 (Coupled transfer distance is asymmetric). The length of the weight trajectory

for transferring from p̂s to p̂t is different from the one that transfers from p̂t to p̂s. This is a desirable

property, e.g., it is easier to transfer from ImageNet to CIFAR-10 than in the opposite direction.

Remark 19 (Coupled transfer distance can be compared across different architectures).

An important property of the task distance in (3.13) is that it is the Fisher-Rao distance, i.e., the

shortest geodesic on the statistical manifold, of conditional distributions pw(0)(· |xis) and pw(1)(· |xit)

with the coupling Γ determining the probability mass that is transported from xis to xjt . Since the

Fisher-Rao distance does not depend on the embedding dimension of the manifold M , the coupled

transfer distance does not depend on the architecture of the classifier; it only depends upon the

capacity to fit the conditional distribution pw(y |x). This is a very desirable property: given the

tasks, our distance is comparable across different architectures. Let us note that the uncoupled

transfer distance in Sec. 3.2.1 also shares this property, but the coupled transfer has the benefit of

computing the shortest trajectory in information space; weight trajectories of uncoupled transfer

may be larger; see Rem. 16.
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3.2.3. Computing the coupled transfer distance

We first provide an informal description of how we compute the task distance. Each entry Γij

of the coupling matrix determines how much probability mass from xis is transported to xjt . The

interpolated distribution (3.4) allows us to draw samples from the task at an intermediate instant.

For each coupling Γ, there exists a trajectory of weights w(·) := {w(τ) : τ ∈ [0, 1]} that tracks the

interpolated task. The algorithm treats Γ and the weight trajectory as the two variables and updates

them alternately as follows. At the kth iteration, given a weight trajectory wk(·) and a coupling Γk,

we set the entries of the ground metric Ck+1
ij to be the Fisher-Rao distance between distributions

pw(0)(· |xis) and pw(1)(· |xit). An updated Γk+1 is calculated using this ground metric to result in a

new trajectory wk+1(·) that tracks the new interpolated task distribution (3.4) for Γk+1.

More formally, given an initialization for the coupling matrix Γ0 we perform the updates in (3.14).

Computing the coupled transfer distance is a non-convex optimization problem and we therefore

include a proximal term in (3.14) to keep the coupling matrix close to the one computed in the

previous step Γk. This also indirectly keeps the weight trajectory wk+1(·) close to the trajectory

from the previous iteration. Proximal point iteration (Bauschke and Combettes, 2017) is insensitive

to the step-size λ and it is therefore beneficial to employ it in these updates.

Γk = argmin
Γ∈Π

{〈
Γ, Ck

〉
− ϵH(Γ) + λ∥Γ− Γk−1∥2F

}
, (3.14)

Ck
ij =

∫ 1

0

√
2KL

[
pwk(τ)(· |x

ij
τ ), pwk(τ+dτ)(· |x

ij
τ )
]
, (3.15)

wk(τ + dτ) = wk(τ)− ∇̂ℓτ (wk(τ)) dτ, w(0) = ws., (3.16)

p̂τ (x, y) =

Ns∑
i=1

Nt∑
j=1

Γk−1
ij δ

(1−τ)xi
s+τxj

t
(x) δ

(1−τ)yis+τyjt
(y) (3.17)

xijτ , yijτ ∼ p̂τ (x, y).
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3.2.4. Practical tricks for efficient computation

The optimization problem formulated in (3.14) is conceptually simple but computationally daunting.

The main hurdle is to compute the ground metric Ck
ij for all i ≤ Ns, j ≤ Nt pairs in a dense transport

coupling Γ. The coupling matrix can be quite large, e.g., it has 108 entries for a relatively small

dataset of Ns = Nt = 10, 000. We therefore introduce the following techniques that allow us to

scale to large problems.

Block-diagonal transport couplings Instead of optimizing Γ in (3.13) over the entire poly-

tope Π(p̂s, p̂t), we only consider block-diagonal couplings. Depending upon the source and target

datasets, we use blocks of size up to 30×30. At each time instant τ ∈ [0, 1], we sample a block

from the transport coupling. SGD in (3.16) updates weights using multiple samples from the in-

terpolated task restricted to this block. The integrand for Ck
ij in (3.15) is also computed only on

this mini-batch. Experiments in Sec. 3.4 show that the weight trajectory converges using this tech-

nique. We can compute the coupling transfer distance for source and target datasets of size up to

Ns = Nt = 19, 200. Other approaches for handling large-scale OT problems such as hierarchical

methods (Lee et al., 2019) or greedy computation (Carlier et al., 2010) could also be used for our

purpose but we chose this one for sake of simplicity.

Initializing the transport coupling The ground metric Cij = ∥xis − xjt∥22 is widely used in the

OT literature. We are however interested in computing distances for image-classification datasets in

this paper and such a pixel-wise distance is not a reasonable ground metric for visual data that have

strong local/multi-scale correlations. We therefore set Γ0 to be the block-diagonal approximation of

the transport coupling for the ground metric Cij = ∥φ(xis)−φ(x
j
t )∥22 where φ is some feature extrac-

tor. The feature space is much more Euclidean-like than the input space and this gives us a good

initialization in practice; similar ideas are employed in the metric learning literature (Snell et al.,

2017; Hu et al., 2015; Qi et al., 2018). We use a ResNet-50 He et al. (2016b) pre-trained on Ima-

geNet to initialize Γ0 for all our experiments. To emphasize, we use the feature extractor only for

initializing the transport coupling further updates are performed using (3.14). We have computed

the coupling transfer distance for MNIST without this step and our results are similar.
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Using mixup to interpolate source and target images The interpolating distribution (3.4)

has a peculiar nature: sampled data xijτ = (1 − τ)xis + τxjt from this distribution are a convex

combination of source and target data. This causes artifacts for natural images for τ away from 0 or

1; we diagnosed this as a large value of the training loss while executing (3.11). We therefore treat

the coefficient of the convex combination in (3.4) as if it were a sample from a Beta-distribution

Beta(τ, 1− τ). This keeps the samples xijτ similar to the source or the target task and avoids visual

artifacts. This trick is inspired by Mixup regularization Zhang et al. (2017); we also use Mixup for

labels yijτ .

3.3. An Alternative Perspective using Rademacher Complexity

We have hitherto motivated the coupled transfer distance using ideas in information geometry. In

this section, we study the weight trajectory under the lens of learning theory. We show that we

can interpret it as the trajectory that minimizes the integral of the generalization gap as the the

weights are adapted from the source to the target task. We consider binary classification tasks in

this section. Rademacher complexity (Bartlett and Mendelson, 2001)

RN (r) = Ep̂∼p

[
Eσ

[
sup

w∈A(r)

1

N

N∑
i=1

σiℓ(w;xi, yi)

]]
, (3.18)

is the average over draws of the dataset p̂ ∼ p and iid random variables σi uniformly distributed

over {−1, 1} of the worst case average weighted loss σiℓ(w;xi, yi) for w in the set A(r). We assume

here that
∣∣ℓ(w;xi, yi)∣∣ < M and ℓ(w;x, y) is Lipschitz continuous. Classical bounds bound the gen-

eralization gap of all hypotheses h in a hypothesis class H by R2N (H)+2

√
log(1/δ)

N with probability

at least 1 − δ. We build upon this result to get the following theorem under the assumption that

weights w(τ) predict well on the interpolated task p̂τ (x, y) at all times τ .

Theorem 20. Given a weight trajectory {w(τ)}τ∈[0,1] and a sequence 0 = τ0 ≤ τ1 < τ2 < ... <

τK ≤ 1, for all ϵ > 2
∑K

k=1(τk − τk−1)Ex∼pτ |∆ℓ(w(τk−1))|, the probability that

1

K

K∑
k=1

E(x,y)∼pτk
[ℓ(ω(τk), x, y)]−

1

N

∑
(x,y)∼p̂τk

ℓ(ω(τk), x, y)
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is greater than ϵ is upper bounded by

exp

{
− 2K

M2

(
ϵ− 2

K∑
k=1

∆τkEx∼pτk

[√
⟨ẇ(τk), g(w(τk))ẇ(τk)⟩

])}
. (3.19)

We have defined ∆τk = τk − τk−1 and ∆ℓ(w(τ)) = ℓ(w(τ + dτ);x, yτ (x))− ℓ(w(τ);x, yτ (x)).

Sec. 3.6.6 gives the proof. As ∆τk → 0

K∑
k=1

∆τkEx∼pτk

[√
⟨ẇ(τk), g(w(τk))ẇ(τk)⟩

]
→
∫ 1

0
Ex∼p̂τ

[√
⟨ẇ, g(w)ẇ⟩

]
dτ

which is the length of the trajectory on the statistical manifold with inputs drawn from the inter-

polated distribution at each instant.

We can thus think of the coupled transfer distance as the length of the trajectory on the statistical

manifold that starts at the given model ws on the source task and ends with the model w(1) fitted

to the target task, as the task is simultaneously interpolated using an optimal transport whose

ground metric between samples xis and xjt is Cij =
∫ 1
0

√
2KL

[
pw(τ)(·|x

ij
τ ), pw(τ+dτ)(·|x

ij
τ )
]

which is

the length of the trajectory under the FIM. This result is a crisp theoretical characterization of the

intuitive idea that if one finds a weight trajectory that transfers from the source to the target task

while keeping the generalization gap small at all time instants, then the length of the trajectory is

a good indicator of the distance between tasks.

3.4. Experiments

3.4.1. Setup

We use the MNIST, CIFAR-10, CIFAR-100 and Deep Fashion datasets for our experiments. Source

and target tasks consist of subsets of these datasets, each task with one or more of the original classes

inside it. We show results using an 8-layer convolutional neural network with ReLU nonlinearities,

dropout, batch-normalization with a final fully-connected layer along with a larger wide-residual-

network WRN-16-4 (Zagoruyko and Komodakis, 2016). Sec. 3.6 gives details about pre-processing,

architecture and training.
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3.4.2. Baseline methods to estimate task distances

The difficulty of fine-tuning is the gold standard of distance between tasks. It is therefore

very popular, e.g., Kornblith et al. (2019) use the number of epochs during transfer as the distance.

We compute the length of the weight trajectory, i.e.,
∫ 1
0 |dw| and call this the fine-tuning distance.

The trajectory is truncated when validation accuracy on the target task is 95% of its final validation

accuracy. No transport of the task is performed and the model directly takes SGD updates on the

target task after being pre-trained on the source task.

The next baseline is Task2Vec (Achille et al., 2019a) which embeds tasks using the diagonal of the

FIM of a model trained on them individually. Cosine distance between these vectors is defined as

the task distance.

We also compare with the uncoupled transfer distance developed in Sec. 3.2.1. This distance

computes length of the weight trajectory on the Riemannian distance and also interpolates the data

but does not do them synchronously.

Discrepancy measures on the input space are a popular way to measure task distance. We

show task distance computed as the Wasserstein W 2
2 metric on the the pixel-space, the

Wasserstein W 2
2 metric on the embedding space and also method that we devised ourselves

where we transfer a variational autoencoder (VAE Kingma and Welling (2014)) from the source

to the target task and compute the length of weight trajectory on the manifold. We transfer

the VAE in two ways, (i) by directly fitting the model on the target task, and (ii) by interpolating

the task using a mixture distribution as described in Sec. 3.2.1.

3.4.3. Quantitative comparison of distance matrices

Metrics are not unique. We would however still like to compare two task distances across various

pairs of tasks. In addition to showing these matrices and drawing qualitative interpretations, we use

the Mantel test Mantel (1967) to accept/reject the null hypothesis that variations in two distance

matrices are correlated. We will always compute correlations with the fine-tuning distance

matrix because it is a practically relevant quantity and task distances are often designed to predict
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this quantity. We report p-values and the normalized test statistic r = 1/(n2 − n− 1)
∑n

i,j=1(aij −

ā)(bij − b̄)/(σaσb) where a, b ∈ Rn×n are distance matrices for n tasks, ā, σa denote mean and

standard deviation of entries respectively. Numerical values of r are usually small for all data Ape;

Goslee et al. (2007) but the pair (r, p) are a statistically sound way of comparing distance matrices;

large r with small p indicates better correlation.

3.4.4. Transferring between subsets of benchmark datasets

CIFAR-10 and CIFAR-100 We consider four tasks (i) all vehicles (airplane, automobile, ship,

truck) in CIFAR-10, (ii) the remainder, namely six animals in CIFAR-10, (iii) the entire CIFAR-10

dataset and (iv) the entire CIFAR-100 dataset. We show results in Fig. 3.2 using 4×4 distance

matrices where numbers in each cell indicate the distance between the source task (row) and the

target task (column).
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Figure 3.2: Fig. 3.2a shows coupled transfer distance (r = 0.428 p = 0.13), Fig. 3.2b shows distances
estimated using Task2Vec (r = 0.03, p = 0.98), Fig. 3.2c shows fine-tuning distance (r = 0.61, p
= 0.09 with itself), and Fig. 3.2d shows uncoupled transfer distance (r = 0.428, p = 0.09). The
numerical values of the distances in this figure are not comparable with each other. Coupled transfer
distances satisfy certain sanity checks, e.g., transferring to a subset task is easier than transferring
from a subset task (CIFAR-10-vehicles/animals), which Task2Vec does not.

Coupled transfer shows similar trends as fine-tuning, e.g., the tasks animals-CIFAR-10 or vehicles-

CIFAR-10 are close to each other while CIFAR-100 is far away from all tasks (it is closer to CIFAR-10

than others). Task distance is asymmetric in Fig. 3.2a, Fig. 3.2c. Distance from CIFAR-10-animals is

smaller than animals-CIFAR-10; this is expected because animals is a subset of CIFAR-10. Task2Vec

distance estimates in Fig. 3.2b are qualitatively quite different from these two; the distance matrix

is symmetric. Also, while fine-tuning from animals-vehicles is relatively easy, Task2Vec estimates
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the distance between them to be the largest.

This experiment also shows that our approach can scale to medium-scale datasets and can handle

situations when the source and target task have different number of classes.

Transferring between subsets of CIFAR-100 We construct five tasks (herbivores, carnivores,

vehicles-1, vehicles-2 and flowers) that are subsets of the CIFAR-100 dataset. Each of these tasks

consists of 5 sub-classes. The distance matrices for coupled transfer, Task2Vec and fine-tuning are

shown in Fig. 3.3a, Fig. 3.3b and Fig. 3.3c respectively. We also show results using uncoupled

transfer in Fig. 3.3d.
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Figure 3.3: Fig. 3.3a shows coupled transfer distance (r = 0.14, p = 0.05), Fig. 3.3b shows Task2Vec
distance (r = 0.07, p = 0.17), Fig. 3.3c shows fine-tuning distance (r = 0.36, p = 0.03), and Fig. 3.3d
shows uncoupled transfer distance (r = 0.12, p = 0.47). Numerical values in the first and the last
sub-plot can be compared directly. Coupled transfer broadly agrees with fine-tuning except for
carnivores-flowers and herbivores-vehicles-1. For all tasks, uncoupled transfer overestimates the
distances compared to Fig. 3.3a.

Coupled transfer estimates that all these subsets of CIFAR-100 are roughly equally far away from

each other with herbivores-carnivores being the farthest apart while vehicles-1-vehicles-2 being clos-

est. This ordering is consistent with the fine-tuning distance although fine-tuning results in an

extremely large value for carnivores-flowers and vehicles-1-herbivores. This ordering is mildly in-

consistent with the distances reported by Task2Vec in Fig. 3.3b the distance for vehicles-1-vehicles-2

is the highest here. Broadly, Task2Vec also results in a distance matrix that suggests that all tasks

are equally far away from each other. As has been reported before (Li et al., 2020), this experiment

also demonstrates the fragility of fine-tuning.
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Recall that distances for uncoupled transfer in Fig. 3.3d can be compared directly to those in Fig. 3.3a

for coupled transfer. Task distances for the former are always larger. Further, distance estimates

of uncoupled transfer do not bear much resemblance with those of fine-tuning; see for example the

distances for vehicles-2-carnivores, flowers-carnivores, and vehicles-1-vehicles-2. This demonstrates

the utility of solving a coupled optimization problem in (3.14) which finds a shorter trajectory on

the statistical manifold.

Experiments on transferring between subsets of Deep Fashion are given in Sec. 3.6.5. We also

computed task distances for tasks with different input domains. For transferring from MNIST to

CIFAR-10, the coupled transfer distance is 0.18 (0.06 in the other direction), fine-tuning distance

is 554.2 (20.6 in the other direction) and Task2Vec distance is 0.149 (same in the other direction).

This experiment shows that can robustly handle diverse input domains and yet again, the coupled

transfer distance correlates with the fine-tuning distance.

3.4.5. Further analysis of the coupled transfer distance

Convergence of coupled transfer Fig. 3.4a shows the evolution of training and test loss as

computed on samples of the interpolated distribution after k = 4 iterations of (3.14). As predicted

by Thm. 20 the generalization gap is small throughout the trajectory. Training loss increases towards

the middle; this is expected because the interpolated task is far away from both source and target

tasks there. The interpolation (3.17) could also be a cause for this increase.

We typically require 4–5 iterations of (3.14) for the task distance to converge; this is shown

in Fig. 3.4b for a few instances. This figure also indicates that computing the transport cou-

pling in (3.2) independently of the weights and using this coupling to modify the weights, as done

in say (Cui et al., 2018), results in a larger distance than if one were to optimize the couplings along

with the weights. The coupled transfer finds shorter trajectories for weights and will potentially

lead to better accuracies on target tasks in studies like (Cui et al., 2018) because it samples more

source data.

Models with a larger capacity are easier to transfer We next show that using a model with
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Figure 3.4: Fig. 3.4a shows the evolution of the training and test cross-entropy loss on the inter-
polated distribution as a function of the transfer steps in the final iteration of coupled transfer of
vehicles-1-vehicles-2. As predicted by Thm. 20, generalization gap along the trajectory is small.
Fig. 3.4b shows the convergence of the task distance with the number of iterations k in (3.14); the
distance typically converges in 4–5 iterations for these tasks.

higher capacity results in smaller distances between tasks. We consider a wide residual network

(WRN-16-4) of Zagoruyko and Komodakis (2016) and compute distances on subsets of CIFAR-100

in Fig. 3.5. First note that task distances for coupled transfer in Fig. 3.5a are consistent with those

for fine-tuning in Fig. 3.5b. Coupled transfer distances in Fig. 3.5a are much smaller than those

in Fig. 3.3a.

Roughly speaking, a high-capacity model can learn a rich set of features, some discriminative and

others redundant not relevant to the source task. These redundant features are useful if target task is

dissimilar to the source. This experiment also demonstrates that the information-geometric distance

computed by coupled transfer, which is independent of the dimension of the statistical manifold,

leads to a constructive strategy for selecting architectures for transfer learning. Most methods to

compute task distances instead only inform which source target is best suited to pre-train with for

the target task.

Does coupled transfer lead to better generalization on the target? It is natural to ask

whether the generalization performance of the model after coupled transfer is better than the one

after standard fine-tuning (which does not transport the task). Fig. 3.6 compares the validation

loss and the validation accuracy after coupled transfer and after standard fine-tuning for pairs of
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Figure 3.5: Fig. 3.5a shows coupled transfer distance (r = 0.15, p = 0.01) and Fig. 3.5b shows
fine-tuning distance (r = 0.39, p = 0.01 with itself and r = 0.21, p = 0.20 with fine-tuning distance
in Fig. 3.3c). Numbers in Fig. 3.5a can be directly compared to those in Fig. 3.3a. WRN-16-4 model
has a shorter trajectory for all task pairs compared to the CNN in Fig. 3.3a with fewer parameters.

CIFAR-100 tasks. It shows that broadly, the former improves generalization. This is consistent with

existing literature Gao and Chaudhari (2020a) which employs task interpolation for better transfer.

Let us note that improving fine-tuning is not our goal while developing the task distance. In fact,

we want the task distance to correlate with the difficulty of fine-tuning.

Figure 3.6: Comparison of validation loss (red for coupled transfer, green for fine-tuning) and
accuracy (%) (blue and yellow respectively) between different subsets of CIFAR-100. Optimal
transport for the task distribution results in large improvements in the validation loss in all cases;
The validation accuracy also improve by 0.4%–2.5% in all cases except the last two.

Comparison with other task discrepancy measures Fig. 3.7a shows task distances computed

using the Riemannian length of the weight trajectory for the VAE (see Sec. 3.4.2) when task is

interpolated using a mixture distribution, Fig. 3.7b shows the same quantity when the VAE is

directly fitted to the target task after initialization on the source. Fig. 3.7c and Fig. 3.7d show the

Wasserstein distance on the pixel-space and feature-space respectively. We find that although the
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four distance matrices in Fig. 3.7 agree with each other very well (r ≈ 0.15, p < 0.08 for all pairs,

except the VAE with uncoupled transfer), they are very different from the fine-tuning distance

in Fig. 3.3c. This shows that task distances computed using discrepancy measures on the input

space are not reflective of the difficulty of fine-tuning, after all images in these tasks are visually

quite similar to each each. Coupled transfer distance explicitly takes the hypothesis space into

account and correctly reflects the difficulty of transfer, even if the input spaces are similar.
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Figure 3.7: Fig. 3.7a shows task distance computed using the Riemannian length of the weight
trajectory for the VAE using a mixture distribution to interpolate the tasks (see Sec. 3.4.1, r = 0.1,
p = 0.76), Fig. 3.7b shows the same quantity for directly fine-tuning the VAE (r = 0.09, p = 0.88),
Fig. 3.7c shows task distance using the Wasserstein metric on the pixel-space (r = 0.02, p = 0.22),
Fig. 3.7d shows distances using Wasserstein metric on the embedding space (r = 0.06, p = 0.40).
The last three methods agree with each other very well (see the narrative for p-values) but small
Mantel test statistic and high p-values as compared to Fig. 3.3c indicates that these distances are
not correlated with the difficulty of fine-tuning.

3.5. Related Work and Discussion

Domain-specific methods A rich understanding of task distances has been developed in computer

vision, e.g., Zamir et al. (2018) compute pairwise distances when different tasks such as classifica-

tion, segmentation etc. are performed on the same input data. The goal of this work, and others

such as (Cui et al., 2018), is to be able to decide which source data to pre-train to generalize well on

a target task. Task distances have also been widely discussed in the multi-task learning (Caruana,

1997) and meta/continual-learning (Liu et al., 2019; Pentina and Lampert, 2014; Hsu et al., 2018).

The natural language processing literature also prevents several methods to compute similarity

between input data (Mikolov et al., 2013; Pennington et al., 2014).
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Most of the above methods are based on evaluating the difficulty of fine-tuning, or computing the

similarity in some embedding space. It is difficult to ascertain whether the distances obtained

thereby are truly indicative of the difficulty of transfer; fine-tuning hyper-parameters often need to

be carefully chosen (Li et al., 2020) and neither is the embedding space unique. For instance, the

uncoupled transfer process that modifies the input data distribution will lead to a different estimate

of task distance.

Information-theoretic approaches We build upon a line of work that combines generative models

and discriminatory classifiers (see (Jaakkola and Haussler, 1999; Perronnin et al., 2010) to name a

few) to construct a notion of similarity between input data. Modern variants of this idea include

Task2Vec (Achille et al., 2019a) which embeds the task using the diagonal of the FIM and computes

distance between tasks using the cosine distance for this embedding. The main hurdle in Task2Vec

and similar approaches is to design the architecture for computing FIM: a small model will indicate

that tasks are far away. Achille et al. (2019b,c) use the KL divergence between the posterior weight

distribution and a prior to quantify the complexity of a task; distance between tasks is defined to

be the increase in complexity when the target task is added to the source task. This is an elegant

formalism but it is challenging to compute it accurately and it has not yet been demonstrated for

a broad range of datasets.

Learning-theoretic approaches Learning theory typically studies out-of-sample performance on

a single task using complexity measures such as VC-dimension (Vapnik, 1998). These have been

adapted to address the difficulty of domain adaptation (Ben-David et al., 2010; Zhang et al., 2012;

Redko et al., 2019) which gives a measure of task distance that incorporates the complexity of the

hypothesis space. In particular, Ben-David et al. (2010) train on a fixed mixture of the source and

target data to minimize which is similar to our interpolated distribution (3.17). Theoretical results

here corroborate (actually motivate) our experimental result that transferring between the same

tasks with a higher-capacity model is easer. A key gap in this literature is that this theory does

not consider how the model is adapted to target task. For complex models such as deep networks,

hyper-parameters during fine-tuning play a crucial role (Li et al., 2020). Our work fundamentally
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exploits the idea that the task need not be fixed during transfer, it can also be adapted. Further,

our coupled transfer distance is invariant to the particular parametrization of the deep network,

which is difficult to achieve using classical learning theory techniques.

Coupled transfer of data and the model Transporting the task using optimal transport is fun-

damental to how our coupled transfer distance is defined. This is motivated from two recent studies.

Gao and Chaudhari (2020a) develop an algorithm that keeps the classification loss unchanged across

transfer. Their method interpolates between the source and target data using the mixture distri-

bution from Sec. 3.2.1. We take this idea further and employ optimal transport Cui et al. (2018)

to modulate the interpolation of the task using the Fisher-Rao distance. Coupled transport prob-

lems on the input data are also solved for unsupervised translation (Alvarez-Melis and Jaakkola,

2018). The idea of modifying the task during transfer using optimal transport is also exploited

by Alvarez-Melis and Fusi (2020a) to prescribe task distances and for data augmentation/interpo-

lation and transfer (Alvarez-Melis and Fusi, 2020b).

Our work is an attempt to theoretically understand when transfer is easy and when it is not. An

often over-looked idea in large-scale transfer learning is that the task need not remain fixed to the

target task during transfer. We heavily exploit this idea in the present paper. We develop a "coupled

transfer distance" between tasks that computes the shortest weight trajectory in information space,

i.e., on the statistical manifold, while the task is optimally transported from the source to the target.

The most important aspect of our work is that both task and weights are modified synchronously.

It is remarkable that this coupled transfer distance is not just strongly correlated with the difficulty

of fine-tuning but also theoretically captures the intuitive idea that a good transfer algorithm is the

one that keeps generalization gap small during transfer, in particular at the end on the target task.

3.6. Appendix

3.6.1. Architecture and training

We show results using an 8-layer convolutional neural network with ReLU nonlinearities, dropout,

batch-normalization with a final fully-connected layer. The larger model used for experiments

59



in Fig. 3.5 is a wide-residual-network (WRN-16-4 architecture of (Zagoruyko and Komodakis, 2016)).

3.6.2. Transferring between CIFAR-10 and CIFAR-100

We consider four tasks: (i) all vehicles (airplane, automobile, ship, truck) in CIFAR-10, consisting

of 20,000 32×32-sized RGB images; (ii) the remainder, namely six animals in CIFAR-10, consisting

of 30,000 32×32-sized RGB images; (iii) the entire CIFAR-10 dataset and (iv) the entire CIFAR-100

dataset, consisting of 50,000 images and spread across 100 classes.

We pre-train model on source tasks using stochastic gradient descent (SGD) for 60 epochs, with

mini-batch size of 20, learning rate schedule is set to 10−3 for epochs 0 – 40 and 8×10−4 for epochs

40 – 60. When CIFAR-100 is the source dataset, we train for 180 epochs with the learning rate set

to 10−3 for epochs 0 – 120, and 8× 10−4 for epochs 120 – 180.

We chose a slightly smaller version of the source and target datasets to compute the distance, each

of them have 19,200 images. The class distribution on all source and target classes is balanced. We

did this to reduce the size of the coupling matrix Γ in (3.14). The coupling matrix connecting inputs

in the source and target datasets is Γ ∈ R19200×19200 which is still quite large to be tractable during

optimization. We therefore use a block diagonal approximation of the coupling matrix; 640 blocks

are constructed each of size 30×30 and all other entries in the coupling matrix are set to zero at

the beginning of each iteration in (3.14) after computing the dense coupling matrix using the linear

program. This effectively entails that the set of couplings over which we compute the transport

is not the full convex polytope in Sec. 3.1.1 but rather a subset of it. We sample a mini-batch of

20 images from the interpolated distribution corresponding to this block-diagonal coupling matrix

for each weight update of (3.16). We run 40 epochs, i.e., with 19200/20 = 960 weight updates per

epoch for computing the weight trajectory at each iteration k in (3.14). The learning rate is fixed

to 8× 10−4 in the transfer learning phase.

3.6.3. Transferring among subsets of CIFAR-100

The same 8-layer convolutional network is used to show results for transfer between subsets of

CIFAR-10 and CIFAR-100. CIFAR-10 is split into the two tasks animals and vehicle again. We
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construct five tasks (herbivores, carnivores, vehicles-1,vehicles-2 and flowers) that are subsets of the

CIFAR-100 dataset. Each of these tasks consists of 5 sub-classes.

We train the model on the source task using SGD for 400 epochs with a mini-batch size of 20.

Learning rate is set to 10−3 for epochs 0 – 240, and to 8× 10−4 for epochs 240 – 400.

Tasks that are subsets of CIFAR-100 in the experiments in this section have few samples (2500

each) so we select 2400 images from source and target datasets respectively; we could have chosen

a larger source dataset when transferring from CIFAR-10 animals or vehicles but we did not so for

sake of simplicity. The number 2400 was chosen to make the block diagonal approximation of the

coupling matrix have 120×120 entries in each block; this was constrained by the GPU memory. The

coupling matrix Γ therefore has 2400×2400 entries with 20 blocks on the diagonal.

Again, we use a mini-batch size of 20 for 240 epochs (2400/20 = 120 weight updates per epoch)

during the transfer from the source dataset to the target dataset. The learning rate is fixed to

8× 10−4 in the transfer learning phase.

3.6.4. Training setup for wide residual network

We pre-train WRN-16-4 on source tasks using SGD for 400 epochs with a mini-batch size of 20.

Learning rate is 10−1 for epochs 0 – 120, 2×10−2 for epochs 120 – 240, 4×10−3 for epochs 240–320,

and 8× 10−4 for epochs 320 – 400. Other experimental details are the same as those in Sec. 3.6.3.

3.6.5. Experiments on the Deep Fashion dataset

For the Deep Fashion dataset (Liu et al., 2016), we consider three binary category classification

tasks (upper clothes, lower clothes, and full clothes) and five binary attribute classification tasks

(floral, print, sleeve, knit, and neckline). We show results in Fig. 3.8 using 3× 5 distance matrices

where numbers in each cell indicate the distance between the source task (row) and the target task

(column). We show results using a wide-residual-network (WRN-16-4, (Zagoruyko and Komodakis,

2016)).

The model is trained using SGD for 400 epochs with a mini-batch size 20. Learning rate is 10−1 for
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Figure 3.8: Fig. 3.8a shows distances (numbers in the cell) among sub-tasks in DeepFashion com-
puted using our coupled transfer process (r = 0.37, p = 0.33), Fig. 3.8c shows distances estimated
using Task2Vec (r = 0.04, p = 0.75) while Fig. 3.8c shows distances estimated using fine-tuning (r
= 0.54, p = 0.36 with itself). Numerical values of the distances in this figure are not comparable
with each other. Coupled transfer, Task2Vec and fine-tuning all agree with that transferring to knit
is relatively hard. Transferring from upper-cloth to knit is easy via fine-tuning and coupled transfer
correctly estimates this distance to be small; the distance estimated by Task2Vec is much larger in
comparison. Since these matrices are non-square, we ran the Mantel test for three 3×3 submatrices
(sweep across columns) of these 3×5 matrices and report the mean test statistic and the average
p-value across these tests above.

epochs 0 – 120, 2×10−2 for epochs 120 – 240, 4×10−3 for epochs 240–320, and 8×10−4 for epochs

320 – 400. We sample 14,000 images from the source and target datasets to compute distances.

A mini-batch size of 20 is used during transfer and we run (3.16) for 60 epochs (14000/20 = 700

weight updates per epoch).

3.6.6. Proof of Thm. 20

We first prove a simpler theorem.

Theorem 21. Given a trajectory of the weights {w(τ)}τ∈[0,1] and a sequence 0 ≤ τ1 < τ2 < ... <

τK ≤ 1, then for all ϵ > 2
K

∑K
k=1RN (∥w(τk)∥FR), the probability that

1

K

K∑
k=1

E(x,y)∼pτk
[ℓ(ω(τk), x, y)]−

1

N

∑
(x,y)∼p̂τk

ℓ(ω(τk), x, y)


is greater than ϵ is upper bounded by

exp

− 2K

M2

(
ϵ− 2

K

K∑
k=1

RN (∥w(τk)∥FR)

)2
 . (3.20)
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Proof. For each moment τk, by taking supremum

E(x,y)∼pτk
ℓ(w(τk), x, y)−

1

N

∑
(x,y)∼p̂τk

ℓ(w(τk), x, y)

≤ sup
∥w∥FR≤∥w(τk)∥FR

E(x,y)∼pτk
ℓ(w, x, y)− 1

N

∑
(x,y)∼p̂τk

ℓ(w, x, y)

 , (3.21)

where ∥ · ∥FR denotes Fisher-Rao norm (Liang et al., 2019). The right hand side of inequality(3.21)

is a random variable that depends on the drawn sampling set p̂τk with size N . Denoting

φ(p̂τk) : = sup
∥w∥FR≤∥w(τk)∥FR

E(x,y)∼pτk
ℓ(w, x, y)− 1

N

∑
(x,y)∼p̂τk

ℓ(w, x, y)

 , (3.22)

We would like to bound the expectation of ϕ(p̂τk) in terms of the Rademacher complexity. In order

to do this, we introduce a "ghost sample" with size N , p̂′τk , independently drawn identically from

pτk(x, y), we rewrite the expectations

Ep̂τk
ϕ(p̂τk) = Ep̂τk

 sup
∥w∥FR≤∥w(τk)∥FR

E(x,y)∼pτk
ℓ(w, x, y)− 1

N

∑
(x,y)∼p̂τk

ℓ(w, x, y)


= Ep̂τk

 sup
∥w∥FR≤∥w(τk)∥FR

Ep̂′τk

 1

N

∑
(x,y)∼p̂′τk

ℓ(w, x, y)− 1

N

∑
(x,y)∼p̂τk

ℓ(w, x, y)


≤ Ep̂τk ,p̂

′
τk

,σ

 sup
∥w∥FR≤∥w(τk)∥FR

1

N

 ∑
(x,y)∼p̂τk

σi(ℓ(w, x, y)− ℓ(w, x, y))


≤ Ep̂τk ,σ

 sup
∥w∥FR≤∥w(τk)∥FR

1

N

∑
(x,y)∼p̂τk

σiℓ(w, x, y)


+ Ep̂τk ,σ

 sup
∥w∥FR≤∥w(τk)∥FR

1

N

∑
(x,y)∼p̂τk

σiℓ(w, x, y)


= 2RN (∥w(τk)∥FR),
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where σ = (σ1, σ2, . . . , σN ) are independent random variables drawn from the Rademacher distribu-

tion, the last equality is followed by the definition of Rademacher Complexity within ∥w(τk)∥FR-ball

in the Fisher-Rao norm. By Hoeffding’s lemma, for λ > 0

Ep̂τk
exp

λ

E(x,y)∼pτk
ℓ(w(τk), x, y)−

1

N

∑
(x,y)∼p̂τk

ℓ(w(τk), x, y)

 = Ep̂τk
eλϕ(p̂τk )

≤ e
λEp̂τk

ϕ(p̂τk )+
λ2M2

8

≤ e2λRN (∥w(τk)∥FR)+λ2M2

8 .

(3.23)

For each moment τk, we have inequality(3.23), which implies

Ep̂τk : 1≤k≤K exp

λ
K∑
k=1

E(x,y)∼pτk
ℓ(w(τk), x, y)−

1

N

∑
(x,y)∼p̂τk

ℓ(w(τk), x, y)


=

K∏
k=1

Ep̂τk
exp

λ

E(x,y)∼pτk
ℓ(w(τk), x, y)−

1

N

∑
(x,y)∼p̂τk

ℓ(w(τk), x, y)


≤ exp

{
K∑
k=1

[
2λRN (∥w(τk)∥FR) +

λ2M2

8

]}
.

Finally for all Kϵ > 2
∑K

k=1RN (∥w(τk)∥FR), by Markov’s inequality

Pr


K∑
k=1

E(x,y)∼pτk
ℓ(w(τk), x, y)−

1

N

∑
(x,y)∼p̂τk

ℓ(w(τk), x, y)

 > Kϵ


≤ exp

{
−λKϵ+

K∑
k=1

[
2λRN (∥w(τk)∥FR) +

λ2M2

8

]} (3.24)

Put λ =
4K(ϵ− 2

K

∑K
k=1 RN (∥w(τk)∥FR))

M2 in right hand side of inequality(3.24), then we finish the proof.

3.6.7. Proof of Thm. 20

The upper bound in (3.24) above states that we should minimize the Rademacher complexity of

the hypothesis space in order to ensure that the weight trajectory has a small generalization gap
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at all time instants. For linear models, as discussed in the main paper (Liang et al., 2019), the

Rademacher complexity can be related to the Fisher-Rao norm ⟨w, gw⟩. The Fisher-Rao distance

on the manifold, namely

∫ 1

0
Ex∼pτ (x)

[√
2KL

(
pw(τ)(·|x), pw(τ+dτ)(·|x)

)]
dτ =

∫ 1

0
Ex∼pτ (x)

√〈
˙w(τ), g(w(τ)) ˙w(τ)

〉
dτ

(3.25)

is only a lower bound on the integral of the Fisher-Rao norm along the weight trajectory. We

therefore make some additional assumptions in this section to draw out a crisp link between the

Fisher-Rao distance and generalization gap along the trajectory.

Let ℓ(w;x, y) = − log pw(y |x) be the cross-entropy loss on sample (x, y). We assume that at each

moment τ ∈ [0, 1], our model pw(τ)(y |x) predicts on the interpolating distribution pτ (y |x) well,

that is

pw(τ)(y |x) ≈ pτ (y |x)

for all input x; this is a reasonable assumption and corresponds to taking a large number of mini-

batch updates in (3.16). We approximate the FIM using the empirical FIM, i.e., we approximate

the distribution pτ (y|x) as a Dirac-delta distribution on the interpolated labels yτ (x). Observe that

〈
˙w(τ), g(w(τ)) ˙w(τ)

〉
=
〈

˙w(τ),Ey |x∼pτ∂wℓw(τ)(y |x)∂wℓw(τ)(y |x)⊤ ˙w(τ)
〉

≈
〈

˙w(τ), ∂wℓ(w(τ);x, yτ (x)) ∂wℓ(w(τ);x, yτ (x))
⊤ ˙w(τ)

〉
=

∣∣∣∣ℓ(w(τ + dτ);x, yτ (x))− ℓ(w(τ);x, yτ (x))

dτ

∣∣∣∣2
=

∣∣∣∣∆ℓ(w(τ))

dτ

∣∣∣∣2 ,
(3.26)

where we use the shorthand

∆ℓ(w(τ)) := ℓ(w(τ + dτ);x, yτ (x))− ℓ(w(τ);x, yτ (x)),
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and plug (3.26) in the integration in (3.25)

∫ 1

0
Ex∼pτ (x)

[√
2KL

(
pw(τ)(·|x), pw(τ+dτ)(·|x)

)]
dτ =

∫ 1

0
Ex∼pτ (x)

√〈
˙w(τ), g(w(τ)) ˙w(τ)

〉
dτ

≈
∫ 1

0
Ex∼pτ (x) [|∆ℓ(w(τ)|] .

(3.27)

On the other hand, for moment τ let Ωτ ∋ w(τ) be a compact neighborhood of w(τ) in weights

space, Rademacher complexity of the class of loss function is upper bounded as following

RN (Ωτ ) = Ep̂∼pNτ
Eσ

[
sup
w∈Ωτ

1

N

N∑
i=1

σiℓ(w;xi, yi)

]

= Ep̂∼pNτ
Eσ

[
sup
w∈Ωτ

1

N

N∑
i=1

σiℓ(w(τ);xi, yi) + σi
(
ℓ(w;xi, yi)− ℓ(w(τ);xi, yi)

)]

≤ Ep̂∼pNτ
Eσ

[
1

N

N∑
i=1

σiℓ(w(τ);xi, yi) + sup
w∈Ωτ

1

N

N∑
i=1

|ℓ(w;xi, yi)− ℓ(w(τ);xi, yi)|

]

= 0 + Ep̂∼pNτ

[
sup
w∈Ωτ

1

N

N∑
i=1

|ℓ(w;xi, yi)− ℓ(w(τ);xi, yi)|

]

−→ sup
w∈Ωτ

Ex∼pτ |ℓ(w;x, yτ (x))− ℓ(w(τ);x, yτ (x))|

, (3.28)

as N goes to infinity. The last step in (3.28) is followed by the compactness of Ωτ and the Lipschitz

continuity of the loss function. Let

Ωτ := {w|Ex∼pτ |ℓ(w;x, yτ (x))−ℓ(w(τ);x, yτ (x))| ≤ Ex∼pτ |ℓ(w(τ + dτ);x, yτ (x))−ℓ(w(τ);x, yτ (x))|},

(3.29)

be the neighborhood of w(τ) within which the loss function changes less than |∆ℓ(w(τ))|. Com-

pare this with (3.27), the Rademacher complexity of Ωτ is exactly upper bounded by integration

increments appearing in the expression for the Fisher-Rao distance. If we substitute ∥w(τ)∥FR-ball

in (3.20) with this modified Ωτ , we have the following theorem.

Theorem 22. Given a trajectory of the weights {w(τ)}τ∈[0,1] and a sequence 0 = τ0 ≤ τ1 < τ2 <
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... < τK ≤ 1, for all ϵ > 2
∑K

k=1(τk − τk−1)Ex∼pτ |∆ℓ(w(τk−1))|, the probability that

1

K

K∑
k=1

E(x,y)∼pτk
[ℓ(ω(τk), x, y)]−

1

N

∑
(x,y)∼p̂τk

ℓ(ω(τk), x, y)


is greater than ϵ is upper bounded by

exp

{
− 2K

M2

(
ϵ− 2

K∑
k=1

(τk − τk−1)Ex∼pτk
[|∆ℓ(w(τk−1))|]

)}
. (3.30)

Proof. The proof is same as in (3.20) except for substituting RN (∥w(τk)∥FR) with RN (Ωτk) and

using upper bounds (3.28), and

Ωτk = {w|Ex∼pτk
|ℓ(w;x, yτk(x))− ℓ(w(τk);x, yτk(x))|

≤ K(τk − τk−1)Ex∼pτk
|ℓ(w(τk);x, yτk(x))− ℓ(w(τk−1);x, yτk(x))|}.

(3.31)

We can now relate the Fisher-Rao distance (3.25) and the generalization bound in Thm. 22. For

instance, if
∣∣ d
dτ ℓ(w(τ);x, yτ (x))

∣∣ is Riemann integrable over τ , then as K goes to infinity, there

exists a sequence 0 = τ0 ≤ τ1 < τ2 < ... < τK ≤ 1 such that

K∑
k=1

(τk − τk−1)Ex∼pτk

∣∣∣ℓ(w(τk);x, yτk(x))− ℓ(w(τk−1);x, yτk(x))
∣∣∣

−→
∫ 1

0
Ex∼pτ (x) |ℓ(w(τ + dτ);x, yτ (x))− ℓ(w(τ);x, yτ (x))|

≈
∫ 1

0
Ex∼pτ (x)

[√
2KL

(
pw(τ)(·|x), pw(τ+dτ)(·|x)

)]
dτ.

(3.32)

This shows that computing the Fisher-Rao distance between two points on the statistical manifold

results in a weight trajectory that minimizes the the generalization gap of weights trained on the

interpolated distribution along the trajectory. In other words, one may either think of our coupled

transfer process as computing the Fisher-Rao distance or as finding a weight trajectory that connects

weights with a small generalization gap.
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CHAPTER 4

A CANONICAL APPROACH FOR PRE-TRAINING WITH UNLABELED

DATA

The free energy principle highlights the effectiveness of reconstruction (2.5) in pre-training, whereas

an auto-encoder is used to reconstruct the original input data x using the pre-trained representation

z. In the context of pre-training with unlabeled data p(x), we can also harness the power of

reconstruction. Successful algorithms in self-supervised learning ( e.g., SimCLR ) intuitively design

the tasks to pre-train the models using the unlabelled data (e.g., representations invariant to the

data augmentations ) prior to knowing the actual downstream task p(x, y).

Instead of artificially designing tasks, a canonical approach to explore unlabeled data

is to directly reconstruct the potential downstream tasks p(x, y) based on inputs x.

Given the input data distribution p(x), the potential tasks that correlate with it are not unique.

For instance, an input image can be labeled based on various factors such as background colors,

textures, and objects present within it. By leveraging the power of a reference prior, we reconstruct

a pool of diverse tasks that encompass the typical downstream tasks without knowing the actual

labels. These techniques provide us with deeper insights into the space of tasks, as we will discuss

in detail later on Sec. 4.2.3.

4.1. Backgrounds

Consider a labelled dataset {(xi, ŷi)}Ki=1 with K samples that consists of inputs xi ∈ X and ground-

truth labels ŷi ∈ {1, . . . , C}. Each sample of this dataset is drawn from the given task. We will

use the shorthand XK = {x1, . . . , xK} and Ŷ K = {ŷ1, . . . , ŷK} to denote all inputs and ground

truth labels. Let w ∈ Rp be the weights of a network that evaluates the conditional probability

p(y |x,w); here, y is not necessarily a ground truth label. We will use random variables z = (x, y)

and ZK = (XK , Y K), with a probability distribution p(z |w), when we do not wish to distinguish

between inputs and labels.
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Given a prior on weights π(w), Bayes law gives the posterior

p(w |XK , Ŷ K) ∝ p(Ŷ K |XK , w)π(w).

Where p(Ŷ K |XK , w) =
∏K

i=1 p(yi |xi, w), since we assume data are independently and identically

sampled from the task domain. The Fisher Information Matrix (FIM) g ∈ Rp×p has entries g(w)kl =

1

K

K∑
i=1

C∑
y=1

p(y |xi, w)∂wk
log p(y |xi, w)∂wl

log p(y |xi, w),

where 1 ≤ k, l ≤ p. It can be used to define the Jeffrey’s prior

πJ(w) ∝
√
det g(w). (4.1)

Jeffrey’s prior is reparameterization invariant, i.e., it assigns the same probability to a set of models

irrespective of our choice of parameterization of those models. It is an uninformative prior, e.g., it

imposes some generic structure on the problem (reparameterization invariance).

4.1.1. Reference priors

To make the choice of a prior more objective, Bernardo (1979) suggested that uninformative priors

should maximize some divergence, say the Kullback-Leibler (KL) divergence

KL(p(w |Z), π(w)) =

∫
d(x|z)wp(w |Z) log

p(w |Z)

π(w)
,

between the prior π(w) and the posterior after seeing infinite observations Z = {z1, z2, ...} ( p(w |Z)

). The rationale for doing so is to allow the data to dominate the posterior rather than our choice

of the prior. Since we do not know the data a priori while picking the prior, we should maximize

the average KL divergence over the data distribution. This amounts to maximizing the mutual
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information Iπ(w;Z)

π∗ : = argmax
π

∫
d(x|z)Zpπ(Z)

∫
d(x|z)wpπ(w |Z) log

pπ(w |Z)

π(w)

= argmax
π

Iπ(w;Z)

= argmax
π

Hπ(w)−Hπ(w |Z)

(4.2)

where pπ(Z) =
∫
d(x|z)wπ(w)p(Z |w) and π(w)p(w |Z) = pπ(Z)pπ(w |Z).

Hπ(w) = −
∫

d(x|z)wπ(w) log π(w)

is the Shannon entropy; the conditional entropy Hπ(w |Z) is defined analogously. Mutual informa-

tion is a natural quantity for measuring the amount of missing information about w provided by

infinite observations Z if the initial belief was π. The prior π∗(w) is known as a reference prior.

It is invariant to a reparameterization of the weight space because mutual information is invariant

to reparameterization. The reference prior does not depend upon the samples but only depends on

their distribution.

The objective to calculate reference prior π∗ above may not be analytically tractable, and therefore

Bernardo also suggested computing n-reference priors. We call n the "order" and deliberately use a

different notation with the number of samples; we would like to emphasize that those are different

concepts, and the reason will be clear soon. n−reference prior π∗
n maximize the mutual information

between the n−replica observations Zn and the model parameterization w,

π∗
n = argmax

π
Iπ(w;Z

n)

= argmax
π

∫
d(x|z)wd(x|z)Znπ(w)p(Zn |w) log p(Zn |w)

pπ(Zn)
,

(4.3)

where pπ(Z
n) =

∫
d(x|z)wπ(w)p(Zn |w). One may set π∗ := limn→∞ π∗

n under appropriate tech-

nical conditions (Berger et al., 1988). Reference priors are asymptotically equivalent to Jeffrey’s

prior for one-dimensional problems. In general, they differ for multi-dimensional problems, but
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it can be shown that Jeffrey’s prior is the continuous prior that maximizes the mutual informa-

tion (Clarke and Barron, 1994).

4.2. Reference Priors Reconstruct Tasks at the Boundaries of the Hypothesis

Class

Given a C− way classification task with input domain (x ∈ X ) and a family of neural networks

parameterized by w ∈ Rp, the hypothesis class H is a collection of candidate solutions that can

be used to predict the labels. Each candidate solution in this hypothesis class is a probability

distribution pw(y |x) parameterized by w. The hypothesis class in this chapter consists of the prob-

ability distributions pw with the same network architecture but different combinations of parameters

w ∈ Rp.

In this section, we first use a few examples (Sec. 4.2.1 and Sec. 4.2.2) to illustrate how an idea

from Bayesian statistics, the n-reference prior (4.3), reconstructs the tasks at the boundaries of the

hypothesis class.

4.2.1. First example: estimating the bias of a coin

Blahut-Arimoto algorithm The Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972) is a

method for maximizing functionals like (4.3) and leads to iterations t of the form

πt+1(w) ∝ exp (KL(p(Zn |w), pπ(Zn)))πt(w).

It is typically implemented for discrete variables, e.g., in the Information Bottleneck (Tishby et al.,

1999). In this case, maximizing mutual information is a convex problem; therefore, the BA algorithm

is guaranteed to converge. Such discretization is difficult for high-dimensional deep networks. We,

therefore, implement the BA algorithm using particles; see Rem. 23.

To ground intuition, consider the estimation of the bias of a coin w ∈ [0, 1] using n trials. Let

Zn denote the sequence of heads or tails we observe(which is a sufficient statistic). For n = 1,

since we know that I(w; z1) ≤ log 2 with this one bit of information, we can see that π∗
1(z) =

(δ(w) + δ(1 − w))/2 is the reference prior that achieves this upper bound. This result is intuitive:
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if we know that we have only one observation, then the optimal uninformative prior should put

equal probability mass on the two exhaustive outcomes w = 0 (heads) and w = 1 (tails). We can

numerically calculate π∗
n for different values of n using the BA algorithm (Fig. 4.1).

0.0 0.5 1.0
w

0.00

0.25

0.50

π* n(
w
)

0.0 0.5 1.0
w

0.0

0.1

0.2

π* n(
w
)

0.0 0.5 1.0
w

0.0

0.1

π* n(
w
)

Figure 4.1: We calculated the probability density function of n−reference priors for the coin-
tossing model for n = 1, 10, 50 (from left to right) using the Blahut-Arimoto algorithm. Atoms
are critical points of the gray line, which is KL(p(Zn |w), pπ(Zn)). The prior is discrete for finite
order n <∞ (Mattingly et al., 2018). Atoms of the prior are maximally different from each other,
e.g., for n = 1, they are on opposite corners of the parameter space. As the number of samples
increases, the separation between atoms of the prior reduces. The prior converges to Jeffreys prior
πJ(w) ∝ (w(1− w))−1 as n→∞.

4.2.2. Second example: reference priors for the classification task

We first discuss a key property of reference priors that enables us to calculate them numerically in

high-dimension cases, namely that they are supported on a discrete set in the weight space.

Existence and discreteness of reference priors Rigorous theoretical development of reference

priors has been done in the statistics literature. We focus on their applications. We, however,

mention some technical conditions under which our development remains meaningful. A reference

prior does not exist if Iπ(w;Z
n) is infinite (Berger et al., 1988). For the concept of a reference

prior to remaining meaningful, we make the following technical assumptions. (i) π is supported

on a compact set Ω ⊂ Rp, and (ii) if pπ(Z
n) =

∫
Ω d(x|z)wπ(w)p(Zn |w) is the marginal, then

KL(p(Zn |w), pπ(Zn)) is a continuous function of w for any π. Under these conditions, the n-order

prior π∗
n exists and Iπ∗

n
(w;Zn) is finite; see (Zhang, 1994, Lemma 2.14). Now assume that π∗

n exists

and is unique up to a set of measure zero. Let Ωn = {w ∈ Ω : π∗
n(w) > 0} be the support of π∗

n and

Zn be a discrete random variable with Cn atoms. If {p(Zn |w) : w ∈ Ωn} is compact, then π∗
n is

discrete with no more than Cn atoms (Zhang, 1994, Lemma 2.18)).
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Remark 23 (Blahut-Arimoto algorithm with particles). Since the optimal prior is discrete,

we can maximize the mutual information directly by identifying the best set of atoms. We set

the prior have the form π∗
n =

∑L
k=1 L

−1δ(w − wk) where {w1, . . . , wL} are the L atoms. We call

these atoms "particles". Using standard back-propagation, we can then compute the gradient of

the objective in (4.3) with respect to each particle (note that each particle’s gradient depends upon

all other particles).

Let XN = {x1, ..., xN} denote the set of the unlabelled data. For each particle wk in Rem. 23,

we compute its corresponding probability distributions pwk(Y N |XN ), for Y N ∈ {1, 2, ..., C}N . We

compute a principal component analysis (InPCA) of such probabilistic models

{
pw1(· |XN ), ..., pwL(· |XN )

}
using a method developed in Quinn et al. (2019a) and visualize the in Fig. 4.2. This experiment

demonstrates that we can instantiate reference priors for deep networks in a scalable fashion, even

for a large number of particles L. It provides a visual understanding of how atoms of the prior

reconstruct diverse tasks based on inputs XN , just like the atoms in Fig. 4.1.

How to choose the number of atoms L in the reference prior? Each particle in this paper

is a deep network, so we must ensure that we maintain a manageable number of atoms in the prior.

Abbott and Machta (2019) suggest a scaling law for L in terms of the order of the reference prior n,

e.g., L ∼ n4/3 for a problem with two biased coins. We will instead treat L as a hyper-parameter.

This choice is motivated by the emergent low-dimensional structure of the green particles in Fig. 4.2;

see the further analysis in in Sec. 4.3.3.

Remark 24 (Variational approximations of reference priors). Nalisnick and Smyth (2017)

maximize a lower bound on Iπ(w; z) and replace the term p(z) =
∫
d(x|z)wπ(w)p(z |w) in (4.2) by

the so-called VR-max estimator maxw log p(z |w) where the maximum is evaluated across a set of

samples from π(w) (Li and Turner, 2016). They use a continuous variational family parameterized

by neural networks. However, reference priors are supported on a discrete set. Using a continuous
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Figure 4.2: Reference prior (green) for binary classification on MNIST. A three-dimensional
embedding of the probability distributions pw(· |XN ) (reconstructed tasks) of L = 3000 atoms in
the reference prior after 50,000 iterations of the BA algorithm (green) for a binary classification
problem on MNIST (digits 3 vs. 5). Particles were initialized Gaussian (blue) randomly. They
are nearby in this embedding because, at initialization, the logits of each particle are uniformly
distributed. Orange shows particle locations after 5,000 iterations. As the reference prior objective
in (4.3) is optimized, the particles increasingly make more distinguish predictions (orange), and
towards the end (green), these probability distributions spread apart boundaries of the hypothesis
class.
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variational family, e.g., a Gaussian distribution, to approximate π∗
n is computationally beneficial,

but it is detrimental to the primary purpose of the prior, namely to discover diverse models. This is

also seen in Fig. 4.2, where it would be difficult to construct a variational family whose distributions

put mass mostly on the green points. We, therefore, do not use variational approximations.

4.2.3. Low dimensionality of the space of the tasks

Why does n−reference prior reconstruct the tasks at the boundaries of the hypothesis

class? To answer this question, let us recall the definition of the n−reference priors (4.3) and

notice that,

π∗
n = argmax

π

∫
d(x|z)wπ(w)KL (p(Zn |w), pπ(Z

n)) , (4.4)

where pπ(Z
n) = Ew∼πp(Z

n |w) is the average probability distribution on the n−reference prior.

n−reference prior encourages the likelihood p(Zn |w) of atoms in the reference prior over n random

samples to be maximally different from the average likelihood pπ(Z
n). Fig. 4.3 is a diagram of the

hypothesis class H, the red dot nearby the centroid of the hypothesis class represents the average

probability distribution pπ(Z
n), the blue dots represent the individual probability distributions

p(Zn |w) parameterized by the particles in n−reference prior. n−reference prior maximizes the Kl

divergence between the red dot and the blue dots. Therefore, the blue dots are pushed away from

the red dot until reaching out the boundaries of the hypothesis class H.

This ability of n−reference prior ensures that the probability distributions pw(· |XN ) (tasks) cor-

responding to the green dots in Fig. 4.2 sketch the outline of the hypothesis class.

Remark 25 (Reference prior depends upon the number of samples and its atoms are

diverse models). (4.2) encourages the likelihood p(Zn |w) of atoms in the reference prior to being

maximally different from that of other atoms. This gives us intuition as to why the prior should

have finite atoms. Consider the covering number in learning theory (Bousquet et al., 2003) where

we endow the model space with a metric that measures disagreement between two hypotheses over

n samples. Smaller the number of samples n, the smaller the covering number, and the smaller the

effective set of models considered. The reference prior is similar. If we only have a few samples n,
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Figure 4.3: This is a diagram of the hypothesis class H. The red dot nearby the centroid of the
hypothesis class represents the average probability distribution pπ(Z

n), while the blue dots represent
the individual probability distributions p(Zn |w) parameterized by the particles in n−reference
prior.

then it is not possible for the likelihood in Bayes law to distinguish between a large set of models

and assign them different posterior probabilities. The prior, therefore, puts probability mass only

on a finite set of atoms, and just like the coin-tossing experiment in Fig. 4.1, these atoms have

diverse outputs on the n samples. This ability of the prior to select a small set of representative

models is extremely useful for training deep networks with little data.

Emergence of the low dimensionality The neural networks are heavily over-parameterized.

In spite of the enormous uncertainty associated with such models, Fig. 4.2 shows that predictions

of these models are correspondingly constrained to an effectively low-dimensional hyper-surface

bounded with a hierarchy of widths (the green dots in 4.2. Recent research (Mao et al., 2023;

Yang et al., 2022; Quinn et al., 2022) advocate that the emergence of the low-dimensional hypoth-

esis class arises from (a) the structure of typical datasets (Goldt et al., 2020; d’Ascoli et al., 2021;

Refinetti et al., 2021), e.g., spectral properties, and (b) the fact that typical learning procedures ini-

tialize models near a specific region (see the blue dots in 4.5). Along the first direction, recent work

on understanding generalization (Yang et al., 2022; Bartlett et al., 2020) has argued that deep net-

works, as also linear/kernel models, can interpolate without over-fitting if input data have a sloppy

spectrum. Work in neuroscience (Simoncelli and Olshausen, 2001; Field, 1994) has also argued for

visual data being effectively low-dimensional. Theories in machine learning (Smola and Schölkopf,
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1998; Vapnik, 1998) and information theory (Balasubramanian, 1997; Rissanen, 1978) for model se-

lection are based on estimates of the number of models in a hypothesis class that are consistent with

the data. The second suspect, namely initialization, suggests that even if the size of the hypothesis

class might be very large for deep networks (Dziugaite and Roy, 2017; Bartlett et al., 2017), the

subset of the hypothesis space explored by typical learning algorithms might be much smaller.

4.3. Simplicity and Effectiveness: Reconstructed Tasks and their Applications in

Small Data Learning

Recent works (Transtrum and Qiu, 2014; Mattingly et al., 2018) have suggested that some human-

interpretable effective models are typically obtained by approaching lower-dimensional boundaries of

the hypothesis class. In particular, the models at the boundaries are maximally distinguishable from

each other and tend to ignore irrelevant features (the multi-parameter examples in (Mattingly et al.,

2018) ). This ability of simplicity and effectiveness is our primary motivation to explore the appli-

cations of the models (reconstructed tasks) at the boundaries of small data learning.

Consider the situation where we are given limited inputs XK , their corresponding ground

truth labels Ŷ k, and a pool of unlabeled inputs XN . Building n−reference priors require

no ground truth labels. Therefore we use unlabelled inputs XN to build a prior π∗
n and select the

models at the boundaries of the hypothesis class. Then we find the solutions that are consistent with

the limited labeled data
(
XK , Ŷ K

)
. This learning scheme is named as semi-supervised learning

(SSL) (Van Engelen and Hoos, 2020). Recall that since π∗
n is a prior, it should not depend on(

XK , Ŷ K
)
. Just like the construction of the n−reference prior in (4.3), we can maximize the

mutual information between data predictions and model parameterization

Iπ(Y
n, Xn;w) = EXnEw∼π

∫
d(x|z)Y np(Y n |Xn, w) log

p(Y n |Xn, w)

pπ(Y n |Xn)

= EXnEw∼π

∫
d(x|z)Y np(Y n |Xn, w) log p(Y n |Xn, w)

− EXn

∫
d(x|z)Y npπ(Y

n |Xn) log pπ(Y
n |Xn)

= EXn [Hπ(Y
n |Xn)]− αEXnEw∼π [H(Y n |Xn, w)] ,
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where pπ(Y
n |Xn) =

∫
d(x|z)wπ(w)p(Y n |Xn, w) =

∫
d(x|z)wπ(w)

∏n
i=1 p(yi |xi, w), Xn is a ran-

dom subset of XN with size n ( n << N), and α = 1.

The first step is simply the definition of Iπ: it is the KL-divergence between p(Y n |Xn, w) and

pπ(Y
n |Xn). We assume that inputs Xn and XN come from the same task. Then we can use

samples XN to compute the expectation over Xn. For the same reason, we also average over

outputs Y n, which are predicted by the network. Let us emphasize that both Xn and Y n are

averaged out in the objective above. Predictions on new samples x are made using the Bayesian

posterior predictive distribution

p(y |x,XK , Ŷ K) ∝
∫

d(x|z)wπ∗
n(w)p(y |x,w)p(Ŷ K |XK , w). (4.5)

An intuitive understanding of (4.5) Assume for now that we know the number of classes C

(although the objective is valid even if that is not the case). If our prior has L particles, then the sec-

ond term is the average of the per-particle entropy of the predictions. The objective encourages each

particle wi to predict confidently, i.e., to have a small entropy in its output distribution p(y |x,wi).

The first term is the entropy of the average predictions: pπ(Y
n |Xn), and it is large if particles

predict different outputs Y n for the same inputs Xn, i.e., they disagree with each other. We treat

the constant α (which should be 1 in the definition of mutual information) as a hyper-parameter to

allow control over this phenomenon. The reference prior semi-supervised learning objective

encourages particles to be dissimilar but confident models (not necessarily correct).

4.3.1. Practical tricks for implementing reference priors

The reference prior objective is conceptually simple, but it is difficult to implement it directly using

deep networks and modern datasets. We next discuss some practical tricks that we have developed.

(1) Order of the reference prior n versus the number of samples Bernardo (1979) set the

order of the prior n to be the same as the number of labeled samples. We observe that both do not

have to be identical and make a distinction between the two. In our experiments, we restrict the

order to n = 2, 3. Mathematically, this amounts to computing averages in (4.3) or (4.5) over only
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sets of n-tuples. This significantly reduces the class of models considered in the reference prior by

pretending that there is a small number of labeled samples available for training the task—which is

useful, and also true in practice, for over-parametrized deep networks. This choice is also motivated

by the low-dimensional structure in the reference prior in Fig. 4.2. Note that we are not restricting

to small order n for computational reasons, i.e., computing the expectation over all classes Y n

in (4.5) can be done in a single forward pass.

(2) Using cross-entropy loss to bias particles towards good parts of the weight space

The posterior (4.5) suggests that we should first compute the prior and then weight each particle

by the likelihood of the labeled data. In practice, we combine these two steps into a single objective

max
π

γIπ(w;Y
n, Xn) + Ew∼π

[
log p(Ŷ K |XK , w)

]
, (4.6)

where γ is a hyper parameter, XK , Ŷ K are labeled samples. (4.6) allows us to directly obtain

particles that both have high probability under the prior and a high likelihood. This is different

from the correct Bayesian posterior (which would set γ = 1, we use γ = 1/2) but it is a trick often

employed in the Bayesian inference literature. The second term restricts the search space for the

particles in π(w).

(3) Data augmentation State-of-the-art SSL methods use heavy data augmentation, e.g., Ran-

dAugment (Cubuk et al., 2020) and CTAugment (Berthelot et al., 2019a), which both have about

20 transformations. Some are weak augmentations, such as mirror flips and crops, while others

are strong augmentations, like color jitter. Methods such as FixMatch (Sohn et al., 2020) or Mix-

Match (Berthelot et al., 2019b) use weak augmentations to get soft labels for predictions on strong

augmentations.

We compute the entropy term H(Y n |Xn, w) in (4.5) using the distribution

pG(y |x,w) = Eg∼G[pw(y | g(x), w)]

where G = G1 ∪ G2 is the set of weak (G1) and strong (G2) augmentations. Let gi ∼ Gi be
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an augmentation and denote pgi ≡ p(y | gi(x), w) for i ∈ {1, 2}. In every mini-batch we use

pG(y |x,w) ≈ τpg1 +(1−τ)pg2 where τ is a hyper-parameter. This gives accuracy that is reasonable

(about 87% for 500 samples) but a bit lower than state-of-the-art SSL methods. We noticed that if

we use an upper bound on the entropy from Jensen’s inequality

−EXn

∫
d(x|z)Y npG(Y

n |Xn, w) [τ log pg1 + (1− τ) log pg2 ] (4.7)

Then we can close this gap in accuracy (see Table 4.1). This is perhaps because the cross-entropy

terms, e.g., −pg1 log pg2 , force the predictions of the particles to be consistent across both types of

augmentations, just like the objective in FixMatch or MixMatch. Our formulation is thus useful to

not only understand SSL but also to tweak it to perform as well as current methods and thereby

shed light on the theoretical underpinnings of their performance.

(4) Computing H(Y n |Xn, w) A number of SSL methods work by creating pseudo labels from

weakly augmented data, which seems to be a key ingredient of good accuracy in our experience

with these methods. We tried two heuristics to compute the entropy term H(Y n |Xn, w) that

are motivated by these papers. First, we follow FixMatch and only use unlabeled data with

confident predictions to compute H(Y n |Xn, w). A datum x contributes to the objective only

if maxy p(y|g1(x), w) > 0.95. Changing this threshold does not lead to deterioration of the accuracy

as we see in Table 4.6, so this heuristic need not be used while building the reference prior. Second,

if G1 is the set of weak augmentations (see previous point), methods like FixMatch and MixMatch

use argmaxy p(y | g1(x), w) as a pseudo-label but do not update this using the back-propagation

gradient. This prevents the more reliable predictions on G1 from changing. As a result, the entropy

term −τ2pg1 log pg1 is a constant in (4.7). To normalize the terms coming from τ in (4.7), we set γ

in (4.6) to 1/(1− τ2) instead of 1. We have also developed an argument to choose the appropriate

value of τ = 1/3 that we explain in Sec. 4.6.1. This second heuristic seems essential, in Table 4.6,

we obtain only 10% accuracy without this heuristic.
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4.3.2. Empirical study

We evaluate on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). We use 50–1000 labeled samples,

i.e., 5–100 samples/class and use the rest of the samples in the training set as unlabeled sam-

ples. All experiments use the WRN 28-2 architecture (Zagoruyko and Komodakis, 2016), same as

in Berthelot et al. (2019b).

For all our experiments, the reference prior is of order n = 2 and has L = 4 particles. We run all

our methods for 200 epochs, with τ = 1/3 in (4.7) and α = 0.1 in (4.5). We set γ = (1 − τ2)−1

as discussed in Sec. 4.3.1. For inference, each particle maintains an exponential moving average

(EMA) of the weights (this is common in SSL (Tarvainen and Valpola, 2017)). Sec. 4.6.1 provides

more details.

Baselines We compare to a number of recent methods such as FixMatch (Sohn et al., 2020),

MixMatch (Berthelot et al., 2019b), DASH (Xu et al., 2021), SelfMatch (Kim et al., 2021), Mean

Teacher (Tarvainen and Valpola, 2017), Virtual Adversarial Training (Miyato et al., 2018), and

Mixup (Berthelot et al., 2019b).

Table 4.1 compares the accuracy of different SSL methods on CIFAR-10. We find that the reference

prior approach is competitive with a number of existing methods, e.g., it is remarkably close to

FixMatch on all sample sizes (notice the error bars). There is a gap in accuracy at small sample

sizes (40–50) when compared to recent methods. It is important to note that these recent methods

employ a number of additional tricks, e.g., FlexMatch implements curriculum learning on top of

FixMatch, DASH and FlexMatch use different thresholding for weak augmentations (this increases

their accuracy by 2-5%), SelfMatch has higher accuracies because of a self-supervised pre-training

stage, FixMatch (CTA) outperforms its RA variant by 1.5% which indicates CTA augmentation is

beneficial (we used RA). It is also extremely expensive to train SSL algorithms for 1000 epochs (all

methods in Table 4.1 do so), we trained for 200 epochs.

This experiment shows that our approach to small data learning such as SSL can obtain results that

are competitive to sophisticated empirical methods without being explicitly formulated to enforce
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Method Samples
50 100 250 500 1000

Mixup - - 52.57 63.86 74.28
VAT - - 63.97 73.89 81.32
Mean Teacher - - 52.68 57.99 82.68
MixMatch 64.21* 80.29* 88.91* 90.35* 92.25*

FixMatch (RA) 86.19 ± 3.37 (40) 90.12* 94.93 ± 0.65 93.91* 94.3*

FixMatch (CTA) 88.61 ± 3.35 (40) - 94.93 ± 0.33 - -
DASH (RA) 86.78 ± 3.75 (40) - 95.44 ± 0.13 - -
DASH (CTA) 90.84 ± 4.31 (40) - 95.22 ± 0.12 - -
SelfMatch 93.19 ± 1.08 (40) - 95.13 ± 0.26 - -
FlexMatch 95.03 ± 0.06 (40) - 95.02 ± 0.09 - -

Deep Reference Prior 85.45 ± 2.12 88.53 ± 0.67 92.13 ± 0.39 92.94 ± 0.22 93.48 ± 0.24

Table 4.1: Classification accuracy of different semi-supervised learning methods on
CIFAR-10. Note: RA and CTA in the methods column indicate that RandAugment or CTAug-
ment were used for augmentations. Entries with * were evaluated by us using open-source imple-
mentations from the original authors for 256 epochs. All other entries are from original papers.
Entries with "(40)" indicate that 40 labeled samples were used instead of 50.

properties like label consistency with respect to augmentations. This also indicates that reference

priors could be a good way to explain the performance of these existing methods, which is one of

our goals in this paper.

4.3.3. Ablation and analysis

This section presents ablation and analysis experiments for SSL on CIFAR-10 with 1000 labeled

samples. We study the reference prior for different settings (i) varying the order n of the prior,

(ii) varying the number of particles in the BA algorithm (L), (iii) exponential moving averaging of

the weights for each particle. We also study the two entropy terms in the reference prior objective

individually.

We use a reference prior of order n = 2 in all our experiments. We see in Table 4.2 that changing

the order of the prior leads to marginal (about 1%) changes in the accuracy.

We next vary the number of particles in the prior in Table 4.3 and find that the accuracy is

relatively consistent when the number of particles varies from L = 2 to L = 16. This seems surprising
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Method Order (→) 2 3 4 5

Deep Reference Prior (K = 4) 91.76 90.53 91.51 91.36

Table 4.2: The order of the reference prior has a minimal impact on the accuracy.

Method #Particles (→) 2 4 8 16

Deep Reference Prior (n = 2) 91.3 91.76 89.79 90.72

Table 4.3: Number of particles has a minimal impact on accuracy.

because a reference prior ideally should have an infinite number of atoms, when it approximates

Jeffreys prior. Our experiment in Fig. 4.2 provides insight into this phenomenon. It shows that

the manifold of diverse predictions is low-dimensional. Particles of the reference prior only need to

span these few dimension and we can fruitfully implement our approach using very few particles.

Effect of exponential moving averaging (EMA) We use EMA on the weights of each par-

ticle (independently). Table 4.4 analyzes the impact of EMA. As noticed in other semi-supervised

learning works (Berthelot et al., 2019b; Sohn et al., 2020), EMA improves the accuracy by 2-3%

regardless of the number of labeled samples used.

Method #Samples (→) 50 100 250 500 1000

EMA 85.45 ± 2.12 88.53 ± 0.67 92.13 ± 0.39 92.94 ± 0.22 93.48 ± 0.24

No EMA 82.36 ± 2.13 85.64 ± 0.43 89.75 ± 0.36 90.06 ± 1.71 91.57 ± 0.25

Table 4.4: Using EMA for weights of each particle is beneficial and improves accuracy by 2-3%.

The two entropy terms in the reference prior objective Fig. 4.4 (left) shows how, because of

the entropy term Hπ(Y
n |Xn), the accuracy of particles is quite different during training. Particles

have different predictive abilities ( 7% range in test error) but the Bayesian posterior predictive

distribution has a higher accuracy than any of them. Fig. 4.4 (right) tracks the two entropy terms

in the objective. For large number of labeled data (500, blue) the entropy Hπ(Y
n |Xn) which should

always be higher than H(Y n |Xn, w) in (4.5) is lower (this is not the case for 50 samples, red). This

is likely a result of the cross-entropy term in the modified objective in (4.6) which narrows the

search space of the particles. This experiment is an important insight into the working of existing

semi-supervised learning methods as well, all of which also have a similar cross-entropy objective
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Figure 4.4: (Left) Accuracy of individual particles in the prior during training (250 labeled samples).
The individual particles have diverse predictions due to the entropy term Hπ(Y

n |Xn), the accuracy
of the ensemble is larger than the accuracy of any single particle. (Right) Evolution of entropy
terms H(Y n |Xn, w) and Hπ(Y

n |Xn) for two cases (500 labeled samples and 50 labeled samples).
While Hπ(Y

n |Xn) is expected to be larger than H(Y n |Xn, w) in (4.5) since KL-divergence is
non-negative, this is not always the case since we approximate H(Y n |Xn, w) by an upper-bound
obtained from Jensen’s inequality for data augmentation as discussed in Sec. 4.3.1.

in their formulation. It points to the fact that at large sample-sizes, the cross-entropy loss and not

the semi-supervised learning objective could dominate the training procedure.

4.4. Reference priors for a Two-Stage Experiment

We first develop the idea using generic random variables Zn. Consider a situation when we see

data in two stages, first Zm, and then Zn. How should we select a prior, and thereby the

posterior of the first stage, such that the posterior of the second stage makes maximal use of the

new n samples? We can extend the idea in (4.3) in a natural way to address this question. We

can maximize the KL-divergence between the posterior of the second stage and the

posterior after the first stage, on average, over samples Zn.

Since we have access to samples Zm, we need not average over them, we can compute the pos-

terior p(w |Zm) from these samples given the prior π(w). First, notice that p(w,Zn |Zm) =
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p(w |Zm+n)p(Zn |Zm) = p(Zn |w)p(w |Zm). We can now write

π∗
n |m = argmax

π
Ip(w |Zm)(w;Z

n)

:=

∫
d(x|z)Znp(Zn |Zm) KL(p(w |Zm+n), p(w |Zm))

=

∫
d(x|z)wp(w |Zm)

∫
d(x|z)Znp(Zn |w) log p(Zn |w)

p(Zn |Zm)
,

(4.8)

where p(w |Zm) ∝ p(Zm |w)π(w) and p(Zn |Zm) =
∫
d(x|z)wp(Zn |w)p(w |Zm). The key obser-

vation is that if the reference prior (4.3) has a unique solution, we should have that the optimal

p(w |Zm) ≡ π∗
n(w). This leads to

π∗
n |m(w) ∝ π∗

n(w) p(Z
m |w)−1. (4.9)

This prior puts less probability on regions which have high likelihood on old data Zm whereby the

posterior is maximally informed by the new samples Zn. Given knowledge of old data, the prior

downweighs regions in the weight space that could bias the posterior of the new data. We also have

π∗
n |m = π∗

n for m = 0 which is consistent with (4.3). As m→∞, this prior ignores the part of the

weight space that was ideal for Zm. See Sec. 4.6.5 for an example.

Remark 26 (Averaging over Zm in the two-stage experiment). If we do not know the

outcomes Zm yet, the prior should be calculated by averaging over both Zm, Zn

π∗ = argmax
π

∫
d(x|z)Zmp(Zm)Ip(w |Zm)(w;Z

n)

:= Iπ(w;Z
m+n)− Iπ(w;Z

m)

= H(w |Zm)−H(w |Zm+n).

(4.10)

The encourages multiple explanations of initial data Zm, i.e., high H(w |Zm), so as to let the future

samples Zn select the best one among these explanations, i.e., reduce the entropy H(w |Zm+n). It

is interesting to note that neither is this two-stage prior equivalent to maximizing Iπ(w;Z
m+n),

nor is it simply the optimal prior corresponding to objectives Iπ(w;Z
m) or Iπ(w;Z

n). Both (4.9)
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and (4.10) therefore indicate that two-stage priors are useful when we have some data a priori, this

can be either unlabeled samples from the same task, or labeled samples from some other task.

Remark 27 (A softer version of the two-stage reference prior). The objective in (4.10)

resembles the predictive information bottleneck (IB) of Bialek et al. (2001), or its variational version

in Alemi (2020), which seek to learn a representation, say w, that maximally forgets past data while

remaining predictive of future data

maxp(w |Zm) I(w;Z
n)− βI(w;Zm). (4.11)

The parameter β in (4.11) gives this objective control over how much information from the past is

retained in w. We take inspiration from this and construct a variant of (4.9)

πβ
n |m(w) ∝ π∗

n(w)p(Z
m |w)−β for β ∈ (0, 1).

⇒ p(w |Zm+n) ∝ p(Zn |w)p(Zm |w)1−βπ∗
n(w).

(4.12)

We should use β = 0 when we expect that data from the first stage Zm is similar to data Zn from

the second stage. This allows the posterior to benefit from past samples. If we expect that the

data are different, then β = 1 ignores regions in the weight space that predict well for Zm. This is

similar to the predictive IB where a small β encourages remembering the past and β = 1 encourages

forgetting.

4.4.1. Reference priors for transfer learning

Consider the two-stage experiment where in the first stage we obtain m samples (Xm
s , Y m

s ) from a

"source" task P s and the second stage consists of n samples (Xn
t , Y

n
t ) from the "target" task P t.

Our goal is to calculate a prior π(w) that best utilizes the target task data.

Bayesian inference for this problem involves first computing the posterior

p(w |Xm
s , Y m

s ) ∝ p(Y m
s |w,Xm

s )π(w)
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from the source task and then using it as a prior to compute the posterior for the target task

p(w |Xn
t , Y

n
t , Xm

s , Y m
s ). Just like Sec. 4.1.1, the key idea again is to maximize the KL-

divergence between the two posteriors KL (p(w |Xn
t , Y

n
t , Xm

s , Y m
s ), p(w |Xm

s , Y m
s )), but av-

eraged over samples Xm
s and Xn

t .

Case 1: Access to unlabeled data from the source Xm
s and the target task Xn

t We should

average the KL-divergence over both the source and target predictions Y m
s and Y n

t and maximize

EXm
s , Xn

t , Y
m
s |Xm

s , Y n
t |Xn

t
[KL (p(w |Xn

t , Y
n
t , Xm

s , Y m
s ), p(w |Xm

s , Y m
s ))] (4.13)

over the prior π. Here pπ(Y
m
s |Xm

s ) = Ew∼πp(Y
m
s |Xm

s , w) and pπ(Y
n
t |Xn

t ) = Ew∼πp(Y
n
t |Xn

t , w),

respectively. Note that averages over Xm
s and Xn

t are computed using samples while averages over

Y m
s |Xm

s and Y n
t |Xn

t are computed using the model’s predictions.

Case 2: Xm
s , Y m

s are fixed and known, and we have a pool of unlabeled target data Xn
t

Since we already know the labels for the source task, we will only average over Xn
t and Y n

t and

maximize

EXn
t ,Y

n
t |Xn

t
KL (p(w |Xn

t , Y
n
t , Xm

s , Y m
s ), p(w |Xm

s , Y m
s )) ; (4.14)

here pπ(Y
n
t |Xn

t ) =
∫
d(x|z)wπ(w)p(Y n

t |Xn
t , w).

Remark 28 (Connecting (4.13) and (4.14) to practice). Both objectives can be written down

as

π∗ = argmax
π

Iπ(w;Y
n
t , Xn

t , X
m
s , Y m

s )− Iπ(w;X
m
s , Y m

s ) (4.15)

with the distinction that while in Case 1, we average over all quantities, namely p(Xm
s ), p(Y m

s ),

p(Xn
t ), p(Y n

t ) while in Case 2, we fix Xm
s and Y m

s to the provided data from the source task. Case 2

is what is typically called transfer learning. Case 1, where one has access to only unlabeled data from

a source task that is different from the target task is not typically studied in practice. Like (4.12), we

can again introduce a coefficient β on the second term in (4.15) to handle the relatedness between

source and target tasks.
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4.4.2. Empirical study

We evaluate on CIFAR-100 (Krizhevsky, 2009). We construct 20 five-way classification tasks from

CIFAR-100 and use 1000 labeled samples from the source and 100 labeled samples from the target

task. All experiments use the WRN 28-2 architecture (Zagoruyko and Komodakis, 2016), same as

in Berthelot et al. (2019b).

For all our experiments, the reference prior is of order n = 2 and has L = 4 particles. We run all

our methods for 200 epochs, with τ = 1/3 in (4.7) and α = 0.1 in (4.5). We set γ = (1 − τ2)−1

as discussed in Sec. 4.3.1. For inference, each particle maintains an exponential moving average

(EMA) of the weights (this is common in SSL (Tarvainen and Valpola, 2017)). Sec. 4.6.1 provides

more details. Just like we did in Sec. 4.3.1, we instantiate (4.12) and (4.14), by combining prior

selection, pre-training on the source task and likelihood of the target task, into one objective,

γIπ(w;Y
n
t , Xn

t ) + Ew∼π [log p(w, Y
n
t |Xn

t )] + (1− β)Ew∼π [log p(w, Y
m
s |Xm

s )] , (4.16)

where γ = 1/2 and β = 1/2 are hyper-parameters, (Xm
s , Y m

s ) are labeled data from the source

task (m = 1000), (Xn
t , Y

n
t ) are labeled data from the target task (n = 100) and Xn

t are unlabeled

samples from the target task (all other samples).

Baselines We use three methods: (a) fine-tuning, which is a very effective strategy for transfer

learning (Dhillon et al., 2020; Kolesnikov et al., 2020) but it cannot use unlabeled target data, (b)

using only labeled target data (this is standard supervised learning), and (c) using only labeled

and unlabeled target data without any source data (this is β = 1 in (4.16)). Fig. 4.5 compares

the performance for pairwise transfer across 5 tasks from CIFAR-100. Our reference prior objec-

tive in (4.16) obtains much better accuracy than fine-tuning which indicates that it leverages the

unlabeled target data effectively. For each task, the accuracy is much better than both standard

supervised learning and semi-supervised learning using our own reference prior approach (4.6); both

of these indicate that the labeled source data is being used effectively in (4.16).
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Figure 4.5: Top: Accuracy (%) of deep reference priors (left) and fine-tuning (right)
for transfer learning tasks in CIFAR-100. Cells are colored red/green relative to the median
accuracy of each row. Darker shades of green indicate that the source task is more suitable for
transfer. For example, Vehicles-1 as source is the best for all tasks according to the reference prior
(left) (which is optimal in theory) but fine-tuning cannot replicate this. The accuracy of cells in
the left panel is better than the corresponding cells on the right, e.g., the gap in accuracy is 34.8%
for Vehicles 2 → Vehicles 1. Bottom: Accuracy (%) of supervised learning and SSL for all
5 tasks. Each number here should be compared to the corresponding row of the matrices in the
top panel, e.g., Vehicles 2 has 86% accuracy when transferred from Vehicles 1 using our transfer
method (left), it has 66% accuracy from fine-tuning (right), while the same task achieves 63.2%
accuracy when trained by itself using supervised learning (table first row) and 75.2% accuracy when
trained using unlabeled target data (table second row). Therefore the reference prior-based transfer
objective can leverage both labeled source data as well as unlabeled target data. This pattern is
consistent for all tasks.

4.5. Related Work and Discussion

Reference priors in Bayesian statistics We build upon the theory of reference priors which

was developed in the objective Bayesian statistics literature Bernardo (1979); Berger et al. (1988,

2009). The main idea used in our work is that non-asymptotic reference priors allow us to exploit

the finite samples from the task in a fundamentally different way than classical Bayesian inference.

If the number of samples from the task available to the learner is finite, then the prior should also

select only a finite number of models. Reference priors are not common in the machine learning

literature. A notable exception is Nalisnick and Smyth (2017) who optimize a variational lower
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bound and demonstrate results on small-scale problems. The main technical distinction of our work

is that we explicitly use the discrete prior instead of a variational approximation.

Information theory Discreteness is seen in many problems with an information-theoretic formu-

lation, e.g., capacity of a Gaussian channel under an amplitude constraint (Smith, 1971), neural rep-

resentations in the brain Laughlin (1981), and biological systems (Mayer et al., 2015). (Mattingly et al.,

2018; Abbott and Machta, 2019) have developed these ideas to study how reference priors select

“simple models” which lie on certain low-dimensional “edges” of the model space. We believe that

the methods developed in our paper are effective because of this phenomenon. Our choice of using

a small order n for the prior is directly motivated by their examples.

Semi-supervised learning Our formulation sheds light on the working of current SSL methods.

For example, the reference prior can automatically enforce consistency regularization of predic-

tions across augmentations (Tarvainen and Valpola, 2017; Berthelot et al., 2019b), as we discuss

in Sec. 4.3.1. Similarly, minimizing the entropy of predictions on unlabeled data, either explic-

itly (Grandvalet et al., 2005; Miyato et al., 2018) or using pseudo-labeling methods (Lee et al., 2013;

Sajjadi et al., 2016), is another popular technique. This is automatically achieved by the objective

in (4.5). Disagreement-based methods (Zhou and Li, 2010) employ multiple models and use confi-

dent models to soft-annotate unlabeled samples for others. Disagreements in our formulation are

encouraged by the entropy Hπ(Y
n |Xn) in (4.5). If pπ(Y n |Xn) is uniform, which is encouraged by

the reference prior objective, particles disagree strongly with each other.

Transfer learning is a key component of a large number of applications today, e.g, (Devlin et al.,

2019; Kolesnikov et al., 2020) but a central question that remains unanswered is how one should

pretrain a model if the eventual goal is to transfer to a target task. There have been some at-

tempts at addressing this via the Information Bottleneck, e.g., Gao and Chaudhari (2020a). This

question becomes particularly challenging when transferring across domains, or for small sample

sizes (Davatzikos, 2019). Reference priors are uniquely suited to tackle this question: our two-stage

experiment in Sec. 4.4 is the optimal way pretain on the source task. As our experiments show, this

is better than fine-tuning in the low-sample regime Sec. 4.4.2.
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4.6. Appendix

4.6.1. Details of the experimental setup

Architecture For experiments on CIFAR-10 (Sec. 4.3.2) and CIFAR-100 (Sec. 4.4.2), we consider

a modified version of the Wide-Resnet 28-2 architecture (Zagoruyko and Komodakis, 2016), which

is identical to the one used in Berthelot et al. (2019b). This architecture differs from the standard

Wide-Resnet architecture in a few important aspects. The modified architecture has Leaky-ReLU

with slope 0.1 (as opposed to ReLU), no activations or batch normalization before any layer with a

residual connection, and a momentum of 0.001 for batch-normalization running mean and standard-

deviation (as opposed to 0.1, in other words these statistics are made to change very slowly). We

observed that the change to batch-normalization momentum has a very large effect on the accuracy

of semi-supervised learning.

For experiments on MNIST (Sec. 4.6.3), we use a fully-connected network with 1 hidden layer of

size 32. We use the hardtanh activation in place of ReLU for this experiment; this is because

maximizing the mutual information has the effect of increasing the magnitude of the activations for

ReLU networks. One may use weight decay to control the scale of the weights and thereby that

of the activations but in an effort to implement the reference prior exactly, we did not use weight

decay in this model. Note that the nonlinearities for the CIFAR models are ReLUs.

Datasets For semi-supervised learning, we consider the CIFAR-10 dataset with the number of

labeled samples varying from 50–1000 (i.e., 5–100 labeled samples per class). Semi-supervised

learning experiments use all samples that are not a part in the labeled set, as unlabeled samples.

For transfer learning, we construct two tasks from MNIST (task one is a 5-way classification task

for digits 0–4, and task two is another 5-way classification task for digits 5–9). For this experiment,

we use labeled source data but do not use any labeled target data. This makes our approach using

a reference prior similar to a purely unsupervised method.

The CIFAR-100 dataset is also utilized in the transfer learning setup (Sec. 4.4.2). We consider

five 5-way classification tasks from CIFAR-100 constructed using the super-classes. The five tasks
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considered are Vehicles-1, Vehicles-2, Fish, People and Aquatic Mammals. The selection of these

tasks were motivated from the fact that some pairs of tasks are known to positively impact each other

(Vehicles-1, Vehicles-2), while other pairs are known to be detrimental to each other (Vehicles-2,

People); see the experiments in Ramesh and Chaudhari (2022b).

Optimization SGD with Nesterov momentum on a Cosine-annealed learning rate schedule with

warmup was used in our experiments on CIFAR-10 and CIFAR-100. The initial learning rate was set

to 0.03×K where K denotes the number of particles. The scaling factor of K exists to counteract

the normalization constant in the objective from averaging across all particles. The momentum

coefficient for SGD was set to 0.9 and weight decay to 5K−1 × 10−4. Mixed-precision (32-bit

weights, 16-bit gradients) was used to expedite training. Training was performed for 200 epochs

unless specified otherwise.

Experiments on MNIST also used SGD for computing the reference prior. SGD was used with a

constant learning rate of 0.001 with Nesterov’s acceleration, momentum coefficient of 0.9 and weight

decay of 10−5.

Definition of a single Epoch Note that since we iterate over the unlabeled and labeled data

(each with different number of samples), the notion of what is an epoch needs to be defined differ-

ently. In our work, one epoch refers to 1024 weight updates, where each weight update is calculated

using a batch-size of 64 for the labeled data of batch size 64, and a batch-size of 448 for the unlabeled

data.

Exponential Moving Average (EMA) In all CIFAR-10 and CIFAR-100 experiments, we also

implement the Exponential Moving Average (EMA) (Tarvainen and Valpola, 2017). In each step,

the EMA model is updated such that the new weights are the weighted average of the old EMA

model weights, and the latest trained model weights. The weights for averaging used in our work

(and most other methods) are 0.999 and 0.001 respectively. Note that EMA only affects the particle

when it is used for testing, it does not affect how weight updates are calculated during training. We

exclude batch-normalization running mean and variance estimates in EMA.
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Data Augmentations We use random-horizontal flips and random-pad-crop (padding of 4 pixels

on each side) as weak augmentations for the CIFAR-10 and CIFAR-100 datasets. For SSL experi-

ments on CIFAR-10, we use RandAugment (Cubuk et al., 2020) for strong augmentations. No data

augmentations were used for MNIST.

Picking the value of τ in (4.7) Let G1 and G2 be the sets of weak and strong augmentations

respectively. For g1 ∼ G1 and g2 ∼ G2, let us write down the upper bound in (4.7) from Jensen’s

inequality in detail

EXn

∫
d(x|z)Y n

[
−τ2pg1 log pg1 − τ(1− τ)pg2 log pg1 − (1− τ)τpg1 log pg2 − (1− τ)2pg2 log pg2

]
.

The upper bound is thus a weighted sum of the entropy terms −pg1 log pg1 ,−pg2 log pg2 , and cross

entropy terms −pg2 log pg1 ,−pg1 log pg2 . If we were to pick τ = 1/2 like FixMatch, then since

(1− τ)2 + τ2 = 2τ(1− τ) for τ = 1/2, the entropy and cross entropy terms will contribute equally

to the loss function. However in practice, since we do not update pg1 using the back-propagation

gradient to protect the predictions from deteriorating on the weakly augmented images, one of the

entropy terms −pg1 log pg1 is dropped. In such a situation, to ensure that cross entropy and entropy

terms provide an equal contribution to the gradient, we would like (1− τ)2 = 2τ(1− τ) which gives

τ = 1/3.

4.6.2. Overview of the implementation

We provide an overview of the implementation of deep reference priors.

For more details see https://github.com/rahul13ramesh/deep_reference_priors.

Let a mini-batch from the labeled dataset be denoted by {(xi, yi)}bi=1 and a mini-batch from the

unlabeled dataset be denoted by {(xui0, xui1, · · · , xuin))}
bu
i=1 where n is the order of the reference prior.

Note the distinction in the two mini-batches, i.e. the unlabeled mini-batch consists of a set of

n-tuples unlike the labeled mini-batch. Let g1 and g2 be functions that perform weak and strong

augmentations respectively. The reference prior objective is used to train K particles {pwk
}Kk=1.
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For the sample Xn, we compute p(Y n |Xn, wk) as follows:

p(Y n |Xn, wk) = τp(Y n | g1(Xn), wk) + (1− τ)p(Y n | g2(Xn), wk)

The reference prior loss ,requires us to compute the terms

Ew∼π [H(Y n
i |Xn

i , w)] =
K∑
k=1

π(wk)
∑
y∈Yn

(−p(y |Xn
i , wk) log(p(y |Xn

i , wk)))

=
K∑
k=1

π(wk)
∑
y∈Yn

− n∏
j=1

p(y |xuij , wk)

 log

 n∏
j=1

p(y |xuij , wk)


=

K∑
k=1

π(wk)

n∑
j=1

∑
y∈Y
−p(y |xuij , wk) log

(
p(y |xuij , wk)

)
≤

K∑
k=1

π(wk)

n∑
j=1

∑
y∈Y
−p(y |xuij , wk)

[
τ log p(y | g1(xuij), wk) + (1− τ) log p(y | g2(xuij), wk)

]
,

and

H(Y n
i |Xn

i ) =
∑

yn∈Yn

−p(yn |xui ) log(p(yn |xui ))

=
∑

yn∈Yn

−

(
K∑
k=1

π(wk)p(y
n |xui , wk)

)
log

(
K∑
k=1

π(wk)p(y
n |xui , wk)

)
.

In our implementation, we set π(wk) =
1
K . We observed no improvement in accuracy if the elements

of π were trainable weights.

Input data consists of a mini-batch of labeled data {(xi, yi)}bi=1 and unlabeled data {xui0, xui1, · · · , xuin)}
bu
i=1

and a user-determined order n.

Trainable weights are the weights of the K neural networks (also called particles) {pwk
}Kk=1.

Define
f(x, y, w) = τpw(y | g1(x)) + (1− τ)pw(y | g2(x)),

flog(x, y, w) = τ log pw(y | g1(x)) + (1− τ) log pw(y | g2(x)).
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Compute the two entropy terms as

hyw = − 1

bu

bu∑
i=1

K∑
k=1

1

K

n∑
j=1

∑
y∈Y

f(xuij , y, wk)flog(x
u
ij , y, wk),

hy = − 1

bu

bu∑
i=1

∑
yn∈Yn

 1

K

K∑
k=1

n∏
j=1

f(Xn
ij , y

n
j , w)

 log

 1

K

K∑
k=1

n∏
j=1

f(Xn
ij , y

n
j , w)

 .

Compute the loss ℓ as

ℓu = αhy − hyw

ℓx = − 1

bK

b∑
i=1

K∑
k=1

log(pwk
(yi |xi))

ℓ = ℓx −
(

1

1− τ2

)
ℓu.

4.6.3. Unsupervised transfer learning on MNIST

For the following experiments on MNIST, the reference prior is of order n = 2 and has L = 50

particles. We run our methods for 1024 epochs.

We first compare deep reference priors with fine-tuning for transfer learning. The parameter β

controls the degree to which the posterior (4.12) is influenced by the target data. If we have β = 1,

then the posterior is maximally influenced by target data after being pretrained on the source

data. We instantiate (4.12), by combining prior selection, pre-training on the source task into one

objective,

maxπ γIπ(w;Y
n, Xn) + (1− β)Ew∼π log p(w; y

s |xs), (4.17)

where γ and β are hyper-parameters. Solving (4.17) requires no knowledge from target data labels,

therefore the setting here is pure unsupervised clustering for target task dataset. We compare this

objective to fine-tuning which adapts a model trained on labeled source to the labeled target data.

In this experiment, all samples from the source task (about 30,000 images across 5 classes) were

used for both the reference prior and fine-tuning.
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Method # Labeled target data (→) 0 50 100 250 500

Source (0–4) to Target (5–9)
Fine-Tuning - 71.1 78.8 86.6 93.0
Deep Reference Prior Unsupervised Transfer 87.4 - - - -

Source (5–9) to Target(0–4)
Fine-Tuning - 90.2 92.4 94.7 96.2
Deep Reference Prior Unsupervised Transfer 95.2 - - - -

Table 4.5: Accuracy (%) of unsupervised reference-prior based transfer (digits 0–4) to the
target task (digits 5–9). We see that transfer using source and unlabeled target data using the
reference prior performs as well as fine tuning with labeled source data and 250 labeled target data.
Even if MNIST is a simple dataset, this is a remarkable demonstration of how effective the reference
prior is at making use of both the labeled source data and unlabeled target data.

4.6.4. More ablation studies

Sec. 4.3.1 describes a few implementation tricks that we employ when computing H(Y n |Xn, w).

The unlabeled samples consist of both weak and strong augmentations of the same image x which we

denote by g1(x) and g2(x) and we define pgi ≡ pw(y|gi(x), w). The objective can be upper-bounded

using Jensen’s inequality as follows

H(Y n |Xn, w) = −EXn

∫
d(x|z)Y npG(Y

n |Xn, w) [log(pG(Y
n |Xn, w))]

= −EXn

∫
d(x|z)Y npG(Y

n |Xn, w) [log(τpg1 + (1− τ)pg2)]

≤ −EXn

∫
d(x|z)Y npG(Y

n |Xn, w) [τ log pg1 + (1− τ) log pg2 ]

The first trick is to use the above bound from Jensen’s inequality to compute H(Y n |Xn, w). The

second trick we employ is to not update p(y | g1(x), w) with back-propagation gradients. Table 4.6

shows that both these tricks are needed to achieve good accuracy.

The third trick is to include x in the loss only if max pw(y | g1(x), w) > 0.95 – an implementation

detail also employed in Sohn et al. (2020). Table 4.6 shows that this has very little impact on

accuracy.
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Implementation trick Accuracy (%)

Deep reference priors (All 3 tricks) 92.13
No stop gradient to pg1 10
No Jensen’s inequality 86.55
No masking using probability threshold 92.35

Table 4.6: We perform an ablation study over the three implementation tricks considered in Sec. 4.3.1
and compute the accuracy after removing each one of the tricks. The accuracy (%) is computed for
250 labeled samples, with 4 particles and using order 2.

4.6.5. Two-stage experiment for coin tossing

In Sec. 4.4, we consider a situation when we obtain data in two stages, first Zm, and then Zn. We

propose a prior π∗ (4.10) such that the posterior of the second stage makes the maximal use of

the new n samples. In this section, we visualize π∗ in the parameter space using a two-stage coin

tossing experiment. Consider the estimation of the bias of a coin w ∈ [0, 1] using two-stage m+ n

trials. There are m trials in first stage and n trails in second stage. If z denotes the number of

heads in total, we have p(z |w) = wz(1− w)m+n−z(m+ n)!/(z!(m+ n− z)!). We numerically find

π∗ for different values of m and n using the BA algorithm (Fig. 4.6 and Fig. 4.7).
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Figure 4.6: Reference prior for the two stage coin-tossing model (see (4.10)) for m = 1 and
n = 1, 10, 40 (from left to right) computed using the Blahut-Arimoto algorithm. Atoms are critical
points of the gray line which is KL(p(Zm+n), p(Zm+n |w)) − KL(p(Zm), p(Zm |w)). The prior is
again discrete for finite order n < ∞. We see how this reference prior behaves for different values
of α = m/n, e.g., for α → 0 this prior π∗ is close to π∗

n in (4.3) but there are still some differences
between them. This shows that the two-stage reference prior is not the same as the single-stage
reference prior.
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Figure 4.7: Reference prior for the two stage coin-tossing model (see (4.10)) for n = 1 and
m = 10, 30 (from left to right) computed using the Blahut-Arimoto algorithm. Atoms are critical
points of the gray line which is KL(p(Zm+n), p(Zm+n |w))−KL(p(Zm), p(Zm |w)).
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CHAPTER 5

A FOUNDATION PRIOR

This chapter introduces an information-geometric technique for analyzing the probabilistic mod-

els underlying deep neural networks. We present key information geometric concepts, including

prediction space, divergence, infinitesimal distance, and visualization methods. Utilizing this new

language allows us to interpret our previous results more simply and elegantly.

5.1. Information Geometry: Prediction Space, Metric, and Visualization

We represent deep neural networks as probabilistic models as they are trained to fit machine learning

tasks. Consider a data set D = {(xi, ŷi)}Ni=1 of N independently and identically distributed samples,

each sample consists of an input xi ∈ X and the corresponding ground-truth label ŷi ∈ {1, 2, ..., C},

where C is the number of classes. We fix the measurement set X = {x1, x2, ..., xN} for the moment.

Let Y = {y1, y2, ..., yN} denotes any set of possible outputs, each of which yi ∈ {1, 2, ..., C}. For a

network parameterized by w ∈ Rp, we model the joint probability of the network predictions as

pw(Y |X) :=
N∏
i=1

pw(yi |xi). (5.1)

The probability distribution in 5.1 is N ×C−dimensional. Any network that makes predictions on

the same measurement set X, irrespective of its architecture and the number of parameters, can be

analyzed as a probabilistic model pw(· |X) in this same N × C-dimensional space; we will refer to

this space as the prediction space defined on the measurement set X.

In the following chapters, we will conduct various experiments on deep learning models, including

but not limited to model training, exploring the model’s hypothesis class, adapting the model to

new tasks through transfer learning, and traversing the possible hypothesis trained on diverse tasks.

Throughout these processes, we will faithfully document the changes that occur in the models

using the language of information geometry introduced in this chapter, without assumptions or

embellishments, and try to derive general conclusions that can be widely applied to different deep
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learning systems. We hope that these conclusions serve as the foundation for a deeper understanding.

In favor of the completeness of geometry, we define the metric, the divergence, the curves embedded

in the prediction space, and the visualization techniques.

Measuring divergence in the prediction space We first mark a special point in the prediction

space that we will refer to frequently. The true probabilistic model of the data, which corresponds to

ground-truth labels, is denoted by ptrue(Y |X) :=
∏N

i=1 δ(yi − ŷi), where ŷi are ground-truth labels

and δ is the Kronecker delta function. We will call this the truth. Given two probabilistic models

pu and pv with weights u and v respectively, the Bhattacharyya divergence on the measurement set

X between them is

dB(pu, pv) := −
1

N
log
∑
y⃗

N∏
i=1

√
pu(yi |xi) · pv(yi |xi)

(∗)
= − 1

N
log

N∏
i=1

C∑
c=1

√
pu(c |xi) · pv(c |xi)

= − 1

N

N∑
i=1

log
C∑
c=1

√
pu(c |xi) · pv(c |xi). (5.2)

Here (∗) follows because samples are independent. In other words, the Bhattacharyya divergence

between two probabilistic models can be written as the average of the Bhattacharyya divergences

of their predictive distributions pu(· |xi) and pv(· |xi) on each input xi in the measurement set X.

Remark 29. One can also use other divergences to measure the discrepancy between Pu and Pv,

such as the symmetrized Kullback-Leibler divergence,

dsKL(pu, pv) :=
1

N

N∑
i=1

C∑
c=1

(pu(c |xi)− pv(c |xi)) log
pu(c |xi)
pv(c |xi)

, (5.3)

or the geodesic distance on the product space,

dG(pu, pv) :=
1

N

N∑
i=1

arccos

C∑
c=1

√
pu(c |xi) · pv(c |xi). (5.4)

Nevertheless, many other distances (e.g., Hellinger divergences) saturate quickly as the number of
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dimensions of the prediction space grows, obscuring the possible intrinsic low-dimensional structures.

This is because two high-dimensional random vectors are orthogonal with high probability. When

the number of samples N is large, distances such as the Bhattacharyya distance are better behaved

due to their logarithms (Quinn et al., 2019b).

Measuring infinitesimal distance in the prediction space For two close networks, w and

w+ dw, Bhattacharyya distance (5.2) induces a Riemannian structure. This allows us to write the

infinitesimal distance ds in the prediction space,

ds2 = 2KL(pw, pw+dw)

= 4dB(pw, pw+dw)

=
1

2
dwT

 1

N

∑
i,c

∇w log pw(c |xi)∇w log pw(c |xi)T
 dw, (5.5)

notice that 1
N

∑
i,c∇w log pw(c |xi)∇w log pw(c |xi)T is Fisher-Information Matrix (FIM) Amari

(2016a). Weights w are a coordinate system for computing the distance. The FIM is the Hes-

sian of the Bhattacharyya divergence; we may think of the FIM as quantifying the amount of

information present in the model about the data it was trained on.

Measuring length of curves in the prediction space Given a continuously differentiable

curve {w(t)}t∈[0,1] of network weights. We can compute the length of its corresponding curves in

the prediction space by integrating the infinitesimal distance |ds| along it,

∫ 1

0

√
2KL(pw(t), pw(t+dt)) =

∫ 1

0

√
4dB(pw(t), pw(t+dt)). (5.6)

The shortest length curve connecting two networks u, v ∈ Rp induces a metric known as the Fisher-

Rao distance Radhakrishna Rao (1945),

dFR(pu, pv) := min
w(t):w(0)=u, w(1)=v

∫ 1

0

√
4dB(pw(t), pw(t+dt)), (5.7)

The shortest paths are geodesics, i.e., locally "straight lines".
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Mapping a model trained on one task to another task using imprinting. This dissertation

will consider different tasks {T k}k=1,..., with the same input domain but possibly different numbers

of classes Ck. Given a model p1w(y |x) parametrized by weights w for task T 1, we want to evaluate

its representation on another task, say, T 2. Let w = (wb, wl) be the weights for the backbone and

the linear classifier, respectively. The logits are wl
⊤φ(x;wb) ∈ RC1 corresponding to an input x

and the penultimate layer features φ(x;wb). The output predictions p1w(y |xn) for y = 1, . . . , C1

are computed using a Softmax applied to the logits. If we have learned w from one task T 1, we can

re-initialize each row of the linear classifier weights (wl
′)y for y = 1, . . . , C2 to maximize the cosine

similarity with the average feature of samples from task T 2 with ground-truth class ŷ:

(wl
′)y = h/∥h∥2, where h =

∑
x∈T 2 1{ŷ(x)=y}φ(x;wb)∑

x∈T 2 1{ŷ(x)=y}
, (5.8)

1 denotes the indicator function, x is randomly sampled from the task T 2, ŷ(x) denotes the ground

truth label of the input x. The new network w = (wb, wl
′) can be used to predict T 2. Imprinting

enables us to map a network trained on T 1 to another task T 2’s prediction space.

Embedding a high-dimensional probabilistic model in lower dimensions. We use a vi-

sualization technique named intensive principal component analysis (InPCA) Quinn et al. (2019b)

that embeds a probabilistic model into a lower-dimensional space. For r probability distributions

pw1 , ..., pwr , consider a matrix D ∈ Rr×r with entries Dij = dB(pwi , pwj ) and

W = −LDL/2, (5.9)

where Lij = δij − 1/r is the centering matrix. An eigendecomposition of W = UΣU⊤ where

the eigenvalues are sorted in descending order of their magnitudes |Σ00| ≥ |Σ11| ≥ . . . allows

us to compute the embedding of these r probability distributions into an r-dimensional space as

Rr×r ∋ X = U
√
Σ. Unlike standard PCA where eigenvalues are non-negative, eigenvalues of InPCA

can be both positive and negative, i.e., the lower-dimensional space is a Minkowski space Quinn et al.
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Figure 5.1: Reference prior (green) for binary classification on MNIST. A three-dimensional
embedding of the probability distributions of L = 3000 atoms in the reference prior after 50,000
iterations of the BA algorithm (green) for a binary classification problem on MNIST (digits 3 vs.
5). Particles were initialized Gaussian (blue) randomly, and they are nearby with each other in this
embedding because, at initialization, the logits of each particle are uniformly distributed. Orange
shows particle locations after 5,000 iterations. As the reference prior objective in (4.3) is optimized,
the particles increasingly make more distinguish predictions (orange), and towards the end (green),
these particles spread apart boundaries of the hypothesis class.

(2019b). This allows the InPCA embedding to be an isometry, i.e., pairwise distances are preserved:

∑r
k=1(Xki −Xkj)

2 = dB(pwi , pwj ) ≥ 0 (5.10)

for column embeddings X:i, X:j of two probabilistic models pwi , pwj .

5.1.1. Visualizing the reference priors in the prediction space

We can adopt an information geometric perspective introduced in this section to characterize the

reference priors in the prediction space. As we discussed in Chapter 4, reference priors reconstruct

a diverse set of tasks at the boundaries of the hypothesis class based on the input data.

Given a C− way classification task with input domain X and a family of neural networks parameter-

ized by w ∈ Rp, the hypothesis class H is a collection of candidate solutions that can be used to solve

the given task. Each candidate solution in this hypothesis class is a prediction function pw(y |x)
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parameterized by w. Typically, the input domain X is a continuous space, and pw is a function

belonging to an infinite-dimensional functional space. This makes it challenging to work with. As

in (5.1), we will map the hypothesis pw to the probabilistic model pw(· |X) in the prediction space

defined on a finite measurement set X = {x1, x2, ...} ⊂ X .

For each particles in Rem. 23, we compute its corresponding probabilistic model (5.1) (pw(· |XN ))

in the prediction space defined on a measurement set XN = {x1, ..., xN}. We compute a principal

component analysis (InPCA) of such probabilistic models
{
pw1(· |XN ), ..., pwL(· |XN )

}
using a

method developed in Quinn et al. (2019a) and visualize the in Fig. 5.1.

5.1.2. Measuring task distances in the prediction space

In Chapter 3, we have focused on the process of transferring a pre-trained model to adapt to a new

task while adopting an information geometric perspective to observe the model transfer process.

In this section, we leverage the power of information geometric tools developed in Sec. 5.1 and

re-formalize the information geometric distance on the space of tasks defined in Chapter 3.

We represent the infinite-dimensional object pw(y|x) by mapping it to a probabilistic model (5.1)

in the prediction space. We next combine the development of measuring the length of curves in

the prediction space (5.6) and optimal transportation for discrete measures (3.4). We transport the

margin on the data and modify the model weights simultaneously. We call this method the coupled

transfer process and the corresponding task distance as the coupled transfer distance.

Definition 30 (Uncoupled transfer distance). We first discuss a simple transport mechanism

instead of OT and discuss how to compute a transfer distance. For τ ∈ [0, 1], consider the mixture

distribution

p̂τ (x, y) = (1− τ)p̂s(x, y) + τ p̂t(x, y). (5.11)

Samples from p̂τ can be drawn by sampling an input-output pair from p̂s with probability 1− τ and

sampling it from p̂t otherwise. At each time instant τ , the uncoupled transfer process updates the
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weights of the classifier using SGD to fit samples from p̂τ

w(τ + dτ) = w(τ)− ∇̂ℓτ (w(τ)) dτ ; w(0) = ws. (5.12)

Weights w(τ) are thus fitted to each task pτ as τ goes from 0 to 1. In particular for τ = 1, weights

w(1) are fitted to p̂t. As dτ → 0, we obtain a continuous curve {w(τ) : t ∈ [0, 1]}. Computing the

length of this weight trajectory gives a transfer distance analogy to (5.6),

∫ 1

0

√
Ex∼p̂τ 2KL

[
pw(τ)(· |x), pw(τ+dτ)(· |x)

]
. (5.13)

Definition 31 (Coupled transfer distance). Given two learning tasks Ds and Dt and a w-

parametrized classifier trained on Ds with weights ws, the coupled transfer distance between the

tasks is

min
Γ,w(·)

Ex∼p̂τ

∫ 1

0

√
2KL

[
pw(τ)(· |x), pw(τ+dτ)(· |x)

]
(5.14)

where and couplings Γ ∈ Π(p̂s(x), p̂t(x)) and w(·) is a continuous curve which is the limit of

w(τ + dτ) = w(τ)− ∇̂ℓτ (w(τ)) dτ ; w(0) = ws.

as dτ → 0. The interpolated distribution p̂τ (x, y) at time instant τ ∈ [0, 1] for a coupling Γ is given

by (3.4) and the loss ℓτ is the cross-entropy loss of fitting data from this interpolated distribution.

In comparison of (5.13), we move the expectation Ex∼p̂τ outside the square root for simplifying the

computation.

5.2. Building a Foundation Prior: Mapping and Selecting Representative Experts

in the Prediction Space

Currently, many researchers are pursuing the development of foundation models. However, statisti-

cal learning theory insights ( e.g., potential task competition ) suggest that building a single model

for all tasks may not be ideal (Ramesh and Chaudhari, 2022a; Baxter, 2000; Hanneke and Kpotufe,
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2022). Instead, it is more appropriate to consider a mixture of experts selected based

on priors instead of relying solely on an overconfident point estimator.

In this section, we propose a mechanism to select a mixture of representative experts trained on

typical learnable tasks, and the combined recorded expert models form a powerful prior known as

the foundation prior. We also design an algorithm to utilize the foundation prior efficiently, and our

experimental results demonstrate the algorithm’s effectiveness. It is important to note that while

foundation models may not be suitable for all tasks, the foundation prior, formally a mixture of

experts, is expected to perform better.

We are interested in the supervised learning problem in this chapter. Consider a labeled dataset

{(xi, ŷi)}Ni=1 of N samples, each of which consists of an input xi sampled from the given task and its

corresponding ground-truth label ŷi ∈ {1, 2, ..., C}, where C is the number of classes. Let w ∈ Rp

denote the parameters of the network. Let {xN+1, xN+2..., xN+M} be an unlabelled data we are

interested in making predictions on, each of which is sampled from the same given task. Given a

prior on the parameters π(w), Bayes law gives the posterior

p
(
w | {(xi, ŷi)}Ni=1

)
∝ π(w)

N∏
i=1

pw(ŷi |xi).

Here we assume data are independently and identically sampled from the task. The choice of a prior

is based on information we believe in prior to observing the ground truth labels. The simplest and

oldest rule for determining a prior is the principle of indifference, which assigns equal probabilities

to all hypotheses. If the input dataset {xi}N+M
i=1 and the network architecture represent all our

knowledge about the task prior to observing the labels, Jeffreys prior πJ(w) assigns the equal

probability to a set of hypothesis pw(y |x) irrespective of our choice of network parameterization

and satisfies the principle of indifference,

πJ(w) ∝
√

detF (w), (5.15)
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where F (w) is Fisher information matrix (FIM),

F (w) =
1

N +M

N+M∑
i=1

∑
y

pw(y |x)∇w log pw(y |x)∇w log pw(y |x)T . (5.16)

However, recent research (Mao et al., 2023) suggests that even if the size of the hypothesis class

might be very complex for deep networks (Dziugaite and Roy, 2017; Bartlett et al., 2017), the sub-

set of the hypothesis space explored by typical deep learning algorithms might be much smaller

and low-dimensional. The emergence of the low-dimensional hypothesis class might arise from

(a) the structure of typical datasets (Goldt et al., 2020; d’Ascoli et al., 2021; Refinetti et al., 2021;

Yang et al., 2022), e.g., spectral properties, and (b) the models initialization (Dziugaite and Roy,

2017; Bartlett et al., 2017).

We consider the emergence of low dimensionality as a component of our universal prior knowledge,

which suggests that considering the entire hypothesis class may not be necessary. Instead, we

prefer building a prior that only assigns equal probability to all possible hypotheses explored by the

typical deep learning tasks and algorithms. We refer to this as a foundation prior. This is part of

our primary motivations for writing this chapter.

In this chapter, we represent all possible infinite-dimensional objects pw(y |x), as explored by typical

learnable tasks, by mapping them onto the probabilistic models in the prediction space. These

probabilistic models form a low-dimensional manifold within the prediction space, thereby enabling

the construction of an effective foundational prior. We show an empirical study of the foundation

prior to the CIFAR-10 and CIFAR-100 datasets.

5.2.1. Possible expert models explored by typical learnable tasks

Let T =
{
T 1, T 2, ..., TK

}
denote a collection of the typical task dataset, each of which T k

represents a dataset of a specific task. We expect to maximize the number and diversity of the tasks

within T as much as possible. We assume all tasks in T have the same input domain but possibly

a different number of output classes C1, C2, .... We collect Nk training samples for the task T k.
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We aim to glean a global picture of all possible models pw explored by typical learnable tasks in

T . Even though the models may be trained on different tasks, we implement imprinting (5.8)

to map them onto the probabilistic models in the same prediction space with dimension N × C,

where N =
∑

k Nk and C =
∑

k Ck. However, finding all possibilities that meet our needs is

still a challenging problem. Miscellaneous factors such as initialization, training progresses, and

the different combinations of the selected tasks in T lead to diverse representations. We design

the following random search algorithm Definition 32 to overcome these challenges and traverse the

possible hypothesis.

Definition 32 (Random searching the possibility.). We randomly sample a task from T at

the beginning stage. The model is then trained to fit the selected task. In each subsequent iteration

of the optimization algorithm, we have a small chance 0 < p < 1 to switch the task. Whenever a

task switching occurs, the loss function is adjusted as follows: the current loss function is computed

as a weighted combination of the new task’s loss function before the switch, with equal weights

of 0.5 assigned to each term. This adjustment ensures a balanced consideration of both the new

and previously encountered tasks during the optimization process. The new task is also randomly

sampled from T . This allows the training trajectory to adapt to random tasks and traverse the

possible hypothesis continually. We run S training iterations and record 200 checkpoints for later

analysis. We repeat this procedure for multiple times. Using imprinting (5.8), we map all saved

checkpoints onto probabilistic models in N × C dimension prediction space.

In this section, we execute Definition 32 and obtain a general view of the possible models trained on

typical learnable tasks within CIFAR100 (Krizhevsky, 2009). The CIFAR100 dataset has 100 classes

containing 500 training images each. The 100 classes in the CIFAR-100 are grouped into 20 super-

classes, i.e., the super-class named flowers consists of five subordinate classes: orchids, poppies,

roses, sunflowers, and tulips. Each super-class in CIFAR100 represents a 5−way classification task.

Therefore, CIFAR10 is a collection of 20 individual vision tasks.

We randomly pick a super-class from CIFAR100 at the beginning stage. The model is then trained

to fit the selected task. We execute 1000 training epochs and record 200 checkpoints for later
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Figure 5.2: This figure shows the possible expert models trained on typical learnable tasks within
CIFAR100, visualized by InPCA. We executed Definition 32 multiple times and recorded 12800
checkpoints. Using imprinting (5.8), we mapped all saved checkpoints onto probabilistic models
within a 50, 000 × 100 dimensional prediction space. Then, we computed the InPCA embedding
for all probabilistic models and selected the top-3 leading eigenvalues to derive the corresponding
3 eigen-directions for visualization. The numerical values on each axis represent the projection of
the InPCA embedding along the respective eigen-directions. Each dot in this figure represents a
probabilistic model. The multiple executions of Definition 32 resulted in diverse explorations in the
prediction space, primarily due to the randomness. However, the probabilistic models trained on
various combinations of tasks consistently occupy a low-dimensional subspace within the prediction
space.

analysis. In each subsequent epoch of the optimization algorithm, we have a probability 0.02 to

switch the task. Whenever a task switching occurs, the current loss function is computed as a

weighted combination of the loss function on the new task and the loss function before the switch,

with equal weights of 0.5 assigned to each term as discussed in Definition 32. We repeat this

procedure for 64 times. Using imprinting, we map all 64× 200 saved checkpoints onto probabilistic

models within 50, 000×100 dimension prediction space. Then we compute the InPCA embedding for

all probabilistic models. We pick the 3 eigen-directions corresponding to top-3 leading eigenvalues

and visualize the InPCA embedding in Fig. 5.2.

5.2.2. Max-min divergence sampling selects representative experts trained on typical

learnable tasks

The foundation prior assigns equal probability to all possible models (i.e., dots in Fig. 5.2) ex-

plored by the typical learnable tasks (e.g., tasks within CIFAR100). There are 64 × 200 = 12, 800

probabilistic models visualized in Fig. 5.2. Therefore building a foundation prior might be quite
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expensive. To make the foundation prior practical, we select a group of representative probabilistic

models using a Max-Min Divergence Sampling algorithm.

Definition 33 (Max-Min Divergence Sampling). Max-Min Divergence Sampling is a sub-

sampling technique commonly used in data selection. In Definition 32, we mapped all saved models

onto probabilistic models in N × C dimension prediction space using imprinting. The Max-Min

Divergence Sampling algorithm begins by computing the pairwise Bhattacharyya divergence (5.2)

Dij between the saved checkpoints parameterized by wi and wj , respectively,

Dij = −
1

N

∑
x

log
∑
y

√
pwi(y |x) · pwj (y |x),

for 1 ≤ i, j ≤ 12, 800. Next, the algorithm iteratively selects checkpoints that have the maxi-

mum minimum Bhattacharyya divergence to their nearest neighbors. The algorithm identifies the

checkpoint with the largest minimum Bhattacharyya divergence to its nearest neighbor among the

remaining unselected points in each iteration. This checkpoint is then added to the sub-sample set.

We give the pseudo-code for the algorithm in Algorithm 1.

Algorithm 1 Max-Min Divergence Sampling
Require: Pairwise Bhattacharyya divergence Dij , 1 ≤ i, j ≤ 12, 800; Desired sub-sample size K
Ensure: Sub-sample S of size K
S ← { } ▷ Initialize an empty sub-sample S
i1 ∼ Uniform ({1, 2, ..., 12800}) ▷ Randomly select index i1
S ← S ∪ {i1} ▷ Add i1 to S
for k = 2 to K do

for i = 1 to 12800 do ▷ Iterate over the saved 12800 checkpoints
dmin
i ← min {Dij | j ∈ S} ▷ Calculate the minimum divergence dmin

i

end for
ik ← argmaxi

{
dmin
i

}
▷ Select ik with the maximum minimum divergence

S ← S ∪ {ik} ▷ Add ik to S
end for

return Sub-sample S

We select 100 representative checkpoints from Fig. 5.2 using Algorithm 1, as shown in Fig. 5.3

By selecting checkpoints with the maximum minimum divergence, Algorithm 1 ensures that the

chosen sub-samples are well spread out across the probabilistic models manifold, see Fig. 5.3. This

110



−0.8
−0.2

0.4

0.0

0.4

−0.2

0.2

Figure 5.3: A Prototype of Foundation Prior: Max-Min Divergence Sampling Algorithm 1
selects 100 representative experts models from the saved checkpoints in Fig. 5.2. The small dots
represent the originally saved probabilistic models visualized in Fig. 5.2, while the giant blue dots
represent our sub-sampled experts. Algorithm 1 ensures that the chosen sub-samples are well spread
out across the probabilistic models manifold. This helps to capture the diversity and preserve the
overall structure.

helps to capture the diversity and preserve the overall structure.

5.2.3. Foundation prior selects solutions from the hypothesis class

Let S = {i1, i2, .., iK} denote a collection of the saved checkpoint indices selected by Algorithm 1.

Each chosen checkpoint is parameterized by wik , for 1 ≤ k ≤ K. We aim to address a task together

with a labeled dataset {(xi, ŷi)}Ni=1 of N samples and a validation dataset {xN+1, xN+2..., xN+M}

that we are interested in making predictions on. Let q(y |x) denote a possible hypothesis. To make

the foundation prior assign equal probabilities to the possible solutions spanned by the checkpoints

in Σ, we define the foundation prior πF on the hypothesis class as,

πF (q) ∝ exp

{
− 1

|S|
∑
k∈S

1

N +M

N+M∑
i=1

dB [q(· |xi), pwk
(· |xi)]

}
, (5.17)
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where dB [q(· |xi), pwk
(· |x)] = − log

∑
y

√
q(y |x) · pwk

(y |x) denotes Bhattacharyya divergence.

πF is a prior defined on the functional space. The functional Bayesian rule gives the posterior on q,

p
(
q
∣∣∣ {(xi, ŷi)}Ni=1 , {xj}

N+M
j=N+1

)
=

N∏
i=1

q (ŷi |xi)πF (q). (5.18)

5.3. Experiments

We sub-sample 100 checkpoints from Fig. 5.2 using Algorithm 1. These checkpoints form the

building blocks of the foundation prior; see Sec. 5.2.3. We evaluate the foundation prior πF on

CIFAR-10 (Krizhevsky, 2009). CIFAR-10 has 50, 000 labeled data in the training set. We only

use 100–10,000 labeled samples, i.e., 10–1,000 samples/class, and use the samples in the test set as

unlabeled samples that we are interested in making predictions on. All experiments use the WRN

16-4 architecture (Zagoruyko and Komodakis, 2016). All experiments use weak data augmentations

such as random horizontal flips and random crops in the training stage.

The posterior (5.18) suggests that we should first compute the prior and then weight solutions by

the likelihood of the labeled data. In practice, we combine these two steps into a single objective

min
w
− 1

N

N∑
i=1

log pw(ŷi |xi) + γ
1

|S|
∑
k∈S

1

N +M

N+M∑
i=1

dB [pw(· |xi), pwk
(· |xi)] , (5.19)

Where γ is a hyperparameter.

Baselines We compare the foundation prior to classical supervised learning.

5.4. Discussion

Statistical learning theory (Ramesh and Chaudhari, 2022a; Baxter, 2000; Hanneke and Kpotufe,

2022) recognizes the absence of a universal solution in multi-task learning, where building a single

model for all tasks often leads to compromised performance on specific tasks as task diversity

increases. If a diverse set of tasks with average task distances beyond a certain threshold exists, the

free lunch theorem for multi-task learning will surely come into play. This could be the point at

which foundation models fail. The foundation priors address this issue by selecting representative
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Figure 5.4: We compare Bayesian inference with a foundation prior (5.19) and supervised learning
on the CIFAR-10 dataset. Our findings reveal that the foundation prior consistently outperforms
supervised learning in the small data regime, specifically with 100–2,000 labeled samples. This
experimental evidence demonstrates the efficacy of the foundation prior approach for learning from
limited data.

experts trained on typical learnable tasks. It is important to note that while foundation models

may not be suitable for all tasks, the foundation prior, formally a mixture of experts, is expected

to yield superior performance.
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CHAPTER 6

CONCLUSION

Statistical learning theory (Ramesh and Chaudhari, 2022a; Baxter, 2000; Hanneke and Kpotufe,

2022) recognizes the absence of a universal solution in multi-task learning, where building a single

model for all tasks often leads to compromised performance on specific tasks as task diversity

increases. However, recent advancements in models such as GPT and CLIP have demonstrated

the practical feasibility of fine-tuning and adapting them to a wide range of diverse tasks. This

apparent contradiction serves as the partial motivation for our research. Our hypothesis posits that

typical tasks addressed by current researchers are sufficiently similar to each other, to the extent

that the free lunch theorem for multi-task learning might fail to fully explain. Recent research

has provided evidence for this hypothesis by revealing the emergence of low dimensionality in the

space of learnable tasks (Mao et al., 2023; Ramesh et al., 2022). However, we need to precisely and

mathematically formalize and substantiate this hypothesis.

This dissertation identifies reconstruction as the canonical task that pre-training procedures should

consider beneficial to multiple downstream tasks, harnesses the power of reconstruction in pre-

training with unlabeled data, and arises an information geometric correct pairwise task distances.

However, the global landscape of the space of typical learnable tasks remains unexplored in this

dissertation. Is the diameter of typical learnable task space smaller than expected or only slightly

larger than the pairwise task distances?

On the other hand, if a diverse set of tasks with average task distances beyond a certain threshold

exists, the free lunch theorem for multi-task learning will surely come into play. This could be the

point at which foundation models fail. The foundation priors address this issue by selecting repre-

sentative experts trained on typical learnable tasks. It is important to note that while foundation

models may not be suitable for all tasks, the foundation prior, formally a mixture of experts, is

expected to yield superior performance.
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