
On the Expressive Power of Intermediate and Conditional Effects
in Temporal Planning

Nicola Gigante1 , Andrea Micheli2 , Enrico Scala3

1Free University of Bozen-Bolzano, Italy
2Fondazione Bruno Kessler, Trento, Italy

3University of Brescia, Italy
nicola.gigante@unibz.it, amicheli@fbk.eu, enrico.scala@unibs.it

Abstract

Automated planning is the task of finding a sequence of ac-
tions that reach a desired goal, given a description of their
applicability and their effects on the world. In temporal plan-
ning, actions have a duration and can overlap in time. In mod-
ern temporal planning formalisms, two features have been in-
troduced which are very useful from a modeling perspective,
but are not yet thoroughly understood: intermediate condi-
tions and effects (ICE) and conditional effects. The expres-
sive power of such constructs is yet not well comprehended,
especially when time is dense, and no minimum separation
is required between mutex events. This paper reveals that
both ICE and conditional effects do not add expressive power
with regards to common temporal planning formalisms. In
particular, we show how they can be compiled away using a
polynomial-size encoding that makes no assumptions on the
time domain. This encoding advances our understanding of
these features, and allow for their use with simple temporal
planners that lack their support. Moreover, it provides a con-
structive proof showing that temporal planning with ICE and
conditional effects remains PSPACE-complete.

1 Introduction
Automated planning is the task of finding a course of ac-
tions that, when executed starting from a known initial state,
reaches a state satisfying a given goal condition. In tem-
poral planning, actions have a non-zero duration, and can
overlap in time. When multiple instances of the same ac-
tion are allowed to overlap with themselves, temporal plan-
ning has been proved to be EXPSPACE-complete (Rinta-
nen 2007) and undecidable (Gigante et al. 2020; Gigante et
al. 2022), respectively on discrete and dense time domains,
while it becomes PSPACE-complete, in both cases, without
self-overlap of actions.

Different temporal planning formalisms have been intro-
duced. PDDL 2.1 (Fox and Long 2003) extends the de-
facto standard PDDL language with durative actions. The
ANML language (Smith, Frank, and Cushing 2008), in-
troduced in the context of space exploration, mixes fea-
tures from action-based STRIPS-like formalisms such as
PDDL with concepts taken from timeline-based planning
languages (Frank and Jónsson 2003; Cesta et al. 2009;
Gigante et al. 2017).

A few features of these formalisms exist that are very use-
ful in practice but not yet well understood: intermediate con-

ditions and effects (ICE), and conditional effects.
With ICE, an action can affect or be conditioned in time

points different than the start and the end of its execution
time interval. For example, an action might specify an ef-
fect to happen 5 time steps after its execution started, and at
the same time require a given condition to hold in between 2
time steps after its starting and 5 time steps before its ending.
This distinctive feature of the ANML language is not syn-
tactically supported by PDDL 2.1 and, depending on some
semantic assumptions about the underlying time domain, it
is not clear if such a feature makes ANML more expressive.

With conditional effects, the effects of actions can be
specified to apply or not depending on some state-dependent
condition. For example, an action might be specified to
set the truth of a proposition p at its end, only if a certain
condition holds at its start. This feature, as formalized in
PDDL 2.1, poses some challenges. Neither the polynomial
nor the exponential encoding of classical conditional effects
(Nebel 2000) work in the temporal case. In temporal plan-
ning the conditions under which a given effect is applied de-
pend on the entire execution of the action (e.g., an effect at
the start of an action that depends on a condition evaluated
over all the execution of the action), and this poses a signif-
icant challenge for the support of this feature. Conditional
effects are available in PDDL 2.1, but are not supported by
ANML; again, it is unclear whether PDDL 2.1 without such
a feature is less expressive.

In this paper, we settle these questions, showing that both
ICE and conditional effects do not add expressive power.
We do so by providing a polynomial-size construction that
encodes ICE and conditional effects into simple durative
actions. This construction, which can be applied to both
PDDL 2.1 and ANML problems, only assumes that self-
overlap of actions is forbidden, and is independent from
any assumption about the discrete or dense nature of the
underlying time model, and from any assumption on the
separation between mutex events (ε-separation or non-zero
separation semantics). We are not aware of any compila-
tions for conditional effects in temporal planning, and the
only known compilation schemata for ICE only applies un-
der ε-separation semantics (Fox, Long, and Halsey 2004;
Smith 2003), which corresponds to assuming discrete time
(Rintanen 2007).

Our construction employs simultaneity constraints, a

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

174

novel modeling technique that allows the endpoints of some
actions, or whole actions, to always happen simultaneously.
How to encode such constraints without particular assump-
tions on the time domain was not generally known before.
Thanks to the terse encoding of these constraints, our com-
pilation of ICE and conditional effects is quite lightweight,
requiring only a handful of additional actions and fluents in
the worst case.

Our results have a number of implications:

1. ICE and conditional effects do not increase the expressive
power of temporal planning formalisms;

2. such features can be used with simple temporal planners
that do not support them;

3. the homogeneous treatment of both features in terms of
simultaneity constraints highlights a relationship between
the two that was never noted before;

4. the temporal planning problem with both features, with-
out self-overlap of actions, is still PSPACE-complete both
on discrete and dense time.

The paper is structured as follows. After giving the nec-
essary background information in Section 2, we introduce
ICE and conditional effects in Section 3. Then, we intro-
duce simultaneity constraints in Section 4, showing how to
encode such constraints into temporal planning problems.
Then, Section 5 uses simultaneity constraints to show how to
encode ICE, while Section 6 turns its attention to conditional
effects. Section 7 discusses related work, and Section 8 con-
cludes with final remarks and mentions future work.

2 Background
Following Fox and Long (2003), this section introduces the
temporal planning problem we are interested in. Given a set
P of propositions, let BP be the set of Boolean formulas
over P .

Definition 1 (Temporal Planning Problem). A temporal
planning problem is a tuple P = 〈P,A, I,G〉, where P
is a set of propositions, A is a set of durative actions,
I ⊆ P is the initial state, and G ∈ BP is the goal
condition. A snap (instantaneous) action is a tuple h =
〈pre(h), eff+(h), eff−(h)〉, where pre(h) ∈ BP is the pre-
condition and eff+(h), eff−(h) ⊆ P are two disjoint sets of
propositions, called the positive and negative effects of h, re-
spectively. We write eff(h) for eff+(h)∪eff−(h). A durative
action a ∈ A is a tuple 〈a`, aa, pre↔(a), [La, Ua]〉, where
a` and aa are the start and end snap actions, respectively,
pre↔(a) ∈ BP is the over-all condition, and La ∈ Q>0 and
Ua ∈ Q≥0 ∪ {∞} are the bounds on the action duration.

The above definition corresponds to temporal planning
as defined by PDDL 2.1 (without numeric variables). The
problem is defined using a set-theoretic representation,
where states are subsets of P , which is the universe of facts
over which one can determine the status of things, and the
possible transitions that may take place in the system. When
interpreted as a state, a subset s of P lists those atoms which
hold true in it and implicitly asserts false those which are
not part of it (closed-world assumption). Conditions are

Boolean formulas over P . The initial state I specifies what
holds at the beginning, before execution, while action tu-
ples in A specify the dynamics of the system, that is, how
a state can change, and under which propositional and tem-
poral conditions such changes may happen. An action tuple
delegates the specification of the state transition to two snap
actions: one is relative to when the durative action starts,
and one to when the durative action ends. As classical plan-
ning actions, these instantaneous transitions are represented
by a pair, which encodes the applicability of the transition
(pre(h)), and the effects that the transition has on the state
when applied (eff+(h) and eff−(h)). Unlike in classical
planning problems, however, in temporal planning actions
last for a certain time (they are durative), and their duration
has to satisfy the given lower and upper time limits, that is,
[La, Ua]. Moreover, since the state can change while the ac-
tion is under execution, we can further require that all inter-
mediate states satisfy a given invariant condition (pre↔(a)).
Note that PDDL 2.1 allows for instantaneous classical ac-
tions to be defined alongside durative actions. Here, for
simplicity we do not allow for this feature, but it would be
straightforward to do so. Finally, the Boolean formulaG de-
termines what needs to be achieved in order for the problem
to be solved.

A collection of action tuples fromA, together with a start-
ing time and a duration, is called a plan.

Definition 2 (Plan). Let P = 〈P,A, I,G〉 be a plan-
ning problem. A plan for P is a set of tuples π =
{〈a1, t1, d1〉, · · · , 〈an, tn, dn〉}, where, for each 1 ≤ i ≤ n,
ai ∈ A is a durative action, ti ∈ Q≥0 is its start time, and
di ∈ Q>0 is its duration.

A plan can be understood as a set of timed decisions the
agent can take over time. Indeed, each tuple of a plan defines
what action needs to start (an), when it must be initiated
(tn), and how long it has to last (dn). Note that this seman-
tics assumes a dense time model, but all the constructions in
this paper apply to a discrete time model as well.

In order to precisely state whether a given plan is valid
with respect to the temporal planning problem it represents
a candidate solution for, in the following we recall and sum-
marize the state-transition model interpretation of a temporal
plan given by Fox and Long (2003).

Definition 3 (Set of timed snap actions). A timed snap ac-
tion (TSA) is a pair 〈t, h〉, where t ∈ Q≥0 and h is a snap
action. Given a plan π = {〈a1, t1, d1〉, · · · , 〈an, tn, dn〉},
the set of TSAs of π is defined as:

H(π) = {〈t, a`〉, 〈t+ d, aa〉 | 〈a, t, d〉 ∈ π}

Given a set of timed snap actions, we define the induced
parallel plan as the sequence of sets of timed snap actions
sharing the same time index. As we will see, the validity of
plans can be stated by defining constraints over the induced
parallel plan that can be extracted from the timed snap ac-
tions of a plan.

Definition 4 (Induced parallel plan). Let π be a plan and
let H(π) = {〈t′1, h1〉, · · · , 〈t′m, hm〉} be the set of TSAs
of π. The induced parallel plan for π is the sequence

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

175

πind = 〈〈t′′1 , {h | 〈t′′1 , h〉 ∈ H(π)}〉, · · · , 〈t′′k , {h | 〈t′′k , h〉 ∈
H(π)}〉〉, which is ordered and grouped with respect to
the time index, that is, ∀i, j ∈ {1, · · · , k}, i < j if and
only if t′′i < t′′j , and if t′′i = t′′j , then i = j. Given
ci = 〈ai, ti, di〉 ∈ π, we denote by πind

` (ci) = x, with
t′′x = ti, and πind

a (ci) = y, with t′′y = ti + di, the indexes of
the pairs in πind containing, in the right hand side, the snap
actions ai` and aia relative to ci, respectively.

In order to define the validity of plans, we need to decide
what happens to events that affect the same variables. We
say that two snap actions are mutex whenever one interferes
with at least one effect or precondition of the other. The
concept is formally defined as follows.

Definition 5 (Mutex snap actions). Given a set of proposi-
tions P and a Boolean formula φ ∈ BP , let P (φ) be the set
of propositions mentioned by φ. Two snap actions h and z
are mutually exclusive (mutex), denoted by mutex(h, z), if
either P (pre(h))∩ eff(z) 6= ∅, or P (pre(z))∩ eff(h) 6= ∅,
or eff+(h) ∩ eff−(z) 6= ∅, or eff+(z) ∩ eff−(h) 6= ∅.

We are now ready to define the notion of plan validity.
Intuitively, a plan is said to be valid if (i) the induced plan
is a classical goal-reaching execution where all overall and
duration constraints are satisfied, and (ii) mutex snap actions
do not appear at the same time in a plan.

Given a set of propositions s ⊆ P , called state, and a
condition φ ∈ BP , we write s |= φ if s satisfies φ under the
classical semantics of Boolean formulas.

Definition 6 (Plan validity). Given a temporal plan-
ning problem P = 〈P,A, I,G〉 and a plan π =
{〈a1, t1, d1〉, · · · , 〈an, tn, dn〉} for P , and πind =
〈〈t′1, B1〉, · · · , 〈t′m, Bm〉〉 be its induced plan. Then, π is
valid if the following statements hold:

1. ∀i ∈ {1, · · · , n} Lai ≤ di ≤ Uai ,

2. there are no h, z ∈ Bi, with h 6= z, for some i ∈
{1, · · · ,m}, such that mutex(h, z),

3. given s0 = I , for all i ∈ {1, . . . ,m}, it holds that:

(a) si = (si−1 \
⋃

h∈Bi
eff−(h)) ∪

⋃
h∈Bi

eff+(h);

(b) si |=
∧

h∈Bi
pre(h);

(c) sm |= G,

4. for all c = 〈a, t, d〉 ∈ π and all πind
` (c) ≤ k < πind

a (c),
we have sk |= pre↔(a).

5. actions do not self-overlap, i.e., there are no 1 ≤ i, j ≤ n,
with i 6= j, such that a = ai = aj and ti ≤ tj ≤ ti + di

Note that Item 2 of Definition 6 only assumes a non-zero
time separation between mutex events (non-zero separation
semantics), without assuming a concrete minimum amount
of time (ε-separation semantics). The constructions in this
paper do not depend on this assumption though, and work
with ε-separation semantics as well. Note also that Item 5
explicitly excludes self-overlap of actions. This assumption
is quite natural given that self-overlap leads to undecidabil-
ity in dense time domains (Gigante et al. 2022).

3 ICE and Conditional Effects
In this section, we introduce the features that are the sub-
ject of this paper, that is, intermediate conditions and effects
(ICE), and conditional effects.

ICE allow the modeler to state that something happens or
has to happen in time points different from the start or the
end of the action execution interval. An effect, for example,
can be placed at k time steps after the start of the action, and
a condition can be required to hold from k steps after the
start to l steps before the end, and so on. Formally, planning
problems with ICE can be defined as follows.

Definition 7 (Intermediate conditions and effects). Given a
positive rational number k ∈ Q≥0, an ICE term is either a
term START + k or END− k.

An ICE effect is a tuple e = 〈τ, eff+, eff−〉 where τ is an
ICE term and eff+ and eff− are sets of propositions.

An ICE condition is a pair c = 〈τ1, τ2, φ〉 where τ1 and
τ2 are ICE terms and φ is a Boolean formula, such that:

1. if τ1 ≡ START + k and τ2 ≡ START + l, then k < l;
2. if τ1 ≡ END− k and τ2 ≡ END− l, then k > l;

Definition 8 (Planning problem with ICE). A durative action
with ICE is a tuple a = 〈a`, aa, pre↔(a), [La, Ua], Ea, Ca〉
where a`, aa, pre↔(a), La, and Ua are defined as in Defini-
tion 1, Ea is a set of ICE effects, and Ca is a set of ICE con-
ditions. A planning problem with ICE is a planning problem
as in Definition 1 but made of durative actions with ICE.

A thorough formal description of the semantics of ICE
conditions and effects is beyond the scope of this paper,
but can be found in the literature (Valentini, Micheli, and
Cimatti 2020). Intuitively, an ICE effect e = (τ, eff+, eff−)
applies the positive effects eff+ and the negative effects eff−

to the state at the time specified by τ : if τ = START + k,
the effects are applied k time steps after the start of the ac-
tion. Similarly, if τ = END − k, the effects are applied
k time steps before the end of the action. An ICE condi-
tion c = 〈τ1, τ2, φ〉 requires that φ holds during all the time
points between τ1 and τ2 (extrema included).

Figure 1 shows an example usage of ICE. The setting is
the operation of a production plant. A production machine
makes some treatment over a part of the final product, which
is done in 50 seconds. However, to avoid the part to oxidize
and become useless, it has to be picked and stored within
other 50 seconds. This can be modeled by making the ac-
tion make-treatment 100 seconds long, with an intermedi-
ate effect at t = 50 that sets the done fluent, signaling the
end of the treatment. Then, the pick action has to be exe-
cuted within the next 50 seconds, because the end of make-
treatment requires the picked fluent to be true.

We now turn our attention to conditional effects. In the
context of temporal planning, they are defined by Fox and
Long (2003) in their definition of PDDL 2.1. Intuitively,
with conditional effects on durative actions, one can make
the application of an effect depend on a combination of con-
ditions evaluated at the start of, at the end of, and over all
the interval of execution of the action. For example, one
may say that at the start of an action the effect p is applied
only if the formula θ holds at the end, and ψ holds true over

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

176

0 10050

make-treatment

pick

¬done! done! picked?

done? picked !

Figure 1: Example use case of ICE. Question marks denote condi-
tions, exclamation marks denote effects.

the entire execution. Formally, we can define conditional
effects as follows.
Definition 9 (Conditional effects). Let P be a set of
propositions. A conditional effect is a tuple e =
〈φ, ψ, θ, eff+

` , eff−` , eff+
a , eff−a 〉, where φ ∈ BP is the at-start

condition, ψ ∈ BP is the over-all condition, θ ∈ BP is the
at-end condition, eff+

` ⊆ P and eff−` ⊆ P are the positive
and negative at-start effects, and eff+

a ⊆ P and eff−a ⊆ P
are the positive and negative at-end effects.
Definition 10 (Problem with conditional effects). A du-
rative action with conditional effects is a tuple a =
〈a`, aa, pre↔(a), [La, Ua], Ea〉, where a`, aa, pre↔(a),
La, and Ua are defined as in Definition 1, and Ea is a set
of conditional effects. A planning problem with conditional
effects is a problem P = 〈P,A, I,G〉 where P , I and G are
defined as in Definition 1, and A is a set of durative actions
with conditional effects.

Intuitively, if an action a is equipped with a conditional
effect e = 〈φ, ψ, θ, eff+

` , eff−` , eff+
a , eff−a 〉, and the action is

executed, the positive and negative at-start and at-end ef-
fects eff+

` , eff−` , eff+
a , eff−a are applied if and only if the

at-start condition φ holds at the start of the execution, the
over-all condition ψ holds during all the execution of the ac-
tion (extrema excluded), and the at-end condition θ holds at
the end of the execution. As in the case of ICE in the pre-
vious section, we do not delve into all the formal details of
the semantics of planning problems with conditional effects,
redirecting the reader to Fox and Long (2003).

The kind of situations that can be expressed with condi-
tional effects in temporal planning is qualitatively different
than what can be done in classical planning, because a con-
dition can involve events that are very distant in the plan.
For example, one may say that the effect of setting a fluent
at the end of an action is applied only if some condition has
held over all the execution of the action. This is what we use
to express the use case depicted in Figure 2. An action burn
is used to switch on a burner that has the purpose of increas-
ing the temperature. The burner has only a single mode of
operation and can be switched on only for a fixed amount
of time, but the problem requires different temperature lev-
els. For this reason, some air can be blown to balance the
temperature (the blow action). Hence, if the burn action is

burn

blow

hot !

if over-all ¬blowing?
then very-hot !

blowing ! ¬blowing !

Figure 2: Example use case of conditional effects. Question marks
denote conditions, exclamation marks denote effects.

executed alone, both the hot and very-hot fluents are set. If
the blow action is executed in the middle, only the hot fluent
is set.

Conditional effects emerge in various compilations from
planning with state trajectory constraints (e.g., (Torres and
Baier 2015; Bonassi et al. 2021)) and conformant planning
(e.g., (Palacios and Geffner 2007; Grastien and Scala 2020;
Scala and Grastien 2021) to classical planning. In the case
of state-trajectory constraints, conditional effects are used to
keep track of the side effect of each agent’s decision on a
monitoring automaton that represents the satisfiability status
of the constraints. For example, Torres and Baier (2015) use
a NFA automaton that accepts all plans that satisfy the pro-
vided trajectory constraints. In conformant planning prob-
lems, for example, Grastien and Scala (2020) use condi-
tional effects to link the action effects with some assumption
over the possible worlds in the agent’s initial belief. In the
resulting classical planning problem, the agent is required to
find a plan that works for each such assumption. The support
of conditional effects that can be conditioned throughout the
entire execution of an action has the potential to extend such
approaches to temporal planning problems as well.

4 Simultaneity Constraints
In order to show how to encode ICE and conditional effects
into a temporal planning problem, we use the concept of
simultaneity constraint.

We need some terminology first.
Definition 11 (Plan projection). Let P = 〈P,A, I,G〉 be
a temporal planning problem and let A′ be a set of actions
such that A′ ∩A 6= ∅. Given a plan π for P , the projection
of π over A′, denoted π|A′ , is the plan obtained from π by
removing any action a ∈ A \A′.

Intuitively, simultaneity constraints impose some snap ac-
tions to always happen at the same time. They are formally
defined as follows.
Definition 12 (Simultaneity constraint). Let P =
〈P,A, I,G〉 be a temporal planning problem, and let a∗a
and b∗b be two snap actions, where ∗a, ∗b ∈ {`,a}. A prob-
lem P ′ = 〈P ′, A′, I ′, G′〉 augments P with the simultaneity
constraint a∗a // b∗b if any plan π is a valid plan for P ′ if
and only if π|A is a valid plan for P and, for each t ∈ Q≥0

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

177

a

b

p, q 6∈ I
q! ¬p!

p! ¬q!

p

q

a

b

p, q 6∈ I
p! q?,¬q!

q! p?,¬p!

p

q

a

b

c

p, q, r, s 6∈ I

p

q

¬(p ∧ q)

p! r?, q!

¬p!, s! ¬q!

r! s?,¬r!,¬s!

Figure 3: Schematics for the construction of a` // b` (left), aa // ba (center), and aa // b` (right). Question marks denote conditions,
exclamation marks denote effects, dashed lines denote overall conditions.

such that (t, a∗a) ∈ H(π), we have (t, b∗b) ∈ H(π), and
vice versa, for each t ∈ Q≥0 such that (t, b∗b) ∈ H(π), we
have (t, a∗a) ∈ H(π).

As an example, given two durative actions a and b, if we
augment P with the simultaneity constraint aa // b` we
restrict valid plans for π to those where for each instance of
a there is an instance of b where the end of a and the start of
b are simultaneous, and vice versa.

We show now how to add a simultaneity constraint to a
temporal planning problem. The encoding is different for
the three cases of a` // b` (both starting snap actions),
aa // ba (both ending snap actions), and aa // b` (an end-
ing and a starting snap action). The key ideas of how to
encode simultaneity constraints in the three cases are shown
in Figure 3. Let us understand how the encoding works in-
tuitively before delving into the formal details. In the case
of a` // b`, two fresh propositions p and q are introduced,
which are initially set to false. The overall conditions of a
and b are enriched by asking respectively p and q, while the
starting effect of a sets q and the starting effect of b sets p.
Now, a cannot start before the start of b because it needs p
to hold, and b cannot start before the start of a because it
needs q to hold. The result is that the two actions have to
start together. The end effects of a and b then reset p and q
to false to recover the initial state, allowing the construction
to repeat if needed. A similar reasoning holds for aa // ba.

The case for aa // b` is different, as it involves a clip
construction. A third fresh action c is introduced, which is
used to hold together a and b, alongside fresh propositions
p, q, r, and s. The propositions r and s are used to force c to
start before the end of a and end after the start of b, enclosing
the two snap actions that we want to glue together. Then, a
has overall condition p, while b has overall condition q, but
C has overall condition¬(p∧q), thus a and b cannot overlap.
Moreover, the end of a sets q, so the overall condition of C
risks to be invalidated as soon as a ends. However, the start
of b sets ¬p, hence the only way for the overall condition of
C to stay satisfied is for aa and b` to happen at the same
time. We can now formally define what we described above.
Let us start from the case of a` // b`.

Definition 13 (Encoding of a` // b`). Given a temporal
planning problem P = 〈P,A, I,G〉, two actions a, b ∈ A,
and two propositions p and q (not necessarily in P), we de-
note as enc(a` // b`,P, p, q) the temporal planning prob-
lem P ′ = 〈P ′, A′, I ′, G′〉 defined as follows:

1. P ′ = P ∪ {p, q};
2. I ′ = I (i.e., p and q start false) and G′ = G;
3. A′ = A \ {a, b} ∪ {a′, b′} where a′ and b′ are like a and
b excepting for what follows:

(a) eff+(a′`) = eff+(a`) ∪ {q};
(b) eff−(a′a) = eff−(aa) ∪ {p};
(c) pre↔(a′) = pre↔(a) ∧ p;
(d) eff+(b′`) = eff+(b`) ∪ {p};
(e) eff−(b′a) = eff−(ba) ∪ {q};
(f) pre↔(b′) = pre↔(b) ∧ q;

For the case of aa // ba the construction is as follows.

Definition 14 (Encoding of aa // ba). Given a temporal
planning problem P = 〈P,A, I,G〉, two actions a, b ∈ A,
and two propositions p and q (not necessarily in P), we de-
note as enc(aa // ba,P, p, q) the temporal planning prob-
lem P ′ = 〈P ′, A′, I ′, G′〉 defined as follows:

1. P ′ = P ∪ {p, q};
2. I ′ = I (i.e., p and q start false) and G′ = G;
3. A′ = A \ {a, b} ∪ {a′, b′} where a′ and b′ are like a and
b excepting for what follows:

(a) eff+(a′`) = eff+(a`) ∪ {p};
(b) eff−(a′a) = eff−(aa) ∪ {q};
(c) pre(a′a) = pre(aa) ∧ q;
(d) pre↔(a′) = pre↔(a) ∧ p;
(e) eff+(b′`) = eff+(b`) ∪ {q};
(f) eff−(b′a) = eff−(ba) ∪ {p};
(g) pre(b′a) = pre(ba) ∧ p;
(h) pre↔(b′) = pre↔(b) ∧ q;

The case of aa // b` is encoded as follows.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

178

Definition 15 (Encoding of aa // b`). Given a temporal
planning problem P = 〈P,A, I,G〉, two actions a, b ∈ A,
and three propositions p, q, and r (not necessarily in P), we
denote as enc(aa // b`,P, p, q, r) the temporal planning
problem P ′ = 〈P ′, A′, I ′, G′〉 defined as follows:

1. P ′ = P ∪ {p, q};
2. I ′ = I (i.e., p, q, r, and s start false) and G′ = G;
3. A′ = A \ {a, b} ∪ {a′, b′, c}, where a′ and b′ are like a

and b excepting for what follows:
(a) eff+(a′`) = eff+ a` ∪ {p};
(b) eff+(a′a) = eff+ aa ∪ {q};
(c) pre(a′a) = pre(aa) ∧ r;
(d) pre↔(a′) = pre↔(a) ∧ p;
(e) eff−(b′`) = eff−(b`) ∪ {p};
(f) eff+(b′`) = eff+(b`) ∪ {s};
(g) eff−(b′a) = eff−(ba) ∪ {q};
(h) pre↔(b′) = pre↔(b) ∧ q;

and c = 〈c`, ca, pre↔(c), [Lc, Uc]〉 is defined as follows:
(a) eff+(c`) = {r}, eff−(c`) = ∅;
(b) eff+(ca) = ∅, eff−(ca) = {r, s};
(c) pre(c`) = >, pre(ca) = s;
(d) pre↔(c) = ¬(p ∧ q);
(e) La = Ua = min{La, Lb}.

One can check that the constructions in Definitions 13, 14
and 15 work as intended.
Lemma 1 (Soundness of simultaneity constraints encoding).
Given a temporal planning problem P = 〈P,A, I,G〉, two
actions a, b ∈ A, and three propositions p, q, r 6∈ P , then:

1. the planning problem enc(a` // b`,P, p, q) augments P
with the simultaneity constraint a` // b`;

2. the planning problem enc(aa // ba,P, p, q) augments P
with the simultaneity constraint aa // ba;

3. the planning problem enc(aa // b`,P, p, q, r) augments
P with the simultaneity constraint aa // b`.
Another kind of simultaneity constraint will come useful

later: a constraint that imposes a durative action to be simul-
taneous with one of a set of other actions.
Definition 16 (Simultaneity constraint between actions).
Let P = 〈P,A, I,G〉 be a temporal planning problem, and
let a ∈ A and b0, . . . , bn ∈ A be durative actions. A prob-
lem P ′ = 〈P ′, A′, I ′, G′〉 augments P with the simultaneity
constraint a // {b0, . . . , bn} if any plan π is valid for P ′
if and only if π|A is valid for P and, for each instance of a
executing in π|A, there is an instance of one of b0, . . . , bn ex-
ecuting in π|A starting and ending exactly at the same time.

Intuitively, if a is an action and b0, . . . , bn are actions,
when we augment a problem P with a constraint a //
{b0, . . . , bn}, we impose that for each instance of a, at least
one of b0, . . . , bn is executed exactly at the same time of a.
To encode this constraint, we can at first observe that aug-
menting a problem with a // {b} is equivalent to augment-
ing it with the two simultaneity constraints a` // b` and
aa // ba. Then, by reusing some auxiliary propositions, we
can encode the disjunction between b0, . . . , bn.

Definition 17 (Encoding of a // {b0, . . . , bn}). Given a
temporal planning problem P = 〈P,A, I,G〉 and actions
a, b0, . . . , bn ∈ A, enc(a // {b0, . . . , bn},P) denotes the
problem recursively defined as follows:

enc(a // ∅,P) = P
enc(a // {b0, . . . , bn},P) = enc(a` // b0`,P ′′, p1, q1)

where P ′′ = enc(aa // b0a,P ′, p2, q2)

P ′ = enc(a // {b0, . . . , bn−1})

where p1, p2, q1, q2 6∈ P are four fresh propositions.

The recursive definition of enc(a // {b0, . . . , bn},P) in
Definition 17 augments the original problem P , once for
each action {b0, . . . , bn}, with two simultaneity constraints
that bind together a` with bi` and aa with bia. However,
this construction does more than the simple combination of
a` // bi` and aa // bia: by reusing the same propositions
p1, p2, q1, q2 to encode the simultaneity constraints between
the snap actions of a and b0, . . . , bn, we make sure that the
constructions shown in Figure 3 are satisfied by any one of
the actions b0, . . . , bn. One can check the following result.

Lemma 2 (Soundness of Definition 17). Given a tempo-
ral planning problem P = 〈P,A, I,G〉, and durative ac-
tions a, b0, . . . , bn ∈ A, the temporal planning problem
enc(a // {b0, . . . , bn},P) augments P with the constraint
a // {b0, . . . , bn}.

5 Intermediate Conditions and Effects
Thanks to the simultaneity constraints developed in Sec-
tion 4, we can easily encode planning problem with ICE into
a plain planning problem.

Theorem 1 (ICE encoding). Given a planning problem with
ICEP = 〈P,A, I,G〉, there exists a planning problemP ′ =
〈P ′, A′, I ′, G′〉 such that any plan π is valid for P ′ if and
only if π|A is valid for P .

Proof. Let a = 〈a`, aa, pre↔(a), [La, Ua], Ea, Ca〉 be a
durative action with ICE from P . Then, a can be simply
replaced by the corresponding plain durative action, after
augmenting the problem with some auxiliary actions and
suitable simultaneity constraints. How exactly this is done
depends on the kind of ICE involved (see Figure 4):

1. For an ICE effect 〈START + k, eff+, eff−〉, we add an
auxiliary action e with eff+(ea) = eff+ and eff−(ea) =
eff−, Le = Ue = k, and we augment the problem with
the simultaneity constraint a` // e`.

2. Similarly, for an ICE effect 〈END − k, eff+, eff−〉, we
add an auxiliary action e with eff+(e`) = eff+ and
eff−(e`) = eff−, Le = Ue = k, and we augment the
problem with the simultaneity constraint aa // ea.

3. For an ICE condition 〈START + k, START + l, φ〉 we
add two auxiliary actions e1 and e2. We set pre(e2`) =
pre(e2a) = pre↔(e2) = φ, Le1 = Ue1 = k, Le2 =
Ue2 = l − k, and we augment the problem with the con-
straints a` // e1` and e1a // e2`.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

179

a

e

〈START+ k, {p},∅〉

p!

a

e

〈END− k, {p},∅〉

p!

a

e1

e2

〈START+ k, START+ l, p〉

p

p? p?

a

e1

e2

〈END− k,END− l, p〉

p

p? p?

a

e1 e2

e3

〈START− k,END− l, p〉

p

p? p?

Figure 4: Constructions to encode ICE using simultaneity constraints. Question marks denote conditions, exclamation marks denote effects,
horizontal dashed lines denote overall conditions, vertical dashed lines denote simultaneity constraints.

4. Similarly, for an ICE condition 〈END−k,END−l, φ〉we
add two auxiliary actions e1 and e2. We set pre(e2`) =
pre(e2a) = pre↔(e2) = φ, Le1 = Ue1 = l, Le2 =
Ue2 = k − l, and we augment the problem with the con-
straints aa // e1a and e1` // e2a.

5. For an ICE condition 〈START + k,END− k, φ〉, we add
three auxiliary actions e1, e2, and e3. We set pre(e3`) =
pre(e3a) = pre↔(e3) = φ, Le1 = Ue1 = k, Le2 =
Ue2 = l, and we augment the problem with the constraints
a` // e1`, e1a // e3`, e3a // e2`, and e2a // aa.

It can be checked that any plan π is valid for P ′ if and only
if π|A is valid for P .

By applying this compilation of ICE to the example prob-
lem of Figure 1, we replace make-treatment with a cor-
responding plain durative action that has no intermediate
effect. Then, we add action e with duration 50 that sets
done true at its end, and is forced to start together with
make-treatment by means of the simultaneity constraint
a` // e` with a = make-treatment. The rest of the problem
is left untouched; it is easy to see that any plan starting the
make-treatment action at time t needs to start e at the same
time, causing the positive effect on done to happen at time
t + 50, hence capturing the ICE semantics. Moreover, the
plan where e is projected away is a valid plan for the original
problem with ICE.

Note that the constructions employed in Theorem 1 pro-
duce only a few additional actions. In particular, one addi-
tional action is required for ICE effects, while five additional
actions (including the actions needed for the encoding of si-
multaneity constraints) are needed to encode the most com-
plex kind of ICE condition (i.e., 〈START+k,END− l, φ〉).
In any case, the growth in size of the resulting problem is
only polynomial. This fact, together with the complexity
results by Gigante et al. (2022), implies the following.

Corollary 1 (Complexity of planning with ICE). Finding
whether a valid plan exists for a planning problem with ICE
is PSPACE-complete.

6 Conditional Effects
We focus now on how problems with conditional effects can
be polynomially encoded into plain planning problems.

Theorem 2 (Conditional effects encoding). Given a plan-
ning problem with conditional effects P = 〈P,A, I,G〉,
there exists a planning problem P ′ = 〈P ′, A′, I ′, G′〉 such
that any plan π is valid for P ′ iff π|A is valid for P .

Proof. Figure 5 shows the construction for an example con-
ditional effect. For a durative action a with conditional ef-
fect e = 〈φ, ψ, θ, eff+

` , eff−` , eff+
a , eff−a 〉, we introduce five

auxiliary actions b0, b1, b2, b3, and b′3, and we augment the
problem with the simultaneity constraint a // {b0, b1, b2, b3}
and b3` // b′3`. In this way, we create the situation depicted
in the figure, with one of b0, b1, b2, b3 forced to happen si-
multaneous to a, and b′3 forced to start at the start of b3. Now,
we set conditions and effects of b0 to mimic the conditional
effect, that is:

pre(b0`) = φ pre↔(b0) = ψ pre(b0a) = θ

eff+(b0`) = eff+
` eff−(b0`) = eff−` eff+(b0a) = eff+

a

eff−(b0a) = eff−a

Hence, b0 is executed (simultaneously to a), only if all the
conditions of the conditional effect are satisfied, applying
the corresponding effects. We then handle the case where
the conditions of the conditional effect are not satisfied. To
this end, we set the conditions of b1, b2, and b′3 accordingly:

pre(b1`) = ¬φ pre(b2a) = ¬θ pre(b′3a) = ¬ψ

In this way, b1 is executed (simultaneously to a) when the at-
start condition of the conditional effect is not satisfied, b2 is
executed when the at-end condition of the conditional effect
is not satisfied, and b3 is executed when the over-all condi-
tion of the conditional effect is not satisfied, i.e., when there
exists at least one time point (the end of b′3) during the execu-
tion of the action where ¬ψ holds. As the last detail, an aux-
iliary proposition x is introduced to force b′3 to end before b3,
by setting eff+(b′3`), eff−(b′3a) = {x} and pre(b3`) = ¬x.
Note that, as noted in the figure, b1, b2, and b3 are mutually
exclusive with b0 due to their conditions. However, b1, b2
and b3 may potentially execute together with no harm.

One can check that the construction described above in-
deed encodes the given conditional effect.

Consider the example problem of Figure 2: to compile
away the conditional effect at the end of action burn we

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

180

a

e = 〈φ, ψ, θ, {p},∅, {q},∅〉

b0

b1

b2

b3

b′
3

xor
xor

xor

φ?, p! θ?, q!

ψ

¬φ?

¬θ?

¬x?

¬ψ?, ¬x!x!

Figure 5: Constructions to encode conditional effects of a durative
action using simultaneity constraints. Question marks denote con-
ditions, exclamation marks denote effects, horizontal dashed lines
denote overall conditions, vertical dashed lines denote simultaneity
constraints, arrows denote mutual exclusion between actions.

only need the actions b0, b3 and b′3 of the above construction
as the condition only involves an over-all constraint. The
action burn in the resulting problem will only have the un-
conditional, end effect setting hot true, and either action b0
or b3 is required to be in parallel with burn. The action b0
has an over-all condition ¬blowing and an end effect setting
very-hot true, encoding the execution of the conditional ef-
fect. Instead, the action b3 requires action b′3 to start at the
same time of b3 and by means of the end condition of b′3
checks if there exists a point within the duration of burn
where blowing is true, hence encoding the non-execution of
the conditional effect.

Note that the cost of the encoding employed in Theorem 2
is only five actions for each conditional effect.

Corollary 2 (Complexity of planning with conditional ef-
fects). Finding whether a valid plan exists for a planning
problem with conditional effects is PSPACE-complete.

7 Related Work
Intermediate Conditions and Effects (ICE) as defined in
this paper follow the abstract syntax of the Action Nota-
tion Modeling Language (ANML) (Smith, Frank, and Cush-
ing 2008). The NDL planning language (Rintanen 2015)
supports delayed effects with timing relative to the starting
of the action. ICE is useful in several contexts, for exam-
ple for modeling schedules and events (Valentini, Micheli,

and Cimatti 2020) and to compile away duration uncer-
tainty in temporal planning (Cimatti et al. 2018). Some
planners natively support ICE (Bit-Monnot et al. 2020;
Micheli and Scala 2019; Valentini, Micheli, and Cimatti
2020), but the majority of temporal planners do not.

Under the assumption of ε-separation semantics, two
compilations for ICE have been presented in (Cimatti et al.
2018). These compilations build on the clip-action construc-
tion by Fox, Long, and Halsey (2004), and on the container-
action construction by Smith (2003), respectively. The for-
mer construction introduces an additional action with dura-
tion 2 × ε, forcing two snap-actions to happen at the same
time by means of additional propositions. This effectively
encodes a simultaneity constraint that can be used to en-
code ICE. The latter, instead, uses an envelope action that
forces a fixed time distance between two or more actions
that are constrained to happen one after the other. Note that
the container-action compilation is less general than the clip,
because it assumes that the actions have fixed durations.

Our compilation significantly extends the scope achiev-
able by either of these existing compilations. First of all, we
do not assume the ε-separation semantics: our compilation
works both when the minimum time quantum must be spec-
ified by the user and when it is computed automatically by
the planner. Moreover, our encoding uses less additional ac-
tions with respect to the previous compilations in general. In
fact, to force the simultaneous execution of two starting or
two ending snap-actions we do not use any additional dura-
tive action while both previous approaches require one addi-
tional action regardless of the type of snap actions involved.

Considering the example shown in Figure 1, the make-
treatment action needs to be transformed into two actions
aimed at capturing the effect at time 50. With the clip-action
construction, we can create two actions each with duration
50, and can enforce the end of the first action to happen si-
multaneously (by means of an additional action) to the start-
ing of the second. The first action sets done true at its end-
ing. With the container construction, instead, we can cre-
ate two additional actions that are forced to happen in se-
quence and both during the make-treatment. The first lasts
50−ε and sets done at its end, while the second has duration
50− 2× ε. In this way, these two actions are forced to hap-
pen at specific times within the duration of make-treatment
and the ending of the first action lays exactly at time 50 af-
ter the start of make-treatment. Our compilation, instead,
only uses one (not two!) additional action that lasts 50 units
of time with an ending effect that sets done, and forces it to
start together with make-treatment.

Conditional effects are an interesting modeling feature of
temporal planning that has been largely ignored in the litera-
ture. We observe that neither the naı̈ve exponential compila-
tion of conditional effects nor the polynomial one presented
in the seminal paper by Nebel (2000) for classical planning
can be easily adapted to the context of temporal planning.
In fact, neither compilation supports conditions specified at
times different than the timing of the effect.

The naı̈ve exponential compilation for classical planning
works by creating one action for every possible combina-
tion of the conditional effects. For example, two conditional

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

181

effects having preconditions φ and ψ respectively are com-
piled away by creating four copies of the action they belong
to. Such actions have additional preconditions φ∧ψ, φ∧¬ψ,
¬φ ∧ ψ, and ¬φ ∧ ¬ψ respectively and each action has the
appropriate effect given the precondition. This compilation
is simple but is in general exponential and is not applicable
in temporal planning for effects conditioned on the over-all
constraint. For example, consider the situation depicted in
Figure 2: the over-all constraint ¬blowing cannot be easily
negated to construct the copy of the action without the very-
hot effect. In fact, the over-all constraint is falsified by the
existence of a point where blowing is true, and this is not
easily expressible in a condition1.

The polynomial compilation for classical planning works
by encoding a set of conditional effects for a certain action a
into a sequence of pairs of artificial actions that must be ex-
ecuted after a. Each pair encodes a single conditional effect
and the two alternative actions are used to make the choice
between applying the effect or skipping it.

For example, the pair of actions associated with a condi-
tional effect having precondition φ is composed of one ac-
tion having precondition φ and the (unconditional) effect,
and another action with precondition ¬φ and no effect. Ad-
ditional propositions are used to enforce the execution of ex-
actly one action from each pair corresponding to each con-
ditional effect after the execution of a.

In the context of temporal planning, this compilation suf-
fers from the same limitation of the naı̈ve exponential one.
Moreover, in the case of ε-separation semantics, the se-
quence of actions introduced by the compilation would re-
quire a non-zero amount of time (in particular ε×N where
N is the number of contemporary conditional effects in case
of ε-separation semantics). This timing is in general non-
negligible and breaks the semantics of the compilation.

Our compilation of conditional effects takes inspiration
from the polynomial compilation for classical planning: we
also create a number of actions for each conditional effect.
However, we overcome the over-all complication mentioned
above by fully actively monitor each over-all condition ap-
pearing in conditional effects. Moreover, the simultaneity
construction we use works regardless of the ε-separation se-
mantics, thus maintaining the compilation polynomial with-
out introducing artificial delays in the plan.

Both our techniques build on and generalize a construc-
tion to force the simultaneity of the start of two durative ac-
tions that to the best of our knowledge was first identified
in the (unpublished) PhD thesis of William Cushing (Cush-
ing 2012). The simultaneity construction for two starting
points was used as an argument to reject the semantics of
PDDL 2.1 and develop the message of the thesis. In this pa-
per, we instead use and generalize this construction to force
the simultaneity of any pair of clip actions and we show how
it can be used to encode in the semantics of PDDL 2.1 (with
or without ε-separation) both conditional effects and ICE.

Our construction is also related to a compilation of quan-
titative Allen relations presented in (Coles et al. 2019); in

1Note that this is not equivalent to an over-all ¬blowing con-
straint, that would require blowing to be false during the action.

fact, our simultaneity operators can be seen as starts-with,
ends-with or meets Allen constraints depending on the kind
of clip actions involved. We remark that all previous com-
pilations are limited to the ε-separation semantics, while our
approach works with or without this assumption.

ICE and conditional effects, together with over-all con-
ditions, also allows one to state that if during the interval
execution of an action some condition φ holds, then there
are two sub-intervals where two conditions φ′ and φ′′ hold.
In the field of interval temporal logics (Della Monica et al.
2011), this effect is obtained by the chop operator. The in-
terval temporal logic CDT, that results from considering this
temporal operator, is undecidable, but here we can express
the operator thanks to an implicit restriction to existential
modal operators: we cannot state that for all the ways of
splitting the interval in two subintervals, the two satisfies φ′
and φ′′, but only that one such splitting exists.

Finally, our computational complexity results build on the
work by Gigante et al. (2022): we adopt their abstract lan-
guage for temporal planning and we consider conditional ef-
fects and ICE, showing that the addition of such features
does not impact the computational complexity of the plan-
ning problems regardless of the ε-separation semantics.

8 Conclusions
In this paper, we analyzed the expressive power of Interme-
diate Conditions and Effects (ICE) and conditional effects
in action-based temporal planning languages. We showed
that both these constructs do not add expressive power and
that both features can be compiled away in an equivalent for-
mulation irrespective of the assumptions on the semantics of
time and the presence of ε-separation. Our encodings exploit
a construction that forces the simultaneous execution of ei-
ther two action endpoints or two entire durative actions. A
secondary yet important consequence of our compilations is
that they generalize recent results by Gigante et al. (2022).
That is, the addition of ICE and conditional effects do not
have any impact on the computational complexity of tempo-
ral planning, which remains PSPACE-complete when self-
overlapping is prohibited. Last, but not least, we highlight
that our results are constructive: our compilations can be
used to approach problems featuring ICE or conditional ef-
fects even with planners that do not natively support them.

Following on from this last observation, in the future,
we plan to empirically experiment with our compilations to
evaluate the practical applicability on existing planners: this
could open new venues for further research as the simul-
taneity constraints we used as a basis for our compilation
could be in principle natively supported, hence providing a
more efficient implementation of the ideas behind our en-
codings. Other directions of research include the analysis
of other planning features such as the quantitative Allen-
algebra constraints identified in (Coles et al. 2019). Speak-
ing of Allen relations, it comes natural to see whether our
constructions can be used to support a kind of temporally
extended goals where, instead of LTL conditions, more ex-
pressive interval conditions can be expressed, for example
in terms of (some fragment of) the Halpern and Shoham in-
terval temporal logic (Della Monica et al. 2011).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

182

Acknowledgements
Andrea Micheli and Enrico Scala have been partially sup-
ported by AIPlan4EU, a project funded by EU Horizon
2020 research and innovation programme under GA n.
101016442. Nicola Gigante has been partially supported
by the TOTA project (“Temporal Ontologies and Tableaux
Algorithms”) and by the STAGE project (“Synthesis for
Timeline-based Planning Games”) by the Faculty of Com-
puter Science, Free University of Bozen-Bolzano.

References
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: a constraint-based planner for generative and
hierarchical temporal planning. CoRR abs/2010.13121.
Bonassi, L.; Gerevini, A. E.; Percassi, F.; and Scala, E.
2021. On planning with qualitative state-trajectory con-
straints in PDDL3 by compiling them away. In Proceedings
of the 31st International Conference on Automated Planning
and Scheduling, 46–50. AAAI Press.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Rasconi,
R. 2009. The APSI Framework: a Planning and Scheduling
Software Development Environment. In Proceedings of the
19th International Conference on Automated Planning and
Scheduling.
Cimatti, A.; Do, M.; Micheli, A.; Roveri, M.; and Smith,
D. E. 2018. Strong temporal planning with uncontrollable
durations. Artif. Intell. 256:1–34.
Coles, A. J.; Coles, A.; Martı́nez, M.; Savas, E.; Delfa, J. M.;
de la Rosa, T.; E-Martı́n, Y.; and Olaya, A. G. 2019. Effi-
ciently reasoning with interval constraints in forward search
planning. In Proceedings of the The Thirty-Third AAAI Con-
ference on Artificial Intelligence, 7562–7569. AAAI Press.
Cushing, W. A. 2012. When is Temporal Planning Really
Temporal? Ph.D. Dissertation, Arizona State University.
https://rakaposhi.eas.asu.edu/cushing-dissertation.pdf.
Della Monica, D.; Goranko, V.; Montanari, A.; and Sciav-
icco, G. 2011. Interval temporal logics: a journey. Bull.
EATCS 105:73–99.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Fox, M.; Long, D.; and Halsey, K. 2004. An investiga-
tion into the expressive power of PDDL2.1. In de Mántaras,
R. L., and Saitta, L., eds., Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, 328–342. IOS
Press.
Frank, J., and Jónsson, A. 2003. Constraint-based Attribute
and Interval Planning. Constraints 8(4):339–364.
Gigante, N.; Montanari, A.; Cialdea Mayer, M.; and Or-
landini, A. 2017. Complexity of timeline-based planning.
In Proc. of the 27th International Conference on Automated
Planning and Scheduling, 116–124. AAAI Press.
Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2020.
Decidability and complexity of action-based temporal plan-
ning over dense time. In Proc. of the Thirty-Fourth AAAI

Conference on Artificial Intelligence, 9859–9866. AAAI
Press.
Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2022.
Decidability and complexity of action-based temporal plan-
ning over dense time. Artif. Intell. 307:103686.
Grastien, A., and Scala, E. 2020. CPCES: A plan-
ning framework to solve conformant planning problems
through a counterexample guided refinement. Artif. Intell.
284:103271.
Micheli, A., and Scala, E. 2019. Temporal planning with
temporal metric trajectory constraints. In Proceedings of
The Thirty-Third AAAI Conference on Artificial Intelligence,
7675–7682. AAAI Press.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. J. Artif. Intell. Res.
12:271–315.
Palacios, H., and Geffner, H. 2007. From conformant into
classical planning: Efficient translations that may be com-
plete too. In Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling, 264–
271. AAAI.
Rintanen, J. 2007. Complexity of concurrent temporal plan-
ning. In Proc. of the 17th International Conference on Au-
tomated Planning and Scheduling, 280–287.
Rintanen, J. 2015. Models of action concurrency in tem-
poral planning. In Yang, Q., and Wooldridge, M. J., eds.,
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, 1659–1665. AAAI Press.
Scala, E., and Grastien, A. 2021. Non-deterministic con-
formant planning using a counterexample-guided incremen-
tal compilation to classical planning. In Proceedings of the
Thirty-First International Conference on Automated Plan-
ning and Scheduling, 299–307. AAAI Press.
Smith, D.; Frank, J.; and Cushing, W. 2008. The anml
language. In KEPS 2008.
Smith, D. E. 2003. The case for durative actions: A com-
mentary on PDDL2.1. J. Artif. Intell. Res. 20:149–154.
Torres, J., and Baier, J. A. 2015. Polynomial-time re-
formulations of LTL temporally extended goals into final-
state goals. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, 1696–
1703. AAAI Press.
Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
planning with intermediate conditions and effects. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, 9975–9982. AAAI Press.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

183

https://rakaposhi.eas.asu.edu/cushing-dissertation.pdf

	Introduction
	Background
	ICE and Conditional Effects
	Simultaneity Constraints
	Intermediate Conditions and Effects
	Conditional Effects
	Related Work
	Conclusions

