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Abstract 

Distributed software Systems (DSS) and Multiagent Systems (MAS) as a sub-class of DSS 

can provide efficient and cost effective solutions for a wide range of applications. The distributed 

functionality and/or control in these systems and the local view of the scenarios of the systems can 

lead to unexpected behavior during execution time, known as Emergent Behaviors (EB) and 

Implied Scenarios (IS), which was not evident in the requirements and design phase. The new 

scenarios that are implied to the system can degrade the quality of service and/or cause irreparable 

damage. Detecting and fixing EB/IS in the early phases, may save costs of software projects by a 

factor of 20 to 100. In this thesis, we are investigating a new methodology for modeling and 

analyzing the behavior of software components/agents in order to certify their behavior in advance. 

Our research questions are: Q1: Is there any methodology that can detect common EB/IS in 

DSS/MAS without modeling the internal information/knowledge used in software 

components/agents? Q2: Is there a general approach that can detect EB/IS without human 

interference and is fully automated? First, we devised a catalogue of the common EB/IS that can 

arise in DSS/MAS. One of the main advantages of this catalogue is categorizing the EB/IS based 

on the reasons of occurrence, which helps in devising specific algorithms to detect each type of 

EB/IS, and can lead to devising solution repositories. The other contribution of our work is 

devising new modeling based on state machines and social network analysis. This modeling is a 

general method and can be implemented fully automated. Also, we devised algorithms for 

detecting the agents that will not show EB/IS in the system as a pre-processing phase. For classes 

of EB/IS in the catalogue, the detection methodology is devised and recommendations on how to 

fix the problem are provided. The results of our work shows that all of the EB/IS in various case 

studies specified in the literature can be detected with our method. Moreover, a new EB/IS is 

introduced which only can be detected with our modeling.  
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 Introduction  

In this thesis we provide a new methodology to model and detect the unexpected behaviors that 

occur during runtime in Distributed Software Systems (DSS) and Multiagent Systems (MAS – a 

sub-class of DSS) in order to make the whole process fully automated without requiring the 

expertise of a human.  

DSS and MAS are a class of software that run on physically distributed computing devices 

in which functionality and/or control is distributed. DSS and MAS can provide efficient and cost 

effective solutions and services for commercial applications such as manufacturing systems and 

information management and retrieval.  

In software engineering, a practical approach for development of Distributed Software 

Systems is describing system requirements using scenarios (scenario based specification). A 

scenario is a temporal sequence of events among system components that describe how system 

components interact to provide functionality of system. UML Sequence Diagrams (SD) [1] or ITU-

T Message Sequence Charts (MSC) [2, 3] and high level Message Sequence Charts (hMSC) are 

examples of artefacts used for describing system functionalities with scenarios.  

Lack of centralized control and multiplicity of scenarios in DSS and MAS imply that the 

quality of service may degrade for collaborative tasks because of possible but unwanted behavior 

at the run time, commonly known as Emergent Behavior (EB) at the component level (i.e. 

analyzing the behavior from the local view point of a single component) and Implied Scenario (IS) 

at the system level (i.e. behavioral analysis where more than one component is investigated) [4]. 

EB/IS is “unpredictable” behavior that was not evident to the designer during the requirements 

and design phase of the system. Unpredictable systems are hard to debug and harder to manage 

and may cause critical and irreparable damages.  
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Fault in software (runtime) and incorrect software design has resulted in many system 

failures and has shown many hazard or costly examples both to human life and industry [5-7]. It 

is stated that “up to 70% of all faults detected in large-scale software projects are introduced in 

requirements and design” [8]. Some researches study human factors that influence the quality of 

software design or refer to the attributes of the design reviewers that affect on software [7].  

Therefore, software needs to be verified in order to assure that it meets the requirements and 

specifications [5]. Certifying the behavior of DSS and MAS guarantees the reliability and quality 

of software. Several guidelines and standards are developed which explain the required steps in 

each phase of software lifecycle. However, the manual reviews are not effective for reviewing and 

detecting the flaws in software requirement and design and automatic approaches are more 

appreciated. Moreover, the cost of detecting faults in the early phases of software lifecycle is much 

more less than detecting them in later phases and after its implementation [9]. Because if the fault 

exists long time in a software lifecycle, it is more costly to detect and remove it, and it is not 

guaranteed to be corrected properly. “Detecting the causes of faults early may reduce their 

resulting costs by a factor of 100 or more” [8]. Thus, the cost of detecting and removing errors 

increases in the late steps of development [10]. Also in industrial cases, every hour of inspection 

in requirement phase of software has 30 times return on investment, or 33 hours of maintenance is 

saved for each hour dedicated in requirement phase [11]. Therefore, certifying the behavior of 

software in the requirement and design phase has a great advantage in terms of saving costs, time 

and effort. The analysis of DSS from its requirements and design documents has a great attention 

in the literature.  

There are three approaches to manage EB/IS in different phases of the software life cycle: 

(1) run-time analysis (i.e. executing the system and analyzing the logs); (2) static analysis (i.e. 
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walk through the software and tracing behavior of its components); and (3) model-based analysis 

(i.e. using design documents to synthesize the behavior of individual components and the system).  

Model checking in this context examines the software behavior (explained in a structure or 

specification language) against a model which shows the behavior of software. If these two are 

equivalent then software is promised to execute the exact functionality as it was specified in its 

requirements. If the model does not satisfy the specification language, it is said that the components 

may show an unexpected behavior, namely EB or IS [4].   

The model checking approaches have specific applications such as network analysis in which 

the bit values of the properties are checked in each model, especially if the safety properties of the 

system are defined. Among various applications, the model checking approach that is used for the 

detection of EB/IS in DSS is the main research area in the background study in this thesis. Since 

scenario based specifications has taken a lot of attention especially in DSS [2], a lot of researches 

are dedicated to investigate errors in scenario based specifications [12, 13]. We also developed a 

new methodology for the detection of EB/IS in scenario based MAS and DSS, which is based on 

model checking and social network analysis.    

Model checking has lots of advantages, but industrial cases for DSS and MAS may face some 

challenges using them. In the researches working in this area, there are some common problems 

that we mention in the following:  

1. (P1) The process of constructing behavioral models is complex and hardly scalable.  

2. (P2) The methods are message content dependent and require domain expert intervention, 

which makes it hard to be fully automated, since it depends on the application.  

3. (P3) Differentiating between send and receive messages and synchronous and 

asynchronous communication is ignored in many works.  
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4. (P4) The interactions of software components are not considered and not analyzed.  

5. (P5) The interaction among software components is not considered, which makes it hard 

to investigate the interaction problems and system level analysis.  

6. (P6) They lead to state space explosion problem and only recently some distributed 

methods are developed to overcome some parts of scalability problem.  

7. (P7) EB/IS can still exist between some components of the same type.  

8. (P8) They mainly focus on detection rather than providing suggestions for fixing the 

problem.  

9. (P9) Behavioral model should be constructed again when requirements are added/changed.  

10. (P10) Modeling the properties to check requires expertise with the modeling language.  

Referring to these issues, we have developed a new methodology for the detection of EB/IS 

in MAS and DSS. We approach this problem by a different modeling and classifying the common 

EB/IS based on the reasons that can cause EB/IS in the execution time. The specific motivation of 

this work is providing answer to the following questions: Q1: Is there any methodology that can 

detect common EB/IS in DSS/MAS without modeling the internal information or knowledge used 

in software components/agents? Q2: Is there a general approach that can detect EB/IS without 

human interference and is fully automated? Q3: Is there an approach that considers the interactions 

among software agents in order to certify their behavior in early phases? 

In this chapter, we explain the achievements and contributions of our work starting by the 

explanation of motivations of doing this research, followed by the research goals, and our 

methodology. We have devised this methodology to overcome some of the above mentioned 

problems, specifically in the behavioral modeling. In summary, this methodology has four main 

phases: 
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1. Phase I: Transferring the scenarios into analyzable data structure and modeling the system. 

2. Phase II: Pre-processing phase to remove the components with no EB from further analysis. 

3. Phase III: Categorisation of the EB and IS that can happen in MAS and DSS. 

4. Phase IV: Devising algorithms for some classes of EB/IS for the detection of potential 

EB/IS in the system.  

In the following chapters, the detailed tasks in each phase will be explained. In each chapter, 

we explain the problem that we focus in each phase, and then we define our methodology and 

strategy that we have used to accomplish each phase. After explaining these phases, we give details 

about the advantages and completeness of our approach with chapters on case studies and results. 

In these chapters, we have discussed the differences of our work with other works and that our 

methodology can detect the implied scenarios of other works, as well as new implied scenarios 

that cannot be detected with other approaches. For detecting each class of EB/IS, we have defined 

general algorithms. In each of these algorithms, various functions can be used for separate parts. 

For example, different algorithms might be applied to find the shared states or shared interactions 

of each or a set of components. Various algorithms for this process is one of the future trends of 

our research. We have used data mining and clustering in parts of our methodology to detect shared 

states.    

It is worth mentioning that in this thesis, we may use the words component, process, and 

agent and by all of them we mean the software components that are used in DSS.  
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1.1 Motivation 

1.1.1 Problem definition  

The verification of DSS has taken a special attention due to the growing demand of having DSS 

in this decade. DSS are a class of software in which functionality or control is distributed. This 

may cause the components of DSS to emerge an unexpected behavior which was not seen in the 

requirements or designs of the system. Deadlock, race conditions, process divergence, and implied 

scenarios are kinds of unexpected behaviors [9, 14-18]. This unpredictable behavior known as 

emergent behavior can have irreparable damages [9, 19] with lots of cost to fix it [4]. The cost of 

detecting and fixing emergent behavior in requirement and design phase is about 20 times cheaper 

compared to fixing it after deployment [4]. 

Software V&V in requirement phase is in the form of making sure that the user needs are 

satisfied [10, 20]. Formal software V&V in requirement is referred to as model checking which is 

used to detect race conditions, deadlocks, and other incorrect or unexpected behaviors that may 

occur [21-23]. Some researches refer to formal methods as mathematical methods to check all the 

state space of software components and modules and prove the correctness of designs or detect 

behavioral anomalies [24, 25]. Model checkers use exhaustive coverage (i.e. checking all of states 

in the state space) and require building finite state or automata models [26-28].  

One of the issues about using formal methods is their performance. Many model-checker 

tools provided for academic researches do not have good performance or are not user friendly [29]. 

The other main issue is their scalability. Model checking approaches are not scalable by large 

systems with many components, because the state space expands exponentially by adding any task 

or component to the system and causes the problem of state space explosion [5, 20, 22, 29-33]. 

This becomes even worse in DSS and agent based systems, where the state space grows extremely 
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fast with the number of states in processes. Also, for DSS  and Mas, the types of errors in these 

systems cannot be easily detected by inputting sample data, since they occur in sending and 

receiving data by the processes at special times or in certain sequence [25]. There are some efforts 

to overcome this issue, e.g. using flat automata, but they may affect the quality of model checkers 

by not finding all the errors they are promised to detect. 

One of the other problems with most of formal method languages, behavioral modeling and 

model checkers is their cost, the amount of time for defining the constraints and rules, besides 

expertise and knowledge required for the applications and language notations or techniques [5, 34-

36]. The complexity of formal methods and misunderstanding of engineers using them may cause 

the formal method to be useless instead of taking its advantages [8]. Also, in the requirement model 

checking of scenarios, these approaches cannot identify the exact location of the scenario 

specification causing errors [37]. Moreover, in many works, only the existence of a problem is 

notified and no clue is provided on where and how the problem has occurred. This makes it hard 

to fix the exact location of the problem or solve it.  

1.1.2 Specific problems targeted by this research 

The issues stated above motivated us to devise a methodology for detecting requirement and design 

flaws of DSS automatically. The deficiencies found with existing approaches inspired us to devise 

a new methodology for emergent behavior detection. The detection in early phases of requirement 

is focused to make the certification of software development cost effective.  

Specifically talking about researches working on requirements of the system, the following 

deficiencies are found and focused in this research:  
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Problem P1: The process of constructing behavioral models is complex and hardly scalable. 

The researches that investigate the system requirements and designs for detecting emergent 

behavior mostly use the automaton theory and modeling the behavior of components of the 

systems [38]. Then by applying various algorithms or defining special languages they detect 

emergent behavior of the components of the system. Therefore, it needs special expertise, 

algorithms, and tools to model components’ behavior besides the emergent behavior detection. As 

mentioned before, this process (behavioral modeling) is time consuming and complex [4].   

Problem P2: The existing methods that use behavior modeling are message content 

dependent. This requires a great time and effort to verify the specifications if system requirements 

change, e.g. adding a new component or modifying interactions between existing components. In 

this case, the whole process of behavioral modeling and then detecting emergent behavior should 

be done from the beginning. Besides, the message dependency in this level requires domain 

expertise to annotate the model or specify proper specifications [4, 12, 30]. In other words, the 

methodology is based on the application and is not general. Therefore, for each system, it requires 

domain expertise, which make the automation process hard.  

Problem P3: While system requirements especially in scenario based systems show the 

interaction of all types of components of the system, they cannot show this interaction among all 

instances for each type. Therefore, emergent behavior can still exist between some components of 

the same type (e.g. all sellers in an online auction system are of the Seller type); but existing 

research do not handle this.   

Problem P4: In the process of detecting emergent behavior, differentiating between send 

and receive messages is not considered in many researches [37], or needs identifying specific 

definitions to recognize between send and receive messages between the components. While in 
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real world, send messages are not received at the moment they are sent. This makes a flaw between 

detecting emergent behaviors in requirement phase and what really happens in system execution.  

Problem P5: The existing research, only notifies the existence of a problem and does not 

provide details on where and how the detected EB/IS can happen. Only in some works, and on 

specific case studies the explanations are provided, which are not expandable to other application 

areas. This process, makes it hard for the designers to identify the location of the problem and 

provide solutions for the detected EB/IS.  

1.2 Research goal 

The above problems P1-P5 motivated us to find a new message content independent technique for 

the detection of EB/IS in requirement phase of scenario based specifications in MAS and DSS. 

We aim to provide a general methodology (not application specific) that considers the software 

components as black boxes and tries to find the reasons of EB/IS in a wide range of DSS/MAS.  

Research questions: The following research questions will be addressed in this research: 

Q1: What are the deficiencies of the existing approaches for emergent behavior detection 

problem? These are summarized in problems P1-P5. 

Q2: What are the specific types of EB/IS related to DSS and MAS?  

Q3: How to define a message content independent method (a general method) to detect and 

resolve those problems? 

The proposed methodology to answer the research questions is explained in next section. 

Research goals: The main goals of this research are:  

Goal G1: Classifying common emergent behaviors and implied scenarios in MAS and DSS. 
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Goal G2: Devising a message content independent technique and tool for the detection of a 

subset of classified emergent behaviors of G1 in DSS addressing the P1-P5 problems.  

1.3 Methodology  

Based on the problems defined in the previous section for different approaches to detect emergent 

behavior in scenario based software, devising a message content independent method is considered 

as a valuable technique in our work. The importance of this technique is providing a general 

methodology which can be implemented fully automatic without the intervention of domain 

experts to define the system properties for certifying the behavior of software components. This 

technique is inspired by social network analysis in which a goal is to find nodes that violate regular 

interactions or to investigate nodes’ communications to find a new path or link in their relationship 

[39]. This is similar to the detection of unexpected behaviors in DSS. In DSS there are several 

components without a central controller which are interacting with each other. The interaction of 

DSS components in the scenarios in the form of a MSC or high level MSC (hMSC) makes a graph 

like structure. This graph represents the components’ interactions. In the MSCs and hMSCs, an 

emergent behavior can arise in the form of a new interaction or a new scenario, which is interpreted 

as a new path or extracted graph compared to the basic ones. Therefore, although considering that 

each component behaves exactly as its specification, the interaction of various components in 

different scenarios of the system may emerge a new behavior. In this methodology, our technique 

uses concepts from state machines and social network analysis. We consider the messages 

sent/received to/from each agent as the states and consider it as the nodes for each agent. We also 

consider the corresponding state on the other agent as another node in the graph, which represents 

and preserves the interaction information for each agent. Therefore, the extracted graph can be 
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mapped to what is visually shown on the scenarios. The reasons of emerging a new behavior in 

the run time are then applied to the extracted graphs to investigate if EB/IS can exist. The detected 

EB/IS are the violations found in the model with regards to the first modeling that represent the 

components’ behaviors as it is seen visually in the scenarios of the system. For the detection 

process, we extract specific vectors from the graphs. This process helps in identifying the exact 

cause of the EB/IS. Moreover, based on these reasons, we develop solution repositories in order 

to prevent the detected type of EB/IS. This will guide the designer to better revision of the 

specifications.  

1.3.1 Tasks 

The focus in this research is on automating the process of modeling, analyzing, detecting, and 

resolving the emergent behavior among DSS components. The detailed tasks are:  

1. Task T1: Devising a message content independent technique to transfer the scenarios to 

analyzable data structures. The technique uses graph definition in the form of Core and 

Node to investigate the component and system level EB/IS separately, and only model the 

system once. Related definitions and more details are found Chapter Three.   

2. Task T2: Applying a pre-processing phase to remove components with no EB from further 

analysis in the component level. We describe the process in Chapter Four.   

3. Task T3: Classification of common emergent behavior types and using them as marker. 

We use this classification as a marker for detecting emergent behaviors in our technique. 

Furthermore, this classification is required for fixing the detected emergent behaviors. One 

of the examples of this classification in agent based systems is the problem arising when 
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one agent is missing the information about the senders of same messages. This is one of 

the categories defined through this research. We explain this catalogue in Chapter Five.  

4. Task T4: Developing a solution repository for each category of emergent behavior to fix 

them, either in the design of the components or in composition of scenarios. This is 

explained in Chapter Six. 

5. Task T5: Developing real-world case studies for various sectors and from the literature 

which is explained in Chapter Seven and partly in Chapter Eight.  

6. Task T6: Developing a tool to provide support for this process. We explain our tool named 

Eagle in Chapter Eight. 

Tasks T3 provides specific process to achieve goal G1. Goal G2 is accomplished through 

the other tasks.  

1.3.2 Evaluation 

The evaluation of finding EB/IS is a challenging area, since there is no specific benchmark or data 

set for the methodologies. There are some researches which are considered as the main works in 

this field. In these works, the evaluation is accomplished by applying the methodology on various 

case studies. For this thesis, we will do evaluation by a combination of all the evaluation methods 

used in other works. We will evaluate the results by comparing it to the work of Song el at. (2009-

2011) [37], Uchitel et al. work (2003) [40], Kumar work (2010) [41], and similar works; and by 

applying our methodology to all the case studies used in the main researches in this field. The 

above mentioned groups have done a combination of theoretical and practical work, or their work 

includes critics on the flaws of the other ones. Therefore, it provides a wide range of criteria for 

comparison of our methodology to the others. For example, Song uses unenforceable graphs to 
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detect implied scenarios and his method works for different communication styles. Their work in 

among the only works that approach the problem in a way other than state machines. Uchitel on 

the other hand provides a tool for his work and detects implied scenarios in hMSCs. He uses lots 

of case studies from literature as the main evaluation of his work. Kumar claims to propose a 

correct and complete method which also critics other works such as Uchitel and Muccini. His work 

is published on 2010 and uses Message Sequence Graphs which is like hMSC. Therefore, the 

comparison with these works covers almost all evaluation features. The results of our evaluation 

and discussions are provided in Chapter Eight and Chapter Nine. In our evaluations, we have also 

assessed the completeness of our methodology by checking the implied scenarios it can detect 

against the other methodologies in the literature.  

1.4 Contributions 

The following list represents the contributions of our work: 

1. Certifying the behavior of DSS and MAS from the MSC/SD by considering them as black 

boxes. This leads to have a method which is: 

a. Message content independent. 

b. General and not being application specific. 

c. Has the ability to be fully automated, since it does not require human intervention. 

d. Does not require the internal states or knowledge space of the software 

components/agents. 

2. Classifying the common types of EB/IS in MAS/DSS which we refer to as EB Catalogue. 

This also has led to: 

a. Introduce a new emergent behavior that is caused by considering the interactions 

among agents in the behavioral modeling.  
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b. Finding the origins of the problem. 

c. Being able to suggest solutions to fix or prevent the problem.  

3. Adopt behavioral modeling using a combination of the concepts from automaton theory 

and social network analysis, and using the interactions among components: 

a. Preserve the agents’ interactions in the model.  

b. Transform it to send and receive interaction matrices and analyze various 

communication styles. 

c. No need to model the behavior of the system again, when requirements are 

added/modified. In this case, only the added/modified scenario should be modeled.  

4. Adding a pre-processing phase to optimize the component level analysis by detecting 

components that have no emergent behavior.  

There is another research trend on the detection of implied scenarios in the Intelligent 

Software Systems (ISS) Laboratory under the supervision of Dr. B. H. Far. This trend [12, 42] is 

mostly based on Mousavi’s work on the detection of implied scenarios using the causality order 

between messages [4]. These works are expanded to the detection of implied scenario in MAS, 

using AUML methodology, and enhancing the construction of the causality table by using 

ontology and finding related architectures for the system. The difference of this work with these 

researches is the usage of a new methodology for modeling the behaviors of components and 

detecting the issues in component and system level. As mentioned previously, in this work we try 

to look at the system as black boxes and try to find a solution which is more general and can be 

fully automated.  

1.5 Publications  

The progress of this research has been presented in a number of publications as follows:  
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pp. 41-60. Springer Vienna, 2014.   

 

Conference Papers 

11. Fard, Fatemeh Hendijani, and Behrouz H. Far. “A New Approach for the Detection of 

Emergent Behaviors and Implied Scenarios in Distributed Software Systems - Extracting 

Communications from Scenarios.” In International Conference on Agents and Artificial 

Intelligence (ICAART), 2015 7th International Conference on, Doctoral Symposium, pp. 

15-24. 2015. 

12. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Detection of Implied Scenarios in 

Multiagent Systems with Clustering Agents' Communications." In Information Reuse and 

Integration (IRI), 2014 IEEE 15th International Conference on, pp. 237-244. IEEE, 2014. 

13. Fard, Fatemeh Hendijani. "Detecting and Fixing Emergent Behaviors in Distributed 

Software Systems Using a Message Content Independent Method." In Automated Software 
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Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pp. 746-749. 

IEEE, 2013.  

14. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Detecting Distributed Software 

Components That Will Not Cause Emergent Behavior in Asynchronous Communication 

Style." In Information Reuse and Integration (IRI), 2013 IEEE 14th International 

Conference on, pp. 201-208. IEEE, 2013. 

15. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Visualizing the Network of Software 

Agents for Verification of Multiagent Systems." In Advances in Social Networks Analysis 

and Mining (ASONAM), 2013 IEEE/ACM International Conference on, pp. 1280-1281. 

IEEE, 2013. 

16. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Detection and Verification of a New 

Type of Emergent Behavior in Multiagent Systems." In Intelligent Engineering Systems 

(INES), 2013 IEEE 17th International Conference on, pp. 125-130. IEEE, 2013.  

17. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Detecting a Certain Kind of Emergent 

Behavior in Multi Agent Systems Applied on MaSE Methodology." In Electrical and 

Computer Engineering (CCECE), 2013 26th Annual IEEE Canadian Conference on, pp. 

1-4. IEEE, 2013. 

18. Fard, Fatemeh Hendijani, and Behrouz H. Far. "A Method for Detecting Agents That 

Will Not Cause Emergent Behavior in Agent Based Systems-A Case Study in Agent Based 

Auction Systems." In Information Reuse and Integration (IRI), 2012 IEEE 13th 

International Conference on, pp. 185-192. IEEE, 2012.  

19. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Detecting Emergent Behavior in 

Autonomous Distributed Systems with Many Components of the Same Type." In Systems, 
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Man, and Cybernetics (SMC), 2012 IEEE International Conference on, pp. 1924-1929. 

IEEE, 2012.  

20. Fard, Fatemeh Hendijani, and Behrouz H. Far. "Clustering Social Networks to Remove 

Neutral Nodes." In Proceedings of the 2012 International Conference on Advances in 

Social Networks Analysis and Mining (ASONAM 2012), pp. 1289-1294. IEEE Computer 

Society, 2012. 
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1.7 Summary 

This thesis tries to find a new methodology for modeling DSS and MAS in scenario based 

specification systems in order to detect unexpected behaviors during runtime that we refer to as 

emergent behaviors (component level) and implied scenarios (system level). The main motivation 

of our work is considering components/agents as black boxes as well as covering some other 
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problems of the current approaches. In this chapter, we explained the main motivations, problems 

targeted by this work, and our methodology. The tasks that we should accomplish to achieve the 

research goals as well as the evaluations are included. This is followed by mentioning the 

contributions of our work and the list of publications and awards that we have received for this 

research.   
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 Literature review  

2.1 Introduction 

In this chapter the related works on detecting software faults are explained in the first section. The 

related works starts with introducing formal software verification and validation (V&V), the 

formal methods, and model checking to detect software errors. The introduction then narrows to a 

specific kind of software fault or anomaly behaviors of software known as emergent behaviors or 

implied scenarios. These behaviors are the unexpected behaviors of software components emerged 

in the execution time which were not seen in the requirement and design of the software system. 

The detection of errors in the early design saves a lot in software cost, and this research is focusing 

on detecting such behaviors in the requirement phase. The related works and different approaches 

of detecting emergent behaviors in early phases of software lifecycle are explained in detail in 

section 2.3.  

Concentrating on the target systems of this research, problems with the existing approaches 

(see section 1.1), and the intended technique devised for this problem, the last two sections goes 

through the scenario based specifications with Message Sequence Chart (MSC) in DSS and SNA. 

The field of emergent behavior and implied scenario detection in the Multiagent Systems 

(MAS) should be differentiated from other research topics such as MAS model checking, Runtime 

verification, and static analysis. In order to specify the differences of this work with the research 

of this thesis, specific sections of this chapter are dedicated on a brief background study on these 

fields.  

Moreover, the automata based modeling approaches can face some problems in detecting 

emergent behaviors and implied scenarios in MAS and DSS, which will be explained in this 

chapter. The details of the following topics are given in this chapter:  
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1. Software verification and validation 

2. Formal methods 

3. Model checking 

4. Emergent behaviors and various detection approaches 

5. Scenario based specification and Message Sequence Charts 

6. Social network analysis 

7. Model checking Multiagent Systems 

8. Runtime verification 

2.2 Software verification and validation, formal methods, and model checking 

2.2.1 Software verification and validation 

Software Verification and Validation has tasks for each phase of software development lifecycle 

[43, 44]. There are many researches working on software V&V and formal methods [30, 34, 44, 

45] to verify the behavior of embedded or hybrid software, distributed software, program codes, 

concurrent and parallel programs and etc. [22, 26, 35, 46-54]. In some other works, the V&V refers 

to system requirements in the form of making sure the user needs are satisfied [10, 20].  

Many tutorials, guidelines, and standards are published for software V&V. IEEE Std. 

1012/1998 is one of main standards for software V&V and is revised in various years [6, 55-58].   

2.2.1.1 Formal methods 

Formal methods are the mathematical based techniques, tools, and notations for specifying and 

reasoning software and hardware systems. They are used in different phases of software lifecycle 

for modeling and verifying requirements, designs, architectures, program code, etc. and for 

different systems: DSS, service oriented systems, concurrent and real time systems, embedded 

systems, etc. [8, 28]. Formal methods are categorized into two main groups: Model checking and 
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Static analysis. The former models the behavior of system with logical expressions and the latter 

checks the program code without really executing it [24]. JLint, PolySpace, and ESC are examples 

of tools for static analysis [27].  

Formal methods are developed for various purposes for systems [25]. Specification 

languages are used to express the system behavior in mathematical way. There are many of 

specification languages developed: Z notation [59], VDM (Vienna Development Method) [60], 

RAISE (Rigorous Approach to Industrial Software Engineering) [61], ASML (Abstract State 

Machines Language), CCS (Calculus for Communicating Systems), LOTOS (Language of 

Temporal Ordering Specifications) as a part of SCAFFOLD (Support for the Construction and 

Animation of Formal Language Descriptions) [62],SDL (Specification and Design Language) 

[63]. Some other like state machines e.g. RSM (Recursive State Machines) [64] or automata [65] 

are used to model certain systems. RMSL and SCR are requirement specification languages 

developed for error checking in the first steps [10].   

There are also visual formalisms like State Chart and OCL (Object Constraint Language) 

considered as a part of UML for formalizing constraints [66], Petri Nets [67], SDL (Specification 

and Description Language) [68], ROOM, SA [61], FSM (Finite State Machines) [19], and etc.  

Among the specification or modeling languages and diagrams, SDL, CSP (Communicating 

Sequential Processes), CCS, IOA (Input Output Automata which is a nondeterministic state 

machine), Z, FSM , State charts, Petri Nets, UML (modified as AUML) are used or can be used 

for distributed and agent based systems showing the system behavior and structure [25]. 

The events and states or the transitions are used with different definitions for the system 

behavior in different phases and in each of the methods mentioned above. In some works states 

are assigned to values of variables, behavior is the sequence of these states and the transition is the 
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action changing the states [69] and in some other the definitions of state machine are used [61]. In 

some works the events can refer to the message passing or have other definitions. For example, 

Petri Nets are defined as 5-tupple (P, T, I, O, M), where P shows a set of places, T represents set 

of transitions, I is a set of inputs, O is a set of outputs, and M shows set of initial markings. In Petri 

Net, the tuple is shown in a directed graph containing places and transitions [34]. 

2.2.1.1.1 Model checking 

Model checking is considered as a category of formal methods that verifies the software system 

with respect to logical specifications. It is used to detect the behavioral anomalies and software 

faults [24] and study the modeling of interactions of system components [52]. 

Model checkers use a structure (e.g. finite state machine) and a logical formula (e.g  temporal 

or propositional logic) to check whether the structure is a model of the given formula [1]. The 

formulas explain the target properties of the system to be checked. Model checking process for 

DSS examines all the states and inspects their reachability [5].  

In requirement verification, the user’s provided specification for the proper behavior of the 

system is defined and the program’s execution is verified against it. One of the techniques in this 

verification is the use of simple state machines like Finite States Machines (FSM), or its extensions 

like Timed Automata (considering time constraints on each state) [70] and Omega Automata 

(accepts infinite states) [19, 43].   

However model checking showed successful results in some systems (e.g. SPIN for NASA’s 

DEEP SPACE1 [21, 71], using Z specification for IBM CICS and reduce the development costs, 

ZING model checker, Behave! [72]) there are some challenges using them. Although exploring all 

states is an advantage of this approach, makes it hard to scale up and often faces state space 
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explosion problem. The other challenge is the use of notations and models by engineers for 

designing large scale systems or lack of enough tool supports [73].  

Model checking runs all the states of all the processes in the system in parallel. In general, 

the states of the processes are connected to each other with e-move. This will be the state space of 

the whole system. Since the states are connected with e-move, the non-deterministic problem will 

occur. This leads to have a large state space for the system, which is known as state space 

explosion.  

Some methods and algorithms are proposed for the state space explosion problem like 

abstraction and predicate abstraction for verifying the program. These approaches do not search 

the entire state space and they do not guarantee that a property never will be violated. One other 

issue mentioned in some researches is that model checkers detect the existence of an error and they 

do not prove or guarantee that there is no errors [5, 24].  

SPIN is one of the most popular model checking tools. SPIN is bounded by the size of 

available memory and the size of reachable states [74]. In the past years some new verification 

algorithms using parallelism, multicore, and GPGPU are developed to increase the size of state 

space under investigation [75, 76]. The specification of the model that the validation should be 

done against it requires specific knowledge, and become complex as the software becomes more 

complex. Therefore, new field of research is founded for mining the specification from existing 

systems [77]. In addition, model checking tools generate counterexamples to represent whether a 

model has faults. The detection of the roots of this fault in a model requires a significant amount 

of manual work [78]. Java Pathfinder [79], SLAM [80], Bandera [81], and BLAST [82] are some 

of the tools developed for model checking source codes in Java or C languages. In general, these 

tools are unable to handle complex data, structures, and concurrency.  
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2.3 Emergent behavior and different approaches for emergent behavior detection 

Emergent behaviors in some works are referred to as implied scenarios i.e. when integrating all of 

the scenarios of the system (e.g. in the form of state machine), they may emerge a new scenario or 

unexpected behavior. This happens because the model is not the precise equivalent of the 

requirement (scenario) specification [17, 37, 83-85]. 

Emerging new behaviors in DSS is more probable because there is lack of central control in 

these systems. This reason causes the components to have a local view of the system. 

Consequently, they may start with one scenario of the system and continue in another scenario in 

a shared state [84-86]. This state in some researches is referred to as identical states [4]. 

The problem of detecting emergent behavior can be classified in two categories. The 

component level emergent behavior refers to component fault in some researches where the 

behavior of the implemented component does not satisfy its specified behavior [8]. It is also known 

as unit verification when refers to program verification [87]. The second class is the detection of 

emergent behavior in system level which may refer to as architecture or complex verification in 

different works [8, 87]. The existing approaches consider one or both of these classes to detect 

emergent behaviors.  

One approach for model checking in the requirement is Alur et al. methodology [14]. His 

works define a detailed explanation of the model checking of Message Sequence Chart (MSC), 

Message Sequence Graph (MSG), and high-level Message Sequence Chart (hMSC) [9]. (see 

section 2.4 for more detail of MSC, MSG, and hMSC) 

MSC, MSG, and hMSC are widely used for describing design requirements especially in 

DSS. They can be considered as an early formal model for the system and can be viewed as models 

that specify system behavior. All of the linearization of this model is then checked against an 
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automaton which is defined by the message alphabet ∑, words, languages, states, and transitions 

which show the behavior of each process or component. If the intersection of the automaton 

(showing unwanted behavior of the system) and the linearization is empty, it shows that the defined 

model with MSC satisfies the requirements. He also defines the realizability of MSC and MSG 

which means the implementation should generate exactly the behaviors specified in the graph. The 

safe realizability has polynomial-time solution for MSC [88].  

Alur et al. investigate methods for synchronous or asynchronous models for MSG. However, 

the interpreted semantics in each, depends on the way of MSC concatenation. The complexity of 

each of the models is various:  

“Checking safe realizability of a bounded MSC-graph is PSPACE-hard, Checking safe 

realizability of a bounded MSC-graph is in EXPSPACE, Given an MSC-graph G and an MSC M 

over k processes, there is an algorithm that decides in O(|G||M|k) time whether M ∈ L(G), Given 

an MSC-graph G and an MSC M, it is NP-complete to determine if M ∈ L(G), even when G is a 

complete graph, or when G is an acyclic graph, checking safe realizability for bounded HMSCs is 

EXPSPACEhard, and is undecidable in the general case”.   

Moreover, the asynchronous MSG model checking is undecidable [14]. One other problem 

with the model checking with FSM is the processes that is requires before modeling: Flattening, 

remove cycles, etc. [19].  

Whittle and Schumann et al. propose a methodology which uses Unified Modeling Language 

(UML) notations and investigates the conflicts in translation between UML notations. They define 

a methodology with algorithms in different steps supported by a tool to synthesize statecharts from 

Sequence Diagrams (SD), class diagrams, and Object Constraint Language (OCL) specifications. 

Their main focus is on using their methodology for Agent Based Systems (ABS). Their translation 
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from sequence diagrams to statecharts can be used for agent skeleton and agent behavior modeling. 

In this translation, they detect conflicts and indentical states in merging the scenarios to have 

justified merging of scenarios. The synthesis of statecharts is done in four steps: 1- Annotating 

each SD with state vectors and define pre-post conditions for each state with OCL. Then conflicts 

with respect to the OCL spec are detected. 2- Converting annotated SD into flat statecharts, one 

for each class in the SD. 3- Merging statecharts for each class, derived from different SDs, into a 

single statechart for each class. 4- Introducing hierarchy to enhance readability of the synthesized 

statecharts [89, 90]. Their most work is on the design part or synthesizing scenarios to state 

machines and code [91, 92].  

Ben-Abdallah explains the non-local branching choice which causes the emergent behavior 

in system. This problem may arise from the abstraction view of MSC and not having semantics or 

specific interpretation of the implemented process when MSCs face a branching choice in hMSC. 

There is a support tool for analyzing MSC and hMSC named MESA. This tool checks non-local 

choice, process divergence, and timing consistency for branching and iterating MSC [15, 93].  

Considering the non-local branching choice, Muccini inspects its effect on emerging implied 

scenarios and explains the reason of an implied scenario generation. Implied scenarios can be 

stated as a new or unexpected behavior of the system which was not seen in the scenarios of the 

system. When the state machines are synthesized from scenarios (which explain a model and 

specification of the system), a set of behaviors are presented by state machines which was not in 

the scenarios [17].  In the non-local choices, different processes send first events in different 

branches. This is detected by “augmented behavior” of processes in the non-local choice in their 

algorithm. When processes share the same augmented behavior in the non-local choice, their 

interaction generates an implied scenario.   
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Song et al. methodology is quite different with the other approaches. They explain the 

detection of implied scenarios when using UML as the specification language. Then generate two 

graphs named specification and implementation graphs. By matching these two graphs, the implied 

scenarios and the exact cause of its emergence in the specification are identified. Their method 

considers both synchronous and asynchronous communications [37, 94].  

Uchitel et al. provide a method and tool for detection of implied scenarios. Their algorithm 

builds Labeled Transition Systems (LTS) for behavioral modeling of MSC and hMSC (or as a 

semantics for MSC) and in the synchronous communication. They have implemented their work 

in a tool named Labelled Transition System Analyzer (LTSA) [16, 40, 95-97]. The work is also 

extended by Letier et al. to detect input-output implied scenarios. These scenarios cannot be 

detected by other approaches developed for implied scenarios [98]. They also refer to the rejected 

implied scenarios by the stakeholders as negative scenarios and define behavioral constraints with 

LTS for eliciting them from implied scenarios. It is worth noting that not all implied scenarios are 

unwanted. The word implied scenario refers to the unexpected behaviors that are not the precise 

equivalent of the specifications [84]. Kramer et al. use Timed automata and the behavior model 

specified by LTS to animate the behavior models in LTSA. The Timed automata added local clocks 

to LTS [99].  

Kumar et al. discuss the problems with main researches in this field (Alur, Uchitel, and 

Muccini). He discusses that many researches are not implementable and amendable, or do not 

show correctness. They use Message Sequence Graphs (MSG) and FSM and define a reduced 

transition system to detect implied scenarios and model checking. They develop a complete 

method for this problem claiming the correctness and ability of implementation of their work [41]. 

Also they discuss that “without message labels, if we observe one process at a time, checking for 
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implied scenarios is decidable” [86]. There are other works regarding the theories of message 

passing automata and regular MSC [100, 101].  

A comparison of the main researches explained here can be found in Table 1. The criteria 

considered for these works are the specification language and modeling they use, the method, 

supporting of communication styles, complexity, supporting tool, etc.   
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Table 1: Comparison of different approaches for detection of emergent behavior 

Criteria/Researcher Ben-Abdallah Alur Whittle Uchitel Muccini Song Kumar 

year 1998 2000 2001 2003 2003 2010 2000-2010 

Specification language 

or Behavioral 

modeling (property 

specification) 

MSG 

LTS (GSTG) 

Automata 

Temporal logic 

formulas 

 

Statechart LTS MFG 

LTS 

Causal 

graphs 

FSM 

Scenario specification 

or Structural analysis 

(modeling) 

MSC 

hMSC 

MSC 

MSG 

hMSC 

UML 

SD 

OCL 

MSC 

hMSC 

MSC 

hMSC 

graph 

UML MSG 

Method for defining 

implied scenarios 

Model checking 

with Non-local 

branching choices 

Model checking 

(realizability of 

state machine) 

Model 

checking 

with FSM 

Model checking 

(specifications 

against 

properties in 

LTS, MTF & 

FLTL) 

Model 

checking 

Non-local 

branching 

choices 

Graph 

comparison 

Model 

checking with 

FSM 

Support synchronous 

(Synch), asynchronous 

(Asynch) 

Checks properties 

without constraints 

Synch. 

Asynch. 

- Synch. - Synch. 

Asynch. 

- 

Detect causes of 

implied scenario 

  X X X     X 
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Criteria/Researcher Ben-Abdallah Alur Whittle Uchitel Muccini Song Kumar 

Tool supported  MESA  Basic 

tool 

X  LTSA X X X 

Automatic algorithm   X         X 

Complexity of 

algorithm 

Linear various based 

on various 

factors 

- - - O(V3) 

V: set of 

events 

 

- 

Type of detected error Process divergence, 

Non-local 

branching choice 

Deadlock, Race 

condition, 

Timing 

condition 

Conflicting 

behaviors 

Implied 

scenarios 

Non-local 

branching 

choice 

Implied 

scenarios 

Implied 

scenarios 

Theory (T) or practical 

(P) 

T/P T mostly T T/P T T/P T  
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2.4 Scenario based specification and message sequence charts 

In software engineering, a practical approach is describing software requirements using scenarios. 

Scenarios are stories about people and interactions, including agents and actors and sequences of 

actions and event. In literature, there are reasons named for using scenario based designs for 

software systems [102].  Scenarios are descriptions that allow reasoning of use in situations even 

before actual implementations. They can describe different levels and details with multiple 

perspectives. For different purposes, scenarios can provide abstraction for the designer and 

problem solving. Also, they help managing consequences of changing designs [103].  

The visual forms of scenario based specifications like UML Sequence Diagrams (SD) and 

Message Sequence Chart (MSC) can show the software behavior.  Software system components 

(processes) or inter-object and inter-processes are shown using vertical lines with their interaction 

messages and send/receive events respectively in MSC or SD [104, 105]. These specifications can 

be used for model checking, formal verification, or monitoring for emergent behavior detection 

[106]. 

The MSC are visual and formal description techniques for software requirements and are 

widely used for Multi Agent Systems (MAS) and DSS [2, 3, 90, 107]. DSS that run on physically 

distributed computing devices are a class of software systems in which functionality and/or control 

are distributed. DSS has gained a broad attention in recent years for developing various systems 

and a main process in DSS is how to show the system components and their cooperation [2]. This 

process in many works is done utilizing MSC.  

Development of MSC, its definitions and semantics has been standardized and published by 

Telecommunication Standardization Sector of International Telecommunication Union (ITU). 

MSC describes the communication behavior of system components and their environment in the 
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form of graphical representation and message interchanging. MSC grammar, semantics, and MSC 

textual presentation are defined in the ITU-T standards and can be related to Specification 

Description Language (SDL) [108].  

Each MSC has a corresponding connectivity graph where nodes show the global system 

states (values of variables, state of execution of process and content of messages) [108]. MSC also 

can be used for real time systems with adding time constraints to events and specifying the time 

occurrence of each event. These constraints add more symbols like bold rectangles to the vertical 

lines of MSC. In later version of ITU-T Z.120 standard more constraints are added [109]. Other 

topics are related to showing MSCs to specify one system, instance decomposition, and rules of 

MSC documents in ITU-T Z.120. 

MSC are extended to various forms for certain purposes [105]: Dynamic MSC [110], 

Triggered MSC [111], etc. A simple example of MSC is shown in Figure 1.  

 

Figure 1: Example MSC showing interaction of three components 

Each vertical line shows a component and the messages between them are shown with 

arrows. The name of the component is written above its line. Each message is shown with the label 

above it. The related scenario shows the MSC name.  
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A formal description of MSC from [112] is defined as a set (E, L, C, µ, <, M) where:  

 E is the set of events consists of send and receive ones. 

 L is a finite set of labels 

 C is the set of components  

 µ is the mapping of events to labels and components 

 < is the set of total orders on the events and µ 

 M maps the send events to receive ones 

The graphical means for showing how a set of MSCs can be combined are shown either with 

Message Sequence Graph (MSG) or high level message sequence charts (hMSC). These two are 

structured models of MSC. MSG has operations such as choice and repetition. MSG has MSCs as 

its nodes and the edges represent the concatenation of MSCs. A choice or branching in MSG can 

be shown with a hexagonal. An hMSC is a graph like formation and each node can be either an 

MSC or an MSG. In hMSC, the start node is shown with an upside down triangle and the end 

MSCs is shown with a triangle. In many researches MSG and hMSC are considered almost the 

same. MSC, hMSC, and MSG can be considered as the early models of the system [14].  

2.5 Social network analysis 

Social networks (SN) as a basic view are a series of individuals and their interaction such as 

Facebook. However, many other forms of social networks exist. SNs can be kinds of interactions 

in different communities [113, 114]. The entities are considered as nodes with edges representing 

links between them. In different analysis the edges can be considered directed or undirected and 

with or without weights. Many analyses have been proposed to social networks to specify different 

characters and in various applications [115, 116]. The relation between nodes can be shown in 

matrices [117] 
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Some measurements in SN analysis are edge or node measures. This issue considers the 

edges of network (link between nodes). Some of these parameters are: Tie strength (defined for 

two nodes and depends on overlap of their neighbor and has specific extensions [118]), 

Betweenness (measures the extent that one node lies between the paths between other nodes), 

Degree (shows the direct links of a node), Closeness (measures closeness of one node to other 

nodes and shows how far it is from others), Authority (nodes that many other nodes point to them) 

and hub measure (the nodes that point to large number of authorities), exclusive measure (rare 

links belong to special nodes that other nodes do not have), etc. [119]. 

One application of SNA is verification of MAS communication in a network of agents. For 

example, some works evaluate and verify the communication patterns of MAS. They classify 

communications in classes like overloader, overloaded, isolated, and regular. Then they try to find 

design drawbacks in terms of communication patterns [120-122]. Data mining tools are developed 

for this purpose. SNA techniques like clustering is used for code debugging [123]. Some other 

data analysis tools are available that analyze the interactions among agents and visualize the result 

of running simulations to be compared with the modeling of agents in MAS [124].  

There is much difference between these works with what is presented in this thesis. Many of 

the researches in this field are restricted to the verification of MAS from system logs, where the 

Multiagent system is implemented and deployed. Some like [124] work in the design phase, but 

they use some kind of simulation and run the models of the system to analyze the agents’ 

interactions. The other factor that makes a difference between our work and other researches is 

that they use SNA for analyzing the communication to verify or detect different violation factors 

in terms of load balancing or business rules that must be satisfied. However, this work mostly 

looks for the violations in terms of new behaviors in the system (whether or not they are 
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accepted/declined by designers and stakeholder). However, these researches do not detect possible 

new behaviors (emergent behavior/implied scenario) and mostly investigate the communication 

performance, interaction verification, or issues associated with quality of service. 

2.6 Model checking Multiagent systems (MAS model checking) 

MAS model checking is a different approach for verifying multiagent systems (MAS) and 

programs via model checking. In this approach, the detection of emergent behaviors is not 

important. However, they check MAS against a specific property.  

There are some approaches in this field [125] which mostly use logic or BDI (Belief, Desire, 

Intention) languages [126]. The former uses abstraction techniques to check a property about 

MAS. They mostly use CTL or TESL to express the system specifications. Moreover, the 

specification should be defined in logic format. Some works use ISPL as the input language of the 

system [127, 128]. Although the system is abstracted to solve the state space explosion problem, 

there are some other problems with these systems. One of the problems is specifying the formulae 

or property in logic which is prone to errors and is depending on expert intervention. If the 

specification is not defined properly, the property of the abstract system may hold while it may not 

hold for the original system. In addition, each specification requires a particular abstraction system, 

because it is content based. If the abstraction system is not defined properly, the results may vary 

or will not be valid. The other category applies model checking on logic programming languages 

with BDI architecture [126, 129, 130]. They use BDI logics and logic programming languages. 

They require translating these logics to other formats to use it as an input to model checking tools.  

For both approaches, the agents’ knowledge is specified. Moreover, the internal behavior of 

agents should be defined in the form of local states, variables, evolution functions, etc. Although 

each approach has its own advantages, they deal with the internal knowledge and states of each 
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agent to validate properties at knowledge level. However, when we verify MAS, we consider the 

agents as black boxes. In this research, we are looking for emergent behaviors and not validating 

agents’ knowledge. Therefore, the category of MAS model checking is quite different with our 

approach. Our technique can be used for various AOSE methodologies and does not depend on a 

specific programming/logic language. 

Another approach for checking the Multiagent systems is considered as debugging the codes 

of the developed system. In some methods, the design artefacts are used against the protocols of 

agents’ interactions to verify the system such as Petri nets and semantic based approaches. In these 

works, the actual code of the MAS is required. In addition, the internal relations, beliefs, and 

knowledge of each agent must be identified, other than defining the interaction protocols [123]. 

The verification of MAS in this category can be done as intra-agent or inter-agent level. The intra-

agent requires the agent model in terms of BDI, and the inter-agent level focuses on the interactions 

that occur during the execution of the MAS. The information used in the inter-agent level is in the 

form of messages in an Agent Communication Language (ACL). In this category the execution 

logs of the MAS are analyzed for the interaction verification [124]. The other similar field of 

research is verification of the MAS code using model checking approaches and is called program 

model checking, which uses the running system to construct the model [131]. A complete set of 

specification and verification of MAS can be found in [132]. 

2.7 Component based modeling 

We present another category of works which is different from our work in this section. However, 

it deals with modeling the components in a component based system and in distributed systems 

and the ideas about the modeling and considering the interactions among components are valuable. 

We only present a brief introduction to one of the recent frameworks in this area called BIP and 
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leave the rest of the frameworks for component based to the reader. BIP provides a modeling 

language and a framework for the modeling of real time heterogeneous components. In this 

framework, the components are considered in a three layers’ form: Behavior, Interaction, and their 

Priorities. The components consist of ports, control states, variables (to store data), and a set of 

transitions. The components’ connectors and their interactions as well as the priorities between the 

interactions are modeled as well. Based on this modeling of the atomic components, the other 

components such as compound ones can be constructed. The framework also provides an 

execution platform to generate the code from this modeling using C++ TCP socket or MPI [133-

136]. One of the main other works in this category is REO, that provides the channel based model 

for composition of components through connectors, instead of using glue code [137]. The main 

difference of this area of research (BIP) with our work is that it provides a model based on the 

states of the components and through this modeling and controlling the interactions among the 

components (using priorities) certifies the correctness of the implementation. On the other hand, 

we use the MSC and SD to certify the behavior of the software components and try not no model 

or use controller among the interactions and find out based on the visual interactions of 

components in the SDs whether an emergent behavior can occur. 

2.8 Runtime verification 

Runtime verification is referred to as analysis of the information of a running system during 

execution time and checking its behavior to verify it satisfying or violating some properties that 

are defined for the system. The properties are defined using logic languages. The execution of the 

system is logged and analyzed based on this logic to verify that the properties are satisfied. 

Different approaches and algorithms are developed for runtime verification [138, 139]. Since this 

is an area of work which is a lot different than our work, we only explain some high level concepts 
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and do not review the details of the works in the literature for runtime verification. One of the 

existing approaches for verification of software applications in the code level is model checking. 

In some cases, the model is extracted automatically form the code by statistically analyzing it 

[140].  

Many of the runtime verification algorithms and approaches use the Message Passing 

Interface (MPI) for their verification or are specifically developed for verification of MPI 

programs. MPI is a communication protocol for parallel programming, which supports point to 

point and collective communications. MPI is a specification of the message passing interface and 

has various implementations as MPI libraries. The MPI helps to develop and run parallel programs 

according to its standard, when data is moved from address space of one process to another. It 

specifies cohesion and coupling strategies for multithreaded and thread safe interface. The MPI 

has eight basic functionalities as follows: 

 Communicator: an object of this class connects processes in groups in an MPI session. It 

gives each of the processes an independent identifier and arranges them in an ordered 

topology.  

 Point-to-point basics: It provides some functionalities that allow the communication 

between one process with another process. MPI_Send is one of these functions.  

 Collective: The collective functions provides abilities for communication among all 

processes in a group. MPI_Bcast takes data from one process and sends it to the other 

processes in the group. The reverse functionality is provided by MPI_Reduce, which takes 

data from all processes in a group, performs an operation (e.g. summation), and returns the 

result to one node.  
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 Derived data types: This includes various data types for the communication of data between 

processes, such as MPI_INT, MPI_DOUBLE, etc.  

 The other four concepts are restricted to MPI-2 only. 

 One-sided communication: It provides three actions of write, read, and reduction operation 

to/from/on a remote memory.  

 Collective extensions. 

 Dynamic process management: Provides the ability for the MPI-processes to create new 

MPI-processes, or establish dynamic communication with MPI-processes that started 

separately.  

 I/O: The parallel I/O or MPI-IO provides functionality to abstract the I/O management on 

distributed systems. 

Model checking is used for the verification of MPI programs [141]. In many methods, 

specific functionalities of MPI, such as blocking or non-blocking or wait functions is investigated 

for the verification [142, 143]. One of the popular tools for the verification of MPI programs is 

ISP (in-situ partial order) [144]. ISP has a scheduler that controls the occurrence of functions of 

the MPI library based on the algorithm developed for verification of the program [145, 146]. It 

extracts the related interleaving of messages on processes and executes those interleaving 

messages. The ISP is one of the tool series that are developed for dynamic runtime verification of 

MPI programs at the University of Utah. 

The main difference of runtime verification with our work is the phases that the behavior of 

the software should be certified. In the runtime verification, the implementation details is required, 

while in our work the designs in the form of MSCs or SDs are needed. We do not evaluate any of 

the works since they provide valuable properties in different spectrums of the software.  
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2.9 Summary 

In this chapter the background study is provided. We have covered literature review on the 

software V&V, including formal methods and model checking approaches. Then different 

methodologies for the detection of emergent behaviors and the scenario based systems, specifically 

the Message Sequence Charts are studied. A category of works that are often confused with our 

work is the model checking of Multiagent systems. We have presented a brief summary of the 

works in this area of research and the differences with our research area. One main difference is 

considering the details of the internal knowledge space for the agents in this area, while we look 

at the agents as black boxes. The other two sections that we have studied are social network 

analysis and runtime verification. We use the concepts from social network analysis in our 

modeling. Also, we set up a Linux cluster in order to test our work on MPI programs, which was 

not feasible for our work, and contradicts with our assumptions. MPI is mostly used in runtime 

verification and a summary of the main functionalities of this library is included in this chapter.  
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 Phase I: Modeling the behavior of the system components  

3.1 Introduction 

In this chapter, we explain our approach to model the behavior of system components from the 

system designs. We have modeled the behavior of the system in a way other than the traditional 

approaches that use automata based modeling. In this modeling, we use the interaction graphs 

which is inspired by social networks. The reasons behind this modeling, our contributions, and the 

details of behavioral modeling with interaction graphs is explained in detail in this chapter.  

3.2 Problem definition 

One of the main research areas in the detection of Emergent Behaviors (EB) and Implied Scenarios 

(IS) in the Distributed Software Systems (DSS) is the behavioral modeling phase. There are many 

approaches on the synthesis of behavioral modeling of the system components that discuss how 

the scenarios should be modeled into state machines or transition systems in order to specify the 

behaviors defined in the scenarios. Although this modeling approach has its own advantages, there 

are some issues that makes the usage of this approach application specific or hard to use in all 

systems, especially in large scale DSS. A list of the problems with the researches that use 

behavioral modeling with state machines for the detection of EB/IS is listed previously. Some 

other are:  

1. Only recently methodologies are devised to overcome the scalability of behavioral 

modeling by developing distributed algorithms that can handle the state space explosion 

problem, when the specified properties of the system or the requirements become large.  

2. The system should be modeled again if the requirements are changed. 

3. The states of each component are considered separately.  
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4. When the behavior of a component in the whole system is required, the states’ model of 

the component from various scenarios should be integrated. This integration introduces 

another problem called “overgeneralization” [4, 42] that can present new behaviors – other 

than the ones specified in the system – in the model.  

5. The behavioral model of the system is considered as executing the models of all 

components in parallel. This process requires specific semantics in order to prevent the 

existence of new behaviors or other problems that can be introduced in the system model.  

6. The behavioral model of the individual components or the system does not contain the 

components’ interactions directly. This case can be seen in the component behavioral 

modeling obviously, where the only part that relates to the messages sent/received by one 

component is considered as its transition between various states. However, even this case 

does not contain the information about its interaction to other components, and only 

considers the individual states on the single component.  

7. The transition between the states of each component depends on the contents of the 

messages. This case is even used in the EB/IS detection process in later steps. Therefore, 

in many cases the modeling is either application specific or requires the domain expertise 

knowledge, which makes it hard to produce the whole process general or fully automated.  

3.3 Methodology  

To overcome some of the above mentioned problems, we tried to approach the behavioral 

modeling from a different perspective. Since one of the reasons of the EB/IS occurrence in DSS 

and Multiagent Systems (MAS) is the interactions among software components/agents, this 

concept is modeled in the system. To model the interactions among software components, the 

social networks and the approaches in modeling the interactions in a social network are considered. 
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Therefore, in our modeling, each scenario is modeled into a separate graph (network). The 

followings are a list of features that are considered in the modeling: 

 Differentiating among various states of each component. 

 Preserving the interaction information for each component. 

 Preserving the interaction information among various components.  

 Using the same model for both of the component and system level analysis. In other 

words, modeling the system once, and use it for analysis in both levels. 

 Making the process of behavioral modeling fully automated and general other than 

application specific, without requiring information or domain knowledge from an 

expert.  

 Try to avoid the overgeneralization problem.  

In order to preserve the states of each component for the analysis phase, the individual states 

are modeled as the nodes of the graph. Also, we require a model that is general and includes enough 

information to cover both the component and system level analysis. To consider this feature, we 

model the graph vertices with two concepts: Core and Node. Each Node of the graph consists of a 

Core and some other features. Each Core, represents all the information which is required for 

component level analysis and contains the information of a component associated to the point of 

sending/receiving a message. This point in automaton theory can be interpreted as the events or 

the states of the components. We refer to this as a point of interaction or simply the states of the 

component. The information that is saved in each Core contains the message label (instead of 

message content) and the type of a message (send or receive), as well as the information about the 

name of the component and its next state (next Core). The Cores of the interaction graph are used 

for component level analysis. For system level analysis, the Nodes of the interaction will be used. 
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This information includes the interacting process name and interacting node, the information about 

its next states in each scenario, as well as the sender of the message that causes a transition in each 

of the states of each component.  

It is worth mentioning that some of these features are added to detect specific types of EB/IS, 

and not all the features are used in the detection of all types of EB/IS.  

The graph consists of a list of all Nodes. The edge (interaction) information is used as a data 

in each Node of the graph and is not modeled separately, since in each scenario, only one message 

is sent/received from each state and two interactions are not allowed from a single point. 

This modeling is helpful in the detection of all classes of EB and IS that are determined in 

Phase III (Chapter Five). Moreover, the system level behavior can be considered in different 

scenarios of the systems and be analyzed by comparing the interaction graphs modeled from each 

scenario separately without requiring to make a complete model connecting all graphs.  

Furthermore, the system level model is constructed from the beginning with the behavioral 

models of each component, without requiring any other action or completing other steps to have a 

behavioral model for the whole system. Conversely, the system level behavioral model in the 

current works in the literature is constructed after the behavioral models of each component is 

made. In these works, if the number of states for each component are large, we may face to the 

storage or computation problems when analyzing the behavior of the whole system (which is 

considered as the parallel execution of the individual behavioral models of all components). Also, 

in these works specific actions should be defined to connect the behavioral models of the 

components.  

Another advantage of this modeling is the usage of existing structures for the graph storage 

data and computations.  
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In this approach, we use the information of each starting or end point of the message on each 

process line from the SDs or MSCs as the information that should be stored as Core or Node in 

the interaction graphs. We refer to these points as the states of each component in the system.  

3.3.1 Basic definitions 

3.3.1.1 Message Seuence Charts (MSC) 

Definition 1. Communication set of one process ∑𝑝  

Let 𝑃 = { 𝑝, 𝑞, 𝑟, … } be the finite set of processes (components, agents) of the system that 

are interacting with each other using a finite set of messages 𝑀. We define ∑𝑝 as the set of 

communications that process 𝑝 takes part in 

∑𝑝 =  {𝑝! 𝑞(𝑚), 𝑝? 𝑞(𝑚)|𝑝, 𝑞 ∈ 𝑃 , 𝑚 ∈ 𝑀} 

The 𝑝! 𝑞(𝑚) defines that process 𝑝 sends message 𝑚 to process 𝑞, and 𝑝? 𝑞(𝑚) defines that 

process 𝑝 receives message 𝑚 from process 𝑞.  

Definition 2. Communication set of all processes ∑ = ∪𝑝∈𝑃 ∑𝑝 (Alphabet) 

We define ∑ = ∪𝑝∈𝑃 ∑𝑝. 

 

Definition 3.  Message Sequence Chart 

Each MSC ℳ shows a visual form of processes 𝑃 and their interacting messages over the 

finite set of messages 𝑀. An MSC ℳ is a structure ℳ = (𝐸, 𝑃, 𝑀, 𝜇, ≤, 𝛼) where:  

𝐸 = {𝑒1, 𝑒2, … } is a finite set of 𝑆𝑒𝑛𝑑 and 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 events, where 𝑆 = {𝑠1, 𝑠2, … } is the set of 

𝑆𝑒𝑛𝑑 events and 𝑅 = {𝑟1, 𝑟𝑠2, … } is the set of 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 events.  

𝑃 is a finite set of processes. 

𝑀 is a finite set of messages.  
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𝜇: 𝐸 → ∑ is a mapping function of events to messages and processes. For 𝑝 ∈ 𝑃, 𝑥 ∈ ∑ and 

𝑒 ∈ 𝐸: 

𝐸𝑝ℳ = {𝑒 | 𝜇(𝑒) ∈ ∑𝑝, 𝜇(𝑒) = 𝑥} 

The set of events on process 𝑝 ∈ 𝑃 in MSC ℳ is: 

𝐸𝑝ℳ = {𝑒 | ∃𝑚 ∈ 𝑀, 𝑒 ∈ 𝑆, 𝜇(𝑒) = 𝑝! 𝑞(𝑚) 𝑜𝑟 𝑒 ∈ 𝑅, 𝜇(𝑒) = 𝑝? 𝑞(𝑚)} 

And 

𝐸 = ∪𝑝∈𝑃 𝐸𝑝ℳ 

≤ is the set of total orders on 𝐸 and 𝜇.  

𝛼: 𝑆 → 𝑅 maps the send events to receive events. For 𝑒, 𝑒′ ∈ 𝐸 and  𝑝, 𝑞 ∈ 𝑃, we define: 

𝑒 <𝑝𝑞 𝑒′ ≡  ∃𝑚 ∈ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇(𝑒) = 𝑝! 𝑞(𝑚) 𝑎𝑛𝑑 𝜇(𝑒′) = 𝑞? 𝑝(𝑚) 

The 𝑒 <𝑝𝑞 𝑒′ relation explains that the message 𝑚 sent by 𝑝 at event 𝑒 is received by 𝑞 at 

event 𝑒′. 

 

Definition 4. Local visual order <𝑝 (visual order of one process in an MSC) 

Each MSC ℳ has a visual structure showing the set of processes 𝑃 interacting to each other 

via sending or receiving messages. The process 𝑝 ∈ 𝑃 in an MSC is shown by a vertical line 

representing the life line of the process. The interacting messages are shown with arrows (edges 

𝐶) from one process to another process. The events 𝐸𝑝ℳ on process 𝑝 have a local visual order 

represented by <𝑝, which is the total order of events on 𝑝 as displayed in MSC ℳ.  

Definition 5.  Visual order (visual order of all processes in an MSC) 
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The visual order of an MSC ℳ contains the local orders of all processes and the set of all 

edges 𝐶 on that MSC: 

(∪𝑝∈𝑃 <𝑝)  ∪ 𝐶 

3.3.1.2 High Level Message Sequence Charts (hMSC) 

Definition 6.  High level MSC 𝒢 

High level MSC (hMSC) is a structure 𝒢 = (𝑃, 𝑀, 𝓜, 𝑉, 𝐸𝑑, ∁, 𝐹0, 𝐹𝑓), where 𝑃 is the set of 

processes, 𝑀 is the set of messages, 𝓜 represents the set of MSCs,  𝑉 represents the vertices, 

𝐸𝑑 ⊆ 𝑉 × 𝑉 is the set of edges, and ∁ is a mapping function ∁: 𝑉 → 𝓜. The 𝐹0 ⊆ 𝑉 and 𝐹𝑓 ⊆ 𝑉 

are the initial and final vertices of 𝒢. 

Definition 7. Process’s High level structure 𝒢𝑝 (high level structure of one process) 

For each process 𝑝 ∈ 𝑃 in 𝒢, we define a structure 𝒢𝑝 = (𝑀𝑝, 𝓜𝑝, 𝑉𝑝, 𝐸𝑑𝑝, ∁𝑝, 𝐹0𝑝
, 𝐹𝑓𝑝

), 

where 𝓜𝑝 ⊆ 𝓜 is the set of MSCs that 𝑝 participates in, and has at least one action such that 

∑𝑝 ≠ ∅. 𝑀𝑝 ⊆ 𝑀 is the set of messages over 𝓜𝑝. 𝑉𝑝 and 𝐸𝑑𝑝 ⊆ 𝑉𝑝 × 𝑉𝑝 are the set of vertices 

and edges that are mapped by ∁𝑝: 𝑉𝑝 → 𝓜𝑝. The 𝐹0𝑝
⊆ 𝑉𝑝 and 𝐹𝑓𝑝

⊆ 𝑉𝑝 are the initial and final 

vertices over 𝑉𝑝 as visually displayed in 𝒢. 

Definition 8. Global visual order ℶ𝑝 (visual order of one process over its high level structure) 

Each process 𝑝 ∈ 𝑃 follows a visual order on its events 𝐸′
𝑝 = ∪ℳ𝑝

𝐸𝑝ℳ as displayed in 𝒢𝑝. 

We define ℶ𝑝 as global visual order of 𝑝 over 𝒢𝑝, which is the total order of events 𝐸′
𝑝 in ℳ𝑝. 

3.3.1.3 Active processes/agents 

Definition 9. Active process in an MSC 𝑝𝑎ℳ 
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Let processes 𝑝, 𝑞 ∈ 𝑃 have some actions in an 𝑀𝑆𝐶 ℳ ⊆ 𝓜. We define process 𝑝 as an 

active process in ℳ and refer to it as 𝑝𝑎ℳ, if for the first action of 𝑝 in its local visual order <𝑝, 

the following condition is satisfied in ℳ:  

∃𝑚 ∈ 𝑀, 𝑒 ∈ 𝑆| 𝜇(𝑒) = 𝑝! 𝑞(𝑚). 

Consider the MSCs in Figure 2. There are four MSCs in this example. The order of the 

execution of the MSCs is shown in the left side of the figure, in part (a). The hMSC is shown with 

a triangle as the starting point and a vertical triangle as the ending point. The nodes of the graph 

indicate the MSCs and their order of occurrence is shown with arrows between them. In this 

example, first MSC1 is executed. Then there is a branch to execute either MSC2 or MSC3, 

followed by MSC4 as the final MSC. The high level structure for a process comes from its 

functionality in each of the MSCs and the hMSC of the system. For example, the high level 

structure 𝒢𝐴 (Definition 7) for component A, is the same as the hMSC of the system; since it has 

interactions in all MSCs of the system. However, the 𝒢𝑝 for components B and C are different. 

The 𝒢𝐵 is shown in part (b) of Figure 2 where it shows that component B is only involved in MSCs 

M1, M2, and M4. Part (c) of this figure represents that component C has interactions in MSCs M1 

and M4.  

Referring to Definition 9, component A is an active process in all MSCs except M2. In 

MSC2, component B is an active process.  
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Figure 2. Four MSCs with the hMSC of the system in part (a) and high level structures of 

components B and C in (b) and (c) 

 

3.3.2 Modeling definitions 

3.3.2.1 Graphs 

We will refer to the modeling that we defined earlier as the interaction graphs in this thesis. In 

order to specify the features of MSCs/SDs that should be modeled and used for analysis of EB/IS, 

the following definitions will be used.  

Definition 10. Interaction graph 𝐺 

An interaction graph is a directed graph defined as 𝐺 = (𝑁, 𝐸, 𝑓) where 𝑁 is the set of 

vertices that we refer to as Nodes, 𝐸 is the set of edges between the vertices, and 𝑓: 𝐸 → 𝑁 is the 

mapping function that assigns each edge to its set of vertices. Each graph expresses the interactions 

between different processes in MSC ℳ preserving its visual order.  
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Definition 11. Core 𝐶 

Core 𝐶 = (𝐶𝑜𝑛𝑡, 𝑁𝑏𝑟, 𝐺, 𝑝) is the core information of each vertex 𝑉 in the interaction graph 

𝐺 for process 𝑝 and are derived from the information specified to the incoming or outgoing 

messages on the life line of component 𝑝 in the related sequence diagram or MSC ℳ, without 

considering the information about the interactions of the specified state on component 𝑝. 𝐶𝑜𝑛𝑡 =

{𝑀𝑙𝑎𝑏𝑒𝑙, 𝑀𝑇𝑦𝑝𝑒} represents the message labels and message types in each Core, where 𝑀𝑇𝑦𝑝𝑒 =

{𝑆𝑒𝑛𝑑, 𝑅𝑒𝑐𝑒𝑖𝑣𝑒} and 𝑀𝑙𝑎𝑏𝑒𝑙 is the labels of the messages, which is used instead of message 

contents. 𝑁𝑏𝑟 stores the data about who is the next state (Core). 𝐺 identifies which graph (scenario) 

this Core belongs to.  

Definition 12. Node 𝑁 

Node 𝑁 = (𝐶𝑜𝑛𝑡, 𝑁𝑏𝑟, 𝐺, 𝑝, 𝑁𝐶𝑜𝑟𝑒, 𝑁𝐼𝑛𝑡) is the vertex of the interaction graph 𝐺 for 

process 𝑝. Each Node contains the information about one state of component 𝑝 and the interactions 

of the associated component in that specific state. The data derived for each vertex 𝑉 in the 

interaction graph 𝐺 is derived from the information specified to the incoming or outgoing messages 

on the life line of component  𝑝 in the sequence diagram or MSC ℳ, considering the information 

about the interactions of the specified state on component 𝑝. 𝐶𝑜𝑛𝑡 =

{𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑛𝑑𝑒𝑟, 𝐼𝑛𝑡𝑃} where 𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑛𝑑𝑒𝑟 represents the State transitions 

of that state, i.e. the sender of the message that causes a transition in the current state, and 𝐼𝑛𝑡𝑃 

represents the name of a process that Node 𝑁 interacts with. The 𝑁𝐶𝑜𝑟𝑒 is the Core of the Node 

that contains the state information of that node. 𝑁𝑏𝑟 stores the data about who is the next Node 

(State). 𝑁𝐼𝑛𝑡 is the Node of the process that Node 𝑁 interacts with.  
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To illustrate these definitions, consider the MSC in Figure 3. In this MSC, four agents are 

communicating through seven messages. Since the content of the messages are not important, the 

messages are labeled with m1 to m7.  

 

Figure 3. Example MSC 

In our approach, we model the behavior of the agents from the scenarios and include all the 

information that can be extracted from the lifeline of the agents in sending or receiving a message. 

These points for agent A1 is shown with blue circles in Figure 3. This modeling requires 

information about the message labels that are sent/received in each point (state), its next state, 

which agent has send/received that particular message, in each state to which agent this agent (A1) 

interacts with, and who is the sender of the message that causes a change in the state of A1. 

Considering the interactions of A1 with A2, these are shown in  Figure 4. In the right hand side, 

the communications of A1 and A2 and the message labels that are saved for each of them in their 

states is shown. In the left hand side, the states of A1 are demonstrated. We also include a link to 

show the next state of each state on A1.  
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Figure 4. Part of interaction graph for agents A1 and A2 

The complete interaction graph for MSC of Figure 3 is presented in Figure 5. The name of 

the agents above each vertical set of vertices represent part of the graph that is modeled as the 

behavior of each agent. In this figure, the Cores and Nodes are shown in separate colors. The graph 

is a list of Nodes in the implementation. As explained in the definitions, each Node contains Core 

as part of its definition. All the links shown in this figure (state transitions and interaction 

information) are shown as different pieces of information in the Cores and Nodes.  

 

Figure 5. Modeled interaction graph for agents of Figure 3 containing Core and Nodes 
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The Cores, contain these set of information:  

Content , Neighbors, Number, BelongToGraph, and ProcessName. The Content is 

{MessageContent (message label) + messageType (Send or receive)}. 

And the information reserved in the Nodes are:  

Content , Neighbors, Number, BelongToGraph, ProcessName, NodeCore, 

StateTransitionSender, InteractingProcessName, InteractineNode. In this set, the Content is 

{StateTransitionSender + InteractingProcessName}. The NodeCore represents the Core of a Node 

that contains the state information of that node. The    StateTransitionSender represents the State 

transitions (the sender of the message that causes a transition in the current state), the 

InteractingProcessName is the name of a process that this Node interacts with, and InteractineNode 

represents the Node of another process that the current Node interacts with. All of these 

information can be found in Definitions 11 and 12.  

3.3.2.2 Communications to detect EB/IS 

Definition 13. Send vector of one process in an MSC 𝛿𝑝ℳ 

We define a send vector 𝛿𝑝ℳ = (𝑎1, 𝑎2, … , 𝑎𝑛) for each process 𝑝 ∈ 𝑃 in an MSC ℳ. The 

elements of 𝛿𝑝ℳ can have one of the following values: 

1. 𝑖𝑓 ∃𝑞𝑖 ∈ 𝑃, ∃𝑠𝑗 ∈ 𝑆, ∃𝑒 ∈ 𝑆 𝑎𝑛𝑑 ∃𝑚 ∈ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝑒) = 𝑝! 𝑞𝑖(𝑚)𝑡ℎ𝑒𝑛 𝑎𝑖 = 𝑠𝑗.  

2. 𝑖𝑓 ∃𝑞𝑖 ∈ 𝑃, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑗 ∈ 𝑆, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑒𝑘 ∈ 𝑆 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚𝑘 ∈

𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝑒𝑘) = 𝑝! 𝑞𝑖(𝑚𝑘) 𝑎𝑛𝑑 |𝜇(𝑒𝑘)| > 1 𝑡ℎ𝑒𝑛 𝑎𝑖 𝑖𝑠 𝑎 𝑠𝑒𝑡: 𝑎𝑖 =∪𝑗 𝑠𝑗 . 

3. 𝑖𝑓 𝑓𝑜𝑟 𝑞𝑖 ∈ 𝑃, ∄𝑠 ∈ 𝑆, ∄𝑒 ∈ 𝑆, 𝑎𝑛𝑑 ∄𝑚 ∈ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝑒) = 𝑝! 𝑞𝑖(𝑚)𝑡ℎ𝑒𝑛 𝑎𝑖 = ∅. 

The send vector 𝛿𝑝𝑀 consists of 𝑛 element where 𝑛 = |𝑃|. The 𝛿𝑝ℳ is a set of sets 

{𝑎1, 𝑎2, … , 𝑎𝑛}. The 𝑎𝑖 is the set of all send events in which process 𝑝 sends messages to another 
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process 𝑞𝑖 ∈ 𝑃 in an MSC ℳ. The three cases above, represent that 𝑎𝑖 can have exactly one 

member (case 1), more than one member (case 2), or be an empty set (case 3). 

Definition 14. Set of all send vectors of one process in all MSCs it takes part 𝛿𝑝 

𝛿𝑝 =∪ℳ 𝛿𝑝ℳ. 

Definition 15. Receive vector of one process in an MSC 𝛾𝑝ℳ 

We define a receive vector 𝛾𝑝ℳ = (𝑏1, 𝑏2, … , 𝑏𝑛) for each process 𝑝 ∈ 𝑃 in an MSC ℳ. The 

elements of 𝛾𝑝ℳ can have one of the following values: 

1. 𝑖𝑓 ∃𝑞𝑖 ∈ 𝑃, ∃𝑟𝑗 ∈ 𝑅, ∃𝑒 ∈ 𝑅 𝑎𝑛𝑑 ∃𝑚 ∈ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝑒) = 𝑝? 𝑞𝑖(𝑚)𝑡ℎ𝑒𝑛 𝑏𝑖 = 𝑟𝑗 . 

2. 𝑖𝑓 ∃𝑞𝑖 ∈ 𝑃, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟𝑗 ∈ 𝑅, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑒𝑘 ∈ 𝑅 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚𝑘 ∈

𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝑒𝑘) = 𝑝? 𝑞𝑖(𝑚𝑘) 𝑎𝑛𝑑 |𝜇(𝑒𝑘)| > 1 𝑡ℎ𝑒𝑛 𝑏𝑖 𝑖𝑠 𝑎 𝑠𝑒𝑡: 𝑏𝑖 =∪𝑗 𝑟𝑗 . 

3. 𝑖𝑓 𝑓𝑜𝑟 𝑞𝑖 ∈ 𝑃, ∄𝑟 ∈ 𝑅, ∄𝑒 ∈ 𝑅, 𝑎𝑛𝑑 ∄𝑚 ∈ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝑒) = 𝑝? 𝑞𝑖(𝑚)𝑡ℎ𝑒𝑛 𝑏𝑖 = ∅. 

The receive vector 𝛾𝑝ℳ consists of 𝑛 elements where 𝑛 = |𝑃|. The 𝛾𝑝ℳ is a set of sets 

{𝑏1, 𝑏2, … , 𝑏𝑛}. The 𝑏𝑖 is the set of all receive events in which process 𝑝 receives messages from 

another process 𝑞𝑖 ∈ 𝑃 in an MSC ℳ. The three cases above, represent that 𝑏𝑖 can have exactly 

one member (case 1), more than one member (case 2), or be an empty set (case 3). 

Definition 16. Set of all receive vectors of one process in all MSCs it takes part 𝛾𝑝 

𝛾𝑝 =∪ℳ 𝛾𝑝ℳ. 

Definition 17. State vector of one process in an MSC 𝛽𝑝ℳ 

We define a state vector 𝛽𝑝ℳ = (∪ (𝛿𝑝ℳ , 𝛾𝑝ℳ), <𝑝) = (𝜏1, 𝜏2, … , 𝜏𝑧) for each process 𝑝 ∈

𝑃 of an MSC ℳ where 𝑧 = |𝐸𝑝ℳ|. The state vector 𝛽𝑝ℳ is the total order set of 𝐸𝑝ℳ in the MSC 

ℳ with respect to its local visual order <𝑝: 

𝜏𝑖 = 𝑒𝑖 ∈ 𝐸𝑝ℳ  , ∃𝑚 ∈ 𝑀, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑒 ∈ 𝑆, 𝜇(𝑒) = 𝑝! 𝑞(𝑚) 
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 𝑜𝑟 𝑒 ∈ 𝑅, 𝜇(𝑒) = 𝑝? 𝑞(𝑚) 

Definition 18. Set of state vectors of one process in its high level structure  𝛽𝑝 

For process 𝑝 we define 𝛽𝑝 =∪ℳ 𝛽𝑝ℳ with respect to its global visual order ℶ𝑝 over 𝒢𝑝.  

Definition 19. State transition vector of one process in an MSC 𝜑𝑝ℳ 

The state transition vector 𝜑𝑝ℳ = (𝜎1, 𝜎2, … , 𝜎𝑥) for each process 𝑝 ∈ 𝑃 of an MSC ℳ 

where 𝑥 = |𝐸𝑝ℳ|, represents the senders of messages that cause a transition in states of process 𝑝 

in the MSC ℳ. Each action on the life time of process 𝑝 in MSC ℳ is either 𝑝! 𝑞(𝑚) or 𝑝? 𝑞(𝑚) 

for 𝑚 ∈ 𝑀. For 𝑚 ∈ 𝑀 and ∀𝑒 ∈ 𝐸𝑝ℳ: 

𝜎𝑖 = 𝑝 𝑖𝑓 𝜇(𝑒) = 𝑝! 𝑞(𝑚) 𝑜𝑟 𝜎𝑖 = 𝑞 𝑖𝑓 𝜇(𝑒) = 𝑝? 𝑞(𝑚)  

Definition 20. Set of state transition vectors of one process in it is high level structure 𝜑𝑝 

We define 𝜑𝑝 =∪ℳ 𝜑𝑝ℳ as the total set of state transitions for process 𝑝 ∈ 𝑃 over the set of 

𝑀𝑆𝐶𝑠 𝓜 in 𝒢𝑝 with respect to its global visual order ℶ𝑝.  

Definition 21. Interaction vector of one process in an MSC 𝜔𝑝ℳ 

We define an interaction vector 𝜔𝑝ℳ = (𝑤1, … , 𝑤𝑧) over the state vector 𝛽𝑝ℳ =

(𝜏1, 𝜏2, … , 𝜏𝑧) that represents the interaction details for process 𝑝 in MSC ℳ where 𝑧 = |𝛽𝑝ℳ| 

and 𝑤𝑖 = (𝑠𝑖, 𝑟𝑖) and  

1. 𝑖𝑓 𝜏𝑖 = 𝑒𝑖 ∈ 𝐸𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇(𝑒) = 𝑝! 𝑞(𝑚) 𝑡ℎ𝑒𝑛 𝑠𝑖 = 𝑝 𝑎𝑛𝑑 𝑟𝑖 = 𝑞. 

2. 𝑖𝑓 𝜏𝑖 = 𝑒𝑖 ∈ 𝐸𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇(𝑒) = 𝑝? 𝑞(𝑚) 𝑡ℎ𝑒𝑛 𝑠𝑖 = 𝑞 𝑎𝑛𝑑 𝑟𝑖 = 𝑝. 

Note that since the events 𝐸𝑝 on process 𝑝 have a local visual order <𝑝, the <𝑝 relation is 

preserved in the send, receive, and state vectors 𝛿𝑝ℳ, 𝛾𝑝ℳ, and 𝛽𝑝ℳ in the MSC ℳ. For the same 

reason, 𝛿𝑝, 𝛾𝑝, and 𝛽𝑝 follow ℶ𝑝. 
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Definition 22. Shared states of one process over two or more of its state vectors 𝛩𝑝 

We define the shared (similar) states of process 𝑝 over state vectors 𝛽𝑝ℳ1
= (𝜏1, 𝜏2, … , 𝜏𝑧), 

…,  and 𝛽𝑝ℳn
= (𝜏′

1, 𝜏′
2, … , 𝜏′

𝑦)  of MSCs ℳ1, …, and ℳn in 𝒢𝑝 as 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) such that 

𝛩𝑝 is the set that 𝛩𝑝 ⊆ 𝛽𝑝ℳi
 where 𝑖 ∈ {1, … , 𝑛}. Then we have the following: 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) =

(𝜏𝑤, … , 𝜏𝑥) = ⋯  = (𝜏′
𝑎, … , 𝜏′

𝑏).  

Considering two state vectors 𝛽𝑝ℳ1
 and 𝛽𝑝ℳ2

, there can be multiple sets of states that are 

shared among these two vectors.   

Definition 23. Set of all shared states of one process 𝛩′
𝑝 

Process 𝑝 can have shared states of various lengths in the set of MSCs in 𝒢𝑝. Therefore, we 

define 𝛩′
𝑝 =∪ 𝛩𝑝 as the set of all shared states of process 𝑝. 

Definition 24. Shared state transition vectors of one process 𝜑′
𝑝ℳ1

 (state transition vectors for the 

shared state vectors)  

Consider two state vectors 𝛽𝑝ℳ1
= (𝜏1, 𝜏2, … , 𝜏𝑧)  and 𝛽𝑝ℳ2

= (𝜏′
1, 𝜏′

2, … , 𝜏′
𝑦)  of MSCs 

ℳ1 and ℳ2 in 𝒢𝑝 for process 𝑝 and 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) = (𝜏𝑤, … , 𝜏𝑥) = (𝜏′
𝑎, … , 𝜏′

𝑏) as their shared 

state vector. We define shared state transition vectors 𝜑′
𝑝ℳ1

 and 𝜑′
𝑝ℳ2

 as the state transitions 

of (𝜏𝑤, … , 𝜏𝑥) and (𝜏′
𝑎, … , 𝜏′

𝑏) respectively.  

Definition 25. Shared interaction vectors of one process 𝜔′
𝑝ℳ1 (interaction vectors for the shared 

state vector) 

We define shared interaction vectors 𝜔′
𝑝ℳ1 and 𝜔′

𝑝ℳ2 as the interaction vectors of 

(𝜏𝑤, … , 𝜏𝑥) and (𝜏′
𝑎 , … , 𝜏′

𝑏), respectively.  

In Chapter Seven various examples for the definitions of this section can be found.  
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3.4 Summary 

In this chapter, we provided the required definitions for modeling the behavior of the components 

of the system from MSCs/SDs. We model the specifications of the components in the scenarios 

using interaction graphs. For each vertex of the graph, we consider two main concepts: Core and 

Node. The Core preserves the information about the component in the modeling, and the Node 

saves extra information related to the interactions of the components in each Core. The main 

purpose behind this modeling is being able to model the system once, by reading the scenarios 

from the input and extract the required information for component or system level analysis as 

needed. The Core is used for component level analysis and the Node is used for system level 

analysis. Other definition such as state transition vectors are also defined. These definitions will 

be used later for the detection methodology.  
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 Phase II: Pre-Processing: remove components with no EB  

4.1 Introduction 

In this chapter, we explain our devised methodology to reduce the scale of the problem that is 

under analysis. This phase is considered as a pre-processing phase of the component level analysis. 

One of the advantages of this method is its usage in the current approaches. Therefore, one can 

proceed by other methodologies to analyze a system for EB/IS detection by first applying this pre-

processing to reduce the number of components that need to be verified. Therefore, the scale of 

behavioral modeling will be reduced and it results in the reduction of computational analysis. In 

the following the details of this approach will be explained.  

4.2 Problem definition 

One of the main problems in the behavioral modeling is known as the state space explosion 

problem. In synthesis of behavioral modeling, when the number of states of the individual 

components or the whole system increases, the number of states that should be considered in 

parallel to demonstrate the concurrent behavior of the system grow exponentially. The state space 

explosion problem restricts the number of states under analysis, and therefore restricts the size of 

the system that should be verified. For this reason, many approaches in the modeling the behavior 

of the system are developed including bounded model checking. In this approach, a finite prefix 

in the paths are analyzed and the length of the prefix is bounded by a number. Unlike the previous 

methodologies, not all the paths are investigated. Therefore, if the prefix is not defined properly, 

there is a chance to lose part of the analysis; since it cannot represent the system properly.  

The other approaches that are developed to deal with the state explosion problem are 

symbolic model checking, partial order reduction, abstraction techniques, and counter example 

guided abstraction refinement. Each of these techniques require specific conditions to be applied.  
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The partial order reduction technique the exchange techniques are developed to substitute the 

enabled transitions of the system with its representative subset. In other words, the technique tries 

to reduce the number of independent interleavings of the concurrent processes. Also, in the 

abstraction technique, the system should be simplified and the simplified properties are not 

representing the exact system properties. Therefore, they may need iterative refinements. The 

refinement process is also required for the counter example guided abstraction refinement 

technique.  

Based on the above mentioned explanations and the specific refinements for each of these 

techniques or the fact that they will not actually analyze all the possible paths of execution in the 

system, we look at the problem by a novel approach to detect components that have no emergent 

behavior in the system. Although this method will not reduce the scale of the problem in many 

works with a significant rate, it has shown up to 40% of reduction in the number of components 

that require to be modeled in other systems.  

4.3 Methodology 

To approach the state explosion problem, we consider the components that require the analysis in 

the whole system. In our technique, the components of the system that have no emergent behavior 

will be detected first and removed from the component level analysis. Therefore, the number of 

components and consequently the number of states under investigation reduces. This phase is 

considered as a pre-processing phase, before the behavioral model of the system is fully 

constructed.  

The components that will not show an emergent behavior in the system are the components 

that behave or act with the same functionality in all scenarios of the system. These are the usually 

the components that have the exact functionality in all scenarios, always receive a message in the 
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system without having a send interaction, or the combination of their behavior are the same in 

most of the scenarios with minor differences in the other ones.   

We have devised algorithms to detect these components both in synchronous and 

asynchronous communications to manage the scalability of the system.  

4.3.1 Detect components with no EB in synchronous communication 

For the detection of the components with no EB, we should consider their behavior in all of the 

scenarios of the system they are involved in. For this purpose, we consider vectors that represent 

different information for the functionality and interaction of each component separately. This 

information should be extracted from the scenarios in order to check the following conditions 

related to the component’s interactions as described below: 

1. The component has the exact functionality in all scenarios. 

2. The component always receives a message in the system without having a send interaction. 

3. The functionality of the component is the same in most of the scenarios with minor 

differences in at most one of the scenarios. The process in this case is an active in at most 

one scenario and is a passive process in all other scenarios it is involved in. 

Either one of these conditions are satisfied, the component can be declared as a safe 

component with no EB at the component level.  

Based on the catalogue of emergent behaviors the main reason for a process to show a new 

behavior is the conditions in which it is sending a message to the other processes. Therefore, if the 

process is not sending any message, it is always acting as a passive process and cannot emerge a 

new behavior by itself. Also, if the process is only sending a message in one of the scenarios of 

the system, it means that the process does not have any shared states in which it acts as an active 

process. Therefore, it cannot show an emergent behavior in the component level. These are the 



 

61 

rationales of checking conditions two and three. The first condition specifies the exact behavior of 

the component all over the system. The exact behavior of a component is specified not only as the 

messages it sends or receives (the states on its life line), but also as the interactions of the 

component with the other components. Therefore, for example if the component 𝐶1 is sending 

message 𝑆1 to component 𝐶2 in all of the scenarios, then it is considered as having the same 

behavior for component 𝐶1.  

For checking these conditions, the following definitions are required.  

Definition 26. Similarity of two vectors 

𝑆𝑖𝑚(𝑣𝑖𝑘, 𝑣𝑖𝑗) is defined as the similarity of two vectors 𝑣𝑖𝑘 and 𝑣𝑖𝑗. Vector 𝑣𝑖𝑘 shows the 

vector associated to process 𝑖 in MSC 𝑘. Two non-zero vectors are similar iff their size is the same 

and their ordered elements are the same. In other words:  

𝑖𝑓 𝑣𝑖𝑘 = (𝑒1𝑘, … , 𝑒𝑚𝑘) 𝑎𝑛𝑑 𝑣𝑖𝑗 = (𝑒1𝑗, … , 𝑒𝑧𝑗)  

then m=z and 𝑒𝑛𝑘 =  𝑒𝑛𝑗  ∀ 𝑛 ∈ {1, … , 𝑧}  

The devised algorithm for the detection of components with no EB is as follows in Algorithm 

4.I.  

Algorithm 4.I: Detecting component with no EB in component level 

Input: Graphs  

Output: List of components that can be omitted for behavioral modeling (components with no EB 

at component level) 

1. For each graph 𝐺  

2.    For each process 𝑝  

3.       Extract the send vectors 𝛿𝑝ℳ𝑖
 from all graphs 

4.       If 𝛿𝑝ℳ𝑖
= ∅ in all graphs 

5.           Report process 𝑝 as No EB Process 

6.         Break 

7.      End if 
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8.       If 𝛿𝑝ℳ𝑖
≠ ∅ in at most one graph 

9.           Report process 𝑝 as No EB Process 

10.         Break 

11.      End if 

12.       Extract the message labels for process 𝑝  

13.       Check the message labels for process 𝑝 in all other graphs 

14.       If the message labels are the same in graphs  

15.          Add component 𝑝 to similar components set SimilarM  

16.       End if 

17.    End for 

18. End for 

19. For each component 𝑝 in set SimilarM 

20.    Extract the send vectors 𝛿𝑝ℳ𝑖
 from the related graphs 

21.    Consider the send vector 𝛿𝑝ℳ𝑗
∶  ∀ ℳ𝑗𝜖ℳ  

22.    Compute 𝑆𝑖𝑚(𝛿𝑝ℳ𝑖
, 𝛿𝑝ℳ𝑗

) ∀ ℳ𝑗𝜖ℳ in SimilarM            

23.    If 𝛿𝑝ℳ𝑖
is similar to 𝛿𝑝ℳ𝑗

∶  ∀ ℳ𝑗𝜖ℳ (1≤ j≤ n) 

24.        Add component 𝑝 to similar components set SimilarS 

25.    End if  

26. End for  

27. End for  

28. For each component 𝑝 in set SimilarS 

29.     Extract the receive vector 𝛾𝑝ℳ𝑖
 from the related graphs 

30.     Consider the receive vector 𝛾𝑝ℳ𝑗
∶  ∀ ℳ𝑗𝜖ℳ 

31.     Compute 𝑆𝑖𝑚(𝛾𝑝ℳ𝑖
, 𝛾𝑝ℳ𝑗

) ∀ ℳ𝑗𝜖ℳ in SimilarS      

32.     If 𝛾𝑝ℳ𝑖
 is similar to 𝛾𝑝ℳ𝑗

∶  ∀ ℳ𝑗𝜖ℳ (1≤ j≤ n) 

33.         Add component 𝑝 to similar components set Similar  

34.         Report as No EB process 

35.     End if 

36. End for  
 

Starting from the first graph, we extract the send vector of each process in all the scenarios 

the process is involved in. If the send vector of the process is empty in all graphs (line 4) or the 

send vector of the process in non-empty in at most one graph (line 8), then the process is reported 

as a component that cannot emerge a new behavior in component level. These are satisfying 

conditions two and three. Based on the catalogue of emergent behaviors the main reason for a 

process to show a new behavior is the conditions in which it is sending a message to the other 
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processes. Therefore, if the process is not sending any message, it is always acting as a passive 

process and cannot emerge a new behavior by itself. Also, if the process is only sending a message 

in one of the scenarios of the system, it means that the process does not have any shared states in 

which it acts as an active process. Therefore, it cannot show an emergent behavior in the 

component level. These two conditions are checked at first to eliminate the components with the 

specified behavior before checking and extracting the other vectors for these components. 

If none of these conditions are satisfied, the message labels for the process are extracted in 

all graphs (scenarios). For each process, if the message labels are the same in all of the graphs, 

then the process is added to the set SimilarM (line 15). The message labels show the functionalities 

and the messages that a process sends and receives in each scenario of the system. The message 

labels can be interpreted as states of the process. If the message labels are the same in all scenarios 

that a component is involved in, then it is possible that the process behaves the same in all scenarios 

of the system (condition one). However, since the interactions are important in the behavior of a 

component in the system, we cannot be sure about the behavior of the component in terms of not 

having an emergent behavior. Therefore, the send and receive vectors of the component are 

checked against the other send and receive vectors in all other scenarios (lines). If the send vectors 

are similar to each other, and the receive vectors in all scenarios are similar to each other, then the 

component has the same behavior and functionality in all of the scenarios of the systems and it is 

reported as a component with no EB (line 34), since the send and receive vectors can represent 

what is sent to which process or received from each process respectively. The sender or receiver 

process has the same index as the index of the element in these vectors. An earlier version of this 

algorithm is published in [147].  
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4.3.2 Detect components with no EB in asynchronous communication 

4.3.2.1 Asynchronous communication style 

We have previously published this part in [148]. When we model the system in asynchronous 

communication in MSC, the components are considered as independent ones. It means that there 

is no control over the receive messages. Therefore, there is no wait function for the components 

when they accomplish their tasks in an MSC. Therefore, components may proceed to the next 

MSCs while the other ones are still executing the previous MSC [95]. This is implemented as wait 

functions or blocking send/receive functions in synchronous communication. In an MSC, 

asynchronousness means that last events of one component in an MSC is concatenated to its first 

event in the next MSC (in its hMSC) [37].    

Also, there is no control on the receive events of a component and only senders are 

considered for the events [37]. Therefore, causal orders such as 𝑟 → 𝑟 and 𝑠 → 𝑟 are not valid (𝑠 

and 𝑟 represent send and receive events on one component). In this communication style, only 

𝑟 → 𝑠 orders are valid. Therefore, we only are sure that the send message is sent after a receive 

message. But, the order of receiving two or more messages or sending a message with respect to a 

received message are not guaranteed. An example of these order are shown in the right side of 

Figure 6. The bold arrows show the asynchronous orders and other ones are the causal orders in 

synchronous style. The causal orders of asynchronous style are preserved in the synchronous style.  

4.3.2.2 Properties for detecting components with no emergent behavior  

Three conditions are explained in [37] where the implementation model is different from the 

scenario specification. First, one component has some shared states in receiving same events. 

Second, when the component has no control over its receiving messages. Third, the existence of 

non-local branching choices explained in [17]. The last condition is categorized in the catalogue 



 

65 

of emergent behaviors and more explanation can be found in Chapter Five. These differences may 

or may not cause an EB/IS and they should be analyzed based on the conditions specified in the 

EB Catalogue. Here, we only consider the first two conditions since we are investigating the issue 

in component level. Explanation can be found in next.  

4.3.2.2.1 Checking the first property: shared states 

The shared states have various definitions in the literature such as identical states [4]. We also 

provided the definitions for the shared states in the previous chapter. If the component has no 

shared states, it will not have an emergent behavior. However, we should check whether the 

component has no shared states or if it has, the senders are also the same and the message labels 

that the component sends after its shared states are the same. The details of these situations are 

explained in Chapter Five.   

4.3.2.2.2 Checking the second property: order of received messages  

In this part, the local visual order <𝑝 and semantic causality of the events should be analyzed. 

Based on the timing order of the messages and its meaning in an MSC (higher message occurs 

sooner), a causal-order graph for each MSC can be defined to show the order of the appearance of 

all the events [37]. However, this order is not reserved in the implementation in asynchronous 

communication style. The reason is the lack of control on the receive events. In Figure 6, the 

interactions between two components is shown. There are four messages which are shown by the 

send and receive events 𝑠 and 𝑟 on each of the components 𝐶1 and 𝐶2. The causal order graph for 

this figure (based on definitions in [37]) is shown in the right side of Figure 6. The order of the 

implementation is shown with bold arrows.  

One other concept is semantic causality [4] which is associated to message contents and their 

semantics. For example, “inserting a card” is the semantic cause of “entering pin” from an ATM 
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machine which is shown by “insert card” →” entering pin”. In other words it means the 

occurrence of the second event depends on the first event. Semantic causalities should be defined 

by the domain expert and depend on the application.   

Consider the events of component 𝐶1 in Figure 6: two send events 𝑠2 and 𝑠4 and two receive 

events 𝑟1 and 𝑟3. If semantic causality like 𝑠2 → 𝑠4 is defined, we will not have EB when the order 

of receive messages change. It means the component has control on sending its messages. If we 

do not have semantic causalities, EB can occur. For example, if 𝑟3 is received sooner than 𝑟1, 𝐶1 

can send 𝑠4 before 𝑠2. The other case is lack of a semantic causality between send events (but 

orders like 𝑟1 → 𝑠2 are reserved). Here, the sending order is forced after a message is received. 

However, there is no control over the receive messages. Therefore, if the situations are satisfied, 

an EB can occur because the send orders may change.    

Detecting the existence of an EB can be accomplished by analyzing the semantic and order 

causality for the events of each component. These parts are previously published in [148]. 

 

Figure 6. Events of a component and its corresponding causal order graph [148] 

We define the causal order for each component as the following.  

Definition 27. Causal order 
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The causal order of process 𝑝 in MSC ℳ is shown by a vector 𝐶𝑎𝑢𝑠𝑎𝑙𝑂𝑝ℳ =

(𝑐𝑎𝑂1, … , 𝑐𝑎𝑂𝑛) which is the state vector of the process 𝛽𝑝ℳ (Definition 17 chapter 3) when the 

𝑠 or 𝑟 is added to each entry.   

4.3.2.3 Algorithms  

Two algorithms are devised to check each of the two properties explained above. The first 

algorithm checks the shared states and the second algorithm applies the second technique for each 

component. If the component is printed as the output of Algorithm 4.III, then it is a safe component 

and may not emerge a new behavior in asynchronous communication style in the component level.  

Algorithm 4.II: Checking components for shared states 

Input: state vector 𝛽𝑝ℳ, state transition vector 𝜑𝑝ℳ, send vector 𝛿𝑝ℳ 

Output: Components with no emergent behavior in first category  

1. for each process 𝑝 

2.     𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠𝑝ℳ ← 𝐹𝑖𝑛𝑑𝑆ℎ𝑎𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠(𝛽𝑝ℳ) 

3.     if (𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒(max(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠𝑝ℳ)) ∈ 𝛿𝑝ℳ 

4.         if (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑆𝑒𝑛𝑑𝑒𝑟𝑠(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠𝑝ℳ)) 

5.             Remove(𝑝) 

6.         end if 

7.         if (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙𝑠(𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒(𝑚𝑎𝑥(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠𝑝ℳ)))) 

8.             Remove(𝑝) 

9.         end if 

10.         else 

11.              add 𝑝 to 𝑑𝑎𝑡𝑎 

12.     end if 

13. end for 

14. Print (𝑑𝑎𝑡𝑎) 

 

The output of Algorithm 4.II is used as the input of Algorithm 4.III to check the causalities 

for the components. 

Algorithm 4.III: Checking components for causality 

Input: 𝑑𝑎𝑡𝑎 from Algorithm 1, semantic causalities 𝐶𝑎𝑢𝑠𝑎𝑙𝑆𝑝ℳ, causal order 𝐶𝑎𝑢𝑠𝑎𝑙𝑂𝑝ℳ, Send  

and receive vectors 𝛿𝑝ℳ and 𝛾𝑝ℳ 
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Output: Components with no emergent behavior in second category  

1. for all components 𝑝 ∈ 𝑑𝑎𝑡𝑎  

2.     if (𝐶𝑎𝑢𝑠𝑎𝑙𝑆𝑝ℳ = ∅)  

3.         Remove (𝑝)  

4.     end if 

5.     if (𝐶𝑎𝑢𝑠𝑎𝑙𝑂𝑝ℳ ∈ 𝐶𝑎𝑢𝑠𝑎𝑙𝑆𝑝ℳ) then 

6.          Print (𝑝)  

7.     end if 

8.     if (𝛿𝑝ℳ ∈ 𝐶𝑎𝑢𝑠𝑎𝑙𝑆𝑝ℳ) then 

9.           Print (𝑝)  

10.     else if ((𝛿𝑝ℳ ∉ 𝐶𝑎𝑢𝑠𝑎𝑙𝑆𝑝ℳ) && ((𝛾𝑝ℳ → 𝛿𝑝ℳ) ∈ 𝐶𝑎𝑢𝑠𝑎𝑙𝑆𝑝ℳ)) 

11.           Remove(𝑝) 

12.     end if 

13. end for 

14. Print (𝑑𝑎𝑡𝑎) 
 

In the first step of Algorithm 4.II, we find all shared parts among all of the state vectors of 

each component. As explained previously, one component can have multiple sets of shared states 

in various MSCs it participates in (line 2). The next step is to check the next state of the last shared 

states for these sets (line 3). The component can emerge a new behavior if in these states (next 

state after its shared states) it is a sender and there are different senders for its shared states. 

Therefore, it should be removed (lines 4-5). If the senders are not different in these states but the 

message labels it sends in these states are not the same, it shows a branching choice (explained 

more in next chapter) and can have an EB and should be removed (line 8). The other components 

are sent for further analysis in the second algorithm.  

The causalities are checked in Algorithm 4.III. In case of lack of a semantic cause or lack of 

a semantic cause for send events an EB can occur. These components should be removed (line 2 

and line 10-11). Else, if it has semantic causalities defined between its send messages or causal 

orders of the component are part of its semantic causalities set, it will not have an EB and is printed 

as a safe component (lines 5-9). The output of the algorithm is the list of components with no EB 
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in asynchronous communication. We have published another version of the algorithms as well as 

the methodology in [148]. 

4.4 Summary 

We use a pre-processing phase in order to find the components that will not show an emergent 

behavior in the component level. This will be a helpful stage in other researches as well, since it 

reduces the number of components that require behavioral modeling. In this chapter, we have 

explained the algorithms for the detection of such components in synchronous and asynchronous 

communication styles. One application of this approach is detecting neutral agents in a network of 

heterogeneous software components that we have published in [149].    
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 Catalogue of emergent behaviors and implied scenarios 

5.1 Introduction 

In this chapter, we explain the catalogue of emergent behaviors and implied scenarios. We have 

studied the common problems in DSS and MAS from the literature to find the common EB and IS 

that exist in these systems. In this thesis, we refer to the component level unexpected behaviors as 

Emergent Behaviors (EB) and Implied Scenarios (IS) are used for system level unexpected 

behaviors. The occurrence of EB and IS has different reasons and various conditions must be 

satisfied for the occurrence of an EB or IS in the system. Based on these criteria, we have classified 

each of the EB and IS into four sub-classes which are explained in detail in this chapter. Through 

the classification of EB/IS, we have introduced a new type of EB that can happen in MAS. This 

type is ignored in other cases, since the interactions among the agents are not considered. The 

detection of this type of EB cannot be done with the existing methodologies. 

The catalogue of emergent behaviors and implied scenarios can help to have a general 

framework for the comparison of different detection approaches. This comparison framework 

contains the number of common types that can be detected in each category, and the process of 

behavioral modeling required for the detection of component and system level unexpected 

behaviors, as well as the computation and the scalability of the algorithms developed for each 

methodology. In the literature, there is no comparison in terms of the types of EB/IS that each 

methodology can detect. Most of the comparisons are on the computational costs. Even there are 

critics on the works that claim to detect all of the EB/IS that exist in a system [41].  

Another advantage of the catalogue of EB/IS is providing solution repositories for each 

detected problem which is a flaw of the existing works [37]. General (Not application specific) 

solutions can be provided only when the origins of the problem are investigated. Since in this 
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catalogue various reasons and conditions of the occurrence of EB/IS are studied, developing 

solutions and general guidelines is possible. These conditions are explained for each class of 

emergent behavior and implied scenario separately.  

The rest of the chapter is dedicated to the common problems in component level and system 

level. In each class, we have explained the specification of each separate sub-classes followed by 

the reasons of happening of each of them.  

5.2 Component level emergent behaviors 

The component level emergent behavior (CLEB) class is divided into four sub-classes in order to 

specify the conditions that must be satisfied for the occurrence of each type. The four classes are:  

1. CLEB-I: Shared states  

2. CLEB-II: Respond to different components 

3. CLEB-III: Local branching choice 

4. CLEB-IV: Race conditions 

In the first class, some states of one component are identical (from the point of view of the 

component) in different scenarios of the system. These states can be referred as shared states, since 

they are some states which exist in multiple scenarios. The introduction of the second class is one 

of the contributions of our work [150]. In this class, the component can emerge a new behavior 

when it has shared messages coming from various agents, however, the process has the option to 

send the response to each of the senders. In this class, the interaction of the software agents is 

important. The third class specifies when the component has the option to choose between various 

branches. In other words, each of the next states become optional for the component. In the last 

class, we specify a case that is referred to as race conditions in this catalogue. The specification 

and details of each class are presented in this chapter.  
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5.2.1 CLEB-I: Shared states  

In synthesizing the behavioral model of a component [4, 151], the states of one component might 

be shared in various scenarios. These states are merged as one series of states starting from the 

initial state of the component, when merging the behavior of one component from different 

scenarios. We refer to these states as shared states of one component in this work. The next states 

after these shared states in each scenario create branches in the behavioral model of the component. 

These branches make the behavior of one component nondeterministic. Therefore, in model 

checking, there are different techniques to make this behavior deterministic and then verify 

whether a component can show an emergent behavior [13]. However, not all of the branches and 

shared states for one component can lead to an emergent behavior in the system. The specifications 

and conditions that can lead to an emergent behavior in the existence of shared states are defined 

in this section. In general, sending a message from the component that has shared states can lead 

to a potential emergent behavior; since the process have the freedom of sending a message, if no 

restriction condition is applied on its sending messages. Therefore, if sending of the messages in 

these shared states is not controlled, the component may emerge a new behavior or forces a 

message to other components that can cause an implied scenario.  

We refer to these types of emergent behaviors as CLEB-I and name it as shared states in 

component level, because process 𝑝 may show an unexpected behavior when it has some shared 

states in two or more of the MSCs that it is involved in. In this section, the details of this type of 

emergent behavior caused by shared states of one process are explained in detail.  

NOTE: In these cases, we consider the synchronous communications. The asynchronous 

communication or the case that the receive message is not received in the specified order are not 
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considered here. The change in the order of the receiving messages are studied in next sections 

(system level). 

5.2.1.1 Specification  

We have defined the shared states of one process in Definition 22, section 3.3.2. This definition is 

repeated here.  

Definition 22. Shared states of one process over two or more of its state vectors 𝛩𝑝 

We define the shared (similar) states of process 𝑝 over state vectors 𝛽𝑝ℳ1
= (𝜏1, 𝜏2, … , 𝜏𝑧), 

…,  and 𝛽𝑝ℳn
= (𝜏′

1, 𝜏′
2, … , 𝜏′

𝑦)  of MSCs ℳ1, …, and ℳn in 𝒢𝑝 as 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) such that 

𝛩𝑝 is the set that 𝛩𝑝 ⊆ 𝛽𝑝ℳi
 where 𝑖 ∈ {1, … , 𝑛}. Then we have the following: 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) =

(𝜏𝑤, … , 𝜏𝑥) = ⋯  = (𝜏′
𝑎, … , 𝜏′

𝑏) and 𝜃𝑖 = 𝑒 ∈ 𝐸′
𝑝. 

Process 𝑝 may show an unexpected behavior if at least one of the following conditions is 

satisfied in at least one of the MSCs ℳ1, …, or ℳn. 

Case I: 𝑓𝑜𝑟 𝜏𝑥+1 ∈ 𝛽𝑝ℳ1
, … , 𝜏′

𝑏+1 ∈ 𝛽𝑝ℳ𝑛
 𝑤𝑒 ℎ𝑎𝑣𝑒 (𝜏𝑥+1 ∈ 𝑆) 𝑎𝑛𝑑/𝑜𝑟  (𝜏′

𝑏+1 ∈ 𝑆). 

Case II: 𝑓𝑜𝑟 𝜃𝑛 ∈ 𝛩𝑝 𝑤𝑒 ℎ𝑎𝑣𝑒 𝜃𝑛 ∈ 𝑆. 

Case III: 

𝑓𝑜𝑟 𝜃𝑖 < 𝜃𝑧 ∈ 𝛩𝑝 𝑤𝑒 ℎ𝑎𝑣𝑒 𝜃𝑧 ∈ 𝑆 𝑎𝑛𝑑 ∃ ℳ𝑥 𝑎𝑛𝑑 ℳ𝑦 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜇(𝜃𝑧) =

𝑝! 𝑞𝑖(𝑚′) 𝑖𝑛 ℳ𝑥  𝑎𝑛𝑑 𝜇(𝜃𝑧) = 𝑝! 𝑞𝑗(𝑚′) 𝑖𝑛 ℳ𝑦 And 𝑞𝑖 ≠ 𝑞𝑗. 

These conditions determine various situations that can lead to emergent behavior CLEB-I, 

which is caused by shared states of one process in two or more MSCs. Case I explains the situation 

that the immediate state of process 𝑝 after its shared states belongs to the send events. Figure 7 

shows a sample of this case. The Gold messages in this figure are the shared states for component 

C1 and the red one is the case explained in Case I.  
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Figure 7. CLEB-I Case I 

Case II defines the situation that process 𝑝 has a send interaction in its last element of its 

shared states. Either of these situations can lead to an emergent behavior; since 𝑝 can send a 

message in these states, resulting in a confusion of the MSC that other processes are accomplishing 

their functionalities. This case is shown in Figure 8. In this figure, the shared states are shown with 

Gold arrows for component C1. The red arrow is Case II that can cause an emergent behavior.  

 

Figure 8. CLEB-I Case II 

The third condition, case III, expresses a situation that process 𝑝 sends the same message in 

one of its shared states to different processes in at least two of the MSCs. A simple set of MSCs 
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showing this case is represented in Figure 9. In these pictures, the Gold arrows (m1, m, and m2) 

are the shared states of component C1 and the red one with message label m is the one that is 

explained in Case III.  

 

Figure 9. CLEB-I Case III 

5.2.1.2 Causes 

The main cause of the occurrence of CLEB-I is that the process sends a message in or after its 

shared states.  

Consider a process 𝑝 that has some shared states in some of the MSCs it is involved in. If 

there is no condition on sending the specific messages in the definitions, 𝑝 can send this message 

whenever the situations are satisfied. In other words, it can send a message whenever it goes to the 

defined states that it can send a message. Therefore, it is probable that processes are performing 

their tasks in another MSC, but, because process 𝑝  is active and has the option to send a message, 

it proceeds its actions as if it is continuing in ℳ. This difference, makes an unexpected behavior 

that 𝑝 is caused in the system and we refer to it as CLEB-I.   
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5.2.2 CLEB-II: Respond to different components 

This emergent behavior occurs when an agent 𝑝 loses the information about its receiving 

interactions, when the same messages are sent to 𝑝 by different agents in various MSCs and bring 

the agent into the same state (a shared state). In this situation, the agent 𝑝 has some shared states 

in these MSCs. If 𝑝 misses the information about its communications (e.g. senders or receivers of 

its actions) in these MSCs, it can be confused which MSC to proceed, in or after its shared states. 

Therefore, agent 𝑝 may have started to perform its tasks in ℳ𝑖, but it can continue its actions in 

another MSC ℳ𝑗 . This case happens if agent 𝑝 is a sender of a message in some states in these 

two MSCs. In this case, a new scenario is implied to the system, which is caused by a confusion 

in actions of agent 𝑝 in the two MSCs ℳ𝑖 and ℳ𝑗 . We refer to this emergent behavior as CLEB-

II. 

5.2.2.1 Specification  

Consider process 𝑝 which is receiving some messages in MSCs ℳi and ℳj in its high level 

structure 𝒢p. Let 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) = (𝜏𝑤, … , 𝜏𝑥) = (𝜏′
𝑎 , … , 𝜏′

𝑏) be the shared states of process 𝑝 

in these MSCs and 𝜃𝑖 = 𝑒 ∈ 𝐸𝑝. Emergent behavior CLEB-II can occur if we have  

Condition I: ∃𝑚 ∈ 𝑀 𝑎𝑛𝑑 ∃𝜃𝑖 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇(𝜃𝑖) = 𝑝? 𝑞𝑖(𝑚) 𝑖𝑛 ℳ𝑖  𝑎𝑛𝑑 𝜇(𝜃𝑖) =

𝑝? 𝑞𝑗(𝑚) 𝑖𝑛 ℳ𝑗   And 𝑞𝑖 ≠ 𝑞𝑗 . 

And at least one of the following cases are satisfied:  

Case I:  

𝑓𝑜𝑟 𝜏𝑥+1 ∈ 𝛽𝑝ℳ𝑖
, 𝜏′

𝑏+1 ∈ 𝛽𝑝ℳ𝑗
 𝑤𝑒 ℎ𝑎𝑣𝑒 (𝜏𝑥+1 ∈ 𝑆) 𝑎𝑛𝑑/𝑜𝑟  (𝜏′

𝑏+1 ∈ 𝑆). 

Or 𝑓𝑜𝑟 𝜃𝑛 ∈ 𝛩𝑝 𝑤𝑒 ℎ𝑎𝑣𝑒 𝜃𝑛 ∈ 𝑆. 
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Case II: 𝑓𝑜𝑟 𝜃𝑖 < 𝜃𝑧 ∈ 𝛩𝑝 𝑤𝑒 ℎ𝑎𝑣𝑒 𝜃𝑧 ∈ 𝑆 𝑎𝑛𝑑  𝜇(𝜃𝑧) = 𝑝! 𝑞𝑖(𝑚′) 𝑖𝑛 ℳ𝑖  𝑎𝑛𝑑 𝜇(𝜃𝑧) =

𝑝! 𝑞𝑗(𝑚′) 𝑖𝑛 ℳ𝑗. 

Case III: 𝑓𝑜𝑟 𝜃𝑖 < 𝜃𝑧 ∈ 𝛩𝑝 𝑤𝑒 ℎ𝑎𝑣𝑒 𝜃𝑧 ∈ 𝑆 𝑎𝑛𝑑  𝜇(𝜃𝑧) = 𝑝! 𝑞𝑥(𝑚′) 𝑖𝑛 ℳ𝑖  𝑎𝑛𝑑 𝜇(𝜃𝑧) =

𝑝! 𝑞𝑦(𝑚′) 𝑖𝑛 ℳ𝑗 And 𝑞𝑥 ≠ 𝑞𝑦. 

The Condition I defines that, there is a shared state for process 𝑝 in the two MSCs, in which, 

𝑝 has same interactions of “receive” type with different processes 𝑞𝑖 and 𝑞𝑗. Both communications 

cause process 𝑝 to go into same states. In Case I, we refer to a situation that the last shared state 

𝜃𝑛 of process 𝑝, or its immediate next state, in one or both MSCs, are a send event. This case is 

shown in Figure 10. Similar to the previous figures, the Gold arrows show the shared states and 

the red ones are the specific conditions defined in this case. The red message in MSC1 shows the 

case that the last shared state is of Send type, and the red one in MSC2 demonstrates the case when 

the immediate next state after the shared states is of type Send.  

 

Figure 10. CLEB-II Case I 

Case II defines that if there is a send event in the shared states of process 𝑝 in the two MSCs 

(𝜃𝑧) that comes after the state found in Condition I (𝜃𝑖), and the receivers are processes 𝑞𝑖 and 𝑞𝑗 
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(𝑞𝑖 and 𝑞𝑗 are the same processes in condition I), an implied scenario CLEB-II can exist. Processes 

𝑞𝑖 and 𝑞𝑗 are the senders of same messages to process 𝑝 that brings process 𝑝 in its shares states, 

in MSCs ℳi and ℳj, respectively. This send event from process 𝑝, is mostly in response to the 

same message that it has received from processes 𝑞𝑖 and 𝑞𝑗. We have illustrated this case in Figure 

11. The red arrow represents the state explained in this case.  

 

Figure 11. CLEB-II Case II 

Finally, Case III specifies a general situation of Case II. If there is a send state 𝜃𝑧 in 𝛩𝑝 that 

comes after the state 𝜃𝑖 (found in Condition I) and the receivers are processes that are different 

from those who brought 𝑝 into its shared states (processes 𝑞𝑖 and 𝑞𝑗), an implied scenario can 

occur. In Case II, we refer to a situation that agent 𝑝 confuses when sending a message to 𝑞𝑖 and 

𝑞𝑗, as a response to the request/messages of its previous interactions. However, Case III specifies 

that even when 𝑝 sends a message to two other processes, other than 𝑞𝑖 and 𝑞𝑗 that have sent the 

same messages to 𝑝, it still may show an emergent behavior. This is shown in Figure 12.  
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Figure 12. CLEB-II Case III 

5.2.2.2 Causes 

In CLEB-II, the reason of having an implied scenario exists in the previous shared states of process 

𝑝. Since process 𝑝 is responding to one of its previous interactions (received messages), it should 

have the information about the sender, or a track to the sender of a message. However, if process 𝑝 

does not have this information, it may respond to some processes other than the ones it is supposed 

to send a message, in or after its shared states. This is not in accordance to any of the MSCs, or the 

MSC that the rest of processes are following. Consequently, it can cause an emergent behavior in 

the system.  

5.2.3 CLEB-III: Local branching choices 

The emergent behavior CLEB-III is a local branching choice, in which one process has the option 

to choose between two scenarios of the system. For this type of emergent behavior, we investigate 

the high level structure  𝒢𝑝 of a process in the whole system, by analyzing its behavior in the 

hMSC. If the process is an active process 𝑝𝑎ℳ (sends the first message in the scenario, without 

waiting for other processes to change its states (by receiving a message)) in various branches of 

an hMSC, it should follow certain conditions applied to the starting states in each branch in order 
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to prevent an emergent behavior. Also, the presence of other active processes in these SDs can 

lead to SLIS-III. In addition, if the process has shared states in these SDs, it should be considered 

for CLEB-I as well. This case is referred to as local branching choice, since only one process 

triggers the choice in the branch of the hMSC.  

5.2.3.1 Specification  

Consider the hMSC of the system 𝒢 = (𝑃, 𝑀, 𝓜, 𝑉, 𝐸𝑑, ∁, 𝐹0, 𝐹𝑓) that contains two branches 𝒢𝑖 =

(𝑀𝑖, 𝓜𝑖 , 𝑉𝑖, 𝐸𝑑𝑖, ∁𝑖, 𝐹0𝑖
, 𝐹𝑓𝑖

) and 𝒢𝑗 = (𝑀𝑗 , 𝓜𝑗 , 𝑉𝑗 , 𝐸𝑑𝑗 , ∁𝑗 , 𝐹0𝑗
, 𝐹𝑓𝑗

).  

Let process 𝑝 ∈ 𝑃 in hMSC has high level structure 𝒢𝑝 = (𝑀𝑝, 𝓜𝑝, 𝑉𝑝, 𝐸𝑑𝑝, ∁𝑝, 𝐹0𝑝
, 𝐹𝑓𝑝

). 

The following conditions should be satisfied that CLEB-III occurs:  

When considering high level structure 𝒢𝑝, process 𝑝 has interactions in both branches 𝒢i and 

𝒢j.  

Process 𝑝 be an active process in at least one of the branches 𝒢i and 𝒢j (𝓜𝑖  𝑎𝑛𝑑/𝑜𝑟 𝓜𝑗 ∈

𝓜𝑝𝑎 ⊆ 𝓜). 

If the process is an active process in at least one of its branches, it may follow a different 

branch, while it is supposed to execute another branch with other processes in the system. On the 

other hand, if the process is always a receiver process (passive) in these branches, there is no 

chance that it can cause an emergent behavior by its behavior.  

The general case of CLEB-III is when we have more than two branches in the high level 

execution of the scenarios of the system. An example of this CLEB-III is demonstrated in Figure 

13. At the left side of the figure, a sample high level structure (hMSC) of the system is shown. The 

branch in the system is a choice between MSCs M2 and M3. As it is shown in the right side of the 

figure, process p has functionalities in both M2 and M3. However, in M2, it acts as an active 
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process. Therefore, when the system comes to the branch, there is a chance that other processes 

are executing MSC3, while process p can start with sending a message in MSC2, if there is no 

condition for it to be satisfied. This is shown in red in this figure.  

 

Figure 13. CLEB-III 

5.2.3.2 Causes  

If the process is an active process in at least one of its branches – it is active in at least one of the 

MSCs that make a branch in its high level structure – it may follow a different branch, while it is 

supposed to execute another branch with other processes in the system. This happens because 

when the process is active, and there is no restriction on the conditions it can start its functionalities 

in the next MSC, it will not wait for other processes and it is not aware of the state of the whole 

system. Therefore, it can choose between any of the branches, which can cause an emergent 

behavior. On the other hand, if the process is always a receiver process (passive) in these branches, 

there is no chance that its behavior causes an emergent behavior of type CLEB-III, since it does 

not have the option to continue its actions. To avoid this emergent behavior, the process should 

follow some conditions on the MSCs in which it acts as an active process.     
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5.2.4 CLEB-IV: Race conditions  

Race condition in our research field is referred to as accessing or sending a message by various 

processes, while the order of the receipt of the message is important for the receiver process. It can 

cause a change in the functionalities/behaviors of the receiver process based on the received 

message [9]. In literature, race condition is defined as a condition in which the order of the events 

is not guaranteed in practice [152].  

Suppose that processes 𝑝, 𝑞, 𝑟 ∈ 𝑃 have interactions with each other in an MSC ℳ. If process 

𝑝 has at least one receive message from each of the other processes 𝑞 and 𝑟, and there is no control 

over the order of receive messages for process 𝑝 with respect to its specification, a race condition 

can occur. In this situation the order of the messages and the agents’ interactions that were 

specified in the system specifications in MSC ℳ is not preserved and therefore it can result in an 

EB. However, not all of the changes in the received order of messages can result in CLEB-IV. The 

first situation is when there is a change in the order of receiving messages for process 𝑝 which is 

not in the events set of process 𝑝 in the set of MSCs of this process. If this situation is satisfied, 

CLEB-IV can occur.  

The other case is more restrictive and is related to the behavior of process 𝑝 and its 

interactions with other agents. In this case, the agents that process 𝑝 interacts with should also be 

preserved in the change of the order of its received messages, in order to make sure that 𝑝 has no 

EB of type CLEB-IV.  

5.2.4.1 Specification 

Suppose that processes 𝑝, 𝑞, 𝑟 ∈ 𝑃 have interactions with each other in an MSC ℳ. If process 𝑝 

has at least one receive message from each of the other processes 𝑞 and 𝑟, and there is no control 

over the order of receive messages for process 𝑝 with respect to its visual order <𝑝, a race condition 
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can occur. In this situation the visual order <𝑝 in MSC ℳ is not preserved. There are two cases in 

the following that specify this situation. If either one of these cases are satisfied, an implied 

scenario CLEB-IV can occur. 

Case I: Let 𝛾𝑝ℳ = (𝑏1, … , 𝑏𝑟 , … , 𝑏𝑞 , … , 𝑏𝑛) be the receive vector of process 𝑝 in an MSC 

ℳ. The elements 𝑏𝑟 and 𝑏𝑞 represent the set of events that 𝑝 receives from processes 𝑟 and 𝑞 

respectively. Let 𝛾𝑝ℳ
′ = (𝑏1, … , 𝑏𝑞 , … , 𝑏𝑟 , … , 𝑏𝑛) be the new receive vector for process 𝑝, where 

the order of 𝑏𝑟 and 𝑏𝑞 has changed, compared to 𝛾𝑝ℳ. We have 𝛽𝑝ℳ = (∪ (𝛿𝑝ℳ , 𝛾𝑝ℳ), <𝑝) as 

the state vector of 𝑝 and 𝛽𝑝ℳ
′ = (∪ (𝛿𝑝ℳ , 𝛾𝑝ℳ

′), <𝑝) as the new state vector of process 𝑝.  

If 𝛽𝑝ℳ
′
 is not in the set of 𝛽𝑝 =∪ℳ (𝛽𝑝ℳ), then process 𝑝 can cause CLEB-IV because of a 

change in its receive orders: 

𝑖𝑓 ∃𝑚, 𝑚′ ∈ 𝑀;  𝑒, 𝑒′ ∈ 𝐸𝑝; 𝜇(𝑒), 𝜇(𝑒′) ∈ ∑𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇(𝑒) = 𝑝? 𝑞(𝑚) 𝑎𝑛𝑑 𝜇(𝑒′)

= 𝑝? 𝑟(𝑚′) 𝑖𝑛 ℳ′ 𝑎𝑛𝑑 ¬( 𝛽𝑝ℳ
′ ⊆ 𝛽𝑝)  

𝑡ℎ𝑒𝑛 𝛽𝑝ℳ
′ is an emergent behavior 𝑋 for 𝑝. 

This case indicates that a change in the order of receiving messages for process 𝑝 should be 

in the events of process 𝑝 in other MSCs, or receiving of such messages should be controlled, in 

order to prevent an emergent behavior. This is presented in Figure 14. The left side of the figure 

shows MSC M which is in the system specifications. In the right hand side, there is an MSC that 

is implied to the system because of a change in the order of the message that are received by 

process P. The only case that may prevent having such an MSC is to have MSC implied in the 

specifications of the system.  
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Figure 14. CLEB-IV Case I 

Case II: Let 𝛾𝑝ℳ
′ = (𝑏1, … , 𝑏𝑞 , … , 𝑏𝑟 , … , 𝑏𝑛) be a new receive vector for process 𝑝, where 

the order of 𝑏𝑟 and 𝑏𝑞 has changed, compared to 𝛾𝑝ℳ and ∃ℳ′ ∈ 𝓜 such that 𝛽𝑝ℳ
′ ⊆ 𝛽𝑝. Let 

𝐺𝑝ℳ = (𝑉𝑝ℳ , 𝑬𝑝ℳ , 𝒇) be the associated interaction graph for receive vector 𝛾𝑝ℳ and state vector 

𝛽𝑝ℳ in ℳ. Consider 𝐺𝑝ℳ
′ = (𝑉𝑝ℳ

′, 𝑬𝑝ℳ
′, 𝒇′) as the associated interaction graph for receive 

vector 𝛾𝑝ℳ
′ and state vector 𝛽𝑝ℳ

′
 in ℳ′. We define 𝑛𝑞

′, 𝑛𝑟
′ ∈ 𝑁𝑝ℳ

′ as the corresponding nodes 

in 𝐺𝑝ℳ
′
, for the states of process 𝑝 that receive messages from processes 𝑞 and 𝑟, respectively. If 

𝐺𝑝ℳ
′
 is not in the set of interaction graphs of process 𝑝, 𝐺𝑝 = ∪ 𝐺𝑝ℳ, then 𝛽𝑝ℳ

′ = (∪

(𝛿𝑝ℳ , 𝛾𝑝ℳ
′), <𝑝) is an emergent behavior CLEB-IV.  

Case II defines more restrictive criteria that a process can have a behavior that leads to 

implied scenario CLEB-IV. Other than the new receive vector in the states of process 𝑝, the state 

transition vectors should be considered as well; to check whether or not a process can lead to 

CLEB-IV and show an emergent behavior.  

In these cases, a change in the order of states 𝑏 and 𝑏′, resulted from communications with 

processes 𝑞 and 𝑟, in the receive states of process 𝑝, creates a new receive vector 𝛾𝑝ℳ
′. The 𝛾𝑝ℳ

′ 



 

85 

can exist in the state vectors of 𝑝 in another MSC ℳ′. However, the communicating processes 

associated to states 𝑏 and 𝑏′ in ℳ′, may be different, namely, processes 𝑦 and 𝑧. Therefore, the 

two state vectors 𝛽𝑝ℳ and 𝛽𝑝ℳ
′
, are not considered as similar state vectors when considering their 

associated state transition vectors 𝜑𝑝ℳ and 𝜑′
𝑝ℳ; because their communicating processes for these 

two states (𝑏 and 𝑏′) are different. In this situation, although the state vectors in the two MSCs are 

the same, process 𝑝 can still show an emergent behavior, because of a difference in its state 

transition vectors. These conditions are shown in Figure 15. The two MSCs M1 and M2 are the 

legal MSCs of the system. M1 represents the receipt of messages m1 and m2 of process P from 

processes Q and R respectively. If the order of the receipt of the message m1 and m2 changes and 

this new receive vector exists in the legal vectors of process P, we still cannot be sure about not 

having an implied scenario. As it is shown, this change in the order of receipt of m1 and m2 is 

allowed in M2. However, the senders are processes Y and Z which are different from Q and R. 

Therefore, this change in the order of receiving of messages can cause an implied scenario, as it is 

shown in MSC implied in Figure 15. These changes are shown in red in this MSC.  
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Figure 15. CLEB-IV Case II 

5.2.4.2 Causes 

The change in the received messages of one process can change its behavior, since it is acting 

based on the received events. Therefore, the changes in the received events should be controlled 

to certify if the change of events on a process causes its behavior acceptable or not. This change is 

caused by a race condition. A race condition can be interpreted as the race between senders to send 

a message to the receiver agent. For example, in a web service application, there can be a race 

between various agents to send requests to the server agent. The result will change based on the 

messages received by the agent, since it will follow the next interactions based on the events it has 

received. However, not always care is taken to include these situations. For example refer to a case 
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of intelligent agents for traffic and congestion control. A race condition in this case can increase 

the heavy traffic problem and can result in false changes in traffic lights. 

5.3 System level implied scenarios 

The system level implied scenario (SLIS) class is divided into four sub-classes in order to specify 

the conditions that must be satisfied for the occurrence of each type. The four classes are:  

1. SLIS-I: Shared interactions  

2. SLIS -II: Behavior combination 

3. SLIS -III: Non-local branching choice 

4. SLIS -IV: Asynchronous concatenation 

In the first class, some interactions between a number of components are the same and 

repeated in different scenarios of the system. In the second class, the behavior of various 

components from different MSCs can be combined into one MSC, which does not exist. In other 

words, in the execution time, the components may accomplish their functionalities from different 

MSCs. Consequently, a new scenario can be implied to the system. The third class specifies a case 

in which there is a branch in the hMSC of the system. The processes that can decide on which 

branch to follow next, are not the same. This can cause an SLIS in the system. Finally, the 

asynchronous concatenation of MSCs can bring an issue to the system, in which components will 

not wait for other components to finish their functionality in one MSC. Since there is no blocking 

or wait function, the components may executing different MSCs, although they have started the 

same MSC at the same time. The specification and details of each class are presented in this 

chapter. 



 

88 

5.3.1 SLIS-I: Shared interactions 

This type of implied scenario can be considered as an extension to CLEB-I, since it deals with the 

shared states and interactions between components. In this class, there might be some shared 

interactions (shared states of some components that are communicating through the same states in 

various scenarios) between two or more components in various scenarios of the system. These 

interactions can be considered as a part of an interaction graph that is shared in various interaction 

graphs of the system. If the behavior of at least one agent in these interactions is nondeterministic, 

an implied scenario may occur.  

5.3.1.1 Specification  

To specify SLIS-I, the following definitions are required.  

Definition 1. Joint shared states 𝛩𝑝𝑞 (shared states between two processes in MSCs ℳ𝑀𝑢𝑡) 

Suppose that we have shared states vector 𝛩𝑝 = (𝜃1, … , 𝜃𝑛) for process 𝑝 and 𝛩𝑞 =

(𝜃′
1, … , 𝜃′

𝑚) as the shared states vector of process 𝑞 in ℳ𝑀𝑢𝑡 MSCs. We define the joint shared 

states 𝛩𝑝𝑞 for two processes 𝑝 and 𝑞 in a set of MSCs ℳ𝑀𝑢𝑡 as the set of their interactions that 

appears in all MSCs of ℳ𝑀𝑢𝑡 and follows the same visual order ((∪ { <𝑝, <𝑞)  ∪ 𝐶) as the visual 

orders of processes 𝑝 and 𝑞 in these MSCs. The joint shared states is 𝛩𝑝𝑞 = {𝑃𝑝𝑞 , ℳ𝑀𝑢𝑡 , 𝛩𝛩, 𝐶𝑝𝑞}, 

where: 

𝑃𝑝𝑞 shows the set of interacting processes in 𝛩𝑝𝑞 (𝑝 and 𝑞). 

ℳ𝑀𝑢𝑡 is the set of MSCs that 𝑝 and 𝑞 have mutual shared states. 

𝛩𝛩 = {𝛩𝑝, 𝛩𝑞} is the set of shared states of 𝑝 and 𝑞 in MSCs ℳ𝑀𝑢𝑡. ∀𝜃𝑖 ∈ 𝛩𝑝 we have 

𝜇(𝑒) = 𝑝! 𝑞(𝑚𝑖) 𝑜𝑟 𝜇(𝑒) = 𝑝? 𝑞(𝑚𝑖), and ∀𝜃′
𝑖 ∈ 𝛩𝑞 we have 𝜇(𝑒) = 𝑞? 𝑝(𝑚𝑖) 𝑜𝑟 𝜇(𝑒) =

𝑞! 𝑝(𝑚𝑖). 
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𝐶𝑝𝑞 represents the edges (interactions) in the MSCs between processes 𝑝 and 𝑞 with respect 

to their visual orders.  

Implied scenario SLIS-I can occur when two processes 𝑝 and 𝑞 have joint shared states 

𝛩𝑝𝑞 == {𝑃𝑝𝑞 , ℳ𝑀𝑢𝑡 , 𝛩𝛩, 𝐶𝑝𝑞} in MSCs ℳ𝑀𝑢𝑡 and the following condition is satisfied: 

∃𝑧 ∈ 𝑃𝑝𝑞 𝑎𝑛𝑑 ∃ℳ ∈ ℳ𝑀𝑢𝑡  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝜃𝑛 = 𝜏𝑖 𝑎𝑛𝑑 𝜃𝑛 ∈ 𝛩𝑧 , 𝜏𝑖+1 ∈ 𝑆 𝑎𝑛𝑑  𝜏𝑖, 𝜏𝑖+1 ∈

𝛽𝑧. 

This condition specifies that the joint shared states of two processes may lead to an implied 

scenario, if at least one of the processes sends a message in one of the MSCs in ℳ𝑀𝑢𝑡 in the next 

state of its joint shared states. Unless the next state of its joint states is part of the component’s 

shared state and is always sent to one specific process.  

We define the mutual shared states between a set of processes as the general form of the joint 

states for two processes as follows.  

Definition 2. Mutual shared communications 𝐶𝑜𝑚𝑀𝑢𝑡 

The mutual shared communications 𝐶𝑜𝑚𝑀𝑢𝑡 = {𝑃𝑀𝑢𝑡 , ℳ𝑀𝑢𝑡 , 𝛩𝛩𝑀𝑢𝑡 , 𝐶𝑀𝑢𝑡} is defined for 

processes 𝑃𝑀𝑢𝑡 = {𝑝1, … , 𝑝𝑥} that are interacting in MSCs ℳ𝑀𝑢𝑡. The 𝐶𝑀𝑢𝑡 is the set of continuing 

interactions such that it appears in the same visual order and between the same processes in all 

MSCs of ℳ𝑀𝑢𝑡 and that use the processes’ states in 𝛩𝛩𝑀𝑢𝑡. The 𝛩𝛩𝑀𝑢𝑡 is the set of mutual shares 

states of processes in 𝑃𝑀𝑢𝑡 in MSCs ℳ𝑀𝑢𝑡. 

Definition 3. Mutual shared states 𝛩𝛩𝑀𝑢𝑡 

The mutual shared states 𝛩𝛩𝑀𝑢𝑡 = {𝛩𝑝1
, … , 𝛩𝑝𝑥

}  is defined as a set of shared states of 

processes in 𝑃𝑀𝑢𝑡 = {𝑝1, … , 𝑝𝑥} over MSCs ℳ𝑀𝑢𝑡 that have mutual shared communications. All 
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of these states follow continuous interactions of processes 𝑃𝑀𝑢𝑡 over the 𝐶𝑀𝑢𝑡 edges in each of the 

MSCs in ℳ𝑀𝑢𝑡.  

Implied scenario SLIS-I can occur when a set of processes 𝑃𝑀𝑢𝑡 have mutual shared states 

𝛩𝑀𝑢𝑡 = {𝑃𝑀𝑢𝑡 , ℳ𝑀𝑢𝑡 , 𝛩𝛩𝑀𝑢𝑡, 𝐶𝑀𝑢𝑡}  in MSCs ℳ𝑀𝑢𝑡 if the following condition is satisfied: 

∃𝑧 ∈ 𝑃𝑀𝑢𝑡  𝑎𝑛𝑑 ∃ℳ ∈ ℳ𝑀𝑢𝑡  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝜃𝑛 = 𝜏𝑖  𝑎𝑛𝑑 𝜃𝑛 ∈ 𝛩𝑧  , 𝜏𝑖+1 ∈ 𝑆  

𝑎𝑛𝑑  𝜏𝑖 , 𝜏𝑖+1 ∈ 𝛽𝑧 

This condition specifies that there should be at least one process in 𝑃𝑀𝑢𝑡 that sends a message 

in one of the MSCs in ℳ𝑀𝑢𝑡 in the next state of its mutual shared states. 

The concept of shared interactions is shown in Figure 16. Messages m1-m3 are sent and 

received by components C1 and C2 in the two MSCs in this figure. These are considered as shared 

interactions. The conditions that can cause an implied scenario is the existence of a send message 

by either one of C1 or C2 in these shared interactions. This will be m3 in this example.  

 

Figure 16. SLIS-I shared interactions 
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5.3.1.2 Causes  

In SLIS-I, the implied scenario occurs because one or more processes can send a message without 

restriction in or after their last shared state. The reasons of the occurrence of this type of implied 

scenario are similar to the ones for the CLEB-I.  

5.3.2 SLIS-II: Behavior combination 

For definition of this type of implied scenario, we refer to [88, 95, 97, 98] paper. In SLIS-II, the 

implied scenario is caused by the combination of behaviors of two or more processes, from various 

MSCs of the system into one MSC. The new scenario is a collection of the behavior of different 

processes in different MSCs. In other words, in this new scenario, one process shows the behavior 

specified for it in one MSC, and another process performs its defined tasks of another MSC. The 

result is an implied scenario, which is not in conformance with any of the MSCs of the system. 

This implied scenario is the result of having two or more active processes in various MSCs of the 

system that do not have any restrictions on their first actions. Various cases may exist that can 

result in different issues in the system. Specific conditions must exist that it leads to an implied 

scenario. The details are given below. It is worth mentioning that for the detection of this implied 

scenario no hMSC is required. 

5.3.2.1 Specification  

Consider that processes 𝑝 and 𝑞 are active processes in MSC ℳx and MSC ℳy respectively. 

For the occurrence of SLIS-II, there should be at least one active process in each of the two MSCs, 

which are defined as below.  

Condition I.  

The first action of process 𝑝 (𝑝𝑎ℳx
) is: ∃𝑚 ∈ 𝑀| 𝜇(𝑒) = 𝑝𝑎ℳ1

! 𝑝𝑖(𝑚).  

The first action of process 𝑞 (𝑞𝑎ℳy
) is: ∃𝑚′ ∈ 𝑀| 𝜇(𝑒′) = 𝑞𝑎ℳ2

! 𝑝𝑗(𝑚′).  
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There is no condition on taking the first action of 𝑝 in ℳx (𝜇(𝑒) for 𝑝𝑎ℳx
 in ℳx) or there is 

no condition on taking the first action of 𝑞 in ℳy (𝜇(𝑒′) for 𝑞𝑎ℳ𝑦
 in ℳy). 

In implied scenario SLIS-II, there is a new scenario ℳnew, in which, both 𝜇(𝑒) =

𝑝𝑎ℳ! 𝑝𝑖(𝑚) and 𝜇(𝑒′) = 𝑞𝑎ℳ! 𝑝𝑗(𝑚′) exist. Some conditions must exist that SLIS-II occurs. In 

the following, we determine these cases and explain various situations based on the actions of 

receiver processes of 𝑝 and 𝑞 and whether the receiver processes are the same process in these 

scenarios. The implied scenario SLIS-II is shown in Figure 17. The two MSCs in the above are 

the cases that P and Q are sending messages to two other processes. The MSC in the bottom of the 

figure is the implied scenario caused by the combination of the behavior of the two other MSCs, 

in which the first actions of P and Q occur in one MSC.  

 

Figure 17. SLIS-II 
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5.3.2.1.1 Cases 

Suppose the receivers of the first messages that processes 𝑝 and 𝑞 send in ℳx and ℳy are processes 

𝑝𝑖 and 𝑝𝑗, respectively. We investigate two cases regarding the interactions of 𝑝𝑖 and 𝑝𝑗 in these 

scenarios. For each of these cases, we also determine three situations that is based on these criteria: 

𝑝𝑖 and 𝑝𝑗 are same processes, are different processes, or are processes 𝑞 and 𝑝.  

5.3.2.1.1.1 Case I  

In this case, the receiver processes (𝑝𝑖 and 𝑝𝑗) do not send any other messages in MSCs ℳx and 

ℳy. In other words, 𝑝𝑖 and 𝑝𝑗 do not have any other interaction of type Send in ℳx and ℳy 

respectively. In this case, since the receiver processes do not have any other interactions, they do 

not interact based on the information they have received. Therefore, the problem stays in the 

receiver processes and is not propagated into the other processes of the system. However, if the 

information requires an update for the receivers, the receiver processes may not be updated 

correctly and may work with the wrong information in the MSCs of the system. Implied scenario 

SLIS-II may happen or cannot occur in each of the following situations:  

Case I-1:  𝑝𝑖, 𝑝𝑗 ≠ 𝑞, 𝑝 𝑎𝑛𝑑 𝑝𝑖 ≠ 𝑝𝑗 

In this case, the processes 𝑝, 𝑞, 𝑝𝑖, and 𝑝𝑗 are four different processes. If condition I is 

satisfied, an implied scenario can occur, unless there is an MSC in the system that has the 

interactions among all processes in ℳx and ℳy and with the same visual order (i.e. interactions 

of 𝑝𝑖 and 𝑝, interactions of 𝑝𝑗 and 𝑞, and all other interactions that are in ℳx and ℳy). Figure 18 

illustrates the explanation of this case.  
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Figure 18. SLIS-II Case I-1 

Case I-2: 𝑝𝑖 = 𝑞 𝑎𝑛𝑑 𝑝𝑗 = 𝑝 

This situation specifies that the processes 𝑝 and 𝑞 are sending messages to each other. In this 

case, either of the messages is sent and received earlier, prevents the other active process to send 

a message; since in the MSCs, the receivers do not act any more, and just have the role of receiving 

some information. Therefore, if the send actions of the active processes are also the first action in 

the related MSCs that should be executed by all of the processes in the system, no implied scenario 

happens; but the reverse is not true. This can be interpreted as a race condition. However, until we 

have a scenario in the system that includes the interactions of the first message sent (either from 𝑝 

or 𝑞) and the other interactions of other processes in the system, implied scenario SLIS-II will not 

occur. However, this may cause a problem in the system in terms of the required scenario that must 

be executed at a specific time frame. This case is analyzed in other sections. This is shown in 

Figure 19.  
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Figure 19. SLIS-II Case I-2 

Case I-3: 𝑝𝑖, 𝑝𝑗 ≠ 𝑝, 𝑞 𝑎𝑛𝑑 𝑝𝑖 = 𝑝𝑗 = 𝑤 

This case, demonstrates a situation, in which, the receivers of the messages that 𝑝 and 𝑞 send, 

in ℳx and ℳy, are the same. This explanation is illustrated in Figure 20. 

 

Figure 20. SLIS-II Case I-3 

This explains a race condition in the system. The result is, the information that 𝑤 receives, 

is updated, either by 𝑝 or 𝑞, depending on the time of the arrival of these messages. Therefore, 

process 𝑤 can work with wrong data in other MSCs, while it is supposed to have updated, correct 

information. The only condition that causes the prevention of an implied scenario SLIS-II in this 

case is the existence of scenarios in the system that include the ordered interactions of 𝑝 and 𝑞 and 
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the other functionalities of the rest of processes. Also, the other processes should executing the 

required MSC at that time. This requires four more scenarios, since it is a race condition:  

1. Interactions of 𝑝 to 𝑤, and then 𝑞 to 𝑤, following the rest of functionalities in ℳx;  

2. Interactions of 𝑝 to 𝑤, and then 𝑞 to 𝑤, following the rest of functionalities in ℳy; 

3. Interactions of q to 𝑤, and then 𝑝 to 𝑤, following the rest of functionalities in ℳ𝑦; 

4. Interactions of q to 𝑤, and then 𝑝 to 𝑤, following the rest of functionalities in ℳ𝑥;  

5.3.2.1.1.2 Case II 

In this case, at least one of the receiver processes (𝑝𝑖 and 𝑝𝑗) have at least one message of type 

send in MSCs ℳx and ℳy, after they have received a message from 𝑝 and 𝑞, respectively. The 

receiver processes continue their tasks in the MSCs by sending or receiving some other messages. 

Consequently, the unexpected behavior of their sender processes in the implied scenario, causes 

the wrong information or data to be propagated to other processes in the system. It may result in 

major security issues, information updates, sending wrong messages to other processes, 

unexpected interactions with other processes, carry on wrong data to other MSCs of the system, 

and etc. We have discussed each problem in detail in the following. This general case is shown in 

Figure 21. Since the sub sections for these cases are the same, we will not show separate figure for 

Case II-1, Case II-2, and Case II-3.  
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Figure 21. SLIS-II Case II 

Case II-1:  𝑝𝑖, 𝑝𝑗 ≠ 𝑞, 𝑝 𝑎𝑛𝑑 𝑝𝑖 ≠ 𝑝𝑗 

In this case, the processes 𝑝, 𝑞, 𝑝𝑖, and 𝑝𝑗 are four different processes. If condition I is 

satisfied, an implied scenario can occur, unless there is an MSC in the system that has the 

interactions among all processes in ℳx and ℳy and with the same visual order.  

Case II-2: 𝑝𝑖 = 𝑞, 𝑝𝑗 = 𝑝  

This situation specifies that the processes 𝑝 and 𝑞 are sending messages to each other. 

Therefore, the receiver process is confused with its next actions. For example, process 𝑝 should 

act based on its defined tasks in ℳx, because it had sent a message to process 𝑞. However, as the 

receiver of 𝜇(𝑒′) = 𝑞𝑎ℳ2
! 𝑝𝑗(𝑚′), process 𝑝 should continue in ℳy or in another scenario ℳ𝑖. 

Therefore, the behavior of process 𝑝 becomes nondeterministic. The same is applied for process 

𝑞. The only situation that prevents the occurrence of SLIS-II is the existence of such a scenario 

that includes all the interactions for each of processes 𝑝 or 𝑞; because it prevents a nondeterministic 

action of each of these processes.  

Case II-3: 𝑝𝑖, 𝑝𝑗 ≠ 𝑞, 𝑝 𝑎𝑛𝑑 𝑝𝑖 = 𝑝𝑗 = 𝑤 
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This case, demonstrates a situation, in which, the receivers of the messages that 𝑝 and 𝑞 send, 

in ℳx and ℳy, are the same. Consider two state vectors of process 𝑤 𝛽𝑤ℳ𝑥
= (𝜏1, 𝜏2, … , 𝜏𝑧)  and 

𝛽𝑤ℳ𝑦
= (𝜏′

1, 𝜏′
2, … , 𝜏′

𝑦)  in ℳx and ℳy in 𝒢𝑤 respectively. State 𝜏𝑖 is the state in which 𝑤 

receives a message from 𝑝 in ℳ𝑥 and state 𝜏′
𝑗 as the state in which 𝑤 receives a message from 𝑞 

in ℳ𝑦.  

If process 𝑤 does not have shared states in ℳx and ℳy after it receives messages from 𝑝 and 

𝑞, it confuses between its interactions in these MSCs. Since, based on the defined behaviors in ℳx 

it should take some actions, while these are different tasks from the ones that it should perform in 

ℳy. Therefore, process 𝑤 may show an unexpected behavior.  

On the other hand, if 𝑤 has some shares states 𝛩𝑤 in these two MSCs immediately after 𝜏𝑖 

in ℳx and after 𝜏′
𝑗 in ℳ𝑦, 𝛩𝑤 = (𝜃1, … , 𝜃𝑛) = (𝜏𝑖+1, … , 𝜏𝑥) = (𝜏′

𝑗+1, … , 𝜏′
𝑏), process 𝑤 will not 

show an unexpected behavior in these states. Yet, process 𝑤 should be checked for possible 

emergent behaviors of other types (such as CLEB-I).  

5.3.2.1.2 Extensions  

We define some extensions for the cases explained in the previous section.  

Extension I: 𝑝 = 𝑞 

This case explains a situation that the same process is an active process in more than one 

MSC of the system. This can cause another type of implied scenario which is studied in next 

sections.  

Extension II:  

Processes 𝑝 and 𝑞 are active in more than two scenarios of the system. In this situation, the 

above mentioned cases are still valid. The only difference is in investigating the occurrence of the 
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combination of interactions in various MSCs of the system, which should be applied in the 

detection methodology.  

Extension III: 

There is a set of active processes 𝑃𝑎 = {𝑝1𝑎ℳ𝑖
, … , 𝑝𝑛𝑎ℳ𝑘

} in a set of MSCs ℳ =

{ℳ𝑖 , … , ℳ𝑘} of the system. The cases mentioned in the previous section are valid and should be 

examined based on the number of active processes in the set of MSCs.  

Extension IV:  

In this case, the number of active processes is more than two in some MSCs of the system. 

This case is studied in next sections.  

5.3.2.2 Causes 

Various reasons can cause the occurrence of implied scenario SLIS-II. The asynchronous 

concatenation of MSCs, having no timings on the MSCs to start or finish, timing issues for the 

interactions of active processes in the MSCs, and lack of conditions to start the interactions of 

active processes in the MSCs, are among the causes of this type of implied scenario.  

The main issue lies in the behavior of the receivers of the messages that active processes 

send in these MSCs. If the receiver has some other interactions in the form of sending a message, 

it can cause an immediate problem in the system. However, if the receiver has no send interaction 

in these MSCs, it may or may not cause a problem, depending on the situation. If the new scenario 

exists in the MSCs of the system, then no implied scenario has occurred. Otherwise, the 

combination behavior will result in an implied scenario. These are discussed in detail in each of 

the cases Case I and Case II. In these cases, we have investigated the behavior of the receiver 

considering three different situations: the active processes send messages to each other, the 
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receivers are different processes, or the active processes send messages to the same receiver 

process. 

5.3.3 SLIS-III: Non-local branching choices 

This implied scenario is referred to as non-local branching choice in the literature [17, 93]. In this 

type, there is an hMSC that has two or more branches. There is a branch in the hMSC, when an 

MSC of the system accomplishes, and there is an option in the next MSCs of the system that should 

be followed. In each branch, some other MSCs of the system are determined to represent the 

system functionalities. Implied scenario SLIS-III occurs when a set of processes follow one 

branch and the other processes follow the other branch. The result is not in conformance with any 

of the MSCs of the system. The term “non-local” is added to the “branching choice” in the 

literature; since the branches are followed by various processes and the processes that decide which 

branch should be followed, are different in each branch. Therefore, the branching is not a local 

decision, and does not depend on the decision of one process. We have studied the case only one 

process can follow the branched as local branching choice in CLEB-III.  

5.3.3.1 Specification  

Consider the hMSC of the system 𝒢 = (𝑃, 𝑀, 𝓜, 𝑉, 𝐸𝑑, ∁, 𝐹0, 𝐹𝑓) that contains two branches 𝒢1 =

(𝑀1, 𝓜1, 𝑉1, 𝐸𝑑1, ∁1, 𝐹01
, 𝐹𝑓1

) and 𝒢2 = (𝑀2, 𝓜2, 𝑉2, 𝐸𝑑2, ∁2, 𝐹02
, 𝐹𝑓2

).  

The following conditions should be satisfied that SLIS-III occurs:  

In 𝒢1, the first MSC is ℳ1 = 𝐹01
 and process 𝑝 is an active process in this MSC (𝑝𝑎ℳ1

).  

In the other branch, 𝒢2, the first MSC is ℳ2 = 𝐹02
 and process 𝑞 is an active process in this 

MSC (𝑞𝑎ℳ2
).  

And 𝑝 ≠ 𝑞. 
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SLIS-III occurs if process 𝑝 follows ℳ1 in 𝒢1 and process 𝑞 follows ℳ2 in 𝒢2, meaning that 

the hMSC in the execution time is neither following in 𝒢1 nor 𝒢2. Therefore, a new scenario is 

implied to the system. The existence of the above mentioned conditions represents the potential 

occurrence of SLIS-III. Although there might be a case that the combination of behavior of the 

two active process in the two SDs and other functionalities of the rest of processes (the ordered 

interactions) exist, there is still a chance of not executing the desired functionality of the system, 

because the scenarios will not be executed in the defined order.  

The general case of SLIS-III is when we have more than two branches in the high level 

execution of the scenarios of the system.  

The situations explained above are shown in Figure 22. In the left side of the figure, a sample 

hMSC is shown with a branch on MSCs M2 and M3. In each of these MSCs, there is an active 

process, namely p and Q (the first message is in Gold). Therefore, in the branch, the choice is given 

to different processes to decide which MSC to continue.  

 

Figure 22. SLIS-III 

5.3.3.2 Causes 

In implied scenario SLIS-III, there is no control or global condition on the processes and the 

execution of the MSCs. Consider a case that the branch should be decided based on a timing 
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condition. If the timing is not global for all processes, or in an asynchronous communication, the 

timing is different for the active processes in each branch. Therefore, although the timing condition 

is applied on the branches, there is a chance of occurrence of the implied scenarios of SLIS-III. 

This condition can be other issues other than timings. In each case, the condition should be global 

for all processes, or all active processes in the first MSCs of each branch should be informed 

properly (globally), to prevent the implied scenarios of this type.  

5.3.4 SLIS-IV: Asynchronous concatenation  

Asynchronous concatenation of MSCs is referred to as different timings that processes can execute 

MSCs of the system. In other words, there is no blocking or waiting function specified for the 

processes that prevents the execution of other functions for each process. Therefore, each process 

may proceed in next MSCs in different times. In the literature, this case is defined as concatenation 

of the functionalities of each process for their following MSC in the hMSC, while the processes 

do not wait for the others to finish their actions in the current executing MSC [37, 112]. This may 

cause various problems in the system if specific conditions are satisfied. We refer to as these 

implied scenarios as SLIS-IV. Various examples for this implied scenario is explained in other 

chapters. Therefore, we will not present figures for section.  

5.3.4.1 Specification 

Let ℳ𝑥 , ℳ𝑦 ∈  𝓜 be two MSCs from the set 𝓜 that contains all MSCs of the system, and ℳ𝑥 

precedes ℳ𝑦 in the HMSC 𝒢. Consider processes 𝑝, 𝑞 ∈ 𝑃𝓜 where 𝑃𝓜 is the finite set of processes 

of 𝓜; and 𝑝 and 𝑞 have some actions in both ℳ𝑥 and ℳ𝑦. In asynchronous concatenation of 

MSCs, processes do not wait until all other processes accomplish their actions in one MSC. 

Therefore, while process 𝑝 is still involved in ℳ𝑥, process 𝑞 may proceed to perform its actions 

in ℳ𝑦. Implied scenario SLIS-IV can occur if one of the following cases are satisfied: 
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Case I: Let 𝓜𝑝𝑎 ⊆ 𝓜 as the set of MSCs in which a process 𝑝 ∈ 𝑃 is an active process. 

An active process 𝑝 ∈ 𝑃 can lead to SLIS-IV in all MSCs ℳ ⊆ 𝓜𝑝𝑎 if there is no timing or 

control over the MSCs. The reason is that process 𝑝 has the control of starting an action in a new 

MSC in 𝓜𝑝𝑎. 

Case II: Let process 𝑝 ∈ 𝑃 in hMSC 𝒢 = (𝑃, 𝑀, 𝓜, 𝑉, 𝐸𝑑, ∁, 𝐹0, 𝐹𝑓) be an active process in 

𝓜𝑝𝑎 ⊆ 𝓜, which has high level structure 𝒢𝑝 = (𝑀𝑝, 𝓜𝑝, 𝑉𝑝, 𝐸𝑑𝑝, ∁𝑝, 𝐹0𝑝
, 𝐹𝑓𝑝

). Process 𝑝 can 

lead to SLIS-IV if the following conditions hold: 

- Process 𝑝 is an active process in 𝓜𝑝𝑎 ⊆ 𝓜.  

- And the 𝒢𝑝 is a sub-graph of 𝒢 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∁𝑝(𝑣)  ⊆ 𝓜𝑝𝑎. 

Definition 4. Internal loop  

A loop in 𝒢 is an internal loop when it does not include the initial and termination vertices 

𝐹0 and 𝐹𝑓. 

Case III: Consider an active or passive process 𝑝 that has a loop in its high level structure 

𝒢𝑝 = (𝑀𝑝, 𝓜𝑝, 𝑉𝑝, 𝐸𝑑𝑝, ∁𝑝, 𝐹0𝑝
, 𝐹𝑓𝑝

) from 𝐹𝑓𝑝
to 𝐹0𝑝

. If this loop is an internal loop in hMSC 𝒢 =

(𝑃, 𝑀, 𝓜, 𝑉, 𝐸𝑑, ∁, 𝐹0, 𝐹𝑓), process 𝑝 can cause SLIS-IV.  

5.3.4.2 Causes  

The difference in the high level structure 𝒢𝑝 of an active process 𝑝 and the structure of hMSC 𝒢, 

which is defined as a global view for all processes, can lead to SLIS-IV. This difference can be 

having either various MSCs as the initial MSCs in 𝒢𝑝 and 𝒢, or having different termination MSCs. 

The former results in execution of the high level structure by process 𝑝, without following the 

scenarios that the whole system performs. In the latter situation, the active process 𝑝 starts its initial 

MSC when the other processes start performing their scenarios. However, it does not follow the 



 

104 

same scenarios that other processes are executing in other iterations of the hMSC; because the 

termination nodes (final vertices) are different. Consequently, process 𝑝 can start performing its 

high level structure 𝒢𝑝 again, while the other processes are performing actions in the rest of MSCs 

in 𝒢. In general, neither the initial nor the termination MSCs of 𝒢𝑝 and 𝒢 are the same.  

When 𝑝 performs actions in an internal loop, it may execute the loop more than other 

processes. The termination MSCs are different in 𝒢𝑝 and 𝒢. Therefore, 𝑝 can start performing 𝒢𝑝 

again, while the other processes are continuing to perform their actions in other MSCs in 𝒢.   

5.4 Summary 

In this chapter we represented one of the main contributions of this work: Catalogue of EB/IS. In 

this catalogue, we classified the main EB or IS that can happen in MAS and DSS based on our 

studies and various works specified in the literature. This catalogue identifies the issues into two 

main classes: Component level and System level. Each class has some sub-classes. In total, eight 

main categories are defined as various types of EB/IS that can happen in the system. This 

categorization is based on the specific conditions that can lead to an EB/IS. Therefore, the origins 

of the problem are analyzed and introduced in each class. The definitions and specific conditions 

that must be satisfied for each class are explained in this chapter. In summary, the eight classes 

are: 

Component level emergent behavior (CLEB): Shared states, respond to different 

components, local branching choices, and race conditions. 

System level implied scenario (SLIS): Shared interactions, behavior combination, non-local 

branching choices, and asynchronous concatenation.   
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 Detection Methodology  

6.1 Introduction  

In the previous chapter, we introduced the catalogue of emergent behaviors and implied scenarios 

that can happen in DSS and MAS. We have classified the EB and IS based on the origins of the 

problem and the level that they should be analyzed (component or system level). Also, we have 

mentioned our methodology using interaction graphs for the modeling of the behavior of the 

software components and the whole system and its advantages and the reasons behind this 

modeling. In this chapter, we will explain the general techniques for the detection of the specified 

EB/IS classes. The algorithms are devised for a set of the EB and IS in the catalogue. The details 

of the techniques used for the detection of EB/IS are explained in the following sections.  

6.2 Problem definition 

The detection of emergent behaviors or implied scenarios is not easy, since the number of states 

grow exponentially. On the other hand, the analysis of the states for the set of behaviors of each 

component and also the combination of the behaviors of all components requires analysis of all 

paths that exist in the system. This is interpreted as the language that can be generated by the 

alphabet which is modeled from the behavior of the components (referring to automata theory) 

and therefore all the language (paths) should be analyzed in order to check whether the defined 

properties are violated or some words exist in the language that is not consistent with the modeled 

system. Analyzing all of these states is computationally expensive. Consequently, various 

approaches such as bounded model checking or abstract methods are developed in order to restrict 

the number of states in the state space. The list of advantages and disadvantages of these 

approaches can be found in Chapter Two. Each of these approaches should be refined carefully in 

order to define the exact properties of the system under analysis. Moreover, in the existing 



 

106 

approached, when the EB/IS is detected, the explanation is language specific and there is no way 

to use it as a solution for other cases. Therefore, to overcome some of the problems with these 

approaches for the detection of EB/IS for large scale systems, new techniques should be used.  

6.3 Methodology 

The modeling approach used for the behavioral modeling of the components and the system can 

resolve some of the modeling problems for larger systems. In order to model and analyze the model 

of the system, we use the following strategies: 

1. Restricting the conditions under investigation 

2. Modeling the whole system once 

3. Categorizing the problems 

4. Modeling the component’s view from the whole system 

The first strategy is defined in the classification of common EB/IS in the system. In each 

class, the reasons and the conditions that can lead to an EB/IS are studied. In many of the cases, 

the functionality of an active process or sending a message in certain conditions can be the reason 

of emerging a new behavior. By specifying these conditions, restrictions can be applied to the 

states of each component or the model that should be analyzed. This technique can be achieved by 

the modeling that we have done in previous phases; since, in the interaction graphs, the information 

about the interactions of one component, the information about the states on each component, and 

the information about the type of messages that should be communicated in each state are 

preserved. Consequently, the specified conditions can be analyzed through the model of the 

components and the system. 

The modeling strategy in our work requires modeling the system just one time, and then 

extracting the required information for the analysis. By modeling the whole system only one time, 
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we mean model the behavior of each component and the whole system at the same time, without 

requiring to model each component’s behavior and then add their models all together as the system 

behavior. The interaction graphs gives us this flexibility to model all the required information and 

then extract the part of information needed for analysis of each part. 

The third strategy we have chosen is classification of the problems. The amount of 

information that should be used for the analysis of component and system level is different. Also, 

in each level, we can do analysis on a specific part and if required use the other data to accomplish 

the task. This strategy helps to use small parts of the information which will help to prevent 

overloading problems. An example of this strategy is when we first analyze the shared states of a 

component, and if specific conditions are satisfied, then we analyze its interactions to detect the 

existing EB/IS.  

The other strategy that we have used in our work is modeling the system behavior from the 

point of view of a single component. In other words, when considering the hMSC of the system, 

we can analyze how each component is going to execute its functionalities in various scenarios. 

One example of this case is used in the detection methodology of CLEB-III. This kind of modeling 

also helps in providing general solutions for various systems.  

In the following, we will explain the general detection methodology and algorithms for 

component level emergent behaviors and we will explain the steps required for the detection of 

implied scenarios in some of the system level classes. It is worth mentioning that different 

functions used in the algorithms can have various implementations with different time and 

complexities. However, we do not go into detail for this part, since the main contribution of our 

work is the modeling and the classification of EB/IS.  
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6.3.1 Component level 

The component level emergent behavior (CLEB) class is divided into four sub-classes as specified 

in the previous chapter: CLEB-I: Shared states, CLEB-II: Respond to different components, 

CLEB-III: Local branching choice, and CLEB-IV: Race conditions.  

6.3.1.1 CLEB-I 

6.3.1.1.1 Detection methodology 

In order to find all the emergent behaviors of CLEB-I for each process 𝑝, we should find all the 

existing shared states between all scenarios of the system that process 𝑝 participates in them. The 

next steps to check conditions against the above mentioned cases to find the emergent behaviors 

of CLEB-I. The steps to find whether a component has CLEB-I emergent behavior are as follows:  

Algorithm I.1: 𝐶𝐿𝐸𝐵_𝐼_𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛()   

Input: Sets of shared states for each component in all SDs of the system. 𝑆𝑒𝑡𝑖 =

{𝑠𝑒𝑡𝑖1, 𝑠𝑒𝑡𝑖2, … , 𝑠𝑒𝑡𝑖𝑛} is the set of shared states of component 𝑃𝑖.  

Output: List of components that have CLEB-I, determining the problematic states and SDs:  

𝐶𝐿𝐸𝐵𝐼𝑃
= {𝐶𝐿𝐸𝐵𝐼𝑃1

, …  𝐶𝐿𝐸𝐵𝐼𝑃𝑛
} 

1. For each of the components do the following 

2.      For each set 𝑠𝑒𝑡𝑖𝑛 in 𝑆𝑒𝑡𝑖  

3.           𝐶𝐿𝐸𝐵_𝐼_𝐶𝑎𝑠𝑒𝐼()  

4.           𝐶𝐿𝐸𝐵_𝐼_𝐶𝑎𝑠𝑒𝐼𝐼()  

5.           𝐶𝐿𝐸𝐵_𝐼_𝐶𝑎𝑠𝑒𝐼𝐼𝐼()  

 

In the first algorithm (Algorithm I.1), all shared states 𝑆𝑒𝑡𝑖 among all the MSCs of the system 

for each component 𝑃𝑖 are given as the input. We should mention that the shared states for one 

component can be more than one set (vector), since different states between various MSCs might 

be considered as shared states for each component. For each set of shared states for each 
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component, all the three cases are analyzed to detect which states in which scenarios of the system 

can make CLEB-I. These cases are examined in the following two algorithms.  

Algorithm I.2: 𝐶𝐿𝐸𝐵_𝐼_𝐶𝑎𝑠𝑒𝐼() and 𝐶𝐿𝐸𝐵_𝐼_𝐶𝑎𝑠𝑒𝐼𝐼() 

1. For each 𝑆𝐷 in 𝑠ℎ𝑟𝑑𝑆𝐷𝑖𝑛  //SDs containing 𝑠𝑒𝑡𝑖𝑛 

2.      𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑛)    //Check the type of the message in the last shared state 

3.      If 𝑀𝑇𝑦𝑝𝑒 is 𝑆𝑒𝑛𝑑 

4.           Add (𝑆𝐷, 𝜃𝑛) to 𝐶𝐿𝐸𝐵𝐼𝑃𝑖
 

5.      𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑛+1)  //Check the message type of the immediate state after       

the shared states 

6.      If 𝑀𝑇𝑦𝑝𝑒 is 𝑆𝑒𝑛𝑑 

7.           Add (𝑆𝐷, 𝜃𝑛+1) to 𝐶𝐿𝐸𝐵𝐼𝑃𝑖
  

 

In Algorithms I.2, the message type of the last shared state (line 2) and the immediate state 

after the last shared states (line 5) for each set are examined. If this is of type Send (lines 3 and 6), 

i.e. the component is sending a message in these states, then the state and the associated MSC are 

added to the list of points that can cause an emergent behavior of CLEB-I.  

Algorithm I.3: 𝐶𝐿𝐸𝐵_𝐼_𝐶𝑎𝑠𝑒𝐼𝐼𝐼()  

1. For each state 𝜃𝑖 in set of shared states 𝛩𝑝 

2.       For each 𝑆𝐷 in 𝑠ℎ𝑟𝑑𝑆𝐷𝑖𝑛 //SDs containing 𝑠𝑒𝑡𝑖𝑛  

3.             𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑖)  //Check the type of the message in that state 

4.             If 𝑀𝑇𝑦𝑝𝑒 is 𝑆𝑒𝑛𝑑 

5.                   If 𝑖 ≠ 𝑛  //The state is not the last shared state 

6.                         Add 𝑀𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 to 𝑅𝐿𝑖𝑠𝑡  // add the receiver of the message to a list 

7.       If |𝑅𝐿𝑖𝑠𝑡| > 1  

8.             Add (𝑆𝐷, 𝜃𝑖) to 𝐶𝐿𝐸𝐵𝐼𝑃𝑖
 

In Algorithm I.3, case III is checked. For each state in the list of shared states, we check the 

message type associated to this state in all the related SDs (the MSCs that include this state) (lines 

1-3). If the message is of type send, the we add the receiver of that message to a list (lines 4-6). If 

the number of the processes in the receivers list for each state is more than one, it means that in 



 

110 

two or more of the scenarios of the system, the component under analysis is sending a message (in 

one of its shared states) to more than one process, which can cause an emergent behavior CLEB-

I.  

The decision tree for the second and third cases are shown in Figure 23. In this figure, M 

stands for the message sent or received in each state. Based on the message type, the position of 

the state in the shared state vector, and the receiver processes of the messages, we can determine 

if the state will cause an emergent behavior of type CLEB-I.  

 

Figure 23. Decision tree to find case II and case III of CLEB-I 

6.3.1.1.2 Case study 

An order delivery system with scenarios in Figure 24 is chosen as the case study for CLEB-I [98]. 

In the first scenario (A), a client requests product A from the seller agent, and the seller sends the 

delivery order to the delivery department. In the second scenario, product B is requested by the 

client and then sent to the delivery department by the seller agent.  
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Figure 24. An order delivery system [98] 

A possible emergent behavior is shown in Figure 25. In this scenario, the requested product 

(A) is different from the product that is ordered for delivery (B). This is caused because of the 

shared states of the delivery component. The delivery component has shared state (deliveryOrder) 

in the two scenarios, which is followed by either deliveryA or deliveryB states. Since the delivery 

component does not have a general view of the MSC that is executing in the system, it can execute 

either one of these states, which can result in an emergent behavior.  

 

Figure 25. Implied scenario of Figure 24 [98] 

Two other case studies, a web interface application and a toaster system from [98] are also 

categorized as shared states. Although the authors of [98] have different reasoning for the 

occurrence of the implied scenarios and emergent behaviors in these systems, we have defined 

them as having shared states that can cause an emergent behavior.   
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6.3.1.2 CLEB-II 

6.3.1.2.1 Detection methodology 

The emergent behavior CLEB-I and CLEB-II are similar in many cases. However, since we have 

categorized the emergent behaviors regarding various origins, they are separated to two different 

classes. Therefore, we can detect the origin of the problem, as well as developing solution 

repositories for each class separately. Since CLEB-I and CLEB-II have similar cases, we can take 

the advantage of the methodology used for the previous class of emergent behavior in CLEB-II. 

The extra steps required to detect CLEB-II are as follows.  

Algorithm II.1: 𝐶𝐿𝐸𝐵_𝐼𝐼_𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛()   

Input: Sets of shared states for each component in all SDs of the system. 𝑆𝑒𝑡𝑖 =

{𝑠𝑒𝑡𝑖1, 𝑠𝑒𝑡𝑖2, … , 𝑠𝑒𝑡𝑖𝑛} is the set of shared states of component 𝑃𝑖.  

Output: List of components that have CLEB-II, determining the problematic states and SDs:  

𝐶𝐿𝐸𝐵𝐼𝐼𝑃
= {𝐶𝐿𝐸𝐵𝐼𝐼𝑃1

, …  𝐶𝐿𝐸𝐵𝐼𝐼𝑃𝑛
} 

1. For each set of shared states in 𝑆𝑒𝑡𝑖 for each component do the following steps 

      //checking condition I: 

2.       For each state 𝜃𝑖  

3.             𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑖)     

4.             If 𝑀𝑇𝑦𝑝𝑒 is 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 

5.             For all SDs that have 𝜃𝑖  

6.                   𝑆𝑒𝑛𝑑𝑒𝑟 =  𝐶ℎ𝑒𝑐𝑘𝑆𝑒𝑛𝑑𝑒𝑟𝑠(𝜃𝑖) 

7.             If |𝑆𝑒𝑛𝑑𝑒𝑟| > 1  
8.                   Add (𝑆𝐷, 𝜃𝑖) to 𝑀𝑎𝑟𝑘𝑒𝑑𝐼𝑃𝑖

 

9.       If 𝑀𝑎𝑟𝑘𝑒𝑑𝐼𝑃𝑖
≠ ∅ 

10.             𝐶𝐿𝐸𝐵𝐼𝐼 − 𝐶𝑎𝑠𝑒𝐼 

11.             𝐶𝐿𝐸𝐵𝐼𝐼 − 𝐶𝑎𝑠𝑒𝐼𝐼&𝐼𝐼𝐼 

In Algorithm II.1 we first check Condition I, specifying that if there is a shared state for 

process 𝑝 in some MSCs, in which, 𝑝 has same interactions of “receive” type with different 
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processes (lines 2-8). We then check cases I to III for the states that satisfy Condition I (lines 9-

11).  

Algorithm II.2: 𝐶𝐿𝐸𝐵𝐼𝐼 − 𝐶𝑎𝑠𝑒𝐼 

1. For each set of shared states 

2.       For each SD in 𝑠ℎ𝑟𝑑𝑆𝐷𝑖𝑛 

3.             𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑛)  

4.             If 𝑀𝑇𝑦𝑝𝑒 is 𝑆𝑒𝑛𝑑   

5.       Add (𝑆𝐷, 𝜃𝑛) to 𝐶𝐿𝐸𝐵𝐼
𝑖𝑃𝑖

  

6.             𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑛+1)  

7.             If 𝑀𝑇𝑦𝑝𝑒 is 𝑆𝑒𝑛𝑑 

8.                   Add (𝑆𝐷, 𝜃𝑛+1) to 𝐶𝐿𝐸𝐵𝐼𝐼𝑃𝑖
 

In Algorithm II.2, we check Case I is checked. We check the message type of the last shared 

state 𝜃𝑛 or its immediate next state in the MSCS. If this is of type Send, the scenario and the state 

are added to CLEB-II.  

Algorithm II.3: 𝐶𝐿𝐸𝐵𝐼𝐼 − 𝐶𝑎𝑠𝑒𝐼𝐼&𝐼𝐼𝐼 

1. Find the number of shared states after the marked state 𝑀𝑎𝑟𝑘𝑒𝑑𝐼𝑃𝑖
in each set of shared 

states 

2.       If 𝑁𝑢𝑚𝑏𝑒𝑟 > 1 

3.             For each state 𝜃𝑖+1  // shared states after each of the states in 𝑀𝑎𝑟𝑘𝑒𝑑𝐼𝑃𝑖
 

4.                   𝑀𝑇𝑦𝑝𝑒 =  𝐶ℎ𝑒𝑐𝑘𝑀𝑇𝑦𝑝𝑒(𝜃𝑖+1)     

5.                   If 𝑀𝑇𝑦𝑝𝑒 is 𝑆𝑒𝑛𝑑  

6.                         Add (𝑆𝐷, 𝜃𝑗) to 𝑀𝑎𝑟𝑘𝑒𝑑𝐼𝐼𝑃𝑖
 

7.             For each state 𝜃𝑘 in 𝑀𝑎𝑟𝑘𝑒𝑑𝐼𝐼𝑃𝑖
 

8.                   𝑃𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 =  𝐶ℎ𝑒𝑐𝑘𝑃𝑅𝑒𝑐𝑁𝑎𝑚𝑒(𝜃𝑘)     

9.                   Add 𝑃𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 to 𝑃𝑅𝑒𝑐𝑁𝑎𝑚𝑒     

10.             If |𝑃𝑅𝑒𝑐𝑁𝑎𝑚𝑒| > 1 

11.                   Add (𝑆𝐷, 𝜃𝑘) to 𝐶𝐿𝐸𝐵𝐼𝐼𝑃𝑖
 

In Algorithm II.3, we check Case II and Case III. For each state of type send after the states 

found for Condition I (lines 1-6), the names of the receiver processes are checked (lines 7-9). If 

the name of the receiver processes for each of these states is more than one, the state is added to 

the list of CLEB-II (lines 10,11).  



 

114 

For case II and III, no separate checking is required. Since case III is a general case for case 

II, therefore, case II is checked as well. Also, we should find the states that satisfy case II and III 

just for the detected state of condition I that has a lower rank. It means for example if we have two 

states 𝑠𝑖 and 𝑠𝑗 that satisfy condition I, and 𝑠𝑖 comes before 𝑠𝑗 in the shared states set (𝑠𝑖 <  𝑠𝑗), 

then, the only required check is to find the states that come after 𝑠𝑖 and satisfy case II and III (for 

example 𝑠𝑘). The reason is that the detected state is either before or after 𝑠𝑗, but it is however after 

𝑠𝑖. If it is before 𝑠𝑗, it cannot be detected in the checkings for states 𝑠𝑗. But, if it becomes after 𝑠𝑗, 

it is detected; because it is found in the list of states that come after 𝑠𝑖. Therefore, it is checked and 

found once. As a result, just one check for the all shared states is done, and it will not be a duplicate 

check.  

6.3.1.2.1.1 Detection technique example 

As we explained previously, for the functions in these algorithms, various methods and 

implementations can be used. Here, we specify one technique in which we use clustering. This 

technique is published in [153].  

We extract the 𝛩′
𝑝 =∪ 𝛩𝑝 = {𝛩𝑝1, 𝛩𝑝2, … , 𝛩𝑝𝑛} (set of all shared states of process) and then 

repeat all the following steps for each agent. 

First clustering: 

First, we cluster 𝛽𝑝 =∪ℳ 𝛽𝑝ℳ based on each member of 𝛩′
𝑝.  

It will give us 𝑛 = |𝛩′
𝑝| clusters, each one contains 𝑚 vectors of 𝛽𝑝. Each state vector 𝛽𝑝ℳ 

can exist in multiple clusters. Notation 𝛽𝑝𝑖𝛩𝑝𝑖 is used for the set of state vectors that have shared 

states vector 𝛩𝑝𝑖 in cluster 𝑖. 

Then, we should examine the followings:  
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Find if 𝜃𝑛𝑖 ∈ 𝑆 or 𝜃𝑛𝑖+1 ∈ 𝑆 for the state vectors of 𝛽𝑝𝑖𝛩𝑝𝑖 in each cluster 𝑖.  

Find if 𝜃𝑧𝑖 ∈ 𝑆 in the state vectors of 𝛽𝑝𝑖𝛩𝑝𝑖 in each cluster 𝑖. 

We should omit the vectors that do not have any of the above conditions from further 

analysis. These examinations are for checking conditions indicated in Case I, Case II, and Case III 

(see section 5.2.2). 

Second clustering: 

Consider 𝜔′
𝑝𝑖𝛩𝑝𝑖 for state vectors 𝛽𝑝𝑖𝛩𝑝𝑖 in cluster 𝑖 that satisfy the above examinations and 

cluster them with edit distance.    

In the second clustering if we have more than one group, CLEB-II occurs.   

In order to find the roots of the EB, we extract the 𝜑′
𝑝𝑖

𝛩𝑝𝑖 (shared state transition vectors) 

for state vectors in each cluster with various shared interactions. CLEB-II occurs because of 

various 𝛩𝑝𝑖 in cluster 𝑖. 

The first clustering give us the information about the potential occurrence of CLEB-II, and 

the second one assures its occurrence.  

6.3.1.2.1.2 Fixing the detected EB 

Having different clusters means that 𝑝 has various communications for a set of its states. We 

suggest solutions based on the results of our clustering:  

1. If the number of groups for the vectors 𝜔′
𝑝𝑖𝛩𝑝𝑖 in cluster 𝑖 is more than two, it means there 

are more than two scenarios in which CLEB-II can occur. In this case, we suggest to change 

and modify the communications of this agent in the specified scenarios.  

2. If the shared interactions for an agent equals to two, we can change the messages interacted 

or the agent saves the information of the senders of these messages.  
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The two solutions can be applied on any case study interchangeably. However, in case of 

priority of security or privacy issues, case should be taken for not revealing the information about 

senders of messages. Therefore, we can add acknowledgement messages or change the 

communicated messages to prevent the EB [153]. 

6.3.1.3 CLEB-III 

6.3.1.3.1 Detection methodology 

The following steps are done for each process in order to find if the process can have an emergent 

behavior of CLEB-III.  

Algorithm III.1: 𝐶𝐿𝐸𝐵_𝐼𝐼𝐼_𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛() 

1. For each process 𝑝 do the following 

2.       𝐵𝑟𝑎𝑛𝑐ℎ = 𝐹𝑖𝑛𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠(𝒢𝑝)  

3.      𝑆ℎ𝑟𝑑 = 𝑆ℎ𝑎𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠(𝐵𝑟𝑎𝑛𝑐ℎ) 

4.       If 𝑆ℎ𝑟𝑑 ≠ ∅ 

5.             Check for 𝐶𝐿𝐸𝐵_𝐼  

6.       If the process is active (𝑝𝑎ℳ) in at least one branch ℳ 

7.             If the process follows no condition in ℳ 

8.                   Mark as 𝐶𝐿𝐸𝐵_𝐼𝐼𝐼 

9.       If the process is active (𝑝𝑎ℳ) in more than one branch 

10.             If the process has no conditions to follow at the branching state 

11.                   Mark as 𝐶𝐿𝐸𝐵_𝐼𝐼𝐼 

12.             If there is at least one other active process in one of the branches it is active 

13.                   Yes: Check for 𝑆𝐿𝐼𝑆_𝐼𝐼𝐼  

 

Algorithm III.1 is applied on the high level structure of each process. For each process 𝑝, we 

check if the process has branches in its high level structure (line 2). If there is branches for the 

process, we check whether the process has some shared states in the branches (line 3). If there are 

shared states, we should check for CLEB-I emergent behavior (line 5). If the process is active in 

at least on the branches and it follows no conditions on that branch, then CLEB-III can occur (lines 

6-8). If the number of branches that the process is an active process is more than one, and if the 
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process has no conditions to follow at the branching state, then we mark it as CLEB-III. If there 

are other active processes in one of the MSCs in the branches that the process 𝑝 is also active, the 

case should be checked for implied scenario SLIS-III. Otherwise, it will not show CLEB-III (lines 

9-13). 

6.3.1.3.2 Case study 

We reference this emergent behavior by an example case study (a boiler control system) from [83, 

95] and the details which we previously published in [154]. The system is shown in the form of 

scenarios in Figure 26. The processes are a Control unit, a Sensor, a Database, and an Actuator (to 

control the pressure). The sensor information is stored in the Database. The Control unit uses the 

Database information to send commands to the Actuator. The four MSCs in this system are 

Initialize, Register, Analysis, and Terminate. There is also a hMSC that describes the organization 

of these MSCs.  

 

Figure 26. Four scenarios of boiler control system and hMSC taken from [95] 

An emergent behavior MSC that can happen in this system is shown in Figure 27. As it is 

shown, the Control component sends the Query to Database. In this unwanted scenario, the 
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previous data registered to database by the sensor is used for computation. The sensor executes the 

initialize and termination MSCs and initializes again. However, the other processes analyze the 

data before the sensor is terminated, which is not acceptable.  

 

Figure 27. An emergent behavior of the system in Figure 26 [95] 

If we consider the high level structure 𝒢𝑝 of the components (Definition 7, Chapter Three), 

it can reveal the potential EBs in the system. For example, DB is only involved in Analyze and 

Register scenarios and there is no path between the other two scenarios for DB. As explained 

previously, the high level structure for each component represents how the scenarios are realized 

from the component’s point of view. For designers, it is interpreted as the processes’ states in the 

whole system and how the MSCs are executed for each component. Therefore, the paths that exist 

in the high level structure of each component which are not in accordance to the hMSC of the 

system are possible emergent behaviors.  

We consider these paths here, since they are new paths from the local point of view of each 

component. One of these new paths is the loops in the internal MSCs of an hMSC. The component 

may execute the loop more than other components in the system. DB and sensor have such paths 

in this example [154]. The other new path is the ones for active processes. In this case, the path in 

the high level structure of the component has only the internal MSCs of the system, without the 
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initial and termination MSC. Here, the active process considers an MSC as its initial MSC which 

is not in conformance with the hMSC [154]. 

6.3.1.4 CLEB-IV 

6.3.1.4.1 Detection methodology 

Since we are certifying the receipt of messages in the execution time, we only consider the cases 

that a message is sent to a third process by an active process. The cases that are resulted by different 

timings, delays, message loss, and other related cases are not considered here; because we are 

examining the behaviors from system designs (MSCs) with regards to the visual orders specified 

for the scenarios. The timings regarding the asynchronous concatenations of MSCs is considered 

as an implied scenario SLIS-IV. Therefore, the only case that remains to make a problem can be 

the messages sent by active processes. This can be in various SDs that we have one active process 

in each SD that send a message to a third process 𝑝 (implied scenario SLIS-II), or it can be in one 

SD that has more than one active process that send a message to a third process 𝑝.  

Since we are comparing the new state vector against the state vector in the process’s visual 

order, we should investigate the changes in the receive states of one process that are caused by two 

or more active processes. Then, compare this state vector with the defined (visual order) state 

vector of the process. In other words, we should mine what can happen, based on what is sent to a 

process by different active processes. The process of this analysis for one process is defined as 

follows.  

Algorithm IV.1: 𝐶𝐿𝐸𝐵_𝐼𝑉_𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛() 

1. For each MSC ℳ for process 𝑝 do the following 

2.       𝐴𝑐𝑡𝑖𝑣𝑒𝑃 = 𝐹𝑖𝑛𝑑𝐴𝑐𝑡𝑖𝑣𝑒𝑃(ℳ)  

3.       If |𝐴𝑐𝑡𝑖𝑣𝑒𝑃| > 1 

4.             For each 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑘 in 𝐴𝑐𝑡𝑖𝑣𝑒𝑃 

5.                   𝑃𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 =  𝐶ℎ𝑒𝑐𝑘𝑃𝑅𝑒𝑐𝑁𝑎𝑚𝑒(𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑘) 
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6.                   𝑃𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑐 = 𝐹𝑖𝑛𝑑𝑆ℎ𝑎𝑟𝑒𝑑𝑃(𝑃𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟) 

7.             For each 𝑃𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑐𝑘 in 𝑃𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑐 

8.                         For each𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖 associated to 𝑃𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑐𝑘  

9.                               𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟 =  𝐹𝑖𝑛𝑑𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑃𝑅𝑒𝑐𝑁𝑎𝑚𝑒(𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖) 

10.                         If 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ∈ 𝛽𝑝 

11.                               For each 𝑃𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑐𝑘 in 𝑃𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑐 

12.                                     𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑉𝑒𝑐𝑡𝑜𝑟 =
                                           𝐹𝑖𝑛𝑑𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑃𝑅𝑒𝑐𝑁𝑎𝑚𝑒(𝐴𝑐𝑡𝑖𝑣𝑒𝑃) 

13.                               If 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑉𝑒𝑐𝑡𝑜𝑟 ¬∈ 𝜑𝑝 

14.                                     Mark as 𝐶𝐿𝐸𝐵_𝐼𝑉 

15.                         Else 

16.                               Mark as 𝐶𝐿𝐸𝐵_𝐼𝑉 

 

In Algorithm IV.1, the number of active processes in each MSC ℳ is counted (line 2). If the 

number of active processes is more than one, the other steps are done to find if emergent behavior 

CLEB-IV can occur. For each active process, the name of its receiver of its first state is extracted. 

Then we check if they have common shared receiver processes (lines 4-6). This gives a set of sets 

containing the names of the shared states associated with their senders. For each of the shared 

processes, we find its new state vector by changing the order of its receive message from the active 

processes one at a time (lines 7-9). If the new state vectors are in the set of state vectors 𝛽𝑝 of the 

process, then the new state transition vectors should be checked against the state transition vectors 

𝜑𝑝 of the process for its associated MSC (lines 10-12). If the state transition vectors are not the 

same, or the new state vectors are not in the set of state vectors 𝛽𝑝 of the process, it has the potential 

to emerge a new behavior of type CLEB-IV (lines 13-16).  

6.3.2 System level 

The system level implied scenario (SLIS) class is divided into four sub-classes defined in the 

previous chapter: SLIS-I: Shared interactions, SLIS -II: Behavior combination, SLIS -III: Non-

local branching choice, and SLIS -IV: Asynchronous concatenation.  
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6.3.2.1 SLIS-I 

6.3.2.1.1 Detection methodology 

The methodology to detect SLIS-I is the same as the methodology to detect its component level 

emergent behavior CLEB-I.  

Lemma 

If a set of processes have some shared interactions in a set of MSCs, each of the processes have its 

own shared states in this set of MSCs. The set of shared interactions 𝐴 and the set of shared states 

𝐵 of one process 𝑝 over a set of MSCs can be either one of the followings: 

1. 𝐴 is a subset of 𝐵 

2. 𝐴 is a superset of 𝐵 

3. 𝐴 and 𝐵 have some joint elements 

4. 𝐴 and 𝐵 are disjoint sets 

The shared interactions 𝐴 is investigated with the CLEB-I methodology for each component 

𝑝, since 𝐴 is always a subset of the component’s shared states set 𝐵.  

Proof. 

If 𝐴 is a superset of 𝐵, or they have joint elements, or they are disjoint sets, it requires that 

there are some elements in 𝐴 that do not appear in 𝐵. This is interpreted as the existence of some 

frequent states that are not part of any of the sets in 𝐵. Since 𝐵 contains all the states that appear 

in SDs with a number greater than the defined support i.e. all the shared states among all SDs that 

the process involves in, none of the above criteria are true, and 𝐴 must be a subset of 𝐵. 

More explanation for each case is as follows:  

If 𝐴 is a superset of 𝐵, it requires a situation that some states that are shared in different SDs 

are not defined in the shared states. However, all the combinations of all the consecutive states are 

considered as shared states as well. Consequently, 𝐴 cannot be a superset of 𝐵.  
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If 𝐴 and 𝐵 have some joint elements, it requires the existence of some states that occur as 

shared states but are not considered in 𝐵. For the reasons explained above, this cannot be true.  

If 𝐴 and 𝐵 are disjoint sets, it means that there were some shared states with support greater 

than one that were not considered as the shared states. However, in the detection process, we start 

with single states and then combine them to find the superset of each state that occur in more than 

one MSC. Therefore, the states of 𝐴 should be considered as one of the sets of the component’s 

shared states.  

For the reasons explained above, 𝐴 is always a subset of the component’s shared states set 𝐵 

and is analyzed as the component’s shared states in CLEB-I analysis. When 𝐴 is part of the 

component’s shared states (equal size or less than the size of the set of shared states), these states 

are investigated for the conditions for SLIS-I in CLEB-I, even more restricted conditions are 

investigated for them in CLEB-I. Therefore, if the conditions for occurring SLIS-I are satisfied, it 

would be detected with the methodology defined for checking CLEB-I.                                          

6.3.2.2 SLIS-II 

6.3.2.2.1 Detection methodology 

To study the potential occurrence of SLIS-II we should do the following steps. We first find the 

active processes in the scenarios of the system. For each active process, the receiver process of 

their first sending action is added to a list. For each process in the receivers list, we check the two 

cases, whether it sends a message in that MSC, or it is just receiving messages in the MSCs. If the 

process is sending a message after the marked state, it is the second case and the cases II-1, II-2, 

II-3 should be checked. Otherwise, the cases I-1, I-2, I-3 should be checked. 

6.3.2.3 SLIS-III 

6.3.2.3.1 Detection methodology 
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The steps required for the detection of SLIS-III is as follows. First, the branch/branches in the 

hMSC of the system should be extracted. For each branch, we identify the active processes in the 

following MSCs (successor MSCs of the branching MSC). The high level structure 𝒢𝑝 for each of 

the active processes should be extracted. Then we check for three conditions: 1) if the high level 

structure shows two different graphs as the hMSC from the point of view of each active process, 

2) whether in each branch we have more than one active process, 3) whether there is any condition 

or restriction on the behaviors of the active processes in the branches. If the high level structure 

shows different graphs as the hMSC from the point of view of each active process, it can cause 

SLIS-III, since the processes are able to follow different MSCs as their hMSC. Also, if we have 

more than one active process in a branch, it can lead to an implied scenario. The reason is that the 

active processes do not depend on the actions of other processes and they can start a new MSC. 

And the last condition checks the restrictions of the behavior of the active processes and on starting 

the branches. The cases that can prevent from having an implied scenario SLIS-III is when the 

high level structure of the active processes is same, or we have restrictions on the behavior of the 

active processes in the branching MSCs.  

6.3.2.3.2 Case study 

The case study of this section identifies six scenarios in a web based application calles MyPetStore 

[83] shown in Figure 28. It includes business components UserControllerImpl and 

ShopControllerImpl which are shared among various scenarios (representing resource sharring, 

which is a common characteristic of concurrent applications). The hMSC of the system is shown 

in Figure 29. This figure represents the order of the MSCs that should be executed for the shopping 

functionality in the system. There is a default scenario called init that leads to the login scenario. 

Form login, the system goes into prepare shopping, and then it has three possible transitions: 
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logout scenario, authenticate user, go back to prepare shopping, which allows the user to states a 

new shopping. From authentication scenario the system can only follow the do shopping scenario 

and from there to prepare shopping, starting a new cycle. In the right side of Figure 29 an implied 

scenario is represented that is an unexpected logout. In this scenario, the user logs into the system, 

then prepared for a shopping and the system authenticated the user. However, the final step is that 

the user leaves the system. This sequence is not specified in the original scenarios of the system. 

Instead of logging out of the system, the do shopping scenario should be executed.  

 

Figure 28. Six scenarios of MyPetStore web application [83] 
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Figure 29. hMSC of MyPetStore application and the implied scenario [83] 

We categorize this implied scenario as a non-local branching choice. From the modeling of 

the system as interaction graphs and the high level structure of the components, it is obvious that 

the user follows this sequence: login, prepare shopping, and logout. Also, the sequence for 

ShopControllerImpl component is prepare shopping, authenticate, and do shopping. As it is shown 

in the left side of Figure 29, there is a branch in the hMSC of the system after the prepare shopping 

scenario. One branch to the logout scenario and the other to the authenticate user scenarios. In each 

of these branches, we have one active process, namely user for the logout MSC and 

ShopControllerImpl for the authentication scenario. Since the decision of following the branches 

is given to two different components, this causes an implied scenario SLIS-III (nonlocal branching 

choice).  

6.3.2.4 SLIS-IV 

6.3.2.4.1 Detection methodology 

The asynchronousness in a system can happen in one MSC or as the concatenation of the MSCs. 

For the former, the detection of this implied scenario requires a lot of process if we want to produce 

all the possible combinations of the order of messages in each MSC. One possible detection 
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methodology can be considering the order of the messages that if violated, it can cause major 

problems in the system. The next step is checking the conditions on the functionalities that 

guarantees these orders would be preserved. An example of these conditions is the awareness of 

the processes from the other processes’ actions. As mentioned before, considering different 

combinations of the messages is another way to detect an implied scenario can happen or not. One 

way to reduce the complexity of producing and checking all possible combinations is grouping the 

messages that if their order if not preserved, it would not cause a problem in the system. 

The other case is the concatenation of the MSCs. In this case, the detection methodology can 

be checked by restrictions required for the execution of functionalities of the processes, instead of 

executing parallel behaviors of the processes. Therefore, we can check if a wait function or a 

blocking send or received is defined for the parts of the system that requires synchrony between 

the functionalities of the processes.  

There can be another implied scenario that is caused by the difference in the high level 

structure of a component (when it has loop) and the hMSC of the system. For this implied scenario, 

we should verify the high level structure 𝒢𝑝 for each process against the hMSC of the system. If 

the sequence of MSCs in the 𝒢𝑝 is different from the hMSC, meaning that there is a sequence that 

is not accepted in the hMSC, it can be an implied scenario. We refer to this detection methodology 

as Verifying MSC sequences against hMSC. This case is explained with the Boiler Control system 

(see section 6.3.1.3.2) in next section.  

6.3.2.4.2 Case study 

6.3.2.4.2.1 Case study I 

The asynchronous concatenation of MSCs means that processes do not wait for other processes to 

start the execution of the next MSC. Also, it means that the processes do not follow a synchronous 
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timing to execute their actions even in one MSC. One simple example of this case is an ATM 

machine from the literature [98] which is shown in Figure 30. In this scenario, the user inserts a 

card, and after the pin is verified, user withdraws the requested amount.   

 

Figure 30. The withdrawal scenario of an ATM machine system [98] 

An implied scenario regarding the asynchronousness of the functionalities of the processes 

is shown in Figure 30. In this scenario, the user is not notified about the process of validating its 

pin. Therefore, the valid message is sent to the ATM before the ATM sends the processing message 

to the user.  

 

Figure 31. Implied scenario of Figure 30 [98] 

Another example of this case is shown in Figure 32. The acceptable scenario is shown on the 

left and the related implied scenario is shown of the right side of the picture.  
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Figure 32. A scenario and an implied scenario of ATM machine [98] 

6.3.2.4.2.2 Case study II 

The MSCs and hMSC of the Boiler Control system is explained in section 6.3.1.3.2, so we avoid 

repeating it again.  

We previously investigated two possible new paths that can cause an EB in the system in 

previous section, when there is an internal loop in the high level structure of a component or the 

high level structure of an active component does not contain the initial and termination MSCs of 

the hMSC of the system. The other condition that can cause an EB/IS is investigated here. We 

analyze the high level structure of the components by verifying their path of MSCs against the 

path of MSCs in the hMSC of the system. As explained in [154], the Control process’s high level 

structure are: Initialize, Analysis, and Terminate, and execute Initialize again. However, there is not 

such a path in the hMSC of the system. One difference is that there is no link from the Analysis to 

Terminate in hMSC of the system. This difference can cause an IS in the system. The results of 

this part are previously published in [154]. 
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6.4 Summary 

In this chapter, we explained our methodology for analyzing the behavior of the system. For the 

EB Catalogue that we introduce in the previous chapter, we have developed detection 

methodologies. This detection method is defined for each class of the EB Catalogue separately. 

Therefore, the user can choose which type of EB/IS the system should be analyzed for. The 

methodology is a general methodology and only algorithms are provided. A class of these 

algorithms are implemented in the tool and by using various functions. In each algorithm, a key 

function is finding the shared states/interactions which can have different implementations. For 

each part, we have also included specifying the algorithm on a case study, mostly taken from other 

researches, to show step-by-step detection method. Also, for some classes, we have defined how 

to fix the detected problem in the system. This part (solution repository) is explained in each 

section of the catalogue. However, for some types of EB/IS, we have explained it in a separate 

section.  
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 Case studies  

7.1 Introduction 

In this chapter, we present some case studies in which we show how to model the system, and how 

to detect some of the EB/IS based on the methodologies described in previous chapters. With these 

case studies, we also present how our modeling and detection techniques helps is suggesting 

solutions in each case.   

7.2 Case studies 

7.2.1 Fleet Management System 

The first case study that we present in this chapter is a Fleet Management System, previously 

published in [153], containing driver (user) agents, station, database, manager, GPS, and 

processor agents. The system is responsible to track the drivers and plans for various routes, and 

estimates the departure or arrival time for the fleets as its minimum requirements. For working on 

the plans for predicting and scheduling tasks, the processor and the manager agents are interacting 

to each other. The former processes the times and performs the calculations, and the latter agent 

accomplishes the scheduling/rescheduling tasks. The four scenarios of the system are shown in 

Figure 33 to Figure 36. The first scenario, represents the communications of agents for schedule 

management, and the second one (ℳ2), demonstrates the prediction task.  
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Figure 33. Schedule management [153] 

 
Figure 34. Prediction and time estimation [153] 

The other scenarios are ℳ3 and ℳ4. In ℳ3, rescheduling tasks are done by sending 

requests to the manager agent. Also, the change in a schedule can be requested by the processor 

which is shown in ℳ4. Updating the information is done in a regular basis by the users, GPS, and 

the processor agent.  
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Figure 35. Reschedule request from station agents [153] 

 
Figure 36. Reschedule request by processor [153] 

The behavior of the manager agent is modeled as follows. The set of events for 𝑚𝑛𝑔 is 

𝐸′
𝑚𝑛𝑔 =∪𝓜 𝐸𝑚𝑛𝑔ℳ = (𝑒1, … , 𝑒𝑛) which follows its global visual order (ℶ𝑚𝑛𝑔):  

𝜇(𝑒1) = mng! db(query); 
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𝜇(𝑒2) = mng? db(send query); 

𝜇(𝑒3) = mng! mng(schedule accomplished);  

𝜇(𝑒4) = mng? mng(schedule accomplished);  

𝜇(𝑒5) = mng! db(send scheule);  

𝜇(𝑒6) = mng? proc(prediction data);  

𝜇(𝑒7) = {𝑚𝑛𝑔? 𝑞(𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)|𝑞 = 𝑎1 𝑜𝑟 𝑞 = 𝑝𝑟𝑜𝑐};  

𝜇(𝑒8) = {mng! q(reschedule answer)|𝑞 = 𝑎1 𝑜𝑟 𝑞 = 𝑝𝑟𝑜𝑐}. 

The important information that is modeled is the sender and receiver of each of the message 

labels (𝑒𝑖) which is preserved in the Core and Node of the interaction graph for each of the 

scenarios. In our model, we use message labels and assign separate message labels to each content 

of the messages. We use events as the message labels here and we have  

𝐸𝑚𝑛𝑔ℳ1 = (𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5); 𝐸𝑚𝑛𝑔ℳ2 = (𝑒6) ; 𝐸𝑚𝑛𝑔ℳ3 = 𝐸𝑚𝑛𝑔ℳ4 =

(𝑒7, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒8, 𝑒5). 

The set of state vectors and shares states for the manager agent are: 

𝛽𝑚𝑛𝑔ℳ1 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}; 

𝛽𝑚𝑛𝑔ℳ2 = {𝑒6};  

𝛽𝑚𝑛𝑔ℳ3 = {𝑒7, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒8, 𝑒5};  

𝛽𝑚𝑛𝑔ℳ4 = {𝑒7, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒8, 𝑒5}; 

𝛩𝑚𝑛𝑔1 = (𝜃1, … , 𝜃𝑛) = (𝑒1, 𝑒2, 𝑒3, 𝑒4); 

𝛩𝑚𝑛𝑔2 = (𝑎1, … , 𝑎𝑛) = (𝑒7, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒8, 𝑒5).  

As we have explained in the previous chapter, one possible detection methodology is the 

usage of clustering. Based on the defined methodology for CLEB-II, a two phase clustering is 
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done. Regarding the steps defined previously, the second step is to cluster the state vectors. The 

results is two clusters. 

𝑐1 = 𝛽𝑚𝑛𝑔1𝛩𝑚𝑛𝑔1 = {𝛽𝑚𝑛𝑔ℳ1, 𝛽𝑚𝑛𝑔ℳ3, 𝛽𝑚𝑛𝑔ℳ4}; 

𝑐2 = 𝛽𝑚𝑛𝑔2𝛩𝑚𝑛𝑔2 = {𝛽𝑚𝑛𝑔ℳ3, 𝛽𝑚𝑛𝑔ℳ4}. 

The state vectors in each cluster are analyzed for two conditions explained previously. The 

state vectors in c1 are {𝑒5, 𝑒8} ∈ 𝑆. As a result, they should be analyzed for the second step. Also, 

for c2 there are some events of type “send”. Therefore, the second condition is satisfied and they 

should be analyzed as well. The shared interaction vectors for state vectors in cluster c1 are: 

𝜔′
𝑚𝑛𝑔ℳ1𝛩𝑚𝑛𝑔1 = 𝜔′

𝑚𝑛𝑔ℳ3𝛩𝑚𝑛𝑔1 = 𝜔′
𝑚𝑛𝑔ℳ4𝛩𝑚𝑛𝑔1 =

((𝑚𝑛𝑔, 𝑑𝑏), (𝑑𝑏, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑚𝑛𝑔)); 

And for cluster c2 are: 

𝜔′
𝑚𝑛𝑔ℳ3𝛩𝑚𝑛𝑔2 = ((𝑎1, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑑𝑏), (𝑑𝑏, 𝑚𝑛𝑔), 

(𝑚𝑛𝑔, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑎1), (𝑚𝑛𝑔, 𝑑𝑏)); 

𝜔′
𝑚𝑛𝑔ℳ4𝛩𝑚𝑛𝑔2 = ((𝑝𝑟𝑜𝑐, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑑𝑏), (𝑑𝑏, 𝑚𝑛𝑔), 

(𝑚𝑛𝑔, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑚𝑛𝑔), (𝑚𝑛𝑔, 𝑝𝑟𝑜𝑐), (𝑚𝑛𝑔, 𝑑𝑏)); 

The second clustering is done with Edit distance. This metric for the first cluster is zero, and 

therefore they are all classified into one class. This metric for the shared interaction vectors in 

second cluster is two and therefore we will have two groups for this category. As a result, we see 

that the interactions of  𝑚𝑛𝑔 in the third and fourth MSC are different, since it has some shared 

states. Accordingly, an emergent behavior can occur because of the reasons explained in previous 

chapters. To prevent this problem, it should differentiate for its states in 𝛩𝑚𝑛𝑔2.  
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To explain more, the shared state transition vectors of the states vectors of the second cluster 

are:  

𝜑′
𝑚𝑛𝑔ℳ3

𝛩𝑚𝑛𝑔2 = {𝑎1, 𝑚𝑛𝑔, 𝑑𝑏, 𝑚𝑛𝑔, 𝑚𝑛𝑔, 𝑚𝑛𝑔, 𝑚𝑛𝑔}; 

𝜑′
𝑚𝑛𝑔ℳ4

𝛩𝑚𝑛𝑔2 = {𝑝𝑟𝑜𝑐, 𝑚𝑛𝑔, 𝑑𝑏, 𝑚𝑛𝑔, 𝑚𝑛𝑔, 𝑚𝑛𝑔, 𝑚𝑛𝑔}. 

It is obvious that the senders are different for the first shared states and this reveals the roots 

of the occurrence of CLEB-II.   

We suggest two solutions for this system. First, the 𝑚𝑛𝑔 can save the information of its 

sender/receiver in the detected states. Second, change these interactions by adding an 

acknowledgement or change the messages communicated to differentiate the states so that they 

will not be considered as shared ones any more.  

7.2.2 Greenhouse System 

This case is a Greenhouse Multiagent System which consists of three different types of agents: 

Temperature balancing agents (At), Water control Agents (Aw), and Mineral control Agents (Am). 

The agents are responsible to control the environment of the greenhouse. They receive the 

environmental information of the greenhouse from sensors. Then, connect to data and knowledge 

bases (KB). Based on the data they receive; they analyze the information in order to be able to 

perform the best task. The agents communication to each other to manage the greenhouse 

environment in the best condition. They are responsible to manage the resources such as water and 

minerals, keep the temperature balanced for the greenhouse, save resources by interacting to other 

agents, and monitor and save changes based on various decisions in the KB. MaSE methodology 

(Multiagent Systems Engineering) which is developed by Deloach and Wood is used to design this 

system [155]. MaSE is meant to have a complete lifecycle for analysing, designing and developing 

heterogeneous Multiagent systems [155, 156]. It has two main phases: Analysis and Design. 
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Similar to object oriented paradigm, agents communicate through conversations to accomplish the 

goal of the system in a top down approach [155]. The system goals, as well as the agents and their 

tasks and conversations are modeled in seven steps in MaSE. The deployment step also helps the 

physical placement of agents and its implementation. This methodology is independent from agent 

architecture or programming languages and helps to track changes in all phases [155]. The steps 

of MaSE are shown in the left part of Figure 37 and are taken from [156]. The right section of this 

figure represents the application of our methodology.  

 
Figure 37: Emergent behavior detection in MaSE 

We can use MaSE SDs or transform them to MSCs using the technique explained in [106]. 

In this technique, the roles of each agent are extracted from the agent class diagram. Then, the 

messages for each role are extracted.  

Two scenarios of the system are shown in Figure 38 and Figure 39. The first one shows 

mineral balancing with water misting method. The second one demonstrates how temperature 

should be balanced either by mist method or use a thermostat.  
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Figure 38. Balance minerals with misting [150] 

 

Figure 39. Balance temperature [150] 

We can model the agents’ behavior as interaction graphs or as send or receive matrices. If 

matrices are used (for smaller systems), the followings are the required definitions:  

We model the interaction of processes in each 𝑀𝑆𝐶𝑖 into its corresponding interaction matrix 

𝐼𝑀𝑖. An interaction matrix is a square matrix of size 𝑛 = |𝑃| equal to the total number of processes 

in the system. Two types of interaction matrices are defined that are used for various 

communication channels: Send Interaction Matrix and Receive Interaction Matrix.   
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Definition 1. Send interaction matrix in an MSC 𝑺𝑰𝑴 

A Send Interaction Matrix 𝑆𝐼𝑀 over 𝑃 is a matrix that represents all communications in an 

MSC ℳ that are of type “Sending”. The entries of 𝑆𝐼𝑀 are {𝑠𝑖𝑚1, 𝑠𝑖𝑚2, … } where 𝑠𝑖𝑚𝑧 ∈ 𝑆 and 

𝑟𝑜𝑤𝑝 represents the 𝑝𝑡ℎ row in 𝑆𝐼𝑀 and 𝑟𝑜𝑤𝑝 = 𝛿𝑝ℳ. 

Definition 2. Receive interaction matrix in an MSC 𝑹𝑰𝑴 

A Receive Interaction Matrix 𝑅𝐼𝑀 over 𝑃 is a matrix that represents all communications in 

an MSC ℳ that are of type “Receiving”. The entries of 𝑅𝐼𝑀 are {𝑟𝑖𝑚1, 𝑟𝑖𝑚2, … } 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖𝑚𝑧 ∈

𝑅 and 𝑟𝑜𝑤𝑝 represents the 𝑝𝑡ℎ row in 𝑅𝐼𝑀 and 𝑟𝑜𝑤𝑝 = 𝛾𝑝ℳ. In FIFO communications, with 

synchronous communications, and in cases that no message is lost (ideal case), we have 𝑅𝐼𝑀𝑖 =

(𝑆𝐼𝑀𝑖)
𝑇 for their corresponding MSC ℳ𝑖, i.e. the two matrices 𝑆𝐼𝑀𝑖 and 𝑅𝐼𝑀𝑖 are transpose of 

each other. However, in other communication channels, 𝑆𝐼𝑀𝑖 and 𝑅𝐼𝑀𝑖 for their corresponding 

MSC ℳ𝑖, might be different based on the definitions of that channel, and 𝑅𝐼𝑀𝑖 ≠ (𝑆𝐼𝑀𝑖)
𝑇. 

For this case study, we use matrices. The vectors used for the analysis are the same for both 

modeling approaches. The information for agent Aw is followed. The information of the 5th rows 

and columns of the matrices are related to agent Aw. Vector states5k (states vectors of Aw) are:  

𝛽𝐴𝑤ℳ1
=  {𝑠𝑡1, 𝑠𝑡2, 𝑠𝑡3, 𝑠𝑡4}; 

𝛽𝐴𝑤ℳ2
=  {𝑠𝑡1, 𝑠𝑡2, 𝑠𝑡3, 𝑠𝑡4, 𝑠𝑡5, 𝑠𝑡6}.  

And state transition vectors are:    

𝜑𝐴𝑤ℳ1 = {𝐴𝑚, 𝐴𝑤 , 𝐴𝑤 , 𝐴𝑤}; 

𝜑𝐴𝑤ℳ2 = {𝐴𝑡 , 𝐴𝑤 , 𝐴𝑤, 𝐴𝑤 𝐴𝑚, 𝐴𝑤}. 
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The first three states are shared states for Aw. The senders of these states in the first scenario 

are {Am, Aw, Aw} and in the second scenario are {At, Aw, Aw}. This difference can cause a problem 

which is explained in previous chapters.  

We can add arguments to the concurrent task and conversation steps of this agent in MaSE 

to store the information about sender/receiver of the detected states to prevent this issue. We can 

also revise the designs and check the designs again for an EB/Is. As it is shown in Figure 40 (the 

concurrent tasks of “Receive request” of the water control agent) argument S associated to Sender 

of a request in its states is stored. 

 

Figure 40. Aw concurrent task diagram [150] 

The responder side of the conversation for temperature balancing is shown in Figure 41 

(communication between At and Aw).  

 

Figure 41. Conversation diagram of At and Aw [150] 

To sum up, the process of our work and how it is applied on MaSE is shown in Figure 42. 
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Figure 42: Process of EB detection and fixing in MaSE 

If we want to use other approaches to detect the shared states, we can find identical states by 

techniques in [4, 151] or [157]. In this approach, FSM is used which is shown in Figure 43 and 

Figure 44. Messages m1-m5 are the abbreviation we used here for simplicity. As it is shown, the 

senders of the messages are written above them. Storing the senders’ information is not shown in 

FSM and we show this information to clarify the importance of keeping all the information of the 

interactions among software agents in Mas.  

 

Figure 43: Aw FSM in first scenario [158] 

 

Figure 44: Aw FSM in second scenario [158] 

The results of this case study are previously reported in [150, 158] and are taken from these papers.  

7.2.3 Online Auction System 

In this section, an online auction system is studied. We show that by this modeling and detection 

technique, the agents that have no emergent behavior can be omitted from further analysis. We 

chose an online auction system since in this system there are many agents of different types that 
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are interacting to each other and many of them are autonomous agents. This case is previously 

published in [147]. Considering it as a social network of business agents, individual sellers and 

buyers participate to provide various items and bid on the items. The agent based modeling models 

the auction system where each agent works as a buyer or seller. Learning and behavioral change 

can also occur [159]. We suppose that rational agents are working together with specific objectives 

and therefore they should follow rules defined by the auction hosting authority [160]. New 

behavior can be seen in the behavior of buyers and sellers agents based on their previous 

experiences [161].  

Analysis of e-commerce systems is important for trust and security checking and fraud 

detection.  

We only consider six agents here and other agents such as the security or trust manager agents 

are not considered to make the case study simple:  

Controller or market place agent (C1): Defining the auction types and protocols for each one 

and defining the rules for each auction type is the responsibility of this agent.  

Auctioneer (C2): This agent performs the auctions and declares protocols, seller and buyers, 

items in each auction, timing and pricing, bids, and other actions required in an auction.  

Registrar (C3): The communication of seller and buyer agents with the auctioneer is through 

this agent. Actions such as introduction, registering new users, logging the functions, and searching 

is among the responsibilities of this agent.  

Seller (C4): This agent sells items in auctions. It should register in each auction type through 

the registrar, then is able to announce its items and the prices. 

Buyer (C5): The buyer agent searches for its wanted items, bids on various items, and buys 

them. It should register first and log into the system.  
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Credit Associate (C6): Securing the financial transactions by sending the seller and buyer 

information and the trade information to the financial associates.  

Some of the scenarios for this system are shown in Figure 45-Figure 50. The scenarios are 

shown with message sequence charts. 

Scenario 1: Registering a new user.  

The auctioneer asks the auction information and the registrar shows the information on the 

web site. Next, seller or buyer send their information and register as a new user. This scenario is 

shown in Figure 45. 

 

Figure 45. User registration [147] 
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Scenario 2: Users sign in. 

The registered users participate in this scenario. They sign into the system and participate in 

an auction. This scenario is shown in Figure 46. 

 

 

Figure 46. Users sign in [147] 

Scenario 3: Registering users to participate into a certain auction. 

The users signed into the system register for a certain type of auction. The registrar agent 

introduces these users to the auctioneer. Bidding, declaring the winner, and sending the 

information of the sold items and the trades to the credit associate agent are shown in this scenario. 

The third scenario is shown in Figure 47.  
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Figure 47. Registering to auctions [147] 

Scenario 4: Searching for items.  

This scenario is shown in Figure 48. In this scenario the buyer searches for an item. The 

search rules are also defined here. 

 

Figure 48. Searching for items [147] 

Scenario 5: Searching for type of auction. 
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It is shown in Figure 49. The seller seller searches for various types of auctions and receives 

related information and rules of each auction. The rules and protocols of a chosen auction is 

declared.  

 

Figure 49. Searching for auction type [147] 

Scenario 6: Registering items. 

The seller agents declare the items and all the required information such as the price and the 

auction type to the registrar. The registrar agent is responsible to put all of the received information 

on the website. This scenario is shown in Figure 50.  

 



 

146 

 

Figure 50. Registering items [147] 

For the detection of agents that have no emergent behavior, we refer to the pre-processing 

phase in 0, the synchronous communication style. By applying the algorithm on the extracted 

vectors, we will find that the first and the last (sixth) agent have similar message labels in all of 

their MSCs (are in set SimilarM).  

For each of these components, we should find their send vectors vector 𝛿𝑝ℳ𝑗
 in all the MSCs, 

and then compare these vectors together. If the send vectors of a component are similar in all 

MSCs, it is added to set SimilarS.. For the components that pass this phase, the receive vectors 𝛾𝑝ℳ𝑖
 

are checked against each other in all MSCs. If these vectors are the same, then component is 

reported as an agent with no EB.  

The first agent, C1, passes all the steps mentioned above in all the MSCs. Therefore, it is 

reported as a component that has the same behavior in all MSCs of the system and cannot show 

an EB. This component has the same behavior in all scenarios of the system, and that is the reason 

of having no EB.  
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The other component is the credit associate agent. This agent receives messages in all MSCs, 

without a send event on its functionality. For this agent, all the above mentioned steps are the same, 

and consequently it cannot emerge a new behavior in the system.  

We should mention that this technique is also useful for the detection of neutral agents in a 

network of software agents; because the complex social network of the existing relationship 

between the agents taking part in a system such as in an online auction make the modeling and 

analysis of such a network complicated. Therefore, by detecting the neutral agents, we can model 

the rest of the system for other analysis. It can help in reducing the complexity related to analyzing 

such a network and analyze the relationship between different types of the agents before analyzing 

the whole network. The case study is part of our work which is published in [147]. 

7.2.4 Traffic Control System 

In this section, we present a Traffic Light Control System which we published in [C1]. This system 

is a Multiagent system and is simplified to six agents working on two high ways. Through this 

case study, we will explain the problems that can arise because of asynchronous concatenation of 

MSCs and race conditions. It is worth mentioning that one of the reasons of having a race condition 

is the asynchronous communication style between the processes.  

Figure 51 illustrates the traffic situation. It contains two highways HW-1 and HW-2 with two 

ramps that are exit of HW-2 and entrances to HW-1. The vehicles can do in the direction that is 

depicted with dashed arrows. The inflow and outflow of the ramps to/from HW-1 and HW-2 are 

controlled by ramp metering installations (RMI) RMI1 and RMI2. RMI2 is responsible to detect 

the congestion in the downstream of the second ramp (starts to build up on HW-1) and reduce the 

inflow. Likewise, when the congestion starts on the exit ramp of HW-2, RMI1 and RMI2 should 

act to reduce congestion. To increase the performance, the agents RMI1 and RMI2 should be aware 
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of future congestion. Therefore, the system is designed as a Multiagent System (MAS), where the 

agents can interact to each other. Therefore, they can take actions in advance and solve the 

congestion timelier. 

 
Figure 51: Roads control by MAS congestion control [C1] 

There are two highway agents on each highway and one RMI agent for each ramp. The 

highway agents are able to develop an image of the current traffic situation, which is based on their 

estimation and the messages they receive from downstream agents. The possible communications 

among agents is shown with arrows in Figure 51. Highway agents can send these messages: “no 

problem”, “help-urgent high”, and “help-urgent low”. The actions for the RMI agents are: “make 

the traffic light green” or “make the traffic light red” which is based on the messages they receive 

from highway agents.  

In the following, two MSCs are shown as possible scenarios of the system. These MSCs 

show situations that agents of HW1-1 and HW2-1 request urgent help from RMI1 agent in different 

orders. In scenario MSC M1, the message from HW2-1 is sent sooner. As a result, RMI1 agent 

makes the traffic light green. This is shown in Figure 52.  

In MSC M2, Figure 53, HW1-1 agent’s request is received sooner and the traffic light 

becomes red. 
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Figure 52: HW2 agent requests for a high urgent help [C1] 

The high level MSC of the system is shown in Figure 54. The MSC M1 starts and then the 

second MSC can execute. There is a path from M2 to M1. 

 
Figure 53: HW1 agent requests for a high urgent help [C1] 

 
Figure 54: High level MSC of congestion control system [C1] 

The asynchronous concatenation of MSCs means that in a hMSC the processes can proceed 

to the next MSC with different timings [162]. Consider two MSCs ℳ1, ℳ2 ∈  𝓜 with processes 

𝑝, 𝑞 ∈ 𝑃𝓜and ℳ1 precedes ℳ2 in the hMSC 𝒢. Asynchronous concatenation of MSCs is 

interpreted as the time that processes do not wait for other processes to accomplish their actions in 

one MSC. Therefore, for example, while process 𝑝 is still executing the first MSC, process 𝑞 may 

continue to ℳ2. We refer to this as issue I1 (SLIS-IV). Likewise, HW2-1 (in M1) can continue to 
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perform its actions in M2 and send a high urgent help request RMI1. However, agent HW1-1 is 

still executing M1. It results in repetition of the execution of the first scenario M1. As a result, the 

EB shown in Figure 55 (a) can happen. The same situation can happen for the other highway agent 

(HW1-1) in the second scenario M2 which results in the repetition of MSC M2. This is shown as 

another EB in Figure 55 (b).  

 
Figure 55: Two implied scenarios [C1] 

The asynchronous concatenation of MSCs can also cause another problem that we refered as 

race conditions (CLEB-IV). To show this, consider the third scenario that is shown in Figure 56. 

In this scenario (M3), agent HW2-1 sends a “low urgent help” message to the ramp agent. RMI1 

analyzes the situation by asking the other high way agent about the current situations in order to 

be able to decide and take a good action. If the urgency of HW1-1 is high the traffic light becomes 

red.  

 
Figure 56: HW2 agent requests a low urgent help [C1] 
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The IS that can happen in this situation is shown in Figure 57. In this IS, HW2-1 can continue 

in M1 (i.e. send a request of high urgent). Since it is a race condition and there is no control over 

the messages that the ramp agent should receive, it can make the traffic light green instead of red 

which is defined for it in MSC M1.   

 
Figure 57: Implied scenario in congestion control system [C1] 

We have defined active and passive processes previously. Based on the definitions of active 

and passive process, an active process 𝑝 can lead to issue I1 in all MSCs that it is active and there 

is no timing or control over these MSCs. Other than starting actions, when 𝒢𝑝 is different from the 

hMSC, it can lead to an IS. This is the case for high way agents.  

The cases for the race conditions are explained in previous chapters. It was explained that 

the order of receiving messages is changed which led to an implied scenario.  

7.3 Summary 

In this chapter we examined various case studies, both from the literature and some new ones. 

These case studies are Fleet management system, Greenhouse control system, Online auction 

system, and Traffic control system. Some of these systems are using MAS and the control is given 

to various agents. Through the case studies, we have explained how to model and analyze the 

system in order to find the EB/IS. Explanations on fixing the detected issues are also provided.   
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 Evaluation and results 

8.1 Introduction  

In this section, we explain the results of our work. From the existing approaches in the literature, 

we have chosen the application of our methodology to various case studies. Also, for the evaluation 

part, we have considered some criteria that evaluates different aspects of our work. We report the 

results in multiple sections as follows:  

1. We have chosen some of the works that have the greatest number of case studies, including 

new and cases from other works. We apply our modeling to these cases other than the ones 

we explained in the previous chapter.  

2. The results of different steps of our work including the pre-processing phase.  

3. The results of detecting EB/IS with applying data mining techniques for the functions in 

the detection methodology. We consider this part as an extension of our work that shows 

possible solutions for the detection of emergent behaviors.  

The results show that our modeling covers all the implied scenarios that other works can 

detect. Moreover, since our technique models the interaction information for the processes, it can 

detect new emergent behaviors that cannot be detected by other approaches [150]. Also, in our 

modeling, we use a high level structure for each process which is a new approach. This high level 

structure is used in analyzing the problems that can happen in the system and also providing 

reasoning on the detected issues.  

8.2 Evaluation and results 

The evaluation of finding EB/IS is a challenging area, since there is no specific benchmark or data 

set for testing the methodologies. There are some researches which are considered as the main 

works in this field. In these works, the evaluation is accomplished by applying the methodology 
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on various case studies and try to find new EB/IS or false positives from the case studies in other 

works. In works that are focusing on the theoretical parts, the mathematical proofs are presented. 

In this work, we choose the first approach and focus on detecting the EB/IS from the case studies 

in the literature, as well as new ones with our methodology. In this process, our focus for the 

evaluation are the following criteria: 

 Detecting number of existing problems in a case study to find out if all the existing EB/IS 

can be detected in a specific case study. 

 Evaluating the detected EB/IS as false positive (FP) or true positive (TP), indicating 

whether the detected EB/IS are actually an EB/IS. 

 The ability to detect problems in different communication styles (synchronous vs 

asynchronous). 

 The capability in detecting the origins of the problem. 

 The ability to develop solution repositories for the detected EB/IS. 

For this thesis, we have chosen a set of case studies from a wide range of applications. These 

case studies are either new case studies or the ones that exist in the literature. Specifically the cases 

from the work of Song el at. (2009-2011) [37], Uchitel et al. (2003) [40], and Kumar (2010) [41] 

are chosen. These researches have a combination of theoretical and practical work, or their work 

includes critics on the flaws of the other ones. Therefore, it provides a wide range of criteria for 

comparison of our methodology to the others. These include the famous ATM machine [4], Boiler 

Control System [83], Automated Mine-Sweeping Robot [163],  Semantic Search System [164], 

Internet Filtering System [165], Automated Manufacturing System [12], and Real-Time Fleet 

Management System [42]. 
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8.2.1 Implementation 

We have implemented the behavioral modeling and the detection algorithms in a simple tool called 

Eagle. At this stage, the tool works with command line and no GUI is provided. For the 

implementation, we have used C# and Weka API. The architecture of Eagle is shown in Figure 58.  

 

Figure 58. Eagle architecture and the main modules 

As the inputs, it can accept the sequence diagrams from Microsoft Visio 2013 and the ITU-

T message sequence charts as the text command. There are a lot of tools provided for MSCs that 

provide a text based definition for the MSCs. The inputs are then analyzed and modeled into the 

interaction graphs based on the definitions of Cores and Nodes. The advantage of having separate 

information in Cores and Nodes is to model the system once, and use the required information for 

component and system level analyses separately. Finding the shared states is with data mining 

techniques. For this part, we use message labels as the strings and use the API of Weka to analyze 

and extract the shared states. Finding the conditions that satisfy each class of EB/IS is based on 
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the algorithms provided previously. The only point that is worth mentioning here is that we analyze 

each class of EB/IS separately. Therefore, the user can choose which specific type must be 

checked. The results of the analysis is reported to the user through a text file, indicating the 

following information: 

 The existence of EB/IS. 

 The specific scenarios that lead to an issue. 

 The specific component/components and the messages in the scenarios that lead to a 

problem (the exact point of the occurrence of EB/IS). 

 The recommendation on how to fix the problem. 

8.2.2 Implied scenario detection 

In Table 2 the above mentioned criteria for the case studies that we have discussed in the previous 

chapter are shown. For each of the case studies, the number of scenarios indicated and the number 

of detected EB/IS after analyzing these scenarios (MSCs/hMSCs) are included as well. For all of 

the case studies, the reasons of having an EB/IS are identified in the detection process. Similarly, 

the recommendations on preventing the detected EB/IS are indicated. These two options become 

possible due to our approach for the detection of EB/IS which is using the EB Catalogue. As a 

result, the specific conditions that we check to know whether an EB/IS exist in the system, are 

directions on the origins of the problem and can lead to developing directions to prevent the 

occurrence of the detected issues. In this table, there is a column for FP/TP that shows whether the 

EB/IS found with our methodology are truly implied scenarios. For some works, it is claimed that 

their methodologies find FP or TN, i.e. finding some scenarios as implied scenarios which is wrong 

or they do not find some implied scenarios. This is due to the methodology used for behavioral 

modeling and issues like overgeneralization of the state machines. For our methodology, this case 
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is not true. In other words, we find all the implied scenarios that are not in the list of MSC 

specifications of the system and check them against the current behaviors. The list of behaviors 

that are not included in the current specifications of the system are announced as EB/IS. Our 

methodology will not provide new behaviors because we generate interaction graphs associated to 

each of the MSCs/SDs and avoid connections in unnecessary cases. Hence, the connections are 

only for some parts of the system level analysis, and are exactly as it is shown in the visual form 

of the MSCs/SDs in their high level structure (hMSC). This prevents in announcing scenarios as 

implied scenarios while they are in the list of SDs/MSCs of the system (avoiding FP). Moreover, 

the implied scenarios that we define and detect here are the ones that come from specific conditions 

(defined in previous sections) in the EB Catalogue. The main reasons of having EB/IS are shared 

states or active processes. In our methodology, we investigate all of the shared states for all 

processes, and also all of the active processes. Therefore, we are able to find all the implied 

scenarios (TP) and avoid having extra ones (FP) or ignoring the ones that exist (FN).  

Lemma. All of implied scenarios that exist in the system can be detected with our 

methodology. 

Proof. Based on the EB Catalogue, the main reason of having EB/IS in the system is having 

shared states or shared interactions among various scenarios and components of the system. 

Suppose that there are some scenarios that are implied scenarios and are not detected with our 

methodology. This implies that there are some shared states or shared interactions among various 

components of the system that are not analyzed with our technique. Based on the definitions in 

previous sections, this is not true; since we analyze all shared states among all scenarios of the 

system. As a result, all the implied scenarios are detected with our methodology.                          
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Lemma. All the detected EB/IS are found correctly, meaning that there is no scenario that is 

announced as implied scenario but it is in the system specification.  

Proof. Suppose that there is a scenario which is wrongly detected as an implied scenario. It 

means that either the scenario was not in the system specifications at first, or it was in the system 

specifications and was announced as a wrong scenario. The former case means that the detected 

scenario is an implied scenario, which is not the case. The latter means that the scenario was not 

among the specifications of the system to be checked against, which is not true. As a result, all the 

scenarios detected as implied scenarios are truly tagged as an implied scenario (TP).                   

Table 2. Evaluation criteria in studied cases 
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Online auction 

system 

7 3 Yes TP Syn. Yes Yes 

Traffic control 

system 

4 2 Yes TP Syn. Yes Yes 

Fleet 

management 

system 

4 1 Yes TP Syn. Yes Yes 

Greenhouse 

system 

6 1 Yes TP Syn. Yes Yes 

Mine sweeper 

robot 

5 2 Yes TP Syn. Yes Yes 

Boiler control 

system 

5 4 Yes TP Asyn. Yes Yes 
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The criteria on detecting all of the existing EB/IS in Table 2 is also based on what exist in 

the literature. This column also shows that whether all of the implied scenarios reported in other 

works for a specific case study are detected with our methodology as well. Other than the proofs 

mentioned above, we have checked the implied scenarios detected in our work with the implied 

scenarios mentioned in the literature. The results show that we are able to find all the implied 

scenarios that other researches can find for each case study.  

As an example for this part, we refer to the Boiler Control system. We have identified three 

of the implied scenarios that can exist in this system previously. In our model, we use the high 

level structure 𝒢𝑝 for each of the processes in the system. The analysis of this structure is valuable 

in many aspects and can reveal a broad range of issues that can happen in a system. Examples of 

the analysis of this structure are explained previously (see sections 6.3.1.3.2. and 6.3.2.4.2.2 and 

7.2.4).  

To verify our work, we have worked on a wide range of case studies including the fleet 

management and other cases named above. For all of these systems, we have detected all the 

implied scenarios that exist in these systems, compared to the approaches other researchers have 

used. Moreover, with our methodology, some new implied scenarios were found that was missing 

in the existing approaches. One of the examples of the new implied scenarios that other works 

cannot detect is the specific type of EB, CLEB-II. We have also provided a comparison on some 

main researches providing information on the type of the detected problems, modeling used in 

their work, and whether they have provided solutions for the detected issues. We have also 

included a column on their ability to detect CLEB-II. The results are reported in Table 3 which we 

previously published in [153].  
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Table 3. Comparison of research on implied scenario detection and modeling approaches 

[153] 

Research year 

Type of detected 

error 

Modeling 

Suggest 

solutions 

Detection of 

CLEB-II 

Ben 1998 

Process divergence, 

Non-local choice 

Modeling NL 

choice 

x x 

Alur 2003 

Deadlock, race 

condition, timing 

State Machine x x 

Whittle 2001 Conflicting behaviors State Charts x x 

Uchitel 2003 Implied Scenario FSP + LTS x x 

Muccini 2003 

Non-local branching 

choice 

Modeling NL 

choice 

x x 

Song 2011 Implied scenario 

Graph 

comparison 

Provides 

reasons 

x 

Kumar 

2000-

2010 

Implied scenario State Machine x x 

Mousavi 2009 Implied scenario State Machine x x 

Our 

work 

2016 

Asyn. concatenation, 

Various Implied 

scenarios 

Interaction 

Modeling 

Yes Yes 
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8.2.3 Pre-processing phase 

One of the contributions of our work is adding a pre-processing phase in order to reduce the 

number of components that must be analyzed for the existence of EB in their behavior. Previously, 

we have used the Online Auction System as a case study that shows how our algorithms can detect 

agents that are not candidates to produce an emergent behavior in the component level. We have 

applied our algorithm to three case studies from the literature [163-165]. The results are 

summarized in Table 4 which we previously published in [147]. The reduction of the number of 

components becomes more valuable when the number of components in the system are large.  

Table 4. Summarizing the results of applying the pre-processing algorithm in different 

examples [147] 

Researches Detected agents that will not cause 

emergent behavior (Reduction in FSM) 

Auction system [147] 33% 

Semantic search system [164] 40% 

Mine sweeper robot [163] 40% 

Internet filtering system [165] 0 % 

 

The system in [164] includes five components for a semantic search system: user, query 

handler, concept learner, local repository and peer finder. Two of them (user agent and peer finder) 

do not need synthetization of behavioral modeling based on our algorithm. Calculating the number 

of components and scenarios that require behavioral modeling, it means 40% reduction in 

constructing the FSMs. The system in [163] is a mine sweeping robot and the results is also the 

same for this system. The other example is an internet filtering system [165]. For this system, our 
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method could not find any safe components. Applying our method in this phase does not always 

result in the reduction in the number of components that require behavioral modeling. This is based 

on the system specifications and whether they satisfy the conditions we named previously for 

having safe components.  

To evaluate these results, we checked the implied scenarios that were reported in each of 

these cases and none of them included implied scenarios that were related to the components that 

we reported as safe components in our algorithm.  

8.2.4 Finding neutral nodes in a network of software agents 

The approach we have used for the pre-processing phase can be used to detect neutral nodes 

in a social network of software agents. For this case, we cluster the send and receive vectors of the 

agents in all the diagrams in which they have some collaboration. By clustering these vectors, we 

can be sure that the agents that remain in the same cluster, always have similar send and receive 

actions. In other words, when the number of their cluster does not change, their functionality is the 

same. Therefore, they are considered as neutral agents. We have published the results of this work 

in [166]. 

Finding neutral nodes in a network of software agents can be useful in various applications 

of agent based modeling. The method analyzes the inter- and intra- interactions of the software 

agents. We have reported the results of this section previously in [149].  

8.3 Summary  

This chapter includes the results and evaluations of our work. We have used multiple case 

studies to evaluate our work. This is the current trend that is used in the literature for this type of 

research. To be more specific, we have determined some criteria to compare our work with the 

others. Also, one important factor in this comparison is to find whether all the implied scenarios 
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which are detected by other methodologies can be detected with our work. The results show that 

our methodology is able to find all of these implied scenarios, as well as new ones. The proofs 

for completeness of our methodology is also provided in this chapter. The results and evaluations 

are reported in separate tables in this chapter. The system architecture for our tool called Eagle is 

also explained in this chapter. The other sections in detail provide the results of our work in 

finding the implied scenarios and the pre-processing phase.  
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 Discussions 

9.1 Discussions  

In this part, we would like to discuss some special aspects of our work and the motivations that 

led to this work at first, and then discuss the results. In the process of behavioral synthesis with 

finite state machines (FSM) [4, 92], two categories of emergent behaviors are introduced to the 

system: 1- Overgeneralization, which is caused by generalizing all the FSM of one agent into one 

FSM. 2- The unexpected behaviors caused by incompleteness in specification of agents [167] (only 

in Multiagent systems). In these works, other than the complexity of the behavioral modeling 

process, new problems are inserted into the system that should be detected. These are new issues, 

other than the ones that may exist due to the design flaws that should be detected. Moreover, the 

internal behavior of the components is required in this modeling. In other words, the events and 

what triggers a change in the event of a component depends on the messages. This is true for 

labelled transition systems and some other works, where the dependency of the messages should 

be considered as causal dependencies or pre- and post- conditions between the messages. These 

processes make the modeling and the foundation of the methodology dependent on humans. In the 

era of software automation, we meant to find a methodology to make part of this field fully 

automated. Our main question that we tried to answer in this thesis was: Is there a methodology 

that can find the EB/IS in the system without depending on subject experts and therefore makes 

the whole process of analyzing the UML sequence diagrams and message sequence charts from 

the system designs fully automatic? As explained previously, in this process we accomplished 

some important results such as making a catalogue of emergent behaviors and implied scenarios 

based on the origins of the problem.  
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A big discussion can be the use of behavioral modeling with states machines in this work. 

For this part, we try to find a different modeling methodology to prevent some challenges of 

behavioral modeling with state machines. In our modeling, we generate the interaction graphs from 

the components’ specifications and avoid creating new graphs to combine the similar (shared) 

states of their behavior. As a result, our modeling does not bring or introduce overgeneralization 

or extra behavior to the behavioral model of the processes and the system. Another point of 

discussion is that we preserve the information about the interaction of software components in our 

modeling from the first part. Consequently, the interaction graphs can be used for any kind of 

analysis and there is no need to generate a separate graph that shows their interactions. This is 

closer to their implementation. The information that we model is: who they send a message to, 

message labels, and from which components they can receive a message, in each scenario. As 

explained before, this modeling has helped in the introduction of the implied scenario that is caused 

by some assumptions that are different in the designs of agents’ communications and in the 

implementation of the system. These new implied scenarios are extracted from the interactions of 

the components, other than just considering the states or events on each process (agent). The 

existing works are not able to detect this implied scenario, because they do not consider the agents’ 

communications. 

Another challenge that we have found in many of the existing works is the assumption of 

having the behavioral models in state machines or developing algorithms based on the state 

machines and the usage of labelled transition systems without actually explaining the “how to” 

steps. For example, in [42], for each agent the concurrent automata is constructed, and the Labelled 

Transition Systems (LTS) is obtained. Then for the detection of the EB/IS, the safe realizability of 

the system should be determined. Other than the complex process of behavioral modeling and 
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constructing the LTS, there is no specific algorithm determined for obtaining LTS for each agent. 

Moreover, the algorithm for safe realizability is not devised. These issues exist for many of the 

works in the literature, since many works focus on the theoretical part of the IS detection and only 

include the definitions for each of these concepts. Therefore, in our approach, we have tried to 

develop the main steps for finding the EB/IS in the system. For each part, we have devised the 

general algorithms. In each of the algorithms, multiple functions are used that might have different 

implementations. For the main part of these functions (finding the process’s shared states) and the 

conditions that lead to EB/IS, we have devised detection methods. One approach that we have 

chosen is the usage of data mining techniques.  

The other discussable point in our work is the detection of EB/IS versus developing solutions 

for the detected problem. To the best of our knowledge, the only work that develops general 

solutions (not application specific) is our work. In many works, some suggestions are provided on 

specific examples which cannot be expanded to other applications. The reason that we are able to 

suggest general solutions is that we have focused on the origins of the problem that can exist in 

component or system level. We have classified the common EB/IS based on the reasons that might 

occur. Accordingly, we have developed our detection methodology and modeling based on the 

origins of EB/IS. As a consequence, we can find the reason and the exact point (event of a process 

and scenario) that the EB/IS exist, and we are able to point that problem and develop solutions. In 

the literature, the implied scenario is shown as an error that exists in the system. However, the 

problematic points (events, states) are not shown. There is one other approach that  finds the points 

that an implied scenario can occur in an MSC [37]. The advantage of our modeling over this work 

is that, we detect the problematic points and indicate the probable causes for those points. Besides, 

we go one step further and suggest solutions based on the detected reasons. Furthermore, by 
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classifying the EB/IS in various classes, based on what the possible causes for each class are, we 

can use different information in the analysis of each class of implied scenarios.  

The specific aspects of our work that differentiates it from other researches are:  

1. Looking at the system as a black box. Consequently, in terms of Multiagent Systems, there 

is no need to know the internal knowledge space of the agents; and in terms of differences 

with the existing works, there is no need for identifying the conditions or causalities 

between the messages. 

2. Looking for a general solutions and not being application specific. Therefore, our 

methodology is not dependent on the content of messages. Based on the results of the 

problems that we have categorized in the EB Catalogue, we find the arising EB/IS in the 

system. The methodology uses a labeling phase at first to change the message contents to 

message labels and then uses these labels only for the detection of EB/IS. 

3. Adopt modeling the system by using the concepts from state machines and social network 

analysis and the interactions among components. In this modeling, we use the message 

labels that components send or receive as the nodes of the interaction graphs and connect 

the nodes to each other regarding the SD/MSC specifications. The states and the triggering 

events (messages) are combined into the nodes and only the links to the next states are 

preserved.  

4. Presenting the EB Catalogues. This catalogue is based on the origins of the problems in 

both component and system levels. Based on this catalogue, we have developed general 

detection algorithms and solution repositories. The detection of the causes of the EB/IS 

and presenting solutions for each type of EB/IS are also among other novel aspects of this 

catalogue. 
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5. Being able to use data mining (DM) techniques to detect EB/IS in the system is another 

aspect that differentiates our methodology with other works. Modeling the system with the 

interaction graphs and the reasons provided in the EB Catalogue, provides the basic 

circumstances to use DM. One of the advantages of using DM in this process is decreasing 

the number of required comparisons to find the shared states, and its ability to predict new 

paths. This is elaborated more in the future areas of this work.  

The other point that we like to discuss in this section is the test bed we created but were not 

able to use for this work. We set up a Linux cluster and executed some open source MPI programs 

on this cluster. Our main focus in this process was whether we are able to use the communications 

between the processes and detect EB/IS. However, the feasibility analysis of this phase resulted in 

not suing this cluster as a test bed, since it would have some contradictions with our assumption 

to consider the processes as black boxes. Analyzing the communication between the processes in 

MPI requires to create a tool that controls or changes the execution of different MPI functions. Not 

only this made it unsuitable for our purpose, it is far beyond the scope of this work and requires to 

be accomplished as a separate Masters or PhD project.  

Model checking that is used for our area of work, uses two approaches: modeling the system 

to check it against a specific property, behavioral modeling to find EB/IS. We refer to the second 

category of the works. Therefore, the correctness of our methodology is interpreted as finding the 

EB/IS which is evaluated and the results are reported in other sections.  

9.2 Conclusion  

In this thesis, we have categorized the common EB/IS that exist in MAS and DSS. This catalogue 

is based on our research and the problems that are described in the literature. The strategy that we 

have used in this classification is focusing on the origins of the problems. Other than the existing 
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works, we have introduced a new implied scenario that can happen in MAS due to specific 

conditions that exist for the communication of various agents in the system. This issue can be 

analyzed by our methodology, because the information about the agents’ interactions are preserved 

in our modeling. The other feature of the EB Catalogue is classifying the issues based on the EB/IS 

that can happen in component and system level. Each of these classes have some sub-classes. 

These EB/IS types are not explicitly mentioned or reviewed in the literature. The other contribution 

of our work is looking at DSS/MAS as black boxes and try to find a methodology that certifies 

their behavior without considering the details of the components/agents. In this approach, we also 

tried to answer this research question: Is there a general approach that can detect EB/IS without 

human interference and is fully automated? Is there an approach that considers the interactions 

among software agents in order to certify their behavior in early phases? The answer of these 

questions led us to develop a new methodology for the modeling and detection of emergent 

behaviors and implied scenarios based on the combination of concepts from state machines and 

social network analysis. In this process, we have modeled the system and the behavior of the 

components with interaction graphs. This modeling is based on the system specifications defined 

with MSCs or SDs.  

One other part of our work is dedicated to develop detection methodology for each class of 

EB/IS in the catalogue. For each class, specific conditions that can lead to EB/IS are identified. 

Referring to these, by detecting the exact point of the problem, we are able to suggest general 

solutions for the detected issues. All of these steps are among contributions of our work. We have 

provided examples for all of these steps in different chapters of this thesis.  

In the literature, there is no baseline for the comparison of different works. The evaluation 

in this field for practical works is done by using various case studies from the literature. We have 
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chosen the same evaluation technique in this thesis. To be more precise, we have defined some 

criteria for this evaluation and reported our results based on those criteria. We have applied our 

technique to several cases from the literature, as well as some new ones. Based on the results, our 

methodology is able to detect all the implied scenarios as well as new ones that other approaches 

cannot detect or are not able to find its reasons.  

We have also devised methods to find the components that will not cause emergent behavior 

in a distributed system both in synchronous and asynchronous communication styles. Those 

components/agents can be eliminated in the behavioral synthesis phase. Many algorithms that use 

behavioral modeling for the detection of emergent behaviors have a computation complexity. A 

direct advantage of this method is to help reduce the computation complexity of the algorithms. 

This method is generic and can be considered as a preprocessing phase to eliminate the components 

that are not a point of emerging new behavior in component level. It is worth mentioning that even 

these components should be analyzed for the system level analysis. Also, the algorithm in some 

cases does not find any components, due to the system specifications.  

Other than modeling with interaction graphs, we can model the system with interaction 

matrices as explained in the previous chapter. One advantage of these matrices is having various 

matrices for send and receive messages. In the literature, it is assumed that the messages are 

received at the same time they are sent. This assumption is not what happens in the real world. The 

introduction of different matrices for send and receive events can help investigate the effect of 

service degradation in the case of lost or corrupt messages. One issue in the usage of these matrices 

is having n2 objects where most of them are zero entities. This can be solved by applying different 

techniques for the sparse matrix analysis.  
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All the above mentioned works is implemented in a tool that works with command line. The 

architecture of the system is provided in this thesis. The current state of the system is to improve 

the background algorithms. The future plans are to provide a user friendly GUI and improve the 

visualization parts to include everything in the tool itself. One other plan is to write a plug-in for 

Eclipse and Visio.  

The limitations of our work are requiring the specifications of the system in the form of MSC 

or SD. Also, this modeling and methodology only works for the systems that lack a centralized 

controller and multiple components are interacting to each other. For example, the methodology 

is not suitable for MapReduce and Hadoop, since there is a master node that controls the 

distribution of the job. The current methodology works with atomic interactions.  

9.3 Extension areas 

We have done a few other researches for various parts of this work, either as creating a test bed to 

analyze the feasibility of other approaches to be used in our work, or the applicability of this work 

in other areas. Throughout this process, we have found the following research areas as valuable 

works to be completed in the future.  

1. Using data mining and sequence mining for the detection of shared states. This will help 

in analyzing the sequence of message labels (the language in state machines) in all the 

scenarios of the system. The other application in this area is mining the current scenarios 

of the system to classify the behavior of specific components. This can be used in various 

analyses such as load balancing and performance of specific components.  

2. Visualization of the results for the designers as part of the tool for certifying the behavior 

of the system.  



 

171 

3. Applying this technique for the detection of problems in parallel programming such as 

MPI. Part of our research was dedicated to analyzing the feasibility of using MPI programs 

as a test bed in our work. In this process, we have found that the design of parallel programs 

can be challenging and requires expertise in this area. Finding the EB/IS in this field can 

be interpreted as analyzing the behavior of different processes and how they see the states 

of the system. Therefore, having a tool that can help in the design of these systems can be 

valuable for the developers. Specifically talking about MPI programs, this requires 

focusing on the specific functions that are used in MPI and are provided for the 

communications of the processes (Such as Broadcast, Send, Blocking Receive, etc.). For 

this reason, the tool should work with the MPI library as well.  

4. Using interaction graphs to find the new paths in the automated generated code. This will 

make the application of EB/IS detection close to the implementation. We consider this 

work as the major future work of this thesis. The results provide a cost effective solution 

to DSS verification which appeals to a large audience (medium/large companies), as well 

as academia/industry in the distributed computation fields.  
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