Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Containment of Simple Conjunctive Regular Path Queries

Diego Figueira', Adwait Godbole?, S. Krishna?,
Wim Martens®, Matthias Niewerth?, Tina Trautner?
'Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

21IT Bombay, Mumbai, India
3University of Bayreuth, Bayreuth, Germany

Abstract

Testing containment of queries is a fundamental reasoning
task in knowledge representation. We study here the con-
tainment problem for Conjunctive Regular Path Queries (CR-
PQs), a navigational query language extensively used in on-
tology and graph database querying. While it is known that
containment of CRPQs is EXPSPACE-complete in general,
we focus here on severely restricted fragments, which are
known to be highly relevant in practice according to several
recent studies. We obtain a detailed overview of the complex-
ity of the containment problem, depending on the features
used in the regular expressions of the queries, with complete-
ness results for NP, IT5, PSPACE or EXPSPACE.

1 Introduction

Querying knowledge bases is one of the most important and
fundamental tasks in knowledge representation. Although
much of the work on querying knowledge bases is focused
on conjunctive queries, there is often the need to use a sim-
ple form of recursion, such as the one provided by regular
path queries (RPQ), which ask for paths defined by a given
regular language. Conjunctive RPQs (CRPQs) can then be
understood as the generalization of conjunctive queries with
this form of recursion. CRPQs are part of SPARQL, the
W3C standard for querying RDF data, including well known
knowledge bases such as DBpedia and Wikidata. In particu-
lar, RPQs are quite popular for querying Wikidata. They are
used in over 24% of the queries (and over 38% of the unique
queries), according to recent studies (Malyshev et al. 2018;
Bonifati, Martens, and Timm 2019). More generally, CR-
PQs are basic building blocks for querying graph-structured
databases (Barceld 2013).

As knowledge bases become larger, reasoning about
queries (e.g. for optimization) becomes increasingly impor-
tant. One of the most basic reasoning tasks is that of query
containment: is every result of query Q7 also returned by
@2? This can be a means for query optimization, as it may
allow to avoid evaluating parts of a query, or reduce and sim-
plify the query with an equivalent one. Furthermore, query
containment has proven useful in knowledge base verifica-
tion, information integration, integrity checking, and coop-
erative answering (Calvanese et al. 2000).

The containment problem for CRPQs is EXPSPACE-
complete, as was shown by (Calvanese et al. 2000) in a now

371

‘classical” KR paper, which appeared 20 years ago. How-
ever, the lower bound construction of Calvanese et al. makes
use of CRPQs which have a simple shape (if seen as a graph
of atoms) but contain rather involved regular expressions,
which do not correspond to RPQs how they typically occur
in practice. Indeed, the analyses of (Bonifati, Martens, and
Timm 2019; Bonifati, Martens, and Timm 2020) reveal that
a large majority of regular expressions of queries used in
practice are of a very simple form. This motivates us to re-
visit CRPQ containment on queries, focusing on commonly
used kinds of regular expressions. Our goal is to identify
restricted fragments of CRPQs that are common in practice
and which have a reasonable complexity for query contain-
ment.

Contribution. According to recent studies on query logs,
investigating over 500 million SPARQL queries (Bonifati,
Martens, and Timm 2019; Bonifati, Martens, and Timm
2020), it turns out that a large majority of regular expres-
sions that are used for graph navigation are of rather simple
forms, like a*, ab*, (a+b)c*, a(b+c)*d, i.e., concatenations
of (disjunctions of) single symbols and Kleene stars of (dis-
junctions of) single symbols. Since CRPQs have concatena-
tions built-in, CRPQs with such expressions are essentially
CRPQs in which every atom has a regular expression of the
form (a1 + -+ 4+ an)or (@ + -+ ap)* forn > 1. In the
remainder of the paper, we often abbreviate the former type
of atom with A and the latter by A*. If n = 1, we write a
and a*. Table 1 gives an overview of the frequency of such
expressions in the following data sets:

(a) The data set studied by (Bielefeldt, Gonsior, and
Krotzsch 2018; Bonifati, Martens, and Timm 2019),
which was released by (Malyshev et al. 2018) and con-
tains 208 million parseable Wikidata queries, with over
55 million regular path queries.

The data set of (Bonifati, Martens, and Timm 2020),
which contains 339 million parseable queries, mostly
from DBpedia, but also from LinkedGeoData, BioPor-
tal, OpenBioMed, Semantic Web Dog Food and the
British Museum. These queries contain around 1.5 mil-
lion regular path queries.’

(b)

'One sees that regular path queries are much more common in
the Wikidata log than in the (mainly) DBpedia log. The reason
for this is that the graph structure of DBpedia was designed before

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

When we list multiple types of atoms in the table, we allow
concatenations of these types. So, a(b+c¢)*d is of type a, A*
and also of the more general type A, A*. In contrast to the
types listed, RPQs that are merely concatenations of single
symbols, e.g., abc or aa, represent only about 25% of the
valid Wikidata expressions and 7% of the valid DBpedia™
expressions in the table.

Another motivation to study CRPQs with atoms of the
forms a, a*, A, and A* is that these are currently the only ex-
pressible atoms in CRPQs in Cypher 9 (Francis et al. 2018,
Figure 3), a popular query language for property graphs.

We study the complexity of CRPQ containment for such
fragments F of “simple CRPQs”, that is, CRPQs that only
use atoms of some of the types a,a*, A, and A*. For each
fragment F, we provide a complete picture of the com-
plexities of containment problems of the form F C F,
F C CRPQ, and CRPQ C F (cf. Table 2, which we dis-
cuss in Section 3 in detail). The main take-aways are:

1. Even for such simple CRPQs, containment of the form
F C F can become EXPSPACE-complete. Moreover, this
lower bound already holds for containment of CRPQs us-
ing only a-atoms and A*-atoms. This was surprising to
us, because such CRPQs seem at first sight to be only mild
extensions of conjunctive queries: they extend conjunc-
tive queries only with atoms of the form (a1 +- - - + ay)*,
i.e., Kleene closures over sets of symbols. The contrast
between NP-completeness of containment for conjunc-
tive queries and EXPSPACE-completeness for CRPQs that
additionally allow (a; + - - - + ay,)* is quite striking.

2. As soon as we disallow disjunction within Kleene clo-
sures in F, the complexity of the abovementioned con-
tainment problems drops drastically to IT5 or PSPACE.
The good news is that such regular expressions are still ex-
tremely common in practice, e.g., over 98% of the RPQs
in the Wikidata query logs (Table 1).

Due to the page limit, we can only provide sketches of

some of the proofs. A version with more extensive proofs

is available at https://arxiv.org/abs/2003.04411 (Figueira et

al. 2020).

Organization In Section 2 we introduce the necessary no-
tation. In Section 3 we present our main results which are
then proved in Sections 4-7. We discuss related work in
detail in Section 8 and we conclude in Section 9.

2 Preliminaries

Let > be an infinite set of labels, to which we sometimes
also refer as the alphabet. We abstract knowledge bases (or
KBs, knowledge graphs, or graph databases) as finite, edge-
labeled directed graphs K = (V, E), where V is a finite
nonempty set of nodes, and E is a set of labeled directed
edges (u,a,v) € V x ¥ x V. A path is a (possibly empty)
sequence m = (vg,a1,v1) - (Un_1,an, Uy) Of edges; we
say that 7 is a path from vg to v,. The length of 7 is the
number n > 0 of edges in the sequence. We denote by
lab(r) the word a; - - - a,, of edge labels seen along the path.

RPQs (property paths) existed in SPARQL.

372

If all edges of 7 have the same label a € 3, we say 7 is an a-
path. By ¢ we denote the empty word. Regular expressions
are defined as usual. We use uppercase letters R for regular
expressions and denote their language by L(R).

A conjunctive regular path query (CRPQ) has the gen-
eral form Q(z1,...,x,) < A1 A ...\ A,,. The atoms
Ay, ..., Ay, are of the form yRz, where y and z are vari-
ables and R is a regular expression. Each distinguished
variable z; from the left hand side has to occur in some
atom on the right hand side. A homomorphism from @
to K is a mapping p from the variables of () to V. Such
a homomorphism satisfies an atom xRy if there is a path
from p(x) to u(y) in K which is labeled with a word in
L(R). A homomorphism from @ to K is called a satisfying
homomorphism if it satisfies each atom A;. For brevity,
we also use the term embedding for satisfying homomor-
phisms. The set of answers ans(Q, K) of a CRPQ Q over a
knowledge base K is the set of tuples (dy, ..., d,) of nodes
of K such that there exists a satisfying homomorphism for
@ on K that maps x; to d; forevery 1 < ¢ < n.

Given two CRPQs @)1, ()2, we say that (); is contained
in @2, denoted by Q1 C Q2, if ans(Q1, K) C ans(Q2, K)
for every knowledge base K. We say ()1 is equivalent to
@2, denoted by Q1 = @2, if Q1 C @2 and Q2 C Q1. We
study the following problem, for various fragments Fi, Fo
of CRPQ.

Containment of /7 in F»

Given: Two queries Q1 € F1, Q2 € Fo.
Question: Is Q)1 C Q3?
Example. To illustrate query containment we consider the

following example. Let Q1 (x1,2z2) + (x1 app jmi) A
(z2 @pp jmi) A (jm1 app jmz). Query Q1 returns (z1,
x2) only if they were both the apprentices of jm; (a Jedi
master) who was in turn an apprentice of jms. Now con-
sider Q2(1,z2) < (21 app-app jm)A(z2 app-app jm).
We see that Q1 C ()2. However if we remove the last atom
from @1, @1 C @2 is not necessarily true. The following
database provides a counterexample. ()1 without the last

app
Yopa E]:<§
app

atom returns (LUKE, OBI-WAN) though)2 does not. |
Let @ be the CRPQ Q(x1,...,2,) < y1R1y2 A ... A

Yom—1RmYam. Let K be a knowledge base and v a total

mapping from the variables {x1,...,Zn, Y1, -, Y2m} of Q

to the nodes of K. Then K is v-canonical for @ if

e K consists of m simple paths, one for each atom of @,
which are node- and edge-disjoint except for the start and
end nodes, and

e foreach i € {1,...,m} the simple path 7; associated to
the atom yo;_1 R;y2; connects the node v(y2;—1) to the
node v(ys2;) and has lab(m;) € L(R;).

It is easy to see that ()1 € Q- iff there exists a knowledge

base K and a mapping v from the variables of); to the

OBI-WAN

LUKE

https://arxiv.org/abs/2003.04411

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Wikidata Queries DBpedia®™ Queries
One-way RPQs Two-way RPQs One-way RPQs Two-way RPQs
RPQ Class Valid % Unique % Valid % Unique % Valid % Unique % Valid % Unique %
A A* 99.02% 98.73% 99.83% 99.83% 68.99% 4741% 94.35% 82.86%
A a* 98.40% 98.31% 99.22% 99.44% 65.29% 46.02% 75.00% 76.44%
a, A* 93.50% 95.99% 94.30% 97.10% 64.27% 31.37% 89.51% 66.53%
a,a* 92.88% 95.58% 93.69% 96.69% 60.57% 2997% 65.87% 44.45%
Total 55,333K 14,189K 55,333K 14,189K 1,529K 405K 1,529K 405K

Table 1: Percentage of simple RPQs and 2RPQs in the Wikidata query logs in the study (Bonifati, Martens, and Timm 2019) (left) and the
diverse query logs of (Bonifati, Martens, and Timm 2020) (right). For every analysis, we show percentages on all valid queries (Valid) and

on all valid queries after duplicate elimination (Unique).

F FCF F C CRPQ CRPQ C F

a NP (1) NP (4.2) 115 (4.4)

A 115 (4.3) 115 PSPACE (4.5)
(a,a*) TI5 (1) I PSPACE (5.3)
(A,a*) 115 IT5 (5.2) PSPACE (5.5)
(a, A*) EXPSPACE (6.1) EXPSPACE EXPSPACE
(A, A*) EXPSPACE EXPSPACE (%) EXPSPACE (%)

Table 2: Complexity of Containment of different fragments F of
CRPQs. All results are complete for the class given. We provide
references in round brackets. When there is no bracket, the result
follows directly from another cell in the table. (}): (Chandra and
Merlin 1977), (f): (Deutsch and Tannen 2002, fragment (1*)), (x):
(Calvanese et al. 2000)

nodes of K such that (i) K is v-canonical for 0, and (ii)
(v(x1),...,v(xzn)) ¢ ans(Q2, K). Therefore, to decide
Containment, it suffices to study containment on knowledge
bases which are v-canonical for ;. We call these knowl-
edge bases canonical models of @ .

It is well-known that there is a natural correspondence be-
tween (the bodies of) CRPQs and graphs by viewing their
variables as nodes and the atoms as edges. We will therefore
sometimes use terminology from graphs for CRPQs (e.g.,
connected components).

3 Main Results

For a class of regular languages £ we write CRPQ(L) to
denote the set of CRPQs whose languages (of regular ex-
pressions in atoms) are in £. We use the same abbreviations
for £ as discussed in the Introduction: « for regular expres-
sions that are just a single symbol, a* for Kleene closures
of a single symbols, A for disjunctions (or sets) of symbols,
and A* for Kleene closures of disjunctions (or sets) of sym-
bols. A sequence of abbreviations in £ represents options:
for instance, CRPQ(a, A*) is the set of CRPQs in which
each atom uses either a single symbol or a transitive closure
of a disjunction of symbols.?

2In some proofs, we also allow concatenations of these forms.
But this does not make a difference: in CRPQs such concatenations
can always be eliminated at the cost of a few extra variables.

373

In this paper, we give a complete overview of the com-
plexity of containment for the fragments 7 = CRPQ(a),
CRPQ(A), CRPQ(a, a*), CRPQ(A, a*), CRPQ(a, A*), and
CRPQ(A, A*). That s, for each of these fragments we prove
that their containment problem is complete for NP, Hg , or
EXPSPACE. Furthermore, for each of these fragments F, we
give a complete overview of the complexity of the contain-
ment problems of the form 7 C CRPQ and CRPQ C F. An
overview of our results can be found in Table 2. All results
are completeness results. Some of the results were already
obtained in other papers, which we indicate in the table.

Interestingly, our results imply that containment is EXP-
SPACE-complete only if we allow sets of symbols under the
Kleene star both in the left- and right-hand queries. As soon
as we further restrict the usage of the Kleene star on one
side, the complexity drops to PSPACE or even IT5. As it
turns out, queries having a* as only means of recursion is
still very representative of the queries performed in practice,
as evidenced in Table 1, where over 98% of the RPQs in the
Wikidata logs are of this form. In the DBpedia® logs, this
percentage is still around 70% of the total RPQs. Two main
reasons why this percentage is lower here are that “wild-
cards” of the form !q, i.e., follow an edge not labeled a, and
2RPQs of the form (a + "a)*, i.e., undirected reachability
over a-edges, make up around 15% and 20% respectively of
the expressions in unique queries in DBpedia®. The fact that
equivalence testing is IT5 for these queries, gives hope that
optimizations by means of static analysis may be practically
feasible for most of the CRPQ used for querying ontologies
and RDF data.

Our results apply to both finite and infinite sets of labels, if
we do not explictly say otherwise. The reason is that as long
as the query language does not allow for wildcards, we can
always restrict to the symbols explicitly used in the queries,
which is always a finite set.

If wildcards are allowed, the complexity of query contain-
ment can heavily depend on the finiteness of the alphabet of
edge labels X. We discovered that our techniques can be
used to settle an open question (and correct an error) in the
work of Deutsch and Tannen (2002), who have also consid-
ered containment of simple CRPQs. Deutsch and Tannen
considered CRPQ fragments motivated by the navigational
features of XPath and claimed that containment for their W-
Jfragment (see Section 7 for a definition), using infinite al-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

phabets, is PSPACE-hard. However, we prove that contain-
ment for this fragment is in Hg (Theorem 7.1). The minor
error is that Deutsch and Tannen assumed finite alphabets in
their hardness proof. In fact, when one indeed assumes a
finite set of edge labels in KBs, we prove that the contain-
ment problem for the W-fragment is EXPSPACE-complete
(Proposition 7.2).

4 No Transitive Closure

In this section we study simple CRPQ fragments without
transitive closure. We first observe that CRPQ(a) is equiva-
lent to the well-studied class of conjunctive queries (CQ) on
binary relations.

Theorem 4.1 (Chandra and Merlin 1977). Containment of
CRPQ(a) in CRPQ(a) is NP-complete.

Even when we allow arbitrary queries on the right, the
complexity stays the same. The reason is that the left query
has a single canonical model K of linear size, and thus we
can check containment by testing for a satisfying homo-
morphism from @) to K (that preserves the distinguished
nodes).

Theorem 4.2. Containment of CRPQ(a) in CRPQ is NP-
complete.

If we allow more expressive queries on the left, the com-
plexity becomes 115, even if the right-hand queries are CQs.

Theorem 4.3. Containment of CRPQ(A) in CRPQ(a) is
I15-complete, even if the size of the alphabet is fixed.

Proof sketch. The upper bound is immediate from Corol-
lary 5.2, which in turn follows from Theorem 7.1. Both
these results are proved later. For the lower bound, we re-
duce from V3-QBF (i.e., II5-Quantified Boolean Formulas).
Let

P

V.’I}l,... '7y€)

be an instance of V3-QBF such that ¢ is quantifier-free and
in 3-CNF. We construct boolean queries ()1 and (5 such
that Q1 C Q- if, and only if, O is satisfiable.

The query @), is defined in Figure 2, over the alphabet of
labels {a, z1,...,Zn,y1,--.,Ye, t, f}. We now explain how
we define ()2, over the same alphabet. Every clause of @ is
represented by a subquery in)2, as depicted in Figure 3. All
nodes with identical label (y; ¢ and ¥, ¢ in gadgets D, F) in
Figures 2 and 3 are the same node. (So, both queries are
DAG-shaped.) Note that for every clause and every existen-
tially quantified literal y; therein we have one node named
Yi,cf in Q2. The E-gadget is designed such that every rep-
resented literal can be homomorphically embedded, while
exactly one literal has to be embedded in the D-gadget.

The intuitive idea is that the valuation of the z-variables
is given by the concrete canonical model K (i.e., whether
the corresponding edge is labeled ¢ or f in the D gadget),
while the valuation of the y-variables is given by the em-
bedding of)7 into K (i.e., whether the corresponding node
is embedded into the node y_ ; or y_ ¢). The embedding of
y-variables across several clauses has to be consistent, as all

sy T Hyla"wyf @(1‘17""371'7,7?}17"

374

:/Z@\G/E\a/l.)\aﬁf\a/;?\

t+flt+fi t+fi i'/\‘f /\f
E.A./;/Q.[M
fedi e A AN

Figure 2: Query ()1 used in the proof of Theorem 4.3 and the gad-
gets D and F used in Q1.

T2 t
o————e—0

x5 f

o——e0——> @

Q2 =

V-V

Figure 3: Example of ()2 in the proof of Theorem 4.3 for the for-
mula ¢ = (x2 V -5 V —ya).

4
o——e——e Y4if

clauses share the same nodes y_ ; s, which uniquely get em-
bedded either into y_; or y_ . Hence, when the formula ®
is satisfiable, for any assignment to the variables {x; } (given
by the choice of t/f edges in D), there is a mapping from
y_+f to one of y_ ¢ or y_. This gives @1 € Q2. Con-
versely, if ()2 can be embedded in K, then, for a choice of
t/f edges in D, we have an embedding of each clause gad-
get of ()5 in K. In particular, we can always map a literal in
each clause of ()2 to D, ensuring that ¢ is satisfied. As this
is true for any knowledge base K obtained for all possible
t/f assignments to {x; }, we obtain ® is satisfiable.

We note that this result can be extended to alphabets of
constant size by encoding z; as #; = Q'O ¢
{0, 4} and y; as §; = A" AAT T € {A, A} O

On the other hand, even if we now allow arbitrary CRPQs
on the left, containment remains in Hg .

Theorem 4.4. Containment of CRPQ in CRPQ(a) is II5-
complete.

Proof. The lower bound is immediate from Theorem 4.3.
For the upper bound, we provide a X% algorithm for non-
containment, which yields the result. Let (J; € CRPQ,
Q2 € CRPQ(a), and # be a symbol not appearing in Q;
or (2. For every atom A = xRy of ()1 we guess words u 4
and vy4 of length < |Q2| such that uaX*vs N L(R) # () and
|uaval < 2|Q2| implies that uyvs € L(R). We guess a
component Q) of Q3 and we check that

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

(1) Q% cannot be embedded in @, where Q] is the KB re-
sulting from replacing each atom A = xRy with the
path ua - s - va, where sy = e if [ugva| < 2|Q2| and
s4 = # otherwise; and

for every atom A = xRy of Q1 such that |usva| =
2|Q2| there is w € uaX*v4 N L(R) such that Q) can-
not be embedded in w. This last test amounts to check-
ing that either (i) Q% is not homomorphically equiv-
alent to a path or, otherwise, (ii) if Q% is homomor-
phically equivalent to a path with label w, we test
uaX*va N L(R) N (Z*wX*)e £ (.

If tests (1) and (2) succeed, we found a knowledge base into
which @)1 can be embedded, but not ()5. Testing whether
QY can be homomorphically embedded in @ is in NP as
the size of @)} is polynomial in @; and Q2. Test (2) is in
CONP as we need to check for an embedding of Q), for each
atom of (). O

(@)

Allowing disjunctions in the right query is rather harm-
less if we only need to consider polynomial-size canoni-
cal models to decide containment correctly. Even if such
canonical models may become exponentially large, they can
sometimes be encoded using polynomial size, allowing for
118 containment algorithms (cf. Corollary 5.2, Theorem 7.1).
However, if we have arbitrary queries on the left, these tech-
niques do not work anymore, to the extent that the problem
becomes PSPACE-complete.

The following theorem can be regarded as a generaliza-
tion of the result of Bjorklund, Martens, and Schwentick
(2013) [Theorem 9] stating that the inclusion problem be-
tween a DFA over an alphabet ¥ = {a,b,c} and a regular
expressions of the form ¥*a¥"b¥* is PSPACE-complete.

Theorem 4.5. Containment of CRPQ in CRPQ(A) is
PSPACE-complete, even if the size of the alphabet is fixed.

Proof. The upper bound follows from Theorem 5.5, which
we prove later. For the lower bound we reduce from the cor-
ridor tiling problem, a well-known PSPACE-complete prob-
lem (Chlebus 1986). An instance of this problem is a tuple
(T, H,V,i, f,n), where T is the set of tiles, H,V C T x T
are the horizontal and vertical constraints, encoding which
tiles are allowed to occur next to each other and on top
of each other, respectively, i = i ..., € T™ is the ini-
tial row, f = f1...f, € T"™ is the final row, and n en-
codes the length of each row in unary. The question is
whether there exists a tiling solution, that is, an N € N
and a function 7 : {1,..., N} x {1,...,n} — T such that
7(1,1)---7(1,n) =4, 7(N,1)---7(N,n) = f and all hor-
izontal and vertical constraints are satisfied: (7 (4, 7), 7(¢, j+
1)) € H and (7(¢,7),7(i+1,4)) € V forevery 4, j in range.
The coding idea is that the query ()1 is a string describing
all tilings with correct start and end tiles, with no horizontal
errors, and having rows of the correct length. The query Q2
describes vertical errors. Then we have Q1 C ()5 if and only
if there exists no valid tiling, i.e., every tiling has an error.
Let (T, H,V,i, f,n) be a corridor tiling instance as de-
fined before. From the original proof of Chlebus (1986), it
follows that the following restricted version of corridor tiling
remains PSPACE-complete. The set of tiles T is partitioned

375

into T' = T WT5 WT3, such that each row in a solution must
belong to T 15T} UTTT3T5TY . The original proof further-
more implies, that (1) (T3 xT1)U(Ty x T)U(Te xT1) C H,;
and (i) for all u,v € T3 with (u,v) € H we have that
T x {u} € H and {v} x Ty C H. This implies that our
horizontal errors can only occur with 75 or T3 involved, so
only once per row. Therefore, we construct a new set I de-
fined as follows: H = HN (Te x Ty UT) x To UT3 X T3).
This set is used in the definition of query Q.

We encode tiles as follows: each tile ¢; has an encod-
ing #; given by A1 4AlTI="e; - eppy, where e; = A
if (t;,t;) € V and e; = A, otherwise. The second half of
the encoding of a tile describes which tiles are allowed to
occur above the tile. The query Q1 is

*

n—2
i (D0 Y (RGBT fie fa

1=0 (vy,v0)€H

We note that ()1 encodes exactly the tilings without horizon-
tal errors, due to the imposed restrictions.

The query Qs is A(A + A + A +)@= DITI=1¢ and
matches exactly those positions where a vertical error oc-
curs, exploiting the encoding of vertical constraints in the
second half of each tile’s encoding. O

S5 Simple Transitive Closures

In this section, we investigate what happens if we consider
fragments that only allow singleton transitive closures, that
is, transitive closures of single symbols. Our first results
imply a number of IT5-results in Table 2.

Theorem 5.1. Containment of CRPQ(a, a*) in CRPQ(a) is
[5-hard, even if the size of the alphabet is fixed.

Proof sketch. We use a similar reduction as in Theorem 4.3.
The only change we make is that we replace the expressions
t+ f in Q1 with t* f-paths. Intuitively, ()1 sets a variable z;
to true if and only if there exists at least one ¢-edge after the
x;-edge. The query ()2 is not changed. O

Corollary 5.2. Containment of CRPQ(A, a*) in CRPQ is in
I1%.

Proof. This will be a corollary of Theorem 7.1, since
CRPQ(A, a*) is a fragment of CRPQ(WV). O

On the other hand, if we allow arbitrary queries on the
left and simple transitive closure on the right-hand query,
the problem becomes PSPACE-hard.

Theorem 5.3. Containment of CRPQ in CRPQ(a,a*) is
PSPACE-complete, even if the size of the alphabet is fixed.

Proof sketch. We adapt the encoding in the proof of The-
orem 4.5, by (a) replacing each symbol o € {, 4, A, A}
with 08, where $ is a new symbol, and (b) replacing Q2
with A$(O* #* A*A*$)CE-DITI-1eg O

Interestingly, the complexity of containment can drop by
adding distinguished variables to the query:

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Proposition 5.4. The complexity of Containment of (1)
CRPQ in CRPQ(A) and (2) CRPQ in CRPQ(a,a*) is in
18 if every component of each query contains at least one
distinguished variable.

Finally we show that, as long as the right query only has
single symbols under Kleene closures, query containment
remains PSPACE-complete.

Theorem 5.5. Containment of CRPQ in CRPQ(A,a*) is
PSPACE-complete.

Proof. The lower bound is immediate from Theorem 4.5.
For the upper bound we provide a PSPACE-algorithm for
non-containment. Let @Q; € CRPQ, Q2 € CRPQ(A4,a*),
and # be a symbol not appearing in (1 and Q2. We first note
that each component of Q3 can express at most |Q2| many
label changes on a path. Hence it suffices if the algorithm
stores just the part of a path that corresponds to the last |Qs]
label changes. Furthermore, a standard pumping argument
yields that, in a counterexample, the length of segments that
only use a single label can be limited to |Q1| + |Q2]-
Therefore, for each atom of A = xRy of 1, the PSPACE-
algorithm guesses words w4, v4 of length at most |Q2| X
(|1Q1] + |Q2]), such that uaX*va N L(R) # 0 and, if ua
or v has less than |Q)2| label changes, then uqvs € L. We
guess a component of () and check that
(1) @Y cannot be embedded in @)}, where Q] is the KB re-
sulting from replacing each atom A = xRy with the
path u - 54 - v4, where sy = ¢ if ug or vy contains
less than | (2| label changes and s = # otherwise; and
(2) for every atom A = xRy of ()1 such that u4 and v4
have |Q2| label changes there is w € ua¥*v4 N L(R)
such that Q% cannot be embedded in w.
If tests (1) and (2) succeed, we found a knowledge base into
which ()1 can be embedded, but (5 cannot. Test (1) is in
CONP as ()] has size polynomial in 1 and Q5. Test (2) is in
polynomial space, as the restricted language of () allows us
to guess and verify the existence of w on the fly while only
keeping the path corresponding to the last |2 | label changes
in memory with length at most |Q2| X (|Q1] +|Q2]). O

6 Transitive Closures of Sets

In this section we show that adding just a little more ex-
pressiveness makes containment EXPSPACE-complete. This
high complexity may be surprising, considering that it al-
ready holds for CRPQ(a, A*) queries, which is a fragment
that merely extends ordinary conjunctive queries by adding
transitive reflexive closures of simple disjunctions. Our
proof is inspired by the hardness proof in (Calvanese et al.
2000) for general CRPQs, but we need to add a number of
non-trivial new ideas to make it work for CRPQ(a, A*).

Disjunction creation. A significant restriction that is im-
posed on CRPQ(a, A*) is that the non-transitive atoms are
not allowed to have disjunctions in their expressions. We get
around this by the following idea that generates disjunctive
bad patterns out of conjunctions — we use a similar idea in
our next proof.

376

Consider the following query (2 where ¢ is a special
helper symbol, y; £* - s1-£-so-£*ys. For query Q1 given by
/\UEZ\{(} r10x1 A l‘lg (E \ {E})* KZL’Q A /\UEZ\{(} XL20T2
it is clear that)7 allows for exactly two ¢, and hence, if ()1
were be contained in ()2, one of the patterns s; or s has
to be be matched to the (X \ {¢})* fragment in the middle.
Essentially, we capture all bad patterns matching either s;
or so, thereby “creating” the result of a disjunction.

Theorem 6.1. Containment of CRPQ(a,A*) in
CRPQ(a, A*) is EXPSPACE-hard, even if the size of
the alphabet is fixed.

Proof sketch. We reduce from the exponential width corri-
dor tiling problem. That is, we have
e afiniteset T = {t1,...,ty} of tiles,
e initial and final tiles ¢, ¢ € T, respectively,
e horizontal and vertical constraints H,V CT x T,
e anumber n € N (in unary),
and we want to check if there is a £ € N and a tiling function
7 {l,...,k} x {1,...,2"} — T such that 7(1,1) = ¢,
7(k,2™) = tp, and all horizontal and vertical constraints are
satisfied. In order to have a fixed alphabet, we encode tiles
from T as words from {{, 4}™. The i-th tile ¢; is encoded
as tAi — <>1—1‘<>m.—1—1 c {<>’ ’}m

A tiling 7 is encoded as a string over the alphabet B =
{$,0,1,0, #,#}, where $ is the row separator, 0 and 1 are
used to encode addresses for each row of the tiling from 0
to 2 — 1 as binary numbers, # separates the individual bits
of an address, and) and ¢ are used to encode the individual
tiles. We visualize a tiling as a matrix with k rows of 2" tiles
each. An example of a tiling 7 with n = 3 is below:

—_—

7(k, 1)0#0407(k, 2)0#04: 1

-

T(k, 23)1#1#1 $

— o —

$7(1, 1)040407(1, 2)0#041 7(1,23)1#14#1 $

The queries ()1 and ()2 use the alphabet A = B U
{[,],(,),b,*}. This new set contains helper symbols [and
] which we use for disjunction creation (in a similar way as
we explained before the Theorem statement), and (and) de-
note the start and end of the tiling. The b-symbol is used for a
special edge that we use for checking vertical errors. Query
(21 is given in Figure 4 and query Q)5 is sketched in Figure 5.
For convenience we use B to abbreviate B U {(,)}, By to
abbreviate By U {[,]}, and Bg to abbreviate B \ {$}.

The intuition is that the tiling is encoded in the B*-edge
of Q1, i.e. the only edge that is labeled by a language that
is not a single symbol. The query)2 consists of a sequence
of bad patterns, one for each possible kind of violation of
the described encoding or the horizontal and vertical con-
straints. The queries are designed in such a way that Qs
cannot be embedded if a valid tiling is encoded in a canoni-
cal model of Q1. Otherwise, at least one of the bad patterns
can be embedded in the encoding of the tiling. The other
bad patterns can be embedded at t