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Abstract

The postulate of relevance provides a suitable and general
notion of minimal change for belief contraction. Relevance
is tightly connected to smooth kernel contractions when an
agent’s epistemic state is represented as a logically closed set
of formulae. This connection, however, breaks down when
an agent’s epistemic state is represented as a set of formulae
not necessarily logically closed. We investigate the cause be-
hind this schism, and we reconnect relevance with smooth
kernel contractions by constraining the behaviour of their
choice mechanisms and epistemic preference relations. Our
first representation theorem connects smooth kernel contrac-
tions with a novel class of epistemic preference relations. For
our second representation theorem, we introduce the princi-
ple of symmetry of removal that relates relevance to epistemic
choices. For the last theorem, we devise a novel class of
smooth kernel contractions, that satisfy relevance, which are
based on epistemic preference relations that capture the prin-
ciple of symmetry of removal.

1 Introduction

The field of belief change (Alchourrén, Girdenfors, and
Makinson, 1985; Hansson, 1999) studies how an agent
should rationally maintain its body of beliefs as it evolves.
The most interesting situations emerge when incoming in-
formation conflicts with the agent’s current beliefs. In this
case, for the sake of consistency, the agent must remove be-
liefs that conflict with the incoming information. This is
known as belief revision, and a challenging task consists in
deciding which information should be discarded. In essence,
the agent should preserve most of its original beliefs, which
is known as the principle of minimal change. Removal of
information is by itself studied under the name of belief
contraction and can be seen as a central problem in belief
change, because it forms the cornerstone to properly define
other kinds of changes. For instance, belief revision is in
essence defined in terms of belief contraction: first remove
any conflict with the incoming information by performing
belief contraction, and thereafter accommodate the incom-
ing information. When the underlying logic used to spec-
ify an agent’s beliefs is closed under classical negation, this
recipe for defining revision from contraction is formalised
via the (external and internal) Levi Identity.

Belief contraction, and other forms of belief change, have
been studied via two different, but equivalent, perspectives:
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(1) defining rationality postulates that conceptualise the prin-
ciple of minimal change; and (ii) constructing classes of op-
erations that explicitly capture such postulates. The first per-
spective provides a principled way for understanding what
is a rational change, as well as identifying and forbidding
counter-intuitive behaviours of belief change. The second
perspective provides constructive apparatuses to understand
how belief change behaves. The contrast between the two
perspectives helps to understand how principles of mini-
mal change (via rationality postulates) outline and constrain
the epistemic choices an agent might make, and on which
classes of epistemic preferences such choices can be based.
Toward the first perspective, a major rationality postulate in
belief contraction is relevance which intuitively states that
a belief can only be removed for a good reason (see Sec-
tion 2 for the formal definition). Hansson (1991) argues that
relevance provides a general and suitable notion of minimal
change, while Ribeiro et al. (2013) have shown that rele-
vance is consistent with several non-classical logics.

As for the second perspective, the two dominating classes
of belief contraction operations are: partial-meet functions
(Alchourrén, Girdenfors, and Makinson, 1985) which are
based on a “what to keep” strategy; and (smooth) kernel
contraction functions (Hansson, 1994) which are based on
a “what to remove” strategy. These two classes of func-
tions are dual, and are usually seen as two sides of the same
coin (Falappa, Fermé, and Kern-Isberner, 2006). This dual-
ity permits to understand the rationality of relevance through
two complementary constructive views. Indeed, in the most
fundamental case, when an agent’s epistemic state is rep-
resented as a logically closed set of formulae, called a the-
ory, both partial meet and smooth kernel contraction satisfy
relevance, and they collapse to the same class of functions
(Hansson, 1999; Hansson and Wassermann, 2002).

Theories, however, are very restrictive, because they do
not distinguish between implicit beliefs versus explicit be-
liefs. This distinction can be achieved by dropping the logi-
cal closure requirement, and simply representing an agent’s
epistemic state as a set of formulae, called a belief base.
This alternative is more general and expressive than theories.
Howeyver, for belief bases, the connection between relevance
and smooth kernel contraction breaks down, though the con-
nection between partial meet and relevance is not harmed.
The reasons for this rupture are still unclear. Restoring the
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connection between relevance and smooth kernel contrac-
tion is extremely important to better support belief contrac-
tion for several reasons.

First, smooth kernel contraction and partial meet work as
two complementary perspectives of belief contraction. At
a first glance, it might not seem harmful to solely rely on
partial meet as a canonical form for constructing belief con-
traction operations that satisfy relevance. It turns out that
such a strategy severely limits the reach of belief contrac-
tion approaches in more expressive logics: in several non-
classical logics, partial meet functions cannot even be de-
fined (Ribeiro et al., 2013; Guerra and Wassermann, 2019),
although belief contraction operations satisfying relevance
do exist in such logics (Ribeiro, Nayak, and Wassermann,
2018). Kernel contraction operations could be studied in
such logics as a natural alternative. Secondly, according to
Hansson (2017) the way that partial meet functions concep-
tualise choices is counter-intuitive. Precisely, partial meet
functions decide what to keep by forcing the agent to choose
among the maximal conserving options, and intersecting the
choices. This is counter-intuitive, because epistemically an
agent’s choice should not be based on maximising and main-
taining the best of two or more scenarios. Therefore, partial-
meet should not be taken as a canonical form to construct
belief contraction operations. On the other hand, kernel con-
traction simply chooses beliefs to be removed, and therefore
is not subject to this criticism. Moreover, kernel contrac-
tion appears as the dominating implementation strategy for
handling inconsistencies in ontology repair (Horridge, 2011;
Kalyanpur et al., 2007), whereas partial meet is almost un-
explored (Cébe and Wassermann, 2015).

Lastly, kernel contraction functions are closely related to
other forms of belief dynamics, such as argumentation sys-
tems (Simari and Loui, 1992) and consistency maintenance
approaches, such as culpability and inconsistency measures
(Hunter and Konieczny, 2008, 2005).

Therefore, identifying the precise connection between
kernel contractions and the postulate of relevance is of
extreme importance to achieve a complete constructive
overview of processes of rational belief contraction.

In this work, we restore the connection between smooth
kernel contraction and relevance, by constraining the way
that kernel contraction functions choose what to remove. We
identify a principle relating relevance and epistemic choices,
which we call symmetry of removal. We then examine how
such a principle can be translated into epistemic preference
relations. We start by defining a class of epistemic prefer-
ence relations on the subsets of the agent’s belief base, and
we construct a novel class of kernel contraction functions
based on such relations: the spalled kernel contractions.
Thereafter, we devise a condition, concordant-mirroring,
that embeds this principle in the epistemic preferences of an
agent. This yields a new class of smooth kernel contraction
functions which we call mirrored kernel contraction, and we
show a representation theorem relating this novel class of
kernel contraction functions and the relevance postulate.

Road map: In Section 2, we briefly review belief base
contraction, its rationality postulates, including relevance,
and smooth kernel contraction functions. In Section 3, we
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introduce the novel class of spalled kernel contraction func-
tions. We show that spalled and smooth kernel contraction
correspond to the same class of functions, with the differ-
ence that spalled kernel contraction explicitly realises the
epistemic preference relations of an agent. In Section 4,
we introduce the principle of symmetry of removal and the
concordant-mirroring condition, and their respective repre-
sentation theorems with relevance. In Section 5, we discuss
some related works. Finally, in Section 6, we make some
final considerations, and we discuss some future research
lines worth to explore.

2 Belief Base Contraction

We assume that an agent’s corpus of beliefs is represented
as a belief base, which will be denoted by the letter K. The
term belief base has been used in the literature with two main
purposes: (i) as a finite representation of an agent’s beliefs
(Nebel, 1990; Dixon, 1994; Dalal, 1988), and (ii) as a more
general and expressive approach that distinguishes explicit
from implicit beliefs (Fuhrmann, 1991; Hansson, 1999). We
follow the latter approach, and therefore a belief base can be
infinite. The power set of a set A is denoted by P(A). A be-
lief base is specified in the language of an underlying logic.
We treat a logic as a pair (£, Cn), where L is a language,
and Cn : P(L) — P(L) is a logical consequence operator
that indicates all the formulae that are entailed from a set of
formulae in £. We limit ourselves to logics whose conse-
quence operator Cn satisfies:

monotonicity: if A C B then Cn(A) C Cn(B);
inclusion: A C Cn(A);
idempotency: Cn(Cn(A)) = Cn(A);

compactness: if ¢ € Cn(A) then there is some finite set
A’ C A such that ¢ € Cn(A’).

Consequence operators that satisfy the first three condi-
tions above are called Tarskian. Some times we say that the
logic itself is Tarskian. Throughout this work, unless oth-
erwise stated, all the presented results regard logics whose
consequence operators are both Tarskian and satisfy com-
pactness. Let K be a belief base, a contraction function for
K is a function — : £ — P(L) that given an unwanted piece
of information « outputs a subset of /C which does not entail
a. A contraction function is subject to the following basic
rationality postulates (Hansson, 1991, 1994):

(success): if « & Cn(0) then a &€ Cn(K — a);
(inclusion): K — o C K;

(vacuity): if « ¢ Cn(K) then K — a = K;

(uniformity): if for all X’ C K it holds that & € Cn(K')
iff 3 € Cn(K'), then K — a = K — §3;

(core-retainment): if 3 € K \ (K — «) then there exists
aK/' CKstadg Cn(K')buta € Cn(K'U{8});
(relative closure): if 3 € KNCn(K—a)then 3 € K—a;
(relevance): if 3 € I\ (K = «) then there is some K’ such
that C = a CK' C K, a & Cn(K') buta € Cn(K' U{8})

For a discussion on the rationale of this postulates, see
(Hansson, 1999). It worth highlighting that relevance im-
plies core-retainment. A contraction function that satisfies
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the six first rationality postulates above will be dubbed a ra-
tional contraction function. Additionally if a rational con-
traction function satisfies relevance, then we will say that it
is fully rational. One of the most influential classes of ra-
tional contraction functions is the class of (smooth) kernel
contraction functions (see Definition 5), which are defined
on kernels and incision functions:

Definition 1. An a-kernel of a belief base K is a set X such
that (1) X C K; (2) a € Cn(X); and (3) if X' C X then
a & Cn(X').

An a-kernel of a belief base I is a minimal subset of
K that does entail «. Due to compactness, every kernel is
finite. The set of all a-kernels of a belief base K is denoted
by K1l «. Formulae that do not appear in any a-kernel
are called a-free. As a-free formulae have no connection
with the formula « to be contracted, they should be kept
intact, while only not a-free formulae should be picked for
removal. This choice of removal is realised by an incision
function:

Definition 2. Let C(K) = {K1 o | o € L} be the set of
all kernel sets of K. A standard incision function on a belief

base K is a function o : C(K) — P(L) such that
(1) o(Kla) CUKLLa;
(2) f X e Kllaand X # 0, then X No(K1L ) # 0.

Intuitively, in order to contract a formula «, an agent
chooses at least one formula from each a-kernel, and only
formulae from such kernels. An incision function works
as an extra-logical device that realises an agent’s epistemic
preferences, and it chooses the least preferable formulae in
each a-kernel to be removed. Incision functions, as per Def-
inition 2, do not clearly reference such preferences, and the
connection between epistemic preferences and choices is ob-
scure. In Section 3, we devise a class of incision functions
that are explicitly built on the agent’s epistemic preferences.
As such preferences depend on the formula o to be con-
tracted, it will be convenient to explicitly reference the for-
mula « to be contracted, rather than its o-kernels. Towards
this end, to facilitate presentation, we slightly reformulate
the signature of an incision function to receive as parameter
a single formula instead of all a-kernels:

Definition 3. A formula-based incision function, centred on
a belief base K, is a mapping o : L — P(L) such that

(1) o(a) C UKL oy
(2) f X e Kllaand X # 0, then X No(a) # 0;
(3) f KlLa = K1 B then o(a) = o(p).

In Definition 3, conditions (1) and (2) correspond respec-
tively to the translation of conditions (1) and (2) of Def-
inition 2. It is important to stress that standard incision
functions are defined on kernel-sets with the only purpose
of trivially capturing the behaviour imposed by the unifor-
mity postulate: if two formulae, say « and f3, are entailed
exactly by the same subsets of K (we say « and ( are K-
uniform), then o and S must present the same contraction
result. This is equivalent to say that o and [ present the
same set of kernels. In this way, by working on kernel sets,
the standard incision functions trivially captures uniformity
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behaviour. Condition (3) guarantees that this will also be the
case for formula-based incision functions.

Proposition 4. Formula-based incision functions and stan-
dard incision functions are interchangeable, that is,

1. for all standard incision function o there is a formula-
based incision function o' such that o(K 1L o) = o'(«),
for all o;

2. for all formula-based incision function o' there is a stan-
dard incision function o such that o (K 1L o) = o'(«), for
all o;

As shown in Proposition 4, standard and formula-based
incision functions produce the same class of choices, and
therefore we can use them interchangeably. From now on,
we will employ solely the formula-based incision functions,
and we will refer to them simply as incision functions.

A contraction operation can be constructed by removing
the formulae picked by an incision function. Contraction
functions that follow this recipe are called kernel contraction
functions:

Definition 5. (Hansson, 1994) Given a belief base K and
an incision function o for K, the kernel contraction function
—o isdefined as: K —, o = K\ o(p).

Kernel contractions functions, however, are characterised
only by the first five postulates:

Theorem 6. (Hansson and Wassermann, 2002) A contrac-
tion function satisfies success, inclusion, vacuity, unifor-
mity, and core-retainment iff it is a kernel contraction.

To capture relative-closure, Hansson (1994) has proposed
the smoothness property to be put upon incision functions:

smoothness if X' C K, and ¢ € Cn(K') and ¢ € o(a)
then K' N o(a) # 0.

Incision functions satisfying smoothness are called

smooth incision functions, and kernel contraction functions
built upon smooth incision functions are called smooth ker-
nel contraction functions. Smoothness states that if a for-
mula ¢ is picked for removal, then each subset of IC that
entails ¢ must also have some formula picked for removal.
In propositional logics, smoothness captures relative-closure
(Hansson, 1994). We extend this result for more expressive
logics:
Theorem 7. If C'n is Tarskian and satisfies compactness,
then a contraction function satisfies success, inclusion,
vacuity, uniformity, core-retainment, and relative-closure iff
it is a smooth kernel contraction function.

Though smoothness captures relative-closure, smoothness
alone is not capable of connecting with relevance (Hansson,
1994). To fill this gap, at Section 4, we will first unveil in the
next section the precise connection between smooth incision
functions and epistemic preference relations.

3 Relational Incision Functions: Smoothness

Some beliefs might be deemed more reliable than others,
and when performing a contraction, an agent should remove
only the least reliable beliefs. Towards this end, an incision
function realises such epistemic choices which are founded
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on the agent’s epistemic preferences. However, incision
functions, as presented in Section 2 do not make reference
to the agent’s epistemic preferences. Moreover, smoothness
simply constrains what is rational to be chosen, but does not
give any hint of how such choices relates to epistemic pref-
erences. In this section, we devise a class of incision func-
tions whose choices are explicitly founded on the epistemic
preference relations of the agent, called effacings. We show
that effacings and smooth incision functions coincide. This
will serve as a basis to construct, in Section 4, smooth kernel
contraction functions satisfying relevance.

An agent’s epistemic preference relation could be spec-
ified via a single binary relation between its beliefs. Al-
though this has been the dominating form of representing
epistemic preferences on belief bases, such as safe contrac-
tion (Alchourrén and Makinson, 1985), and ensconcements
(Williams, 1994), this strategy is very limiting because of
the two main impossibility results for belief bases:

1. There are fully rational contractions that cannot be based
on a single epistemic preference relation (Hansson, 1999);

2. There are natural epistemic preferences that can be speci-
fied between sets of beliefs, but are impossible to be trans-
lated in terms of formulae in the belief base (Hansson,
1999).

These impossibility results severely limit our alternatives
for specifying epistemic preferences relations. In order to
work around these issues, we will consider preference rela-
tions between the subsets of belief bases, and that an agent
might present several epistemic preference relations. We
move to give a brief overview of how our strategy will work,
and thereafter we proceed to the formal definitions. Intu-
itively, when an agent wishes to relinquish a belief o from
its current belief base /C, the agent shall consult an epistemic
preference relation, say <,C P(K) x P(K), that indicates
the degree of reliability between its “blocks” of knowledge,
or in other words, which clusters of information are deemed
more reliable (or trustworthy) than others. A pair A <, B
means that A is at least as reliable as B, in the sense that
the beliefs within A are jointly equally or more reliable than
the joint beliefs within B. This means that the more reliable
a set is, the more protected all the beliefs that it carries are.
Towards this end, if a set is not among the least reliable ones,
all the beliefs it carries are protected against contraction. We
call such sets resistant sets.

Therefore, in order to contract ¢, the agent shall retain the
beliefs within such resistant sets, whereas only the beliefs
that do not fall within the resistant sets are susceptible for
contraction. An incision function based on such epistemic
preference relations picks the susceptible beliefs that appear
in each a-kernel.

We move now to formalise this recipe. We assume that for
each formula o € £, an agent presents an epistemic prefer-
ence relation <, on the subsets of its current belief base
K. Such an assignment is given by a function 7, called a
spalling. Clearly, not every binary relation can be regarded
as suitable for specifying epistemic preferences, let alone
yield rational contraction functions. Each of the relations
assigned by 7 shall then satisfy some minimal requirements,
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{p} ——{p,mpVvr—q}
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{p,7} {p,pVr—q}

! !

{pVvr —qte——{r,pVvr—gq}

0 {r}

Figure 1: A g-shard on a belief base K = {p,7,p Vr — ¢}. The
relation is transitive, but to avoid visual pollution we omit edges
obtained by transitivity.

which we present in Definition 8.

Definition 8. Given a belief base K, a spalling is a function
7: L = P(P(K)xP(K)) that maps each formula o € L to
a relation <, on the subsets of KC such that each <, satisfies
all the following conditions:

transitivity: if A <], Band B <], C then A <], C.
isotonicity: if A C Cn(B) then A <, B.

a-maximality: if o € Cn(A) then B <[, A.
a-discernment: if {1} <7, {p} and ¢ is a-free then 1 is
a-free.

relational uniformity: if for all K' C K it holds o €
Cn(K") iff B € Cn(K'), then <7, = <, where <j= 7().
conjunctiveness: AU B <] Aor AUB <, B.

Giving a spalling 7, we will write <], as a shorthand for
T(a). We call each <7, an a-shard. A <7, B means that
A is at least as preferable as B. When it is clear from con-
text, we will omit the superscript 7, and simply write <,.
A spalling is similar in spirit to the concept of faithful as-
signments of Katsuno and Mendelzon (2003) used to spec-
ify preference relations for belief update. There are, how-
ever, many differences between our approach to the faithful
assignments of Katsuno and Mendelzon. First, a spalling
considers relations on the subsets of a belief base, while
assignments are designed for relations between interpreta-
tions. Second, the properties put upon assignments and
spallings are utterly different. Last, assignments are de-
signed for belief update on theories finitely represented by a
single formula, while spallings realise epistemic preferences
for (possibly infinite) belief bases.

We proceed to explain each of the properties put upon the
relations <, assigned by spallings. To support the explana-
tion of such properties, we will consider as an example the
belief base L = {p,r,p Vr — ¢} and the ¢-shard depicted
in Fig. 1. Transitivity is a widely explored property used to
specify epistemic preferences: if one prefers A rather B and
B rather C' than one should also prefer A rather C. Iso-
tonicity states that adding information does not make a set
more reliable. For example, in Fig. 1, both {p} and {r}
are at least as reliable as {p, r}: {p} is as reliable as {p, r},
while {r} is strictly more reliable than {p,r}. Isotonicity
is the reverse of the dominance property used in both Epis-
temic Entrenchment and Safe-contraction (Hansson, 1999;
Girdenfors, 1988).
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An agent should remove only the least reliable pieces of
information. The property a-maximality imposes that a set
A which entails the formula « to be contracted cannot be
trusted, and therefore A must be among the least reliable
ones. In our example, there are only three sets that entail
the formula ¢, which are depicted at the rightmost column
in Fig. 1: the belief base K itself and the two g-kernels. All
of them are put among the least reliable sets. On the other
hand, a-discernment states that a-free formulae are strictly
more reliable than not a-free formulae. The property a-
discernment jointly with transitivity, isotonic, and conjunc-
tiveness states that finite a-free sets are strictly more reliable
than not a-free sets. Relational uniformity, as the name sug-
gests, is related to the uniformity postulate. It states that
the epistemic preferences of an agent should not be syntax
sensitive: if two formulae, even though not necessarily logi-
cally equivalent, are entailed exactly by the same subsets of
the belief base /C, then they should present exactly the same
epistemic preference relation.

For the rationale of conjunctiveness, consider a set X =
A U B, and that a belief 5 € X is chosen to be removed
during the contraction of a formula «. Intuitively, only in-
formation among the least reliable sets should be picked for
removal, which means that X is among the least reliable
sets. However, as [ is in X, 8 appears either in A or in B.
Therefore, it is plausible to assume that the subset in which
[ appears (either A or B), must also be among the least re-
liable sets, that is, either A or B must be as (un-)reliable as
X (conjunctiveness). Consider, for instance, the g-shard in
Fig. 1 and the set {p, r} among the least preferable sets. Ac-
cording to conjunctiveness, at least one between {p} or {r}
must be as (un-)reliable as {p, r}, which is the case of {p}
while {r} is strictly more preferable than them.

We extend the notion of a-free from formulae to sets. We
say that a set A is a-free, if and only if every formula in A
is a-free. The maximal elements of a set A w.r.t a transitive
relation < is max¢(A) = {a € A | forallb € A, ifa <
bthenb < a}. An a-shard <, C P(K) x P(K) realises
the epistemic preference relation of an agent during the con-
traction of a formula «. Intuitively, A <, B means that
whole information in A is at least as reliable than the whole
information in B. Additionally, if A <, B and B £, A,
then information within A as a whole is strictly more reli-
able than the whole information in B. This means that B is
strictly more vulnerable to contraction than A. For instance,
in the relation <, depicted in Fig. 1, the set {p V r — ¢}
is strictly more vulnerable to contraction than {r}. Ideally,
an agent should remove information only from the most vul-
nerable sets (the sets at the two rightmost columns at Fig. 1)
while keeping all other sets, like {r}, intact. Sets whose
information are not subject to removal are called resistant:

Definition 9. A set A C K is a resistant set w.r.t an o-shard
Lo iff A is a-free or there is some B C K such that A <, B
and B £, A. The resistant sets from IC w.r.t <, is given by

resist¢_ (KC) = P(K) \ max¢_ ({A C K| A is not a-free})

Intuitively, a resistant set carries information that shall be
protected during contraction. As only not a-free formu-
lae should be removed, every a-free set is by default re-
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sistant. Resistant sets are similar in spirit to the notion of
safe-formulae used in safe-contraction. The main difference
is that to be safe, a formula ¢ must be covered by some other
formula in every a-kernel in which ¢ appears, whereas re-
sistant sets only need to be covered by some other set. For
instance, in Fig. 1, {r} is resistant because it is strictly more
preferable than {p}. As all the formulae within a resistant
set shall be protected, the only information that can be re-
moved are those that do not appear in any of the resistant
sets modulo <. We call such formulae c-susceptible.

Definition 10. Within a belief base K, a formula ¢ is a-
susceptible w.r.t an a-shard <, iff ¢ & A, for all A €
resist¢_ ().

For conciseness, when the «-shard is clear from context,
we will simply say that a formula is a-susceptible. For in-
stance, in the g-shard illustrated at Fig. 1, we have only two
resistant sets: () and {r}. Therefore, the formulae p and
pV r — q are g-susceptible, because they do not appear in
any of the resistant sets. We highlight the following interest-
ing properties regarding a-susceptible formulae, which will
be useful for defining a new class of incision functions:

Proposition 11. If <, is an a-shard on a belief base IC,

1. every a-susceptible formula w.rt <, is not a-free;

2. « is not tautological and o € Cn(K) iff there is an -
susceptible formula in K.

Proof sketch. For item 1, let © be an a--susceptible formula
w.r.t an a-shard <. Thus, ¢ does not appear in any of the
resistant sets. By definition, the set of all a-free formulae
is resistant. Thus, ¢ does not appear in such a set, which
means  is not a-free. For item 2, the direction “<" follows
from item 1, because an a-susceptible formula necessarily
is not a-free which implies that KC must entail o. For the
direction “=", from a € Cn(K) we get there is at least one
a-kernel X € K1L «, and from compactness we know that
all of them are finite. Let us fix an a-kernel X € K1 a.
As « is not tautological, X # 0. From a-maximality, we
get that X is maximal, and from conjunctiviness, we can
prove by induction on size of X that there is a ¢ € X such
that X <, {¢}. Let us fix such a p. Therefore, as X is
maximal, we get that {} is also maximal. This jointly with
isotonicity, implies that every set in which @ appears is also
maximal. Therefore, every set that  appears is not resistant.
This means that ¢ is a-susceptible. O

As every a-susceptible formula is not a-free, and their
existence is guaranteed when the underlying belief base en-
tails o, we can define an incision function that selects all
a-susceptible formulae, called an effacing:

Definition 12. Given a belief base IC, and a spalling T on
K. An effacing is a function 6, : L — P(L) such that

I (o) = {p € K| ¢ is a-susceptible w.r.t. <], }.

Although an effacing does not look inside each a-kernel
to pick a formula for removal, an effacing does hit every a-
kernel and it is therefore indeed an incision function:

Proposition 13. Every effacing is an incision function.
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Proof sketch. We have to show that every effacing 6, sat-
isfies conditions (1), (2) and (3) from Definition 3. Condi-
tion (3) follows from relational uniformity. For condition
(1), note that from Proposition 11, we have that every a-
susceptible formula is not a-free. Thus, 0,(a) C |JKLL a.
For condition (2), let X € K1L « such that X # (), we
will show that there is some ¢ € X such that ¢ € 6,;(«).
As X is an a-kernel, we get from compactness that X is fi-
nite. From a-maximality we get X € max¢_(P(K)), which
means that X is not resistant. Thus, as <. satisfies con-
Jjunctiveness, we can show by induction on the size of X that
there is some ¢ € X such that {¢} is also maximal. This
Jjointly with isotonicity, implies that any set that contains ¢
will also be maximal, and therefore it is not resistant. Thus,
@ is a-susceptible, which means that ¢ € 0, (). O

As effacings are incision functions, we can use them to
construct a new class of kernel contraction functions:

Definition 14. Let 7 be a spalling on a belief base K. A
kernel contraction founded on T is defined as K ~. «
K\ 0- (). We say that =, is a spalled kernel contraction.

Example I illustrates a spalled kernel contraction func-
tion, based on the a-shard depicted in Fig. 1.

Example I. Let K = {p,r,pV r — q}, and T be a spalling
such that <], q corresponds to the relation depicted at Fig. 1.
The only q-susceptible formulae are p and pV r — q. Thus,
d:(q) ={p,pVr —qt and K - ¢ = K\ 6:(q¢) = {r}.
This contraction satisfies relative-closure, because {r} does
not imply either of the removed formulae.

The class of kernel contractions based on effacings
matches exactly the class of smooth kernel contractions. We
present the first direction of this representation theorem:

Theorem 15. Every spalled kernel contraction is smooth.

Proof sketch. Let X C K and ¢ € 0,(o) such that ¢ €
Cn(X). We will show that there is some ) € X such
that ¢ € 0,(). From ¢ € Cn(X), we get that there is
a X' € X1 . Let us fix such a X'. Due to conjunctive-
ness, isotonicity and transitivity, we get that there is some
Y € X' such that X' <, {y}. From isotonicity, transi-
tivity and a-discernment, we have that {p} <, {¢}, and
Y is not a-free. Moreover, as ¢ € 6(«), it follows that
{¢} is maximal among all not a-free sets. This implies from
{o} <o {¥} that {3} is also maximal among all not a-free
sets. This jointly with isotonicity implies that every set that
has 1) is not resistant, and therefore 1 is a-susceptible. [

To conclude the representation theorem between effacings
and smooth kernel contractions, we will need to show that
each smooth incision o function is indeed an effacing, that
is, that there is a spalling 7 such that o(«) = d,(«). The
main strategy is to construct, for each formulae «, a rela-
tion <7 such that the formulae in o () corresponds exactly
to the a-susceptible formulae modulo <7. We call <Z the
a-projection of o. The spalling can then be achieved by
mapping each formula « to its a-projection. We call this
mapping between formulae and projections the shadowing
of 0. There are two essential conditions we need to cap-
ture in constructing such shadowing 7: (C1) J(«) matches
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{p} ——{p,rpVvr—q}

! !

0 {p,r} {p,pVvr—q}

! !

{r} ———{r,pvr—q}

!

{pvr—aq}

Figure 2: An a-projection of the incision function at Example II.

o(a), and (C2) that 7 is indeed a spalling (all conditions at
Definition 8 are satisfied). We start by presenting how a-
projections are constructed:

Definition 16. Given an incision function o for a belief base
IC, and a formula o. The a-projection of o is the smallest
relation <3 C P(K) x P(K) such that

1. if Ano(a) # 0 then B <2 A.

2. if AC Cn(B) then A<? B

3. if Ais a-free then A <%, B.

4. if both A and B are not a-free, and (AU B) No(a) =0
then A <¢ B

If a formula ¢ is picked by o(«), then every set A that
has ¢ cannot be a resistant set. This can be done by putting
such sets as the least preferable ones (Item 1). This not
only captures a-maximality, but also guarantees that the
a-susceptible formulae modulo < match the formulae in
o(a), see Proposition 22 below. Item 2 is the isotonicity
condition, while Item 3 captures a-discernment by putting
each a-free set among the most preferable ones. Item 4
makes equally preferable any two sets that, though not a-
free, have no formulae picked by o (). Item 4 jointly with
Item 1 captures conjunctiveness. An a-projection also satis-
fies transitivity. Example II illustrates how an a-projection
is constructed.

Example II. Let K = {p,r,p V r — q}, and consider that
we want to contract the formula q using the smooth incision
Sunction o such that 0(q) = {p V r — q}. The q-projection
gg of o is depicted in Fig. 2. The relation gg, as we ex-
plain below, is transitive, and to avoid visual pollution, we
have not drawn the transitive edges of <7 in Fig. 2. Let us
explain how <7 is constructed according to Definition 16.
First, every set that contains the formula p NV r — q (sets
at the rightmost side) is put as the most vulnerable ones,
as imposed by condition 1. Condition 2 imposes the rela-
tion to satisfy isotonicity. For instance, {p} <7 {p,r}. The
empty set is the only a-free set, and therefore it is put as the
most reliable one (condition 3). According to condition 4,
each pair of non q-free sets that do not contain the formula
pV r — qis put as equally preferable (sets in the middle
column). To facilitate visualisation, we have split the rela-
tion into three columns. Sets in the same column are equally
preferable (resp. equally vulnerable), while the sets towards
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the right are more vulnerable than all the sets towards the
left end. From all this, we see that <g is transitive.

Lemma 17 below will be helpful in proving the properties
of an a-projection. It states that any set that has no formulae
in common with o(«) is a resistant set.

Lemma 17. For every smooth incision function and o-
projection <9, if BNo(a) = 0 and A <2 B then
ANno(a)=10

Proposition 18. If an incision function o is smooth, then
every a-projection of o satisfies: isotonicity, a-maximality,
a-discernment, conjunctiveness, and transitivity.

According to Proposition 18 above, every a-projection
from a smooth incision function satisfies almost all condi-
tions put upon spallings. Another interesting property is re-
lated to relational uniformity: if two formulae are entailed
exactly by the same subsets of a belief base /C, then their
projections coincide.

Observation 19. Let o be an incision function on a belief
base K, and let o and 3 be two formulae. If for all K' C K,

it holds that o € Cn(K') iff B € Cn(K'), then <7, = <§.

We are ready to define the shadowing of an incision func-
tion o, which basically maps each formula « to the respec-
tive a-projection of o:

Definition 20. Given an incision function o, defined on a
belief base K. The shadowing of o is the function T, : L —
P(P(K) x P(K)) such that T,(a) = <5, where <2 is the
a-projection of o.

We can see, from Proposition 18 and Observation 19, that
shadowings are spallings:

Corollary 21. If an incision function is smooth, then its
shadowing is a spalling.

So far, we have shown how to construct a spalling from a
smooth incision function o. The only piece missing to com-
plete the representation theorem is to show that the effacing
based on the spalling 7, actually matches o. This follows
directly from the construction of the a-projection:

Proposition 22. If o is a smooth incision function on a belief
base K, then for all formula o:

o(a) = {¢ € K| ¢ is a-susceptible modulo < }.

Proof sketch. We need to show that a formula ¢ € K is a-
susceptible modulo <¢, iff ¢ € o(a). The direction “<”
follows directly from condition (1) at Definition 16. For
direction “=-", the proof is by its contrapositive. Let us
suppose that ¢ ¢ o(«), and we will show that ¢ is not
a-susceptible. The case that ¢ is a-free is trivial. Let
suppose then that ¢ is not a-free. Thus, there is some
A € K1 « such that ¢ € A. Let A’ = A\ o(«a). Note
that A" No(a) # 0, as ¢ € Aand p & o(a). As o is
an incision function, we have that A N o(a) # 0. Thus,
Jfrom condition (1) at Definition 16, we get that (i) A’ <7 A;
and from the contrapositive of Lemma 17 (on that lemma let
B stand for A’), we get (ii) A" L9 A. Therefore, A is a

resistant set, which implies that o is not o susceptible. [
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The representation theorem between smooth kernel con-
traction and spalled kernel contraction easily follows from
Theorem 15 and Proposition 22:

Theorem 23. A kernel contraction is smooth iff its a spalled
kernel contraction.

4 Concordance and Relevance

In this section, we present two representation theorems be-
tween kernel contraction functions and the postulate of rel-
evance. In our first representation theorem, we identify a
principle that relates incision functions and the postulate of
relevance, which we call the symmetry of removal. This
principle allows us to frame exactly the class of all inci-
sion functions that yield fully rational kernel contraction
functions. The principle of symmetry of removal, similar
to smoothness, states which properties an incision function
must obey in order to capture relevance, but it does not tell us
how to construct such incision functions nor how the epis-
temic preference relations of an agent should look. In our
second representation theorem, we fill this gap by putting
an extra constraint, called concordant-mirroring, upon the
spalling of an effacing. The concordant-mirroring condition
is inspired by the principle of symmetry of removal. Before
we present this principle and concordant-mirroring we shall
first introduce the notion of completion and concordant sets.

Definition 24. Let K be a belief base, and o be a formula.
An a-completion of a set A C K is a set X suchthat (a) X C
K, and (b) o € Cn(AU X). The set of all a-completions of
A is given by

com(A,a) ={X CK|aeCn(AUX)}.

Intuitively, an a-completion of a set A C K is a set X
that collaborates with A to entail a. Unlike kernels, which
are required to entail «, an c-completion only carries infor-
mation that “completes” the information of A towards en-
tailing a. The following example illustrates the notion of
a-completion.

Example III. Ler K = {p,r,pV r — q}. The set X =
{pVr = q} is a g-completion of both {r} and {p}, because
X CK qge Cn(XU{r}) and q € Cn(X U {p}). The
belief base K itself and the g-kernels {p,p vV r — ¢} and
{r,pV r — ¢} are trivially q-completions of both {p} and
{r}. There are no other q-completions for either {p} or {r}.
Thus, comi({p},q) = comx({r}, q).

In Example IIT above, the sets {p} and {r}, though not
logically equivalent, present the same g-completions. Sets
that agree upon the same collection of a-completions will
be called a-concordant sets:

Definition 25. Let o be a formula, and K a belief base
K. Two sets A,B C K are a-concordant within K iff
comi (A, o) = comi (B, ).

Intuitively, a-concordant sets are indistinguishable w.r.t
to their a-completions. When I is clear from context, we
simply say that two sets are a-concordant. As we show
in Proposition 26 below, a-concordant sets are tightly con-
nected to the relevance postulate via the following principle:
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symmetry of removal: if A and B are «a-concordant
within K then A No(a) # 0 iff BNo(a) # 0.

The principle of symmetry of removal states that formu-
lae are removed uniformly from «a-concordant sets, that is,
if two sets are a-concordant, then an incision function will
either remove formulae from both of them or it will keep
both of them intact. Back to Example III, the sets {r} and
{p} are a-concordant. Thus, according to symmetry of re-
moval, an incision function must remove both r and p, or
remove neither. The contraction in Example I violates rel-
evance, because the incision function removes p but does
not remove r. On the other hand, the contraction illustrated
in Example II does satisfy relevance, because the incision
function removes neither p nor r.

Indeed, symmetry of removal is a necessary condition for
incision functions to yield kernel contractions that satisfy
relevance:

Proposition 26. If a kernel contraction function =, satisfies
relevance then o satisfies symmetry of removal.

Proposition 26 exhibits that relevance induces a symmetry
of removal between a-concordant sets. Although symmetry
of removal is a necessary condition for incision functions to
yield kernel contraction functions that do satisfy relevance,
it is important to stress that symmetry of removal alone is
not strong enough to capture relevance:

Observation 27. If an incision function satisfies symmetry
of removal then its kernel contraction does not necessarily
satisfy relevance.

Proof. Consider the belief base X = {p,p V ¢,p — m,
pVq — m}, and the following incision function o satisfying
symmetry of removal: o(«) = {pV¢q,p = m,pVqg— m},
if CIL o = KU m; and o(a) = UKL «, otherwise.
For violation of relevance, note that L ~, m = {p}, while
pVq € a(m).

We need both symmetry of removal and smoothness in or-
der to capture relevance:

Proposition 28. If an incision function o satisfies smooth-
ness and symmetry of removal then the smooth kernel con-
traction function —, satisfies relevance.

Our first representation theorem relating relevance and
kernel contraction functions follows from Proposition 26
and Proposition 28 :

Theorem 29. A kernel contraction function satisfies rele-
vance iff its incision function satisfies both smoothness and
symmetry of removal.

Theorem 29 states that the only way for kernel con-
tractions to satisfy relevance is via incision functions sat-
isfying both smoothness and symmetry of removal. Al-
though this informs us which principles an incision func-
tion must satisfy, it does not relate such incision functions
to the agent’s epistemic preference relations. We already
know from Section 3 that the choices made by smooth in-
cision functions are based on epistemic preference relations
founded on spallings. Thus, to capture relevance, we only
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{p} =—{p,",pVr —q}

] 1

0 —{pVvr—qg——{r} —{p,pVr—q}
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{pyrye——{r,pVvr —q}

Figure 3: An a-shard satisfying concordant-mirroring. The rela-
tion is transitive, but to avoid visual pollution we omit edges ob-
tained by transitivity.

need to constrain the behaviour of such spallings. The con-
dition we will put upon the spallings must be sufficiently
strong to capture symmetry of removal, and at the same time
it must be general enough so it dispense with no spallings
satisfying symmetry of removal. The condition we devise for
this purpose is called concordant-mirroring, and spallings
satisfying this condition will be called mirrored spallings:

Definition 30. A spalling 7 : K — P(P(K) x P(K)) is
mirrored iff for each formula o, the relation <[, satisfies

concordant-mirroring: if A and B are a-concordant,
and X <], Athen X <! B

Intuitively, concordant-mirroring states that if two sets,
say A and B, are a-concordant then they must be as resis-
tant (resp. as vulnerable) as each other. Example IV below
illustrates the notion of concordant-mirroring:

Example IV. Let K = {p,r,pVr — q}, and T be a spalling
such that <], is the g-shard depicted in Fig. 3. Except for
{p VvV r — q} and the empty-set, all other sets are equally
preferable, and are not resistant. To facilitate visualisation,
q-concordant sets are put in the same column. It is easy to
see in this way that <, satisfies concordant-mirroring. For
instance, the sets {p}, {r} and {p,r} are all q-concordant.
According to concordant-mirroring all of them must present
the same preferences. Thus, as {p V r — q} <4 {p}, the
sets {r} and {p,r} must mimic such a preference, that is,
{fpvr—qt <g{rtand{pvr—q} <, {p,r}

Note also that the only two resistant sets are {p\V r — q}
and 0. Thus, 6:(q) = {p,r}, and K ~. ¢ = {pVr — q}.
Note that this contraction satisfies relevance, as putting back
either of the two removed formulae will restore q.

An effacing built upon a mirrored spalling will be called a
mirrored effacing, and a kernel contraction built upon a mir-
rored effacing will be called a mirrored kernel contraction.

Definition 31. A mirrored kernel contraction is a kernel
contraction ., such that 6, is a mirrored effacing.

Example IV illustrates a mirrored kernel contraction sat-
isfying relevance. Indeed, concordant-mirroring is all we
need to capture symmetry of removal, and therefore rele-
vance.

Theorem 32. Mirrored effacings satisfy symmetry of re-
moval, and every mirrored kernel contraction satisfies rel-
evance.
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We have reached the first part of our second represen-
tation theorem between relevance and kernel contractions.
To complete it, we need to show that concordant-mirroring
preserves all fully rational kernel contractions. This corre-
sponds to showing that the incision function of every fully
rational kernel contraction is actually a mirrored effacing.
We achieve this by employing the same strategy we used
in Section 3 based on shadowing. Recall that the incision
function o of a fully rational kernel contraction function is
smooth. Therefore, we already know from Proposition 22
and Corollary 21 that ¢ is indeed an effacing whose spalling
is its shadowing 7. The only thing missing is to show that
the shadowing 7, indeed satisfies concordant-mirroring:

Proposition 33. If a smooth kernel contraction function ~,
satisfies relevance then the shadowing of o is mirrored.

We have already illustrated, in Example II, an a-
projection from the shadowing of a smooth incision func-
tion whose kernel contraction satisfies relevance. Such an a-
projection is shown in Fig. 2, and it does satisfy concordant-
mirroring. We reach our second representation theorem:

Theorem 34. A smooth kernel contraction satisfies rele-
vance iff its a mirrored kernel contraction.

5 Related Works

Few efforts have been made to investigate the connection
between kernel contraction and relevance. Falappa, Fermé,
and Kern-Isberner (2006) investigate the explicit connection
between partial meet functions and kernel contraction func-
tions in terms of their choice mechanisms: incision func-
tions, for kernel contraction; and selection function for par-
tial meet functions. The work focuses on translating se-
lection functions and incision functions in terms of each
other. For this inter-translation to work, it is assumed that the
underlying smooth kernel contraction indeed satisfies rele-
vance. However, it is not investigated which condition an
incision function must satisfy in order to capture relevance.
In our work, we fill this gap by showing precisely such a
condition: symmetry of removal. Moreover, their correspon-
dence between smooth incision functions and selection func-
tions are confined to classical proposition logics, whereas
our results are presented for more general logics, precisely
for Tarskian compact logics. Booth et al. (2014) show that in
Horn Logics (Horn, 1951), partial meet is too strong for con-
traction, and they introduce a more general operation, called
infra-contraction, which coincides with kernel contraction.
However, infra-contractions do not capture relevance.

For theories, several ways of specifying epistemic
preferences are known, such as Epistemic Entrenchment
(Gérdenfors, 1988), and Grove’s system of spheres (Grove,
1988; Girdenfors, 1988). However, few efforts have been
made to construct epistemic preferences for belief bases.
There are two main contraction operators that consider
epistemic preferences for belief bases: safe-contraction
(Alchourrén and Makinson, 1985) and ensconscements
(Williams, 1994). Kernel contractions are generalisations of
safe-contractions, in which epistemic preferences are repre-
sented as a single hierarchy: an acyclic strict total order on
the formulae of a belief base. Safe-contractions, however,
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are too restrictive and, even for theories, there are fully ratio-
nal contractions that cannot be defined as safe-contractions.
This occurs not only because of the impossibility results
listed in Section 3, but also because safe-contraction can-
not handle cycles. Williams (1994) has introduced the en-
sconscements relations, which are in essence generalisations
of epistemic entrenchment relations, originally defined for
contraction on theories, to deal with belief bases. Fermé,
Krevneris, and Reis (2008) have shown that ensconscements
are so general that they not only violate relevance, but also
they violate core-retainment.

Concordant-mirorring, introduced in Section 4, is in-
spired by the mirroring condition introduced by Ribeiro,
Nayak, and Wassermann (2018). In that work, mirroring
is introduced with the purpose to rationalise epistemic pref-
erence relations, over interpretations, on non-compact log-
ics. While mirroring enforces that any two incomparable
models must mimic each other’s preferences, in our setting
concordant-mirroring is a bit more relaxed and imposes the
mimicking behaviour only on a-concordant sets. Mirroring
is suitable for contraction on theories and was designed to
capture the supplementary postulates of the AGM paradigm
(Alchourrén, Girdenfors, and Makinson, 1985).

6 Discussion and Future Works

In this work, we have restored the connection between ker-
nel contraction and the postulate of relevance by constrain-
ing the behaviour of incision functions in two different, but
equivalent, ways: (i) via the principle of symmetry of re-
moval, and (ii) based on a suitable class of epistemic prefer-
ence relations. For the former, we have shown that smooth
incision functions can only satisfy relevance when they obey
symmetry of removal. For the latter, we have started by
proposing to represent an agent’s epistemic preferences via
binary relations on the subsets of its belief base. We have
then defined the mirrored-concordance condition that trans-
lates symmetry of removal in terms of epistemic prefer-
ences, and shown a representation theorem connecting rele-
vance and kernel contractions based on such preference re-
lations. Our results are presented for logics that are Tarskian
and compact. There are further interesting research ques-
tions worth to explore:

Smoothness and symmetry of removal: when an agent’s
epistemic state is represented as a theory, smooth kernel con-
tractions are strong enough to capture relevance. Although
this is not the case for belief bases, it is not hard to find belief
bases where smoothness is still capable of capturing rele-
vance. For instance, for the belief base K = {p, r,pVr — g,
r — q}, the contraction K —, ¢ satisfies relevance, as long
as o is smooth. Thus, another way of establishing the con-
nection between kernel contraction and relevance is to frame
precisely the class of belief bases in which smoothness im-
plies symmetry of removal.

Inconsistency/Culpability measures: Recently, Ribeiro
and Thimm (2021) have proposed to use inconsis-
tency/culpability measures as a means to automatically dis-
close an agent’s epistemic preference relation for contracting
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inconsistencies, known as consolidation. Their results are
confined to smooth incision functions, and therefore are not
strong enough to capture relevance. It will be worth to inves-
tigate how such inconsistency/culpability measures could be
strengthened in order to capture relevance, and how such
measures could be broadened to perform contraction beyond
consolidation and classical propositional logics.
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