
On Dynamics in Structured Argumentation Formalisms

Anna Rapberger1 and Markus Ulbricht2
1TU Wien, Institute of Logic and Computation

2Leipzig University, Department of Computer Science
1arapberg@dbai.tuwien.ac.at 2mulbricht@informatik.uni-leipzig.de

Abstract

In this paper we contribute to the investigation of dynam-
ics in assumption-based argumentation (ABA) and investi-
gate situations where a given knowledge base undergoes cer-
tain changes. We show that two frequently investigated prob-
lems, namely enforcement of a given target atom and de-
ciding strong equivalence of two given ABA frameworks,
are intractable in general. Interestingly, these problems are
both tractable for abstract argumentation frameworks (AFs)
which admit a close correspondence to ABA by constructing
semantics-preserving instances. Inspired by this observation,
we search for tractable fragments for ABA frameworks by
means of the instantiated AFs. We argue that the usual in-
stantiation procedure is not suitable for the investigation of
dynamic scenarios since too much information is lost when
constructing the AF. We thus consider an extension of AFs,
called cvAFs, equipping arguments with conclusions and vul-
nerabilities in order to better anticipate their role after the
underlying knowledge base is extended. We investigate en-
forcement and strong equivalence for cvAFs and present syn-
tactic conditions to decide them. We show that the correspon-
dence between cvAFs and ABA frameworks is close enough
to capture ABA also in dynamic scenarios. This yields the de-
sired tractable ABA fragment. We furthermore discuss conse-
quences for the corresponding problems for logic programs.

1 Introduction
A currently highly relevant area of research in knowledge
representation and reasoning is the investigation of dynam-
ical environments, i.e., knowledge bases that change over
time (Gabbay et al. 2021). Considering the inherently dy-
namic nature of argumentation it is not surprising that re-
searchers in the field of formal argumentation have taken up
this topic in various ways. In the area of abstract argumen-
tation (Dung 1995) where argument acceptance is decided
solely by looking at conflicts between arguments, several
problems have been investigated.

Among the most prominent problems in this line of re-
search is strong equivalence: Given a knowledge base K,
is it possible to replace a subset H of K by an equiv-
alent one, say H′, without changing the meaning of K?
Within the KR community it is folklore that this is usu-
ally not the case when considering non-monotonic for-
malisms. Driven by this observation, the notion of strong
equivalence has been proposed, developed and investigated

in various contexts (Lifschitz, Pearce, and Valverde 2001;
Oikarinen and Woltran 2011). While strong equivalence
is about comparing the behavior of different knowledge
bases, the enforcement problem (Baumann 2012b; Wall-
ner, Niskanen, and Järvisalo 2017; Doutre and Mailly 2018;
Borg and Bex 2021) deals with manipulating a single one in
order to ensure a certain outcome. Research concerned with
this issue contributes to predict conceivable future scenarios
and possible outcomes of a debate and can serve as a guid-
ance when trying to defend a certain point of view. Both
strong equivalence and enforcement have received increas-
ing attention in the realm of abstract argumentation (Bau-
mann et al. 2021). There are, however, only few studies on
the aforementioned problems in structured argumentation;
we refer the reader to Section 8 for pointers to related work.

In this paper, we study the enforcement and strong equiva-
lence problem for structured argumentation with main focus
on assumption-based argumentation (ABA) (Bondarenko,
Toni, and Kowalski 1993). While for abstract argumenta-
tion, deciding strong equivalence as well as the basic argu-
ment enforcement (Baumann and Brewka 2010) is tractable,
it is not clear whether, and if so, how these results survive the
transition to structured argumentation formalisms. At first
glance it seems that we can rely on well-established meth-
ods: viewing arguments as abstract entities, we can repre-
sent instances of structured argumentation formalisms as ab-
stract Dung-style argumentation frameworks (AFs); cf. in-
stantiations for ABA (Caminada et al. 2015a) or logic-based
argumentation (Gorogiannis and Hunter 2011). A similar
procedure also exists for logic programs (LPs) (Dung 1995;
Caminada et al. 2015b). Such instantiation procedures pro-
vide a unifying framework to study properties that are com-
mon to a large class of non-monotonic formalisms; and one
would expect that they can be utilized to prove tractability or
identify tractable fragments of the respective problems in the
original formalisms – it is for instance well-known that de-
ciding strong equivalence in the closely related realm of LPs
is intractable (Lifschitz, Pearce, and Valverde 2001); here,
we would hope that transferring the results from abstract ar-
gumentation will be helpful to identify an LP fragment for
which deciding strong equivalence is tractable.

A closer inspection of the aforementioned instantiation
procedures however reveals a certain drawback that becomes
apparent when moving from static to dynamic scenarios.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

288

Example 1.1. We consider an instantiation of an ABA
framework D = (L,R,A,) with assumptions A = {a, b},
their contraries a and b, resp., and rules r1 = (p← a.) and
r2 = (a ← b.). We obtain the associated AF FD as follows
(cf. Section 2): each assumption a, b yields a corresponding
argument and each rule ri yields an argument xi. Attacks
depend on the conclusion of the attacking argument, e.g., x2
attacks x1 because a is the contrary of a.

FD : x2x1 a b

It turns out that we have abstracted away critical informa-
tion: The rule r2 can be disabled by adding a rule with con-
clusion b, e.g., the fact “b← .”; this is however not reflected
in FD. To illustrate this, let us consider an adjusted version
D′ of D by replacing r2 with rule “r′2 : a←”, i.e., a can be
considered as fact. The instantiation yields the same AF:

FD′ : x2x1 a b

The instantiated AFs do not carry sufficient information to
investigate dynamics. Consider the following questions:

• Is it possible to accept assumption a by adding suitable
rules? The answer is “yes” in D, but “no” in D′. This
information cannot be extracted from FD = FD′ .

• What are the stable models after adding the fact “b← .”?
In D, {a} is stable while in D′, we obtain {b}. We cannot
judge the situation correctly by comparing FD and FD′ .

• More generally, are D and D′ strongly equivalent? The
answer is clearly “no” when inspecting D and D′ but
again we cannot tell by comparing their associated AFs.

In all of these questions, the missing peace of information is
that x2 has a hidden weakness b in FD but not in FD′ . It is
thus impossible to attack x2 in FD′ whereas in FD, x2 can
be attacked by an argument with conclusion b.

As this example shows, the minimal generalization to tai-
lor AFs suitable for dynamic settings consists of two aspects:
(i) the conclusion and (ii) the vulnerabilities of an argument.
The latter describes all possibilities to attack an argument,
i.e., it contains conclusions of all potential attackers. This
means that for an argument S `R p in the spirit of ABA,
(i.e., atom p is derivable from assumptions S via rules R)
the vulnerabilities are the contraries of the assumptions in S
while p is the argument’s conclusion. A potential weakness
of the logic-based argument ({α, α → β}, β) is the sen-
tence ¬α; its conclusion is β. Considering ASPIC (Modgil
and Prakken 2017), also a rule can be a vulnerability: an ar-
gument B : q ⇒ p with defeasible rule d1 : q ⇒ p can be
attacked by an argument with conclusion ¬d1.

In this paper, we consider a generalization of AFs by
augmenting arguments with vulnerabilities and a conclu-
sion. This allows us to identify a fragment of ABA for
which deciding enforcement and strong equivalence be-
comes tractable. Our main contributions are as follows:

• We study enforcement and strong equivalence for ABA.
We show that, as anticipated, both problems lie on the first
level of the polynomial hierarchy and are thus intractable,
in contrast to their counterparts in abstract argumentation.

• We present our novel formalism: conclusion and vulner-
ability augmented AFs (cvAFs). We show that they are
a faithful generalization of standard instantiation proce-
dures and discuss their relation to ABA.

• We present cvAF characterization results for argument
and conclusion enforcement and show that strong equiv-
alence can be characterized by so-called kernels. Our re-
sults show that both problems are tractable for cvAFs.

• We identify a tractable fragment for ABA by means of our
cvAF enforcement and strong equivalence results.

• To demonstrate the flexibility of our approach, we also
transfer our results to LPs and identify a fragment for
which enforcement and strong equivalence is tractable.

2 Background
Abstract Argumentation. We fix a non-finite background
set U . An argumentation framework (AF) (Dung 1995) is a
directed graph F = (A,R) where A ⊆ U represents a set of
arguments and R ⊆ A × A models attacks between them.
For a set E ⊆ A, we let E+

F = {x ∈ A | ∃y ∈ E, (y, x) ∈
R}; also, E is conflict-free in F iff for no x, y ∈ E, (x, y) ∈
R. E defends an argument x if E attacks each attacker of x.
A conflict-free set E is admissible in F (E ∈ ad(F)) iff it
defends all its elements. A semantics is a function σ : F →
22

U
with F 7→ σ(F) ⊆ 2A; each E ∈ σ(F) is called a σ-

extensions. Here we consider so-called complete, grounded,
preferred, and stable semantics (abbr. co, gr , pr , stb).
Definition 2.1. Let F = (A,R) be an AF and E ∈ ad(F).
• E ∈ co(F) iff E contains all arguments it defends;
• E ∈ gr(F) iff E is ⊆-minimal in co(F);
• E ∈ pr(F) iff E is ⊆-maximal in co(F);
• E ∈ stb(F) iff E+ = A \ E.
Assumption-based Argumentation. We assume a deduc-
tive system (L,R), where L is a formal language and R is
a set of inference rules over L. A rule r ∈ R has the form
a0 ← a1, . . . , an, ai ∈ L; head(r) = a0 is the head and
body(r) = {a1, . . . , an} is the (possibly empty) body of r.
Definition 2.2. An ABA framework is a tuple (L,R,A,),
where (L,R) is a deductive system, A ⊆ L a non-empty set
of assumptions, and a contrary function : A → L.

In this work, we focus on frameworks which are flat, i.e.,
head(r) /∈ A for each rule r ∈ R, and finite, i.e., L, R, A
are finite; also, each rule is stated explicitly (given as input).

A sentence p ∈ L is tree-derivable from assumptions S ⊆
A and rules R ⊆ R, denoted by S `R p, if there is a finite
rooted labeled tree T such that the root is labeled with p, the
set of labels for the leaves of T is equal to S or S∪{>}, and
there is a surjective mapping from the set of internal nodes
to R satisfying for each internal node v there is a rule r ∈ R
such that v labelled with head(r) and the set of all successor
nodes corresponds to body(r) or > if body(r) = ∅.

A set of assumptions S attacks a set of assumptions T if
there is S′ ⊆ S, R ⊆ R, such that S `R a for some a ∈ T .
S is conflict-free if it does not attack itself; S is admissi-
ble if it defends itself. We next recall grounded, complete,
preferred, and stable ABA semantics (abbr. gr , co, pr , stb).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

289

Definition 2.3. Let D = (L,R,A,) be an ABA frame-
work. Further, let S ⊆ A be admissible in D.
• S ∈ co(D) iff S contains every assumption set it defends;
• S ∈ gr(D) iff S is ⊆-minimal in co(D);
• S ∈ pr(D) iff S is ⊆-maximal in co(D);
• S ∈ stb(D) iff S attacks each {x} ⊆ A \ S.

By ThD(S) = {p | ∃S′ ⊆ S : S′ `R p} we denote the
set of all conclusions derivable from an assumption-set S in
an ABA D. Observe that S ⊆ ThD(S) since per definition,
each assumption a ∈ A is derivable from {a} `∅ a. We call
ThD(S)\S the set of proper conclusions ofX . We say that
an assumption a ∈ A (atom p ∈ L) is credulously accepted
wrt a semantics σ in an ABA D iff there is some S ∈ σ(D)
with a ∈ S (p ∈ ThD(S), respectively).
Definition 2.4. The associated AF FD = (A,R) of an ABA
D=(L,R,A,) is given by A = {S ` p | ∃R ⊆ R : S `R
p} and attack relation (S ` p, S′ ` p′) ∈ R iff p ∈ S′.

For a set S of assumptions, we let S = {a | a ∈ S};
moreover, we write asms(E) =

⋃
S`p∈E S to denote the

set of assumptions of a given set of arguments E ⊆ A.
ABA and AFs are closely related (see (Čyras et al. 2018)).

Proposition 2.5. Given an ABA D = (L,R,A,), its cor-
responding AF F and a semantics σ ∈ {gr , co, pr , stb}.
If E ∈ σ(F) then asms(E) ∈ σ(D); if S ∈ σ(D) then
{S′ ` p | ∃S′ ⊆ S,R ⊆ R : S′ `R p} ∈ σ(F).

3 Dynamics in ABA
In this section, we discuss enforcement and strong equiva-
lence notions for ABA. We show that, in contrast to anal-
ogous settings in abstract argumentation, deciding enforce-
ability as well as strong equivalence is intractable.

We consider expansions of ABA frameworks that allow
for the addition of rules and assumptions. We consider ex-
pansions componentwise, i.e., given D = (L,R,A,) and
H = (L,R′,A′,) with A ∩A′ = ∅, we denote the expan-
sion of D by H as D ∪H = (L,R∪R′,A ∪A′,).

3.1 Enforcement
Let us now introduce our version of the ABA enforcement
problem. There are several variants of this problem pro-
posed in the literature, based on credulous vs. skeptical rea-
soning and positive vs. negative enforcement. In order to
keep our presentation concise we focus on one particular
problem and demonstrate how our proposal can help tack-
ling it. The following notion of enforcement is stated for a
fixed class C of ABA frameworks. If not stated otherwise,
we suppose C consists of all flat finite ABA frameworks.
Definition 3.1. Given a class C of ABA frameworks. For
D = (L,R,A,) ∈ C and a semantics σ, we say that an
assumption a ∈ A (atom p ∈ L) is enforceable wrt. σ if
there is some expansion H = (L,R′,A′,) s.t. D ∪H ∈ C
and a (p, resp.) is credulously accepted wrt σ (and p does
not occur in any head ofR′) in D ∪H .

We require that a conclusion p cannot be enforced by sim-
ply adding a fact with head p since this would trivialize the
problem. Now, let us revisit our motivating example.

y y′x x′ z z′

{x′, y′} ` c1 {y, z, z′} ` c2 {y, z} ` c3

{c1, c2, c3} ` ϕ

Figure 1: Example of the SAT reduction in Theorem 3.4 for the
formula ϕ given by clauses {x, y}, {¬y, z,¬z}{¬y,¬z}.

Example 3.2. In our running example ABA D (cf. Exam-
ple 1.1), we observe that a is credulously enforceable since
we can add e.g. the rule “b ← a.” in order to induce a
counterattack from a to b.

Enforcement is well-studied for abstract argumentation
and we would hope that our investigation can benefit from
this research. In terms of AFs, our enforcement problem
amounts to deciding existence of a suitable expansion; cor-
responding (im-)possibility results can be found in (Bau-
mann and Brewka 2010). Unfortunately, there are some ob-
stacles which are best explained by our running exampleD′.
Example 3.3. Consider the ABA framework D′ (cf. Exam-
ple 1.1). Judging from the associated AF FD′ , assumption a
is easily enforceable by adding some argument attacking x2.
However, since this argument stems from a fact “a ← .” it
is not possible to add rules inducing a counterattack to x2.

As this example nicely illustrates, the structure of the
ABA framework imposes constraints on the effect an addi-
tional argument may have. This observation, unfortunately,
renders the corresponding research on enforcement for AFs
inapplicable to our situation.

Hence, the next natural question would be whether this is-
sue can be fixed by somehow making the classical enforce-
ment results work for ABA as well. That is, can we per-
form some simple syntactical check and decide in polyno-
mial time whether some atom is enforceable? As it turns out,
under standard assumptions the answer is negative again.
Theorem 3.4. Deciding whether an assumption a (conclu-
sion p) is enforceable in a given ABA framework D w.r.t. a
semantics σ ∈ {gr , co, pr , stb} is NP-complete.

Proof (conclusion enforcement, σ = stb). We reduce SAT:
Given a CNF ϕwith clauses C over variables inX , we define
a corresponding ABA framework D = (L,R,A,) with

• A = X ∪ {x′ | x ∈ X} ∪ C with a = a for all a ∈ A;
• for each c ∈ C, R contains a rule r with head(r) = c′

and body(r) = {x | ¬x ∈ c} ∪ {x′ | x ∈ c}, moreover,
R contains a rule ϕ← C.

Instantiating this ABA as AF results in the well-known stan-
dard reduction (cf. (Dvorák and Dunne 2018, Reduction
3.6)); an example is given in Figure 1. It can be shown that
ϕ is satisfiable iff ϕ is inferred by a stable extension of D.

Observe that it is not possible to defend the assumption
set C by adding novel rules to D since this would require to
introduce rules with head x or x′. That is, in case ϕ is not
satisfiable, it holds that ϕ cannot be enforced in D.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

290

3.2 Strong Equivalence
We consider the following natural notion of strong equiv-
alence, where we assume that the background information
and the assumptions are fixed and knowledge bases are char-
acterized by their rules. If the class C is not specified, we
suppose C contains all flat finite ABA frameworks.

Definition 3.5. Let C be a class of ABA frameworks. Two
ABA frameworks D ∈ C and D′ ∈ C are strongly equivalent
w.r.t. σ (D ≡σs D′) if σ(D ∪ H) = σ(D′ ∪ H) for each
expansion H satisfying D ∪H ∈ C as well as D′ ∪H ∈ C.

We mention an alternative approach that considers equiv-
alence on conclusion-level instead of assumption-level: Two
ABAs D,D′ ∈ C are strongly conclusion-equivalent to
each other if they agree on their conclusion-extensions under
all possible expansions (D ≡Thσ

s D′ for short), formally,
{Th(E) | E ∈ σ(D ∪H)} = {Th(E) | E ∈ σ(D′ ∪H)}
for each expansion H s.t. D ∪ H ∈ C and D′ ∪ H ∈ C. It
turns out that both notions are equivalent; also, it is equally
possible to consider only proper conclusion-extensions.

Proposition 3.6. For σ ∈ {gr , co, pr , stb}, for any two
ABAs D and D′, it holds that D ≡Thσ

s D′ iff D ≡σs D′,
even when considering only proper conclusion-extensions.

Moreover, assumption-sets of strongly equivalent ABA
frameworks agree on their conclusions.

Proposition 3.7. For σ ∈ {gr , co, pr , stb}, for ABAsD,D′,
if D ≡σs D′ then ThD(E) = ThD′(E) for all E ∈ σ(D).

As for the enforcement problem, strong equivalence
is well-studied for abstract argumentation (Oikarinen and
Woltran 2011). There is even another similarity: Deciding
strong equivalence is also tractable for abstract argumenta-
tion, since one only needs to compute the so-called kernels
of both AFs and check their syntactical coincidence.

However, we are facing the same issue regarding ABA.

Example 3.8. Our running example ABAs D and D′ both
induce the same AF as we saw before. Hence, the abstract
AFs FD and FD′ are clearly strongly equivalent. However,
already from the fact that a is enforceable inD but not inD′

we can infer that D and D′ are not strongly equivalent.

To complete the picture, we mention that for strong equiv-
alence, we again do not expect the a polynomial-time syn-
tactical check. Adapting the proof of Theorem 3.4 shows
that deciding strong equivalence is coNP-complete.

Theorem 3.9. Deciding whether two ABA frameworks
are strongly equivalent w.r.t. a given semantics σ ∈
{gr , co, pr , stb} is coNP-complete.

4 An Instantiation For Dynamics
In this section, we present cvAFs (“conclusion and vulnera-
bility augmented AFs”) which extend Dung-style AFs with
additional information concerning the occurring arguments.
Our cvAFs incorporate the observation we made earlier in
the introduction: arguments are typically characterized by
their conclusion and their potential weaknesses (vulnera-
bilites) on which they can be attacked.

4.1 Instantiated Arguments
Recall our motivating Example 1.1. Given the ABA frame-
work D from the introduction, our goal is to preserve con-
clusions and vulnerabilities during instantiation.

For this we observe that structured argumentation instan-
tiation procedures make use of some meta-level information
where each argument is augmented with the two aforemen-
tioned features, namely the conclusions as well as the vul-
nerabilities. However, when instantiating a Dung-style AF
this information is lost. We therefore consider a slight gen-
eralization of AFs based on the following notion of instanti-
ated arguments, which carry the information we require.
Definition 4.1. Given a set L of sentences. An instantiated
argument is a tuple x = (vul(x), cl(x)) where vul(x) ⊆ L
are the vulnerabilities and cl(x) ∈ L is the conclusion of x.

Instantiated arguments are a flexible tool and may stem
from an arbitrary instantiation procedure which makes use
of conclusions and vulnerabilities in a certain sense, e.g.
ABA, ASPIC, or logic-based argumentation.

With our notion of instantiated arguments at hand we are
ready to formally introduce cvAFs as generalization of AFs
by replacing abstract arguments with instantiated arguments.
Definition 4.2. A cvAF is a tuple F = (A,R) where A is a
set of instantiated arguments and R ⊆ A×A.

An example of a cvAF is given by the representation of
our running example as cvAF (cf. FD below). Here, each
argument contains its vulnerabilities (left) and its conclusion
(right, in boldface), e.g., argument x1 has a single vulnera-
bility a and conclusion p.

AF FD :

x1 x2 a b 7→
Augmented AF (cvAF) FD :

a | p
x1

b | a
x2

a | a
a

b | b
b

We consider a crucial property based on the following ob-
servation that appears in many structured argumentation for-
malisms: outgoing attacks usually depend on the conclusion
of the attacking argument while incoming attacks are char-
acterized by the vulnerabilities. This means that arguments
with conclusion p attack all arguments with vulnerability p.
A cvAFs adhering to this property is called well-formed.
Definition 4.3. A cvAF is called F = (A,R) well-formed
if (x, y) ∈ R iff cl(x) ∈ vul(y) for each x, y ∈ A.

Let us now turn our attention towards the semantics. By
utilizing instantiated instead of abstract arguments when in-
stantiating a knowledge base K, we find a cvAF FK whose
structure is isomorphic to the standard instantiation FK, but
the arguments in FK carry more information. Since we do
not intend to alter the meaning of the instantiation proce-
dure, we stick to the classical AF semantics when evaluat-
ing FK; we mention however that cvAFs are flexible in the
sense that we can either focus on the arguments themselves
or their conclusions.
Definition 4.4. Given a cvAF F and an AF semantics σ. We
call σ(F) the σ-argument-extensions of F and σcl(F) :=
{cl(E) | E ∈ σ(F)} the σ-conclusion-extensions of F .

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

291

Note that for well-formed cvAFs, each σ-argument-
extension corresponds to a unique σ-conclusion-extension.
Proposition 4.5. For each well-formed cvAF F , for each
σ ∈ {gr , co, pr , stb}, it holds that |σ(F)| = |σcl(F)|.

Let us now see or formalism at work when applied to
ABA frameworks. We use the usual procedure, but consider
instantiated arguments where the conclusions and underly-
ing assumptions are made explicit. So suppose from our
ABA framework we can construct an argument of the form
S ` p. An argument of this form yields an instantiated ar-
gument x = (vul(x), cl(x)) = (S, p). Therefore, a natural
instantiation with instantiated arguments is as follows.
Definition 4.6. For an ABA framework D, FD = (A,R) is
the cvAF with instantiated arguments A = {(S, p) | S ` p}
and (x, y) ∈ R iff cl(x) ∈ vul(y).

Our cvAF instantiation is a faithful generalization of the
usual one; moreover, each instantiated cvAF is well-formed.
Proposition 4.7. For each ABA D, its associated cvAF FD
is well-formed. Moreover, for each σ ∈ {gr , co, pr , stb},

1. if S ∈ σ(D) then {(S′, p) ∈ A | S′ ⊆ S} ∈ σ(FD);
2. if E ∈ σ(FD) then

⋃
(S,p)∈E S ∈ σ(D).

Furthermore, {ThD(S) | S ∈ σ(D)} = σcl(FD).
Indeed, the ABA frameworkD from our running example

yields the cvAF FD depicted above. Moreover, σ(FD) =
{{x2, b}} and hence σcl(FD) = {{b̄, }} correctly reflects
the semantics of D. We also mention that when instantiat-
ing D′ from Example 1.1 we obtain a similar cvAF, but x2
does not have any vulnerability. Hence we are indeed able
to distinguish the two instantiations as desired.

Since our formalism of interest yields well-formed
cvAFs, we restrict our studies to well-formed cvAFs only.
Assumption 4.8. In the remaining part of the paper, we as-
sume that each cvAF is well-formed.

4.2 cvAFs and Dynamics
We are ready to investigate dynamics in structured argumen-
tation by means of cvAFs. Suppose we are given a knowl-
edge base K and the instantiated cvAF FK. If we want to
move to a superset K ∪H we can construct FK∪H immedi-
ately by inspecting the relevant conclusions and vulnerabili-
ties. This idea can be formalized as follows.
Definition 4.9. Given a cvAF F = (A,R) and an instanti-
ated argument x we define the expansion fe(F , x) of F with
x by letting fe(F , x) = (A ∪ {x}, Rx) be the cvAF where

Rx = R ∪ {(x, y) | y ∈ A, cl(x) ∈ vul(y)}
∪ {(y, x) | y ∈ A, cl(y) ∈ vul(x)}.

We stipulate that fe(F , X) is a shorthand for successively
expanding F with each x ∈ X in an arbitrary order.
Example 4.10. Let D be our running example and FD its
instantiated cvAF as depicted above. Adding a fact “b.”
yields an additional instantiated argument x3 = (∅, b):

fe(FD, x3) : a | p
x1

b | a
x2

a | a
a

b | b
b

| b
x3

4.3 cvAFs and Atomic ABA Frameworks
Our cvAFs are closely related to a certain fragment of ABA
in dynamic scenarios which we will discuss next.

Definition 4.11. Let (L,R,A,) be an ABA framework. A
rule r is atomic if body(r) ⊆ A. The ABA framework is
atomic if each rule r ∈ R is atomic.

There are two decisive observations we make about
atomic ABA frameworks. The first is concerning cvAFs.

Lemma 4.12. Given an atomic ABA D = (L,R,A,).

• If a ∈ A, then FD∪{r} = fe(FD, x) with x = (a, a).
• For each atomic (in D) rule r = p ← S, it holds that
FD∪{r} = fe(FD, x) with x = (S, p).

• If x = (S, p), then FD∪H = fe(FD, x) with H =
(L,R′,A′,) withR′ = {(p← S)} and A′ = S.

Second, by moving from general to atomic ABA frame-
works we do not lose expressive power; each framework can
be transformed into an atomic one.

Proposition 4.13. For each ABA D there is an atomic ABA
D′ such that σ(D) = σ(D′) for each considered semantics.

We mention however that this transformation might result
in an exponential blow-up in the number of rules. However,
given an atomic ABA framework D we can be sure that the
instantiated cvAF FD is of linear size in D.

Proposition 4.14. If D = (L,R,A,) is atomic, then the
cvAF FD consists of |R|+ |A| arguments.

5 The cvAF Enforcement Problem
In this section we develop a notion of the enforcement prob-
lem for cvAFs and establish criteria for deciding enforcabil-
ity. At first glance, this yields results applicable to atomic
ABAs due to Lemma 4.12; we will however discuss some
subtle details of the notions which one needs to be aware of.

In line with our enforcement notion from Definition 3.1,
we define conclusion enforcement for cvAFs by requiring
that no new argument with the target conclusion is intro-
duced. In addition, we introduce a natural notion of argu-
ment enforcement.

Definition 5.1. Let F = (A,R) be a cvAF and σ a seman-
tics. We say that a conclusion p is σ-enforceable if there is
a set X of instantiated arguments s.t. cl(x) 6= p for each
x ∈ X and p is credulously accepted in fe(F , X). An argu-
ment x ∈ A is σ-enforceable if there is a set X of instanti-
ated arguments s.t. x is credulously accepted in fe(F , X).

Example 5.2. Let FD be our running example cvAF and
consider the expansion fe(FD, x3) with x3 = (∅, b) (cf.
Example 4.10). Since co(fe(FD, x)) = {{a, x1, x3}} with
cl(x1) = p we obtain that conclusion p is co-enforceable.

In the following we establish criteria to decide whether ar-
guments and conclusions are enforceable in cvAFs. It turns
out that it suffices to focus on argument enforcement:

Proposition 5.3. Let F = (A,R) be a cvAF and σ a se-
mantics. A conclusion c ∈ cl(A) is enforceable iff there is
some x ∈ A with cl(x) = c s.t. x is enforceable.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

292

The possible modifications of a cvAF are determined by
the conclusions and vulnerabilities of its arguments. It is
thus not possible to consider arbitrary expansions. We al-
ready saw this for our running example FD′ where a is not
enforceable since it is attacked by some argument without
any vulnerability (cf. Example 3.3).

In general, arguments of this kind will always be de-
feated in complete-based semantics. This is not only the
case within the given cvAF, but also for any conceivable ex-
pansion. Motivated by this observation, we call such argu-
ments strongly defeated.
Definition 5.4. For a cvAF F = (A,R), x ∈ A is strongly
defeated if there is y ∈ A with (y, x) ∈ R and vul(y) = ∅.
Example 5.5. In our running example cvAF stemming from
instantiating D′, the argument x1 is strongly defeated. In
fact, it is verifiable with reasonable effort that x2 is part of
the grounded extension in any possible expansion fe(F , X).

The following proposition formalizes that the behavior we
observed in the previous example generalizes to any cvAF
and thus our intuition about strong defeat is indeed correct.
Proposition 5.6. Let F = (A,R) be a cvAF. If x ∈ A is
strongly defeated, then for each set X of instantiated argu-
ments, the grounded extension of fe(F , X) attacks x.

Consequently, we infer that strongly defeated arguments
can never be enforced. It is therefore a reasonable conjecture
that an argument is enforceable iff it is not strongly defeated.
However, as the following example illustrates, the notion of
strong defeat is not yet general enough.
Example 5.7. Consider the cvAF F depicted below.

F : p, q | r
x1

q | p
x2

s | q
x3

q | s
x4

Suppose we want to enforce x1. In order to achieve this
goal we have to add an argument defeating x2. However,
the only vulnerability of x2 is q and due to q ∈ vul(x1),
such an argument would defeat x1 as well.

In general, if there is some argument y with (y, x) ∈ R
and vul(y) ⊆ vul(x), then x can never be defended by a
conflict-free set. We call arguments of this kind strongly
unacceptable since this holds also true for any expansion.
Definition 5.8. For a cvAF F = (A,R), x ∈ A is strongly
unacceptable if there is y ∈ A with (y, x) ∈ R and vul(y) ⊆
vul(x).

By definition, each strongly defeated argument is strongly
unacceptable. For σ ∈ {co, pr , stb} we are now ready to
state our enforcement results.
Theorem 5.9. Let F = (A,R) be a cvAF and suppose σ ∈
{co, pr , stb}. An argument x ∈ A is σ-enforceable if and
only if it is not strongly unacceptable.

For grounded semantics, however, we need to consider
further unacceptability notions. The reason why Theo-
rem 5.9 does not hold for grounded semantics is that an argu-
ment might be capable of defending itself, but is still not part
of the iterative procedure which yields the grounded exten-
sion. To illustrate this we consider the following example.

Example 5.10. Suppose we aim to gr -enforce x1 in F :

F : q | p
x1

p | q
x2

Since gr(F) = ∅ we would have to introduce an argument
defeating x2 in order defend x1 from the in-coming attack.
However, an argument achieving this would possess p as
conclusion which we want to avoid for this version of the
enforcement notion. Indeed, x1 is not gr -enforceable.

In general, for grounded semantics we require a notion
which is similar to strong unacceptability, while taking the
special case we just illustrated into account.

Definition 5.11. For a cvAF F = (A,R), x ∈ A is strongly
gr -unacceptable if there is y ∈ A with (y, x) ∈ R and
vul(y) \ {cl(x)} ⊆ vul(x).

The following condition characterizes gr -enforceability
for cvAFs. Although it may appear technical at first glance,
it simply ensures that an argument z can be defeated without
attacking x, y, or introducing the target claim cl(x) = cl(y).

Proposition 5.12. Let F = (A,R) be a cvAF. An argument
x ∈ A is gr -enforceable if and only if one of the following
two conditions hold:

• x is not strongly gr -unacceptable,
• there is some y ∈ A with cl(y) = cl(x) = q s.t.

– if z attacks y, then vul(z)\(vul(x)∪vul(y)∪{q}) 6= ∅,
– if z attacks x, then q ∈ vul(z) or vul(z) \ (vul(x) ∪
vul(y)) 6= ∅.

Let us now discuss corresponding results for conclusion
enforcement. To enforce a conclusion p ∈ cl(A) we need
to enforce an argument x ∈ A with cl(x) = p. Thus, as a
corollary of Theorem 5.9 and Proposition 5.12 we obtain:

Corollary 5.13. Let F = (A,R) be a cvAF and σ ∈
{ad , co, pr , stb}. An argument a ∈ A is σ-enforceable
if and only if it is not strongly unacceptable; it is gr -
enforceable if and only if it is not strongly gr -unacceptable.

Consequences for ABA. The introduced unacceptability
notions yield syntactical conditions to decide the cvAF en-
forcement problem in polynomial time. In view of this, it
might seem that Lemma 4.12 now implies tractability of the
enforcement problem for atomic ABA frameworks. How-
ever, when inspecting the construction for the proof of The-
orem 3.4 we see that the constructed ABA framework is
atomic itself.

Corollary 5.14. Deciding whether a (p) is enforceable wrt
σ is NP-complete even for atomic ABA frameworks.

The reason why this is no contradiction to tractability in
cvAFs is rather subtle: When considering an arbitrary ex-
pansion fe(F , X), it might happen that the resulting cvAF
does not correspond to a flat ABA framework anymore due
to cl(X) ∩ A 6= ∅. So even if we start with a cvAF cor-
responding to some flat ABA framework, we do not have a
one to one correspondence between expansions of the cvAF
and flat ABA framework extending the initial one.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

293

To ensure that it is not necessary to introduce arguments
with assumptions as conclusion when enforcing an argument
x ∈ A, we consider a particular fragment of ABA where
assumptions do not have out-going attacks.

Definition 5.15. Let D = (L,R,A,) be an ABA frame-
work. We say D has separated contraries if A ∩A = ∅.

Indeed, we are now ready to introduce a tractable frag-
ment for the ABA enforcement problem.

Theorem 5.16. Deciding whether an argument or conclu-
sion is enforceable for atomic flat ABAs with separated con-
traries is tractable.

We want to emphasize that moving from flat ABA to flat
atomic ABA does not change the complexity class of the en-
forcement problem; but additional requiring separated con-
traries does, i.e., we found a rather minor condition pushing
the enforcement problem over the edge to tractability.

6 The cvAF Strong Equivalence Problem
In this section, we establish methods to decide strong equiv-
alence for cvAFs. We define further unacceptability notions,
tailored for this setting. In accordance with the standard lit-
erature on strong equivalence we then can decide this prob-
lem for two cvAFs by comparing their so-called kernels, that
is, we transform both cvAFs into a semantics-dependent nor-
mal form. Let us point out the following crucial difference:
In contrast to strong equivalence characterizations in Dung
AFs where kernels are constructed by removing redundant
attacks, we identify redundant arguments. The kernels in
cvAFs are constructed by removing as well as manipulating
arguments that fall in certain redundancy categories.

We start by defining an appropriate strong equivalence no-
tion for cvAFs.

Definition 6.1. Two cvAFs F , G are strongly equivalent wrt
a semantics σ, for short F ≡σs G, if for each setX of instan-
tiated arguments σcl(fe(F , X)) = σcl(fe(G, X)) holds.

Example 6.2. Consider again the cvAFs FD and FD′ from
Example 1.1. Judging from earlier results we anticipate
that they are not strongly equivalent to each other. Indeed,
adding the argument x3 = (∅, b) yields the following cvAFs:

fe(FD, x3) : a | p
x1

b | a
x2

a | a
a

b | b
b

| b
x3

fe(FD′ , x3) : a | p
x1

| a
x2

a | a
a

b | b
b

| b
x3

Now, {a, p, b} is stable in fe(FD, x3) but not in
fe(FD′ , x3). We obtain that FD and FD′ are not strongly
equivalent wrt stable semantics, i.e., FD 6≡stb

s FD′ .

In the above example, it was quite easy to come up with an
appropriate counter example. Not only that finding a counter
example might be more involved in other situations, it is usu-
ally not possible to verify strong equivalence by testing all
possible expansions because there might be infinitely many

of them. Instead, we identify, for each semantics, a specific
kernel – checking strong equivalence then reduces to com-
puting and comparing the respective kernels.

Let us first reconsider the unacceptability notions from
Section 5. We have shown that strongly defeated arguments
cannot be enforced; in fact, they can be removed without
changing the σcl -extensions.
Proposition 6.3. Given a cvAF F = (A,R), a semantics
σ ∈ {gr , co, pr , stb} and a strongly defeated argument x ∈
A. Then σcl(F) = σcl(F \ {x}).

Likewise, for stable semantics, strongly unacceptable ar-
guments can be deleted without affecting the outcome.
Proposition 6.4. For a cvAF F = (A,R) and a strongly
unacceptable argument x∈A, stbcl(F) = stbcl(F \ {x}).

Considering grounded, complete, and preferred seman-
tics, we observe that strongly unacceptable arguments are
not necessarily defeated – removing them thus potentially
results in a change of the σcl -extensions.
Example 6.5. Consider the cvAF F from Example 5.7 to-
gether with a new argument x0 = ({r}, t):

fe(F , x0) : r | t
x0

p, q | r
x1

q | p
x2

s | q
x3

q | s
x4

fe(F , x0) has three complete conclusion-extensions: ∅ (the
grounded extension), {s, p, t}, and {q, t}. Recall that x1 is
strongly unacceptable w.r.t. x2. Removing x1 would make
x0 unattacked, changing the grounded extension to {t}.

Strongly unacceptable arguments can neither be enforced
nor deleted in such situations. This means that on semantics
level, it is not possible to distinguish if such arguments are
self-attacking or not (analogous observations hold for gr -
unacceptable arguments wrt grounded semantics).
Proposition 6.6. Given a cvAF F = (A,R), a semantics
σ ∈ {gr , co, pr , stb} and a strongly unacceptable argument
x ∈ A and let x′ = (vul(x)∪{cl(x)}, cl(x)). Then σ(F) =
σ(fe(F \ {x}, x′)). If x is strongly gr -unacceptable, then
gr(F) = gr((fe(F \ {x}, x′)).

Next we consider a redundancy notion that also appears
in different contexts (Dvorák and Woltran 2020): We call an
argument x redundant if there is some other argument y hav-
ing the same conclusion but possesses less vulnerabilities.
Definition 6.7. For a cvAFF = (A,R), x ∈ A is redundant
if there is y ∈ A with cl(y) = cl(x) and vul(y) (vul(x).
Example 6.8. The argument x2 from the cvAF FD from
our running example is redundant wrt x = (∅, a) because
cl(x) = cl(x2) = a and vul(x) = ∅ ({b} = vul(x2).

Redundant arguments can be removed without changing
the conclusion-based extensions of a given cvAF.
Proposition 6.9. For a cvAF F = (A,R), a semantics σ ∈
{gr , co, pr , stb} and a redundant argument x ∈ A, it holds
that σcl(F) = σcl(F \ {x}).

We are ready to define the complete and the grounded ker-
nel for cvAFs. Following Proposition 6.6, the first adjust-
ment we carry out is a modification on vulnerability level:

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

294

Each unacceptable argument x is turned into a self-attacker
by adding cl(x) to vul(x); for grounded semantics, we mod-
ify each gr -unacceptable argument instead. In the next step,
we remove all strongly defeated and redundant arguments.
Definition 6.10. For a cvAF F = (A,R), let X denote the
set of all strongly unacceptable arguments in A and let

(A′, R′) = fe(F\X, {(vul(x)∪{cl(x)}, cl(x)) | x ∈ X}).
We define the complete kernel Fck = (Ack, Rck) with

Ack = A′ \ {x ∈ A′ | x is str. defeated or redundant},

and Rck = R′ ∩ (Ack × Ack). The grounded kernel Fgk
is defined analogously by replacing X with the set of all
strongly gr -unacceptable arguments x ∈ A.
Example 6.11. The cvAFFD from our running example co-
incides with its complete and grounded kernel since no ar-
guments are strongly defeated, unacceptable or redundant.
That is, we obtain FckD = FgkD = FD. Recalling that x2 is
strongly unacceptable in FD′ we obtain the following pic-
ture (observe that FckD′ = FgkD′ also holds in this case):

cvAF FD′ :

a | p
x1

| a
x2

a | a
a

b | b
b

Kernel FckD′ :

| a
x2

b | b
b

Next we consider a special case of strong unacceptability
that affects only preferred semantics.
Definition 6.12. For a cvAF F = (A,R), x ∈ A is strongly
pr -unacceptable if x is strongly unacceptable w.r.t. y ∈ A
and vul(y) = {cl(x)}.

Observe that each strongly pr -unacceptable argument is
self-attacking because vul(y) = {cl(x)} ⊆ vul(x). It turns
out that such arguments can be removed without changing
the conclusion-based preferred extensions.
Proposition 6.13. For a cvAF F = (A,R) and a strongly
pr -unacceptable argument x ∈ A, prcl(F) = prcl(F\{x}).

The preferred kernel refines the complete kernel:
Definition 6.14. For a cvAF F = (A,R), let Fck =
(Ack, Rck) be as in Definition 6.10. We define the preferred
kernel Fpk = (Apk, Rpk) with

Apk = Ack \ {x ∈ Ack | x is str. pr -unacceptable},

and Rpk = Rck ∩ (Apk ×Apk).
Finally, we consider stable semantics. We start with the

crucial observation that the particular conclusion of self-
attacking arguments is not of importance.
Example 6.15. Consider the following two cvAFs F and G:

F : p | q
x1

p, q, s | q
x2

G : p | q
x1

p, q, s | s
x2

Essentially, F and G differ only in the conclusion of the self-
attacking argument x2. Observe that F and G both admit
the same unique stable extension {q}. As we will see, this is
not a coincidence: For stable semantics, self-attacking argu-
ments are indistinguishable with respect to their conclusion.

Proposition 6.16. Given a cvAF F = (A,R) and a self-
attacking argument x ∈ A. For any s ∈ vul(x), it holds
that stbcl(F) = stbcl(fe(F , {(vul(x), s)})).

We construct the stable kernel by (i) adding all such
missing self-attackers before (ii) removing all redundant,
strongly defeated, and strongly unacceptable arguments.
Definition 6.17. For a cvAF F = (A,R), let X denote the
set of all self-attacking arguments in A and let

(A′, R′) = fe(F , {(vul(x), s) | x ∈ X, s ∈ vul(x)}).
We define the stable kernel Fsk = (Ask, Rsk) with

Ask = A′ \ {x ∈ A′ | x is str. defeated,

str. unacceptable, or redundant},
and Rsk = R′ ∩ (Ask ×Ask).

Iterative application of the previously established propo-
sitions shows that the kernels are semantics-preserving. Be-
low we write Fk(σ) to denote the σ-kernel of F .
Lemma 6.18. σ(F) = σ(Fk(σ)) for every cvAF F and se-
mantics σ considered in this paper.

The syntactical coherence is guaranteed by the following
technical lemma which states that the order of adding addi-
tional arguments is not of importance.
Lemma 6.19. For every cvAF F , for every instantiated ar-
gument x, (fe(F , {x}))k(σ) = (fe(Fk(σ), {x}))k(σ).

We are ready to present our characterization result for
cvAF strong equivalence: strong equivalence can be decided
by computing and comparing the respective kernels.
Theorem 6.20. For any two cvAFs F and G, for any σ ∈
{gr , co, pr , stb}, F ≡σs G if and only if Fk(σ) = Gk(σ).

Recall that the cvAFs FD and FD′ from our running ex-
ample are not strongly equivalent to each other as already
observed in Example 6.2. Theorem 6.20 now gives a crite-
ria to check strong equivalence for any two cvAFs without
searching for counter-examples. Considering for instance
the cvAFs F and G from Example 6.15, we obtain

Fsk = Gsk : p | q
x1p, q, s | q

x2

p, q, s | p
x3

p, q, s | q
x4

By Theorem 6.20 we thus can conclude that F and G are
strongly equivalent w.r.t. stable semantics without testing
each possible expansion.

Consequences for ABA By transferring the above results
in the context of ABA we obtain that deciding strong equiv-
alence for flat, atomic ABA frameworks with separated con-
traries is tractable.
Theorem 6.21. For two atomic, flat ABA frameworksD,D′

with separated contraries, deciding D ≡σs D′ is tractable.
As in the case of enforcement, we want to emphasize that

moving from flat ABA to flat atomic ABA does not change
the complexity class of this problem. However, if we addi-
tionally require that the frameworks have separated assump-
tions we obtain the desired tractable fragment.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

295

7 Consequences for Logic Programs
The attentive reader may have observed that we inferred our
tractability results by changing the instantiation from AFs
to cvAFs and then applying results for cvAFs instead of di-
rectly investigating ABA frameworks as deductive systems.
While this technique seems cumbersome as a first glance,
the established results for cvAFs turn out to be a convenient
tool which we can now apply to logic programs almost im-
mediately. This section demonstrates this approach.

We consider the logic programming semantics discussed
in (Caminada et al. 2015b); for those, a close correspon-
dence to AF semantics has been shown. We assume the
reader to be familiar with these concepts; an introduction
to LPs can be found in the supplementary material. We de-
fine credulous acceptance of an atom a occurring in P in
the expected way. Given an LP P , the corresponding in-
stantiated cvAF is denoted by FP . We proceed as for ABA
frameworks by applying the cvAF results. Since they have
been shown already, we only have left to give an LP version
of Proposition 4.7 as well as Lemma 4.12.
Proposition 7.1. For each LP P and its associated cvAF
FP , for each σ ∈ {gr , co, pr , stb}, it holds that
• if X ∈ σ(P) then {(X ′, s) ∈ A | X ′ ⊆ X} ∈ σ(FP);
• if E ∈ σ(FP) then

⋃
(X,s)∈E X ∈ σ(D).

Lemma 7.2. Given an atomic LP P and B = {b1, . . . , bn}.
• For each atomic rule r = c← not b1, . . . , not bn, it holds

that FP∪{r} = fe(FP , x) with x = (B, c).
• For each argument x = (B, c), it holds that FP∪{r} =
fe(FP , x) with r = c← not b1, . . . , not bn.
This suffices in order to efficiently investigate our two

problems we considered before. The relation is even much
closer since we do not need to handle additional assump-
tions. We define the LP enforcement problem as follows.
Definition 7.3. Let P be a logic program and σ a semantics.
An atom a is σ-enforceable if there is a set R of rules s.t. a
is credulously accepted in P ∪R w.r.t. σ.

The NP-hardness proof we gave for ABA in Theorem 3.4
works analogously for LPs and thus, the enforcement prob-
lem is intractable for LPs in general. However, our cvAF
results yield tractability for atomic LPs.
Theorem 7.4. For atomic LPs, deciding whether some atom
is enforceable is tractable.

Analogously we discuss strong equivalence for LPs. As
in the corresponding notion of ABA frameworks, we insist
that the expansions are atomic as well.
Definition 7.5. Two atomic LPs P , P ′ are atomic strongly
equivalent w.r.t. a semantics σ, for short P ≡σase P ′, if for
each atomic LP H σ(P ∪H) = σ(P ′ ∪H) holds.

Without the requirement of P, P ′, and H being atomic,
intractability of strong equivalence is well-known from LP
research (Lifschitz, Pearce, and Valverde 2001). Due to our
cvAF results, we obtain a tractable fragment here as well.
Theorem 7.6. Deciding whether two atomic LPs P and Q
are atomic strongly equivalent is tractable.

8 Discussion
We investigated strong equivalence and enforcement for
ABA. We showed that in general, both tasks are intractable.
Inspired by tractability of the corresponding problems for
AFs, we proposed an adjusted instantiation procedure via
cvAFs to obtain a closer relation between the knowledge
base and the corresponding AF. Due to the close corre-
spondence between atomic ABA frameworks and cvAFs,
we demonstrated how our cvAF tractability results yield
tractable fragments of ABA for these problems. Finally, we
applied our techniques to LPs as well.

Our work extends research on dynamics in argumentation
(Rotstein et al. 2010; Rotstein et al. 2008; Snaith and Reed
2017). In the context of AFs, both enforcement and strong
equivalence are well-studied (Baumann and Brewka 2010;
Oikarinen and Woltran 2011; Baumann 2012a; Wallner,
Niskanen, and Järvisalo 2017). Similar to our setting,
(Wallner 2020) considers situations where an AF undergoes
certain changes, but the permitted modifications are con-
strained. Constraints on the possibly reachable expansions
of a given cvAF are intrinsic to our approach. In a recent
paper (Borg and Bex 2021) the authors study under which
conditions in a structured argumentation formalism a given
formula can be enforced; moreover, strong equivalence is
similar in spirit to stability (Testerink, Odekerken, and Bex
2019). The authors in (Moguillansky et al. 2008) consider
argumentative revision operators in the context of defeasi-
ble logic programming. In contrast to our enforcement ap-
proach, they allow for the deletion of rules (following some
minimal change principle) to warrant a desired conclusion.

Our cvAFs are similar in spirit to CAFs (Dvorák and
Woltran 2020) where arguments are equipped with claims.
CAFs are well-studied (Dvorák, Rapberger, and Woltran
2020; Dvorák et al. 2021), including research on strong
equivalence (Baumann, Rapberger, and Ulbricht 2021).
However, since vulnerability awareness is crucial for dy-
namics in ABA, CAFs would not be suitable in this setting.

The redundancy notions we discussed are similar in spirit
to the line of research on syntactic transformations for LPs,
see., e.g., (Brass and Dix 1997; Eiter et al. 2004; Wang and
Zhou 2005; Lin and Chen 2007), that gave rise to alternative
characterizations of strong equivalence (Osorio, Pérez, and
Arrazola 2001; Cabalar 2002) and set the ground for further
complexity analysis of LP fragments (Eiter et al. 2007).

Future work directions include exploring further for-
malisms where cvAFs are applicable, i.e., investigating
suitability for e.g. logic-based argumentation (Besnard and
Hunter 2001). As demonstrated in our LP section, this tech-
nique may lead to quickly obtained results. Similarly, find-
ing more reasoning tasks where cvAFs are applicable might
contribute to this line of research. It would also be interest-
ing to see under which conditions the requirement of atomic
frameworks can be dropped. As a further future research di-
rection we identify the design of efficient algorithms since
our tractability results serve as a promising starting point for
such an endeavor. We also want to mention that formalisms
which incorporate preferences, e.g., ABA+ (Cyras and Toni
2016), do not always yield well-formed cvAFs, so research
on this more general case is also worth the effort.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

296

Acknowledgements
This work was supported by the German Federal Ministry of
Education and Research (BMBF, 01/S18026A-F) by fund-
ing the competence center for Big Data and AI “ScaDS.AI”
Dresden/Leipzig and by the Austrian Science Fund (FWF)
through project W1255-N23 and by the Vienna Science and
Technology Fund (WWTF) through project ICT19-065.

References
Baumann, R., and Brewka, G. 2010. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In
Proc. COMMA’10, volume 216 of FAIA, 75–86. IOS Press.
Baumann, R.; Doutre, S.; Mailly, J.-G.; and Wallner, J. P.
2021. Enforcement in formal argumentation. J. Appl. Logic
2:1623–1677.
Baumann, R.; Rapberger, A.; and Ulbricht, M. 2021. Equiv-
alence in argumentation frameworks with a claim-centric
view – classical results with novel ingredients. In Proceed-
ings of the 19th International Workshop on Non-Monotonic
Reasoning (NMR’21), 71–80. To appear in Proc. AAAI’22.
Baumann, R. 2012a. Normal and strong expansion equiva-
lence for argumentation frameworks. Artificial Intelligence
193:18–44.
Baumann, R. 2012b. What does it take to enforce an argu-
ment? minimal change in abstract argumentation. In Proc.
ECAI’12, volume 242 of FAIA, 127–132. IOS Press.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artif. Intell. 128(1-2):203–235.
Bondarenko, A.; Toni, F.; and Kowalski, R. A. 1993. An
assumption-based framework for non-monotonic reasoning.
In Pereira, L. M., and Nerode, A., eds., Logic Programming
and Non-monotonic Reasoning, Proceedings of the Second
International Workshop, Lisbon, Portugal, June 1993, 171–
189. MIT Press.
Borg, A., and Bex, F. 2021. Enforcing sets of formulas in
structured argumentation. In Bienvenu, M.; Lakemeyer, G.;
and Erdem, E., eds., Proceedings of the 18th International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2021, Online event, November 3-12, 2021,
130–140.
Brass, S., and Dix, J. 1997. Characterizations of the disjunc-
tive stable semantics by partial evaluation. J. Log. Program.
32(3):207–228.
Cabalar, P. 2002. A three-valued characterization for strong
equivalence of logic programs. In Dechter, R.; Kearns, M. J.;
and Sutton, R. S., eds., Proc. AAAI’02, 106–111. AAAI
Press / The MIT Press.
Caminada, M.; Sá, S.; Alcântara, J.; and Dvořák, W. 2015a.
On the difference between assumption-based argumentation
and abstract argumentation. IfCoLog Journal of Logic and
its Applications 2(1):15–34.
Caminada, M.; Sá, S.; Alcântara, J. F. L.; and Dvorák, W.
2015b. On the equivalence between logic programming se-
mantics and argumentation semantics. Int. J. Approx. Rea-
son. 58:87–111.

Cyras, K., and Toni, F. 2016. ABA+: assumption-based ar-
gumentation with preferences. In Baral, C.; Delgrande, J. P.;
and Wolter, F., eds., Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifteenth International
Conference, KR 2016, Cape Town, South Africa, April 25-
29, 2016, 553–556. AAAI Press.
Čyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2018.
Assumption-based argumentation: Disputes, explanations,
preferences. In Baroni, P.; Gabbay, D.; Giacomin, M.; and
van der Torre, L., eds., Handbook of Formal Argumentation.
College Publications. chapter 7, 365–408.
Doutre, S., and Mailly, J. 2018. Constraints and changes: A
survey of abstract argumentation dynamics. Argument Com-
put. 9(3):223–248.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–357.
Dvorák, W., and Dunne, P. E. 2018. Computational prob-
lems in formal argumentation and their complexity. In Ba-
roni, P.; Gabbay, D.; Giacomin, M.; and van der Torre, L.,
eds., Handbook of Formal Argumentation. College Publica-
tions.
Dvorák, W., and Woltran, S. 2020. Complexity of ab-
stract argumentation under a claim-centric view. Artif. Intell.
285:103290.
Dvorák, W.; Greßler, A.; Rapberger, A.; and Woltran, S.
2021. The complexity landscape of claim-augmented ar-
gumentation frameworks. In Proc. AAAI’21, 6296–6303.
AAAI Press.
Dvorák, W.; Rapberger, A.; and Woltran, S. 2020. Argu-
mentation semantics under a claim-centric view: Properties,
expressiveness and relation to setafs. In Proc. KR’20, 341–
350.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004. Sim-
plifying logic programs under uniform and strong equiva-
lence. In Lifschitz, V., and Niemelä, I., eds., Proc. LP-
NMR’04, volume 2923 of LNCS, 87–99. Springer.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2007. Com-
plexity results for checking equivalence of stratified logic
programs. In Proc. IJCAI’07, 330–335.
Gabbay, D.; Giacomin, M.; Simari, G. R.; and Thimm, M.,
eds. 2021. Handbook of Formal Argumentation, volume 2.
College Publications.
Gorogiannis, N., and Hunter, A. 2011. Instantiating ab-
stract argumentation with classical logic arguments: Postu-
lates and properties. Artif. Intell. 175(9-10):1479–1497.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic (TOCL) 2(4):526–541.
Lin, F., and Chen, Y. 2007. Discovering classes of strongly
equivalent logic programs. J. Artif. Intell. Res. 28:431–451.
Modgil, S., and Prakken, H. 2017. Abstract rule-based ar-
gumentation. FLAP 4(8).
Moguillansky, M. O.; Rotstein, N. D.; Falappa, M. A.;
Garcı́a, A. J.; and Simari, G. R. 2008. Argument theory

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

297

change applied to defeasible logic programming. In Fox,
D., and Gomes, C. P., eds., Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008, 132–137. AAAI
Press.
Oikarinen, E., and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artif. Intell.
175(14-15):1985–2009.
Osorio, M.; Pérez, J. A. N.; and Arrazola, J. 2001. Equiv-
alence in answer set programming. In Pettorossi, A., ed.,
Proc. LOPSTR’01, volume 2372 of LNCS, 57–75. Springer.
Rotstein, N. D.; Moguillansky, M. O.; Falappa, M. A.;
Garcı́a, A. J.; and Simari, G. R. 2008. Argument theory
change: Revision upon warrant. In Proc. COMMA’08, vol-
ume 172 of FAIA, 336–347. IOS Press.
Rotstein, N. D.; Moguillansky, M. O.; Garcı́a, A. J.; and
Simari, G. R. 2010. A dynamic argumentation framework.
In Proc. COMMA’10, volume 216 of FAIA, 427–438. IOS
Press.
Snaith, M., and Reed, C. 2017. Argument revision. J. Log.
Comput. 27(7):2089–2134.
Testerink, B.; Odekerken, D.; and Bex, F. 2019. A method
for efficient argument-based inquiry. In International Con-
ference on Flexible Query Answering Systems, 114–125.
Springer.
Wallner, J. P.; Niskanen, A.; and Järvisalo, M. 2017. Com-
plexity results and algorithms for extension enforcement in
abstract argumentation. J. Artif. Intell. Res. 60:1–40.
Wallner, J. P. 2020. Structural constraints for dynamic op-
erators in abstract argumentation. Argument Comput. 11(1-
2):151–190.
Wang, K., and Zhou, L. 2005. Comparisons and compu-
tation of well-founded semantics for disjunctive logic pro-
grams. ACM Trans. Comput. Log. 6(2):295–327.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

298

	Introduction
	Background
	Dynamics in ABA
	Enforcement
	Strong Equivalence

	An Instantiation For Dynamics
	Instantiated Arguments
	cvAFs and Dynamics
	cvAFs and Atomic ABA Frameworks

	The cvAF Enforcement Problem
	The cvAF Strong Equivalence Problem
	Consequences for Logic Programs
	Discussion

