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Abstract

Aiming to understand the data complexity of answer-
ing conjunctive queries mediated by an axiom stating
that a class is covered by the union of two other classes,
we show that deciding their first-order rewritability is
PSPACE-hard and obtain a number of sufficient condi-
tions for membership in AC0, L, NL, and P. Our main
result is a complete syntactic AC0/NL/P/CONP tetra-
chotomy of path queries under the assumption that the
covering classes are disjoint.

1 Introduction
The general problem we are interested in is to determine
the data complexity of answering a given ontology-mediated
query (OMQ) and reduce it, if possible, to evaluating a con-
ventional query with optimal complexity. In the context of
datalog, this problem (called optimisation) has been investi-
gated since the late 1980s. For example, it was shown that
boundedness (FO-rewritability) is undecidable for linear
datalog programs with binary IDB predicates (Vardi 1988)
and single rule programs (Marcinkowski 1996), 2EXPTIME-
complete for monadic programs (Cosmadakis et al. 1988;
Benedikt et al. 2015), and PSPACE-complete for linear
monadic programs (Cosmadakis et al. 1988). Consider-
able efforts have been made to understand linearisability
of datalog programs ensuring evaluation in NL (Ullman
and Gelder 1988; Ramakrishnan et al. 1989; Saraiya 1989;
Zhang, Yu, and Troy 1990; Afrati, Gergatsoulis, and Toni
2003), and datalog rewritability of disjunctive datalog pro-
grams (Kaminski, Nenov, and Grau 2016).

The rise of description logics (DLs), Web ontology lan-
guages, and especially the paradigm of ontology-based data
access—OBDA, for short—(Poggi et al. 2008) have led to
the development of formalisms that uniformly guarantee an-
swering OMQs with the desired data complexity. Thus,
OMQs with DL-Lite or OWL 2 QL ontologies and conjunc-
tive queries (CQs) are FO-rewritable and can be answered
in AC0 (Calvanese et al. 2007), while those with OWL 2 EL
and hornSHIQ ontologies can be answered in P (Hus-
tadt, Motik, and Sattler 2005; Rosati 2007) and are datalog-
rewritable (Eiter et al. 2012).

On the other hand, in OBDA practice, ontologies are
usually designed by domain experts who are more con-
cerned about capturing relevant knowledge than following
the restrictions of this or that language. For instance, the
NPD FactPages ontology, used for testing OBDA in indus-
try (Hovland et al. 2017; Kharlamov et al. 2017), contains
covering axioms of the form A v B1 t · · · t Bn, which
are not allowed in DL-Lite as there exist CONP-hard OMQs
with covering. One can show, however, that the concrete
queries provided by the end-users in (Hovland et al. 2017)
do not ‘feel’ those dangerous axioms and are FO-rewritable.

The problem of determining the non-uniform data com-
plexity and rewritability of OMQs was attacked by Lutz
and Wolter (2012) for individual DL ontologies with vary-
ing CQs and Bienvenu et al. (2014) for individual OMQs.
In particular, the latter found a connection of OMQs to
non-uniform CSPs and used it to show that deciding FO-
and datalog-rewritability of OMQs with a SHIU ontology
and an atomic query is NEXPTIME-complete. The Feder-
Vardi dichotomy of CSPs (Bulatov 2017; Zhuk 2017) im-
plies a P/CONP dichotomy of such OMQs, which is de-
cidable in NEXPTIME. An AC0/NL/P trichotomy of EL
OMQs, deciding which is EXPTIME-complete, was estab-
lished by Lutz and Sabellek (2017).

All in all, the general problem of optimising datalog pro-
grams or rewriting DL OMQs turns out to be computation-
ally very hard. Moreover, in spite of multiple attempts, very
few practically useful partial algorithms or easily checkable
syntactic conditions have been discovered so far.

One possible way forward, at least in the DL setting, is
to understand the impact of typical ontology axioms, which
are used in conceptual data modelling, on the complexity of
answering OMQs. Motivated by the use case with the NPD
FactPages ontology and the attempt of Hernich et al. (2015)
to classify OMQs with Schema.org ontologies, which fea-
ture disjunctive concept inclusions, in this paper we start in-
vestigating OMQs whose ontology consists of a single ‘cov-
ering’ axiom A v F t T with concept names (unary pred-
icates) A, F , T and Boolean CQs with unary and binary
predicates. To illustrate, the axiom could mean that every-
one in the U.K. (A) is either a Brexiteer (F ) or a Remainer
(T ), though people prefer not to publicise their views, and
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so it would be interesting to investigate, say, Facebook by
running queries like ‘is there a Brexiteer with a Remainer
spouse who follows a Brexiteer?’ Seemingly trivial, such
OMQs exhibit quite complex computational behaviour: for
example, the OMQs with this covering axiom and the very
primitive path CQs shown in the picture below are, respec-
tively, in AC0 and NL-, P- and CONP-complete.
T F, TR R

T T FR R T T FS R T F F TR R R

Curiously, the Polyanna program (Gault and Jeavons 2004),
designed to check tractability of CSPs, failed to recognise
the intractability of the fourth OMQ as the reduction to CSP
is unavoidably exponential in general. Thus, classifying
OMQs with the covering axiom and CQs having two unary
predicates F and T appears to play a fundamental role in the
non-uniform approach to OBDA with expressive ontologies.
Our contribution. In this paper, we obtain a series of results
on the complexity of answering Boolean OMQs of the form

Q = (covA, q) with covA = {A v F t T} (1)

and a CQ q and their rewritability. On the ‘negative’ side, we
show that, despite the language of our OMQs is reduced to
the bare bones, in the presence of covering, CQs can encode
∀∃3SAT and capture some aspects of the acyclicity problem
for succinct graphs. More precisely, (a) we show that, in
general, answering OMQs (1) is Πp

2-complete for combined
complexity (in the size of q and the data), that is, harder than
answering DL-Lite and ELOMQs (unless NP = Πp

2, and so
NP = PSPACE); (b) we prove that the problem of determin-
ing FO-rewritability of these OMQs is even harder, namely,
PSPACE-hard in the size of q, which indicates that a general
syntactic classification of CQs q according to the data com-
plexity of answering Q and the type of its rewritability will
be extremely difficult to find. This result is quite surprising
in comparison with the PSPACE-hardness proofs for bound-
edness of linear monadic datalog programs (Cosmadakis et
al. 1988) and FO-rewritability of OMQs with a Schema.org
ontology and a union of CQs (Hernich et al. 2015), where
different rules in a datalog program or different CQs in a
UCQ were used to ensure correctness of a Turing machine
computation. Here, we encode the acyclicity of a graph, suc-
cinctly represented by a Boolean formula, using just a single
dag-shaped CQ.

These negative results might appear to suggest that even
our primitive OMQs are too ‘sophisticated’ for a fine com-
plexity analysis. However, we also obtain substantial and
encouraging positive results: (c) First, we show a number
of general syntactic and semantic partial conditions for var-
ious types of rewritability and data complexity that are ap-
plicable to arbitrary CQs. We begin by observing that a CQ
without FT -twins (that is, without both F (x) and T (x), for
any x, unlike in the first CQ depicted above) gives rise to
an FO-rewritable OMQ (i.e., in AC0) if it does not contain
occurrences of one of F or T ; otherwise the OMQ is L-
hard and even NL-hard for a path CQ. This simple criterion
fails for CQs with FT -twins, where the problem of finding
a syntactic characterisation turns out to be extremely diffi-
cult. The OMQs with a CQ containing a single solitary F
(or T ) are shown to be datalog-rewritable (and so in P). As

far as we are aware, there is no known semantic or syntac-
tic criterion distinguishing between datalog programs in NL
and P, though Lutz and Sabellek (Lutz and Sabellek 2017)
gave a nice criterion for OMQs with an EL ontology. We
combine their ideas with the automata-theoretic technique
of Cosmadakis et al. (Cosmadakis et al. 1988), and prove
a useful sufficient semantic condition for our OMQs to be
linear-datalog-rewritable (and so in NL). (d) We use some
of these conditions to obtain the main result of this paper:
a complete and transparent syntactic AC0/NL/P/CONP and
rewritability tetrachotomy of the OMQs with ‘FT -twinless’
path CQs. The ‘FT -twinless’ restriction is redundant if the
ontology is extended with the disjointness axiomFuT v ⊥.
We show that (i) such CQs q without occurrences of F
(or T ) and only them give rise to FO-rewritable OMQs Q
(in AC0), that (ii) Q is linear-datalog-rewritable and NL-
complete just in case q has a certain periodic structure, and
prove that (iii) otherwise Q can simulate monotone circuit
evaluation, and so is P-hard. Finally, (iv) the most surpris-
ing and technically difficult part of our tetrachotomy is the
construction showing that path CQs with at least two F s
and at least two T s, and only them give rise to CONP-hard
OMQs.

The omitted proofs can be found in the full version of this
paper (Gerasimova et al. 2020).

2 Preliminaries
Using the standard description logic syntax and semantics,
we consider ontology-mediated queries (OMQs) of the form
Q = (T , q), where T is one of the two ontologies

covA = {A v F tT}, cov⊥A = {A v F tT, F uT v ⊥}
(sometimes we set A = >) and q a Boolean conjunctive
query (CQ), i.e., an FO-sentence q = ∃xϕ(x), in which ϕ
is a conjunction of atoms with variables from x. We often
think of q as a set of its atoms. In the context of this paper,
CQs may only contain two unary predicates F , T and arbi-
trary binary predicates. Atoms F (x), T (x) ∈ q are referred
to as FT -twins in q. An ABox, A, is a finite set of ground
atoms; ind(A) is the set of constants (individuals) inA. The
certain answer to Q over A is ‘yes’ if I |= q for all models
I of T and A, in which case we write T ,A |= q, and ‘no’
otherwise. To illustrate, consider the OMQ Q = (cov>, q)
with the third path CQ q in the picture above. By analysing
the four possible cases for a, b ∈ F I , T I in an arbitrary
model I of cov> and the ABox below, it is readily seen that
the certain answer to Q over this ABox is ‘yes’.

a

TT

b

T T

F
S

R

S

R
R

S

Our concern is the combined and data complexity of de-
ciding whether T ,A |= q. In the former case, T , q and
A are regarded as input; in the latter, T and q are fixed.
Clearly, Πp

2 is an obvious upper bound for the combined and
CONP for the data complexity of our problem.

An OMQ Q = (T , q) is FO-rewritable if there is an FO-
sentence Φ such that T ,A |= q iff Φ is true in the struc-
ture A; in terms of circuit complexity, FO-rewritability is
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equivalent to answering Q in logtime-uniform AC0 (Im-
merman 1999). Note that if q contains FT -twins, then
∃x
(
F (x) ∧ T (x)

)
is an FO-rerwriting of (cov⊥A, q).

We often regard CQs and ABoxes as digraphs with la-
belled edges and partially labelled nodes (by F , T in CQs
and F , T , A in ABoxes). Without loss of generality, we as-
sume that these graphs are connected as undirected graphs.
A path CQ is a (simple) directed path each of whose edges
is labelled by a single binary predicate. A minimal model of
T and A is obtained from A by adding to each ‘undecided’
A-node (which is labelled by neither F nor T ) exactly one
of F or T as label. Clearly, T ,A |= q iff I |= q for every
minimal model I of T and A. So, from now on ‘model’
means ‘minimal model’. Finally, note that I |= q iff there
is a digraph homomorphism h : q → I preserving the labels
of nodes and edges.

A datalog program, Π, is a finite set of rules of the form
∀x (γ0 ← γ1 ∧ · · · ∧ γm), where each γi is a (constant- and
function-free) atom Q(y) with y ⊆ x. (As usual, we omit
∀x.) The atom γ0 is the head of the rule, and γ1, . . . , γm
its body. All of the variables in the head must occur in the
body. The predicates in the head of rules are IDB predicates,
the rest EDB predicates. A datalog query in this paper takes
the form (Π,G) with a 0-ary goal atom G. The answer to
(Π,G) over an ABox A is ‘yes’ if G is true in the struc-
ture Π(A) obtained by closingA under Π, in which case we
write Π,A |= G. We call (Π,G) a datalog-rewriting of an
OMQ Q = (T , q) in case T ,A |= q iff Π,A |= G for any
ABoxA. If Q is datalog-rewritable, then it can be answered
in P for data complexity; if there is a rewriting to a (Π,G)
with a linear program Π, having at most one IDB predicate
in the body of each of its rules, then Q can be answered in
NL (nondeterministic logarithmic space).

3 General Results
In this section, we obtain a number of complexity and
rewritability results that are applicable to arbitrary CQs q.
By writing Q = (T , q) we mean ‘any T ∈ {covA, cov⊥A}’.

Our first result pushes to the limit (Hernich et al. 2015,
Theorem 5) according to which answering OMQs with
Schema.org ontologies is Πp

2-complete for combined com-
plexity (their proof of Πp

2-hardness used an ontology with
an enumeration definition E = {0, 1} and additional con-
cept names, none of which is available in our case).

Theorem 1. Answering OMQs (T , q) is Πp
2-complete for

combined complexity.

Proof. The proof is by reduction of Πp
2-complete ∀∃3SAT

(Stockmeyer 1976). Given ϕ = ∀x∃yψ(x,y) with a 3CNF
ψ(x,y), we construct a CQ qϕ shown below for ψ compris-
ing two clauses c1 = x1∨¬x2∨y1 and c2 = ¬y1∨x2∨y2:

T

x
c1
1 zc1

F

x
c1
2

y1

R
c1
1

R
c1
2

R
c1
3

zc2

y2

T

x
c2
2

R
c2
1

R
c2
3

R
c2
2

For covA, the ABoxAϕ is defined as follows. For x ∈ x, we
take individuals a∗x, a◦x and, for y ∈ y, individuals bFy , bTy .

Aϕ comprises the atoms A(a∗x), F (a◦x), T (a◦x), for x ∈ x.
For each c = `1∨ `2∨ `3, we define a set Ec of triples of the
above individuals: (e1, e2, e3) ∈ Ec iff (i) ei = aµx for some
µ ∈ {∗, ◦} whenever x ∈ x is in `i, (ii) ei = bνy for some
ν ∈ {F, T} whenever y ∈ y is in `i, and (iii) either ei = a∗x
for some i, or ei = bνy for some i and the assignment y = ν
makes `i true. For any c and t = (e1, e2, e3) in Ec, we take
a fresh individual dct and add Rci (d

c
t , ei), i = 1, 2, 3, to Aϕ.

a∗x1A a◦x1
T, F a∗x2A a◦x2

T, F

d
c1
(a∗x1

,a◦x2
,bFy1

)
d
c1
(a◦x1

,a◦x2
,bTy1

)
d
c1
(a◦x1

,a∗x2
,bFy1

)

bFy1
bTy1

R
c1
1

R
c1
2

R
c1
3

R
c1
1

R
c1
2

R
c1
3

R
c1
1

R
c1
2

R
c1
3

One can show that ϕ is satisfiable iff covA,Aϕ |= qϕ. For
cov⊥A, the construction is slightly more involved. q

From now on, we focus on the data complexity of (an-
swering) OMQs (T , q). If q does not contain FT -twins, we
call it twinless. By a solitary F (or T ) we mean a non-twin
F -node (respectively, T -node). Finally, we call q a 0-CQ
if it does not have a solitary F or a solitary T (but it might
contain twins). Note that, for any twinless q, (covA, q) and
(cov⊥A, q) have the same data complexity.

Theorem 2. (i) If q is a 0-CQ, then (T , q) is in AC0.
(ii) If q is twinless and contains at least one solitary F

and at least one solitary T , then (cov>, q) and (cov⊥>, q),
and so (covA, q) and (cov⊥A, q) are L-hard.

Proof. (i) We show that T ,A |= q iff A |= q, and so q is
an FO-rewriting of (T , q). (⇒) Suppose A 6|= q and q has
no solitary F . Let A′ be the result of adding a label F to
every undecided A-node in A. Clearly, A′ is a model of T
and A with A′ 6|= q. (⇐) is trivial.

(ii) The proof is similar to that of Theorem 13, using
an FO-reduction of the L-complete reachability problem for
undirected graphs. q

Theorem 2 (ii) is complemented by the following simple
sufficient condition, which can be proved using symmetric
datalog (which is in L for data complexity; see, e.g., (Egri,
Larose, and Tesson 2007)). Call a CQ q′(x, y) with two
free variables x and y symmetric if, for any ABox A and
a, b ∈ ind(A), we have A |= q′(a, b) iff A |= q′(b, a).

Theorem 3. Let Q = (T , q) be any OMQ with

q = ∃x, y (F (x) ∧ q′1(x) ∧ q′(x, y) ∧ q′2(y) ∧ T (y)),

for some CQs q′(x, y), q′1(x) and q′2(y) that do not contain
solitary T and F , and symmetric q′(x, y), assuming q′1(x)
and q′2(y) to be disjoint and have x and y as their only com-
mon variables with q′(x, y). Then Q is in L.

Thus, the OMQ (covA, q) with q below is L-complete.

F TR S S Q Q
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Since AC0 $ L, Theorem 2 gives a necessary and sufficient
criterion in the presence of the disjointness axiom:

Corollary 4. An OMQ (cov⊥A, q) is in AC0 iff q is a 0-CQ
or contains a twin. If q is a twinless 0-CQ, then q is an
FO-rewriting of (cov⊥A, q).

Proof. We only show the latter. Suppose q is F -free. As
(cov⊥A, q) is FO-rewritable, it has a UCQ rewriting (Bien-
venu et al. 2014, Proposition 5.9). Take any CQ q′ in this
UCQ and regard it as an ABox, A. Clearly, cov⊥A,A |= q.
LetA′ result fromA by adding F to any undecidedA-node.
Then there is a homomorphism h : q → A′. As q is F -free,
h is also a homomorphism to q′, and so q is an FO-rewriting
of (cov⊥A, q). q

Example 8 below shows that Corollary 4 does not hold for
CQs with twins. We next consider OMQs in the class P.

By a 1-CQ we mean any CQ with exactly one solitary F
and at least one solitary T , or exactly one solitary T and at
least one solitary F ; cf. markable disjunctive datalog pro-
grams of (Kaminski, Nenov, and Grau 2016).

Theorem 5. Any OMQ Q = (T , q) with a 1-CQ q is
datalog-rewritable, and so is in P.

Proof. Suppose that F (x) and T (y1), . . . , T (yn) are all the
solitary occurrences of F and T in q. Let Πq be a monadic
datalog program with goal G and four rules

G← F (x), q′, P (y1), . . . , P (yn) (2)
P (x)← T (x) (3)

P (x)← A(x), q′, P (y1), . . . , P (yn) (4)
G← F (x), T (x) (5)

where q′ = q \ {F (x), T (y1), . . . , T (yn)} and P is fresh.
(If T = covA, rule (5) is omitted.) Then, for any ABox A
(without P ), we have T ,A |= q iff Πq,A |= G. q

Theorem 5 makes it possible to use the 2EXPTIME algo-
rithm of (Cosmadakis et al. 1988) to decide whether Πq is
bounded, and so Q is in AC0, and the results of (Ullman
and Gelder 1988; Ramakrishnan et al. 1989; Afrati, Gergat-
soulis, and Toni 2003) and many other techniques to under-
stand whether Πq can be transformed to a linear program,
which would mean that Q is in NL. For OMQs Q whose 1-
CQ q is a ditree with its unique solitary F -node as root, the
program Πq can be reformulated as an EL ontology, and so
one can use the AC0/NL/P trichotomy of (Lutz and Sabellek
2017), which is checkable in EXPTIME.

Example 6. To illustrate, consider the CQ q below.

F FT TR S Q

We have covA,A |= q iff E ,A |= ∃xB(x), where E is the
EL TBox {F u Cq v B, T v P, A u Cq v P} with
Cq = ∃R.(F u T u ∃S.∃Q.P ).

We now use some techniques from (Cosmadakis et al.
1988; Lutz and Sabellek 2017) to obtain handy semantic
conditions for an OMQ to be in AC0 or NL. Let Q = (T , q)

be an OMQ with a 1-CQ q and a single solitary F (x). De-
fine by induction a class KQ of ABoxes called cactuses for
Q. We start by setting KQ = {q}, regarding q as an ABox,
and then recursively apply to KQ the following two rules:

(bud) if T (y) ∈ C ∈ KQ with solitary T (y), then we add
to KQ the ABox obtained by replacing T (y) in C with
(q \ {F (x)}) ∪ {A(x)}, in which x is renamed to y and
all other variables are given fresh names;

(prune) if C ∈ KQ and T , C− |= q, where C− = C\{T (y)}
for some solitary T (y) in C, then we add C− to KQ.

We call a cactus unpruned if it can be obtained by applica-
tions of (bud) only. For C ∈ KQ, we refer to the copies
of (maximal subsets of) q that comprise C as segments. The
skeleton Cs of C is the ditree whose nodes are the segments s
of C and edges (s, s′) mean that s′ was attached to s by bud-
ding. The depth of C is the number of edges on the longest
branch of Cs. A path-cactus is a cactus whose skeleton has
a single branch.

It is straightforward to see by structural induction that
T , C |= q, for all C ∈ KQ. Further, for any ABox A, we
have T ,A |= q iff either T = cov⊥A and A contains an FT -
twin, or there exists a homomorphism h : C → A for some
unpruned C ∈ KQ. Using these observations and (Bienvenu
et al. 2014, Proposition 5.9), we obtain:

Theorem 7. An OMQ Q = (T , q) with a 1-CQ q is FO-
rewritable iff there exists d < ω such that every C ∈ KQ

contains a homomorphic image of some unpruned C− ∈ KQ

of depth ≤ d.

Example 8. Let sn be a chain of n arrows labelled by S, for
n ≥ 3. Consider the CQ qn shown below, where the omitted
labels on edges are all R. It is not hard to check that qn is
minimal (not equivalent to any of its proper sub-CQs).

FT F T FT FT

sn S

S

Let Ck be the cactus obtained by applying (bud) k-times to
C0 = q3. Then there is a homomorphism q3 → Ck, for any
k ≥ 2: it uses the S-chain before the T -node to accommo-
date s3. However, there is no homomorphism from q3 to C1
as s3 is too long. It follows that q3∨C1 is an FO-rewriting of
(covA, q3), where we treat C1 as a CQ. It is to be noted that
C1 has an A-node. In general, the UCQ q ∨ C1 ∨ · · · ∨ Cn−2
is an FO-rewriting of (covA, qn).

We use Theorem 7 to prove that checking FO-rewritability
of OMQs with 1-CQs is PSPACE-hard. This result should
be compared to (Hernich et al. 2015, Theorem 11) showing
PSPACE-hardness of FO-rewritability of UCQs mediated by
Schema.org ontologies. In our case, the expressive power of
UCQs (used to capture TM-computations) is not available,
and so we had to develop a brand new technique. It is to
be noted that the proof of the following theorem constructs
FO-rewritable OMQs that require cactuses Ci in Theorem 7
of doubly exponential size.

Theorem 9. Checking FO-rewritability of OMQs with (dag)
1-CQs is PSPACE-hard.
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Proof. The proof is by reduction of the PSPACE-complete
acyclicity problem for succinct graphs given by Boolean for-
mulas (Papadimitriou and Yannakakis 1986). For each such
formula ϕ(x), |x| = n, we construct a (dag) 1-CQ qϕ with
one FT -twin, one solitary F - and two solitary T -nodes such
that each skeleton Cs is of branching ≤ 2, where C ∈ KQ

for Q = (covA, qϕ). Then every path-cactus C of depth n
is encoded by a word aC ∈ {F, T}n indicating which of the
T -nodes in qϕ was budded at each step. Using that such a
word can be considered as an assignment to the variables x
in ϕ, we then prove that the input graph given by ϕ has a
cycle iff the set KQ contains arbitrarily large cactuses with-
out homomorphic images of unpruned cactuses in any given
finite set. q

We next obtain a sufficient condition of linear-datalog-
rewritability of Q = (T , q) with 1-CQ q. The (branching)
rank br(s) of a segment s in a cactus C is defined inductively
by taking br(s) = 0 if s is a leaf and, for non-leaf s,

br(s) =

{
m+ 1, if s has ≥ 2 children of rank m;
m, otherwise.

The branching number of C is the rank of its root segment
(see (Lutz and Sabellek 2017)). Let Kmin

Q be the set of mini-
mal cactuses in KQ (to which (prune) is not applicable). We
say that Kmin

Q is boundedly branching if there is some b < ω

such that Kmin
Q contains a cactus with branching number b

but no cactus of greater branching number. Otherwise, we
call Kmin

Q unboundedly branching.

Example 10. Consider the OMQ Q = (cov>, qFT.T ) with
qFT.T shown below (the omitted labels on edges are all R):

F T T

In the next picture, we show a cactus C obtained by applying
(bud) twice to qFT.T (with A = > omitted):

F T

z
T

T T

Clearly, cov>, C \ {T (z)} |= qFT.T , and so (prune) would
remove T (z) from C. Using this fact, one can show that
every cactus in Kmin

Q has branching number ≤ 1. On the
other hand, if Q = (covA, qFT.T ), then Kmin

Q is unboundedly
branching by Theorems 11 and 15.
Theorem 11. For any OMQ Q = (T , q) with a 1-CQ q,
if Kmin

Q is boundedly branching, then Q is linear-datalog-
rewritable, and so is in NL.

Proof. In a nutshell, the (rather involved) proof is as follows.
Similarly to (Cosmadakis et al. 1988), we represent cactus-
like ABoxes as terms of a tree alphabet and construct a tree
automaton AQ with Kmin

Q ⊆ L(AQ) ⊆ {A | T ,A |= q}.
Then, using ideas of (Lutz and Sabellek 2017), we show
that if Kmin

Q is boundedly branching, then the automaton AQ

can be transformed into a (monadic) linear-stratified datalog
rewriting of Q. As shown by (Afrati, Gergatsoulis, and Toni
2003), such a rewriting can further be converted into a linear
datalog rewriting (at the expense of increasing the arity of
IDB predicates in the program). q

4 AC0/NL/P/CONP-Tetrachotomy
In this section, we focus on the OMQs (covA, q) with a twin-
less path CQ q. So from now on, solitary F -nodes (T -nodes)
in q will simply be called F -nodes (T -nodes). Our aim is to
obtain a complete syntactic classification of these OMQs ac-
cording to their data complexity and rewritability.

We begin by dividing the CQs in question into three dis-
joint classes: the 0-CQs and the 1-CQs, which have been de-
fined earlier, and the 2-CQs that contain at least two F -nodes
and at least two T -nodes. We split 1-CQs into two further
classes that can be defined by an easily checkable syntactic
condition as follows. We denote the first (root) node in q by
s and the last (leaf) node by e. We write x � y to say that
there is a path from x to y in q, and x ≺ y whenever x � y
and x 6= y. If x � y, then [x, y] comprises those atoms in q
whose variables are in the interval {z | x � z � y}; further,
(x, y] = [x, y]\{T (x), F (x)}, [x, y) = [x, y]\{T (y), F (y)}
and (x, y) = [x, y) \ {T (x), F (x)}.

Now let x−l ≺ · · · ≺ x−1 ≺ x0 ≺ x1 ≺ · · · ≺ xr be all
the F - or T -nodes in q, with x0 being the only F -node and
l+ r ≥ 1. We denote this 1-CQ by qlr. Let ri = (xi−1, xi),
where x−l−1 = s and xr+1 = e. We write ri ; rj if
there is a homomorphism h : ri → rj with h(xi−1) = xj−1
and h(xi) = xj . We call qlr right-periodic if l = 0 and
ri ; r1 for all i = 1, . . . , r. By taking a mirror image of
this definition, we obtain the notion of left-periodic 1-CQ,
in which case r = 0 and r−i ; r0 for all i = 1, . . . , l. A
1-CQ q is periodic if it is either right- or left-periodic, and
non-periodic otherwise.

Theorem 12 (tetrachotomy). For any Q = (covA, q) with a
twinless path CQ q, the following hold:

1. if q is a 0-CQ, then Q is in AC0;
2. if q is a periodic 1-CQ, then Q is NL-complete;
3. if q is a non-periodic 1-CQ, then Q is P-complete;
4. if q is a 2-CQ then Q is CONP-complete.

Item 1 is shown in Theorem 2 (i). The other two upper
bounds follow from Theorems 5 and 14. The lower bounds
follow from Theorems 13, 15 and 16.

We begin with the following criterion:

Theorem 13. If q is a path 1-CQ, then (covA, q) is NL-
hard.

Proof. The proof is by an FO-reduction of the NL-complete
reachability problem for dags. We assume that there exist
a T -node x and an F -node y in q with x ≺ y (the other
case is symmetric) and without any F - or T -nodes between
them. Given a digraph G = (V,E) with nodes s, t ∈ V ,
we construct an ABox AG as follows. Replace each edge
e = (u, v) ∈ E by a fresh copy qe of q such that node x in
qe is renamed to u with T (u) being replaced by A(u), and
node y is renamed to v with F (v) being replaced by A(v).
Then AG comprises all such qe, for e ∈ E, as well as T (s)
and F (t). We show that s→G t iff covA,AG |= q.

(⇒) Suppose there is a path s = v0, . . . , vn = t inGwith
ei = (vi, vi+1) ∈ E, for i < n. Then, for any model I of
covA and AG, there is some i < n such that vi ∈ T I and
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vi+1 ∈ F I . Thus, the identity map from q to its copy qei is
a q → I homomorphism, and so I |= q.

(⇐) Suppose s 6→G t. Define a model I of covA and
AG by labelling by T the undecided A-nodes inAG that are
reachable from s (via a directed path) and by F the remain-
ing ones. It is easy to see that there is no homomorphism
from q to I. q

By Theorem 5, all OMQs Q with a 1-CQ q are datalog-
rewritable and lie in P. Our next task is to show that every
such OMQ with a twinless path q is either linear-datalog-
rewritable, and so NL-complete, or P-hard.

Theorem 14. If q is a periodic twinless path 1-CQ, then
Q = (covA, q) is linear-datalog-rewritable, and so is in NL.

Proof. It is not hard to either construct an explicit linear
datalog-rewriting of Q or show that every cactus in Kmin

Q has
branching number at most 1 and use Theorem 11. q

We next show that the OMQs with 1-CQs not covered by
Theorem 14 are all P-hard.

Theorem 15. Let q = qlr be a twinless path 1-CQ such that
one of the following conditions holds: (i) l, r ≥ 1, or (ii)
l = 0 and q0r is not right-periodic, or (iii) r = 0 and ql0 is
not left-periodic. Then (covA, qlr) is P-hard.

Proof. Each of the cases (i)–(iii) is proved by an FO-
reduction of the P-complete monotone circuit evaluation
problem. Below we only consider (ii). (The other two
cases are proved using different gadgets.) We remind the
reader that a monotone Boolean circuit is a dag C whose
vertices are called gates. Gates with in-degree 0 are input
gates. Each non-input gate g is either an AND-gate or an
OR-gate, and has in-degree 2 (with the edges coming from
the inputs of g). One of the non-input gates is distinguished
as the output gate. Given an assignment α of F and T to the
input gates of C, we compute the value of each gate in C
under α as usual in Boolean logic. The output C(α) of C
on α is the truth-value of the output gate.

Let l = [s, x0), let n > 1 be minimal with rn 6; r1,
s = rn, and let r = (xn, e]. Below we consider the case of
n = 3 only, but it should be clear how to modify the proof
for other n. In this case, q0r may look as follows:

s

F

x0

T

x1

T

x2

T

x3 e

l r1 r2 s r

We distinguish between 2 cases: |s| > |r1| and |s| ≤ |r1|.
Depending on the case, we use the following two gadgets
for AND-gates and the same gadget for OR-gates:

AND-gate for |s| > |r1|
c

A

A

a′

T

T

a
A

TA

b′

T

T

b
A

l

l

l r1

r1

r1

s

r

r1

r1

s

r

r1sr

for |s| ≤ |r1|

A
c

T

A
b

A

a

l
r1

r1

s r

OR-gate

A
c

T

T

a
A

T

T

b
A

l

r1

r1

s

r

r1

r1

s

r

Given a monotone circuit C and an assignmentα, we con-
struct an ABox AC,α as follows. With each non-input gate
g we associate a fresh copy of its gadget. When the inputs
of g are gates ga and gb then, for each i = a, b, if gi is a
non-input gate then we merge node c of the gadget for gi
with the i-node in the gadget for g; and if gi is an input gate,
we replace the label A of i and i′ (if available) in the gadget
for g with α(gi). Finally, we replace the label A of node
c in the gadget for the output gate with F . We claim that
covA,AC,α |= q0r iff C(α) = T .

(⇐) is proved by induction on the number of non-input
gates in C. The basis is obvious. For the induction step,
suppose the output gate g in C is an AND-gate with inputs
ga and gb, at least one of which is a non-input gate. Let I be
an arbitrary model of covA and AC,α. If both a and b in the
gadget for g are in T I , then it is easy to check that we always
have a q0r → I homomorphism, no matter what the labels
of a′ and b′ (if available) are. It remains to consider the case
when either a or b is in F I , and so the corresponding gi
is not an input gate. Take the subcircuit C− of C whose
output gate is gi. Then AC−,α is the sub-ABox of AC,α

with the c-node in the gadget for gi as its topmost node, and
A(c) replaced by F (c). Now if I− is the restriction of I to
AC−,α (and so c ∈ F I− ), then by IH there is a q0r → I−
homomorphism, and so I |= q0r as well. The case when the
output gate g in C is an OR-gate is similar.

(⇒) Suppose C(α) = F . To show covA,AC,α 6|= q0r,
we define a model I of covA and AC,α inductively by la-
belling the A-nodes in the gadget for each non-input gate
g of C by F I or T I as follows: node c is labelled by the
truth-value of g under α, while node i (and node i′ if ap-
plicable), for i = a, b, is labelled by the truth-value of gi
under α, where ga and gb are the inputs of g. Suppose, on
the contrary, that there is a homomorphism h : q0r → I and
consider possible locations of h(x0) ∈ F I . Suppose first
that |s| > |r1| and h(x0) is in some AND-gadget.

Case a, a′ ∈ T I , b, b′, c ∈ F I : If h(x0) = c, then
h(x1) = a′ and, since b′ ∈ F I , the node h(x2) is the T -
node just below a′. But then, since |s| > |r1|, the node
h(x3) must be strictly between a and the T -node above it,
which is impossible because there are no T -nodes there. We
obviously cannot have h(x0) = b′ because b ∈ F I .

Case a, a′, c ∈ F I , b, b′ ∈ T I : If h(x0) = a′, then h(x1)
is the central T -node. But then, since |s| > |r1|, node h(x2)
must be strictly between b′ and the central T -node, which is
impossible because there are no T -nodes there.

Case a, a′, b, b′, c ∈ F I is covered by the previous ones.
Suppose next that |s| ≤ |r1| and h(x0) = c is in some

AND-gadget. Then h(x2) = b, provided that b ∈ T I (oth-
erwise such h is impossible), which means that a ∈ F I , and
so h(x3) is located in some other gadget. However, this is
impossible because of the following. In every gadget, the
‘edges’ leaving node c are labelled by r1. So if |s| < |r1|
then h(x3) must be strictly between the c node of the gadget
and the end-node of an r1-edge, but there are no T -nodes
there. If |s| = |r1| then s ; r1, contrary to s 6; r1.

Finally, if h(x0) = c is in some OR-gadget, then both a
and b of the gadget are in F I , and so h(x3) ∈ F I , which is
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a contradiction. q

To complete our tetrachotomy, it remains to consider
OMQs with 2-CQs.
Theorem 16. If q is a twinless path 2-CQ, then (covA, q) is
CONP-hard.

The proof is sketched in the remainder of this section. It
is by a polynomial reduction of the complement of 3SAT:
for every 3CNF ψ, we define (via a series of steps) an ABox
Aψ whose size is polynomial in the sizes of q and ψ, and
then show that ψ is satisfiable iff covA,Aψ 6|= q.

We begin by introducing two general tools that will be
used throughout. The following generalisation of homomor-
phisms will allow us to regard our CQs as if they contained
a single binary predicate only. Given a model I of some
ABox A, we call a map h : q → I a subhomomorphism if
the following hold:
– h(x) ∈ T I , for every T -node x in q, and h(x) ∈ F I , for

every F -node x in q;
– for any nodes x, y in q, ifR(x, y) is in q for someR, then
S
(
h(x), h(y)

)
is in A for some S.

Second, we define some ABoxes that are ‘built up’ from
copies of q in a particular way. If x � y, we let δ(x, y)
denote the distance between x and y in q, that is, the number
of edges in the path from x to y, and set |q| = δ(s, e). Given
any path CQ q′, we write ≺q′ and �q′ for the ordering of
nodes in q′, and δq′ for the distance in q′. We omit the
subscripts when q′ = q. Now let q1, . . . , qn, n ≥ 2, be
disjoint copies of q. For any j and node x in q, we let xj
denote the copy of x in qj , and let ιj : qj → q be the identity
map. We assume that q contains a T -node ≺-preceding an
F -node (as the other case is symmetric). For each j, 1 ≤
j ≤ n, we pick a T -node tj and an F -node fj in qj such that
tj ≺qj fj ; we call the selected nodes contacts. We replace
the T - and F -labels of all the contacts with A, and then glue
fj together with tj+1 for every j with 1 ≤ j < n. We call
the resulting contacts glue-contacts and the resulting ABox
H an n-chain (for q).

q1 q2

q3

q1
q2

q3

h(q)

t1 f1

t2

f2

t3 f3

The following general criterion will give us flexibility in
designing the ABox Aψ , and it will be used in the proofs of
Lemmas 18, 19 and 21:
Lemma 17. Suppose thatH is an n-chain, for some n ≥ 2.
(i) If h : q → ind(H) is a function with s1 ≺q1 h(s) ≺q1 f1,
and I a model of covA and H whose glue-contacts are all
in F I , then h is not a q → I subhomomorphism. (ii) If
h : q → ind(H) is a function with tn ≺qn h(e) ≺qn en,
and I a model of covA andH whose glue-contacts are all in
T I , then h is not a q → I subhomomorphism.

Proof. (i) Suppose on the contrary that h : q → I is a sub-
homomorphism. For each j, let ιj : qj → q be the identity
map. We define a ‘shift’ function g← : ind(H) → ind(H)
by taking g←(x) = h

(
ιj(x)

)
whenever x is a node in qj ,

where we consider each glue-contact c = fi = ti+1, for
1 ≤ i < n, as a node in qi+1, that is, g←(c) = g←(ti+1) =
h
(
ιi+1(ti+1)

)
. AsH is finite, there exists a ‘fixpoint’ of g←:

a node x in H and a number N > 0 such that gN←(x) = x.
It is not hard to see that the assumption in (i) implies that
the ‘fixpoint-cycle’ x, g←(x), g2←(x), . . . , gN−1← (x), x can
be ‘shifted to the left’ in the sense that there exists a glue-
contact c with gN←(c) = c. But this leads to a contradiction.
On the one hand, c ∈ F I by our assumption, and so c can-
not be in T I by the minimality of I. On the other hand, it
can be shown by induction on j that gj←(c) ∈ T I , and so
c = gN←(c) ∈ T I .

The proof of (ii) is similar, using a shift function g→
where we consider each contact c = fi = ti+1 as a node
in qi, that is, g→(c) = g→(fi) = h

(
ιi(fi)

)
. Then we shift

the fixpoint-cycle of g→ to the right. q

Given a 3CNF ψ, we now start building the ABox Aψ
from copies of the 2-CQ q. We begin with structures that
will be used to encode the truth-values of literals (variables
and negations thereof) in the clauses of ψ. We take an
n-chain for q and some n ≥ |q|, and glue together its t1

and fn contacts, replacing their respective T - and F -labels
with A. If the contacts are such that ιj+1(tj+1) ≺ ιj(fj) for
every j, then the resulting ABoxW is called an n-cogwheel
(throughout we assume that ± is modulo n). For each j,
the nodes preceding tj in qj form its initial cog, while
the nodes succeeding fj in qj form its final cog. Given
two contacts c1 = fi = ti+1 and c2 = fj = tj+1, we
define the contact-distance between c1 and c2 in W as
min

(
|i− j|, n− |i− j|

)
.

q1 A

fn

t1

A

t2

f1

A

tk

fk−1

A

fk

tk+1

qk

qn

W... ...

Lemma 18. SupposeW is an n-cogwheel for some n ≥ |q|.
For any model I of covA and W , we have I 6|= q iff the
contacts in I are either all in T I or all in F I .

Next, for each variable p occurring in the 3CNF ψ, we
take a fresh pair of cogwheels and make sure that they al-
ways encode the opposite truth-values of the literals p and
¬p. To achieve this, we connect the cogwheels in each pair
with two additional copies of q in a special way.

Let W• and W◦ be two disjoint n-cogwheels for some
n > 4|q|+ 2, and let q↑, q↓ be two more fresh and disjoint
copies of q. For j = ↑, ↓ and node x in q, we let xj denote
the copy of x in qj . We pick two contacts c↑• = fi• = ti•+1

and c↓• = fj• = tj•+1 in W• such that they are ‘far’ from
each other either way, that is, the contact-distance between
them inW• is > 2|q|. Similarly, we pick two contacts c↑◦ =

fi◦ = ti◦+1 and c↓◦ = fj◦ = tj◦+1 in W◦ such that the
contact-distance between them in W◦ is > 2|q|. Then we
glue together the contact c↑• in W• with f↑1 , and also the
contact c↑◦ inW◦ with f↑2 , having the F -labels of f↑1 and f↑2
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replaced with A. Finally, we glue together the contact c↓◦ in
W◦ with t↓1, and also the contact c↓• inW• with t↓2, having the
T -labels of t↓1 and t↓2 replaced withA. The resulting ABox B
is called an n-bike. We call the contacts c↑• = fi• = ti•+1 =
f↑1 and c↑◦ = fj◦ = tj◦+1 = f↑2 F -connections and the
contacts c↓◦ = fj◦ = tj◦+1 = t↓1 and c↓• = fj• = tj•+1 = t↓2
T -connections in B.

q↑

q↓

qi•

A A

qi•+1

qj•

AA

qj•+1

W•... ...
A A

qi◦+1

AA

qj◦

qi◦

qj◦+1

W◦... ...

Throughout, for any k, we let tk (fk) denote the kth T -node
(F -node) in q. In particular, tlast−1 (flast−1) denotes the last
but one T -node (F -node) in q, and tlast (flast) the last T -
node (F -node). We assume that t1 ≺ f1 (the other case is
symmetric).

We want to achieve that, for any model I of covA and B,
we have I 6|= q iff the contacts in W• are all in T I while
the contacts in W◦ are all in F I , or the other way round.
Using Lemma 18 and the fact that the F -connections are F -
nodes in q↑ while the T -connections are T -nodes in q↓, it is
straightforward to see that the implication (⇒) always holds
for any n-bikeB. However, for the (⇐) direction to hold, we
need to choose the contacts in the ‘±|q|-size environments’
of the F - and T -connections in the n-cogwheelsW• andW◦
carefully, in such a way that all possible locations in B for
the image h(q) of a potential homomorphism h : q → I are
excluded. Our choices depend on the particular 2-CQ. For
example, consider

q
T

t1

T

t2

F

f1

F

f2

If we choose ti•+1 = ti•+1
1 and fi•+1 = f i•+1

1 , and I is
such that all contacts in W• are in F I (and all contacts in
W◦ are in T I), then we have the following h : q → I ho-
momorphism:

q

T T F F

T T F

f↑1 = ti•+1
1

T

F

fi•+1
1

. . . W•

T

f↑2

q↑

F

qi•+1

h

On the other hand, By Lemma 19 below, the choices of
ti•+1 = ti•+1

1 and fi•+1 = f i•+1
1 are good for any of the

following three 2-CQs:
T

t1

T

t2

F

f1

F

f2

T

t1

F

f1

T

t2

F

f2

T

t1

F

f1

F

f2

T

t2

For each particular 2-CQ q, there might be different ways of
choosing the contacts so that all potential homomorphisms
are excluded. Sometimes the choices are straightforward,
some other times not so. In Lemma 19 below, we describe a
system of choices that works for every 2-CQ (in other words,
we give an algorithm that provides suitable choices for any

q). The different potential locations of a homomorphic im-
age impose different constraints on the possible choices of
contacts. Our ‘meta-heuristics’ in finding a solution to such
a constraint system is to keep the contacts ‘as close as possi-
ble’ to each other so that most non-contact T - and F -nodes
must be in the cogs of the cogwheels. This way potential
homomorphic images are ‘forced’ to intersect with cogs,
where there are fewer options for them: say, if h maps a
node x of q to the initial cog of a copy qj , then we must
have x � ιj

(
h(x)

)
, for otherwise there is not enough room

for the whole h(q) in the cog.
Lemma 19. Suppose B is an n-bike such that the following
conditions hold for its F -connections:

– if t2 ≺ f1 and δ(f1, f2) ≥ δ(t1, f1) then ti•+k = ti•+k2

and fi•+k = f i•+k2 , for all k, 1 ≤ k ≤ |q|; otherwise,
ti•+k = ti•+k1 and fi•+k = f i•+k1 , for all k, 1 ≤ k ≤ |q|;

– fi• = f i•2 and fi•−k = f i•−k1 , for all k, 0 < k ≤ |q|;
– ti•−k = ti•−k1 and ti◦−k = ti◦−k1 , for all k, k ≤ |q|;
– ti◦+1 = ti◦+1

1 and fi◦+1 = f i◦+1
1 ;

– fi◦ = f i◦2 and fi◦−k = f i◦−k1 , for all k, 0 < k ≤ |q|;
and the following conditions hold for its T -connections:

– tj◦+1 = tj◦+1
1 , tj◦−k = tj◦−k1 and fj◦−k = f j◦−k1 , for all

k ≤ |q|;
– if t2 ≺ f1 and δ(f1, f2) ≥ δ(t1, f1) then tj•+k = tj•+k2

and fj•+k = f j•+k2 , for all k, 1 ≤ k ≤ |q|; otherwise,
tj•+k = tj•+k1 and fj•+k = f j•+k1 , for all k, 1 ≤ k ≤ |q|.

Then, for any model I of covA and B, we have I 6|= q iff the
contacts in W• are all in T I while the contacts in W◦ are
all in F I , or the other way round.

Note that the contact choices above are well-defined in
any n-bike B as, for each of the cogwheels in B, the contact-
distance between its F - and T -connections is > 2|q|.

Let ψ be a 3CNF (a conjunction of nψ clauses of the form
`1∨ `2∨ `3, where each `i is a literal, that is, a propositional
variable or its negation) and let n > (nψ + 2) · |q|. For
each propositional variable p in ψ, we take a fresh n-bike Bp
having n-cogwheelsWp

• , Wp
◦ and satisfying the conditions

of Lemma 19. We pick three nodes v1, v2 and v3 in q such
that each va is a T -node or an F -node, and v1 ≺ v2 ≺ v3.
Then, for every clause c = (`c1 ∨ `c2 ∨ `c3) in ψ, we proceed
as follows. We take a fresh copy qc of q, consider the copies
vc1, vc2 and vc3 of the chosen nodes in qc, and replace their F -
or T -labels with A. Further, for a = 1, 2, 3, we glue vca to a
fresh (unused as T - or F -connections) contact
– in Wp

• iff either `ca = p and va is an F -node in q, or
`ca = ¬p and va is a T -node in q;

– in Wp
◦ iff either `ca = p and va is an T -node in q, or

`ca = ¬p and va is a F -node in q.
We call the chosen contacts in the three n-cogwheels the
wheel-contacts for c. For example, if q looks like on the
left-hand side of the picture below and c = (p ∨ ¬q ∨ r),
then we obtain the graph shown on the right-hand side of
the picture with the n-cogwheels depicted as circles:
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We pick the wheel-contacts for different clauses in each n-
cogwheel in such a way that their contact-distance from each
other and from the F - and T -connections of the n-cogwheel
is > 2|q|. We treat the resulting labelled graph as an ABox
and denote it by Aψ .

The following lemma is a consequence of the definition
of Aψ , and the ‘easy’ (⇒) direction of Lemma 19.
Lemma 20. If covA,Aψ 6|= q, then ψ is satisfiable.

It remains to find some conditions on Aψ that guarantee
the converse of Lemma 20. So suppose ψ is satisfiable under
an assignment a. We define a model Ia of covA and Aψ as
follows: For every variable p in ψ, if a(p) = T then we put
all contacts of the n-cogwheelWp

• to T Ia and all contacts of
the n-cogwheelWp

◦ to F Ia ; if a(p) = F , we put all contacts
ofWp

• to F Ia and all contacts ofWp
◦ to T Ia . We aim to find

some conditions on Aψ that would imply Ia 6|= q.
To formulate these conditions, we introduce a new nota-

tion for the three wheel-contacts, uniformly for any given
clause c in ψ (not depending on c, but only on a = 1, 2, 3
and q). For each a = 1, 2, 3, we let Wa denote the n-cog-
wheel the node vca is glued to.

qc
vc1 vc2 vc3

W1 W2 W3

The wheel-contact for c inWa was obtained (when forming
the n-cogwheelWa) by glueing together the F -node fxa of
some copy qxa and the T -node txa+1 of some copy qxa+1

(± is modulo n).

qxa−1

qxa

qxa+1 qxa

qxa+1

qxa+2

fxa

vca

... . . .

txa+1

Wa

For each a = 1, 2, 3, we need to choose the contacts va,
fxa±k and txa±k, for k ≤ |q|, in such a way that Ia 6|= q
(and so the converse of Lemma 20 holds). There might be
different ways of choosing these contacts so that all potential
q → Ia homomorphisms are excluded. Our algorithm be-
low selects contacts that are suitable for ψ and q uniformly,
depending only on the particular 2-CQ q, but not on the sat-
isfying assignment a. While this ‘heuristic’ choice results
in a case-distinction with fewer cases, in each case our task
now is a bit harder than in the proof of Lemma 19. We do not
have any information about the particular labelings of vc1, vc2
and vc3 in Ia other than the fact that the cogwheel attached to
each of them represents a truth-value: for each a = 1, 2, 3,
the contacts inWa are either all in T Ia or all in F Ia (see the
definition of Ia above).

Below, we use the following notation: t2 denotes the last
T -node preceding f1, t3 denotes the last T -node preceding
f2, and t] denotes the last T -node preceding flast. (These all
are well-defined, as t1 ≺ f1 by our assumption.) We callAψ
a ψ-gadget if the following conditions hold for all clauses c
in ψ, all k ≤ |q|, and all ` with 1 ≤ ` ≤ |q|:

– v1 = t1, tx1+1 = tx1+1
1 , tx1−k = tx1−k

2 ;

– if tlast ≺ f1 then fx1−k = fx1−k
2 , v2 = tlast, tx2+` =

tx2+`
last−1, fx2+` = fx2+`

1 , tx2−k = tx2−k
1 ,

fx2−k =

 fx2−k
1 , if δ(t1, t2) = · · · = δ(tlast−1, tlast)

= δ(tlast, f2),

fx2−k
2 , otherwise;

– if f1 ≺ tlast then fx1−k = fx1−k
1 , v2 = f1, tx2+` = tx2+`

2 ,
fx2+` = fx2+`

1 , fx2−k = fx2−k
2 , and there are two cases:

(i) if f1 ≺ t3 and there exist some T -node t ≺ t3 and
kt ≥ 1 with δ(t2, f1) = δ(t, t3) + kt · δ(t3, f2), then
let t? be such a t with the smallest kt, tx2−(kt?−1) =

t
x2−(kt?−1)
? , and tx2−k = tx2−k

3 for k 6= kt? − 1;
(ii) otherwise, tx2−k = tx2−k

3 ;

– v3 = flast, tx3−k = tx3−k
] , fx3−k = fx3−k

last , tx3+` =

tx3+`
] , fx3+` = fx3+`

last .

Lemma 21. If Aψ is a ψ-gadget, then Ia 6|= q.

Note that the contact choices above are well-defined in
any ψ-gadgetAψ , as the wheel-contacts for different clauses
in each cogwheel are such that their contact-distance from
each other and from the F - and T -connections of the cog-
wheel is always > 2|q|.

Finally, given a 3CNF ψ, take some ψ-gadget Aψ . By
Lemmas 20 and 21, we have covA,Aψ 6|= q iff ψ is satisfi-
able. This completes the proof of Theorem 16.

5 Conclusions
This paper contributes to the area of research into the non-
uniform complexity of OMQ answering. Although there ex-
ist algorithms that are capable of deciding various types of
rewritability of a given OMQ, they are of so high complexity
that complete syntactic and practical general classifications
of OMQs are hardly possible. We take a different route to
understanding the problem by stripping it to the bare bones:
we fix the ontology covA with a single axiom saying that A
is covered by the union of F and T , and consider CQs with
unary predicates F , T and arbitrary binary predicates (in
fact, one binary predicate is already extremely challenging).
This ‘primitivisation’ pays off as we obtain a number of use-
ful sufficient conditions for membership in AC0/L/NL/P.
However, to our great surprise, it turns out that checking
FO-rewritability of OMQs with a 1-CQ still remains in the
range between PSPACE and 2EXPTIME. We finally obtain
a remarkably transparent syntactic AC0/NL/P/CONP tetra-
chotomy (requiring a pretty complex proof) for path CQs
that do not contain occurrences of FT -twins.

As a next step, we would like to extend our tetrachotomy
to the ontology cov>, which is in DL-Litekrom (Artale et al.
2009), and to (possibly tree-shaped) CQs containing FT -
twins (adding unary predicates seems less problematic). We
are working on pinpointing the exact complexity of classi-
fying OMQs with covering. In particular, we believe that
deciding FO-rewritability for OMQs with a 1-CQ is actually
2EXPTIME-complete. Finally, we would also like to under-
stand the connection of our problem to CSPs.
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