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Abstract

Open relation extraction (ORE) aims to assign semantic rela-
tionships among arguments, essential to the automatic con-
struction of knowledge graphs (KG). The previous ORE
methods and some benchmark datasets consider a relation be-
tween two arguments as definitely existing and in a simple
single-span form, neglecting possible non-existent relation-
ships and flexible, expressive multi-span relations. However,
detecting non-existent relations is necessary for a pipelined
information extraction system (first performing named en-
tity recognition then relation extraction), and multi-span re-
lationships contribute to the diversity of connections in KGs.
To fulfill the practical demands of ORE, we design a novel
Query-based Multi-head Open Relation Extractor (QuORE)
to extract single/multi-span relations and detect non-existent
relationships effectively. Moreover, we re-construct some
public datasets covering English and Chinese to derive aug-
mented and multi-span relation tuples. Extensive experi-
ment results show that our method outperforms the state-
of-the-art ORE model LOREM in the extraction of existing
single/multi-span relations and the overall performances on
four datasets with non-existent relationships.

1 Introduction
Relation extraction (RE) from unstructured text is funda-
mental to a variety of downstream tasks, such as construct-
ing knowledge graphs and computing sentence similarity.
Conventional closed relation extraction considers only a pre-
defined set of relation types on small and homogeneous cor-
pora, which is far less effective when shifting to general-
domain text mining that has no limits in relation types or
languages. To alleviate the constraints of closed RE, Banko
et al. introduce a new paradigm: open relation extraction
(ORE), predicting a text span as the semantic connection
between arguments from within a context, where a span is a
contiguous subsequence. However, the previous works and
some widely-used datasets regard an arbitrary argument pair
as having a definitely existing relation by default and con-
strain their task to extract a simple single-span relation be-
tween two arguments, ignoring possible non-existent rela-
tionships and flexible multi-span relations. To extend ORE
for practical demands of general-domain text mining, this
paper describes the further tasks of ORE with non-existent
and multi-span relationships, and proposes a novel query-

Figure 1: An illustration of our task: open relation extraction
with single-span, multi-span, and non-existent relationships. (We
present cases in English and Chinese due to the datasets of the two
languages used in this paper.)

based multi-head open relation extractor (QuORE) devel-
oped from our re-constructed datasets.

We illustrate the ORE task of this paper in Figure 1. Pro-
vided a context and an argument tuple, open relation extrac-
tion identifies a single span or multiple spans to specify a
semantic connection among the arguments, or detects a non-
existent relationship if the arguments do not entail an open
relation. (An argument is a text span representing an ad-
verbial, adjectival, nominal phrase, and so on, which is not
limited to an entity.)

Conventional ORE systems are largely based on syn-
tactic patterns and heuristic rules that depend on external
tools of natural language processing (e.g., PoS-taggers) and
language-specific relation formations. For example, ReVerb
(Fader, Soderland, and Etzioni 2011), ClausIE (Corro and
Gemulla 2013), OpenIE4 (Mausam 2016) for English and
CORE (Tseng et al. 2014), ZORE (Qiu and Zhang 2014)
for Chinese, leverage external tools to obtain part-of-speech
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tags or dependency features and generate syntactic patterns
to extract relational facts. These pattern-based approaches
cannot handle the complexity and diversity of languages
well, and the extraction is usually far from satisfactory. To
alleviate the burden of designing manual features, some neu-
ral ORE models have been proposed, typically adopting the
methods of either sequence labeling or span selection. But
their tasks still do not consider non-existent or multi-span
relations. MGD-GNN (Lyu et al. 2021) for Chinese ORE
constructs a multi-grained dependency graph and utilizes
a span selection model to predict based on character fea-
tures. Compared with our method, MGD-GNN heavily re-
lies on dependency information and cannot deal with mul-
tiple languages. Jia, Xiang, and Chen transform English
ORE into a sequence labeling process and present a hybrid
neural network NST, whereas a dependency on PoS-taggers
may introduce error propagation to NST. Improving NST,
the current state-of-the-art ORE model LOREM (Harting,
Mesbah, and Lofi 2020) works as a multilingual-embedded
sequence-labeling method based on CNN/BiLSTM. Identi-
cal to our model, LOREM does not rely on language-specific
knowledge or external tools. However, LOREM is restricted
to binary-argument relation extraction and tends to output
single spans rather than multi-span relations. Furthermore,
based on our comparison of architectures in Section 4.1,
LOREM suffers from inherent problems in learning long-
range sequence dependencies (Vaswani et al. 2017), basic to
computing token relevances to gold relations.

The benchmark ORE datasets in English (En) and Chi-
nese (Zh) include OpenIE4En (Mausam 2016), LSOIE-
wikiEn, LSOIE-sciEn (Solawetz and Larson 2021), COERZh

(Tseng et al. 2014), and SAOKEZh (Sun et al. 2018), whose
contexts are complex or multiple sentences. Nevertheless,
the five datasets do not contain tuples with non-existent re-
lations. Moreover, tuples in the datasets except SAOKEZh

are in a fixed triple form of (Arg1, Single-span Rel., Arg2)
without tuples of multi-span relations and possible polyadic
arguments. To our best knowledge, SAOKEZh is the only
multi-span Chinese ORE dataset, and there are no English
datasets with multi-span relations so far. We need to clarify
that the triple-form data take the majority of tuples in com-
mon KGs and their extraction accuracy is the most influen-
tial part of the overall performance. But it is also significant
to measure the multi-span extraction ability of an extractor
since the multi-span form can express rich semantics and
constitute diverse relationships in existing languages.

The motivations of our work are as follows. (1) Non-
existent relations: Most knowledge graphs are constructed
using a pipeline of named entity recognition (NER), rela-
tion extraction (with open relation normalization), and en-
tity linking (Martı́nez-Rodrı́guez, López-Arévalo, and Rı́os-
Alvarado 2018). However, an arbitrary argument tuple
identified from NER does not necessarily entail a seman-
tic relationship, especially when the arguments are sepa-
rated distantly from each other in a long context (typically in
complex-sentence-level or document-level relation extrac-
tion). Thus, it is significant to facilitate ORE methods with
the twofold ability to extract existing relation spans and de-
tect non-existent relationships. (2) Multi-span relations:

Some languages, such as Chinese, express the connections
among the arguments in a flexible way of single and mul-
tiple spans, as illustrated in Figure 1. Multi-span relations
are often linked to polyadic arguments from our observa-
tion of SAOKEZh. The multi-span form of relations gener-
ally represents richer and more precise meanings, thus play-
ing an essential role in the diverse relationships in KGs.
The above two further tasks of ORE are practical and vi-
tal demands of KG construction and general-domain in-
formation extraction, but neglected by the previous works.
(3) Data augmentation: Since there are no datasets with
non-existent relationships, we re-construct four public ORE
datasets covering English and Chinese to derive the corre-
sponding augmented datasets with non-existent relations for
training models. (4) Proposed QuORE framework: We
design a query-based multi-head framework QuORE to ex-
tract single/multi-span relations and detect non-existent re-
lationships effectively. Given an argument tuple and its con-
text, we first create a query template containing the argument
information and derive a contextual representation of query
and context via a pre-trained language model BERT (De-
vlin et al. 2019), which provides a deep understanding of
query and context, and models the information interaction
between them. The two sub-modules of multi-head frame-
work are SSE (Single-span Extraction) and QASL (Query-
based Sequence Labeling), which have different specialties
in extraction. The sub-module SSE is used for effective
single-span relation extraction, while QASL is designed for
labeling non-existent relation sequences and multi-span re-
lationships. Finally, our multi-head framework dynamically
decides which sub-module (i.e., head) to predict a relation
depending on the input.

To summarize, the main contributions of this work1 are:
• We define two further tasks of open relation extraction

with non-existent and multi-span relationships consider-
ing the practical demands of ORE.

• By re-constructing some existing ORE datasets, we derive
and publicize four augmented datasets with non-existent
relationships and a multi-span relation dataset.

• We propose a query-based multi-head framework QuORE
to extract single/multi-span relations and detect non-
existent relationships effectively. We conduct extensive
experiments, showing that our models outperform the
state-of-the-art ORE method LOREM in the extraction of
existing single/multi-span relations and the overall perfor-
mances of non-existent relationships. We also give an in-
depth analysis of the functions of QuORE sub-modules.

2 QuORE Framework
An overview of our QuORE framework is visualized in Fig-
ure 2. Given a context and an argument tuple, we first create
a query from the arguments based on a template and encode
the combination of query and context using the pre-trained
BERT. The multi-head selection process dynamically deter-
mines a sub-module (SSE or QASL) to output a predicted
open relation depending on the input.

1https://github.com/farahhuifanyang/QuORE
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Figure 2: An overview of QuORE framework

2.1 Task Description
Given a context C and an argument tuple A =
(A1, A2, ..., An) in C, an ORE model needs to find the
semantic relationship within the tuple A and detect non-
existent relation cases, where n is the number of argu-
ments. We denote the context as a word token sequence
C = {xc

i}
lc
i=1 and an argument as a text span Ak =

{xak
i }lak

i=1, where lc is the context length and lak
is the

k-th argument length. Our goal is to predict a relation
R = (R1, R2, ..., Ru), a tuple of spans in the context, or
return an empty string if there is no open relation, where u

is the span number of R, a relation span Rj =
{
x
rj
i

}lrj
i=1

and lrj is the j-th relation span length.

2.2 Query Template Creation
Provided an argument tuple (A1, A2, ..., An), we adopt a
rule-based method to create the query template

T = ⟨s1⟩A1 ⟨s2⟩A2... ⟨sn⟩An ⟨sn+1⟩ (1)

having n+1 slots for a possible relation (R1, R2, ..., Rn+1)
with the span number up to n + 1, where ⟨si⟩ indicates the
i-th slot. The tokens filling a slot are separators of the adja-
cent arguments (e.g., double-quotes, a comma, or words of
natural languages) or a placeholder for a relation span (e.g.,

a question mark or words of natural languages). In this pa-
per, we adopt the question-mark (QM) style template TQM ,
taking the form of a structured argument-relationship tuple.

TQM = “A1”?“A2”?...?“An” (2)

We also construct other templates, such as the w/o QM style,
comma style, and language-specific natural-language (NL)
style, but obtain marginal performance differences, where
the experiments and analysis can be found in Appendix A.

2.3 Encoder
Given a context C = {xc

i}
lc
i=1 with lc tokens and a query

Q =
{
xq
j

}lq

j=1
with lq tokens, we employ a pre-trained lan-

guage model BERT (Devlin et al. 2019) as the encoder to
learn the contextual representation for each token. First, we
concatenate the query Q and the context C to derive the in-
put I of encoder:

I = {[CLS], xq
1, ..., x

q
lq
, [SEP ], xc

1, ..., x
c
lc , [SEP ]} (3)

where [CLS] and [SEP ] denote the beginning token and the
segment token, respectively.

Next, we generate the initial embedding ei for each token
by summing its word embedding ewi , position embedding
epi , and segment embedding esi . The sequence embedding
E = {e1, e2, ..., em} is then fed into the deep Transformer
layers to learn contextual representations with long-range
sequence dependencies via the self-attention mechanism
(Vaswani et al. 2017). Finally, we obtain the last-layer hid-
den states H = {h1,h2, ...,hm} as the contextual repre-
sentation for the input sequence I , where hi ∈ Rdh and dh
indicates the dimension of the last hidden layer of BERT.
The length of the sequences I , E, H is denoted as m where
m = lq + lc + 3.

2.4 Single-span Extraction (SSE) Head
Span Prediction The SSE head aims to find a single span
in a context as open relation. We utilize two learnable pa-
rameter matrices (feed-forward networks) fstart ∈ Rdh and
fend ∈ Rdh followed by the softmax normalization, then
take each contextual token representation hi in H as the in-
put to produce the probability of each token i being selected
as the start/end of relation span:

pstarti = softmax(fstart(h1), ..., fstart(hm))i (4)

pendi = softmax(fend(h1), ..., fend(hm))i (5)
We denote pstart = {pstarti }mi=1 and pend = {pendi }mi=1.

Training The training objective of span prediction is de-
fined as minimizing the cross entropy loss for the start and
end selections,

pSSE
k = pstartys

k
× pendye

k
(6)

LSSE = − 1

N

N∑
k

log pSSE
k (7)

where ysk and yek are respectively ground-truth start and end
positions of example k. N is the number of examples.
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Inference In the inference process, the relation span is ex-
tracted by finding the indices (s, e):

(s, e) = argmax
s≤e

(pstarts × pende ) (8)

2.5 Query-based Sequence Labeling (QASL)
Head

We tackle multi-span and non-existent ORE with query-
based sequence labeling. The QASL head utilizes the same
contextual representation H from the encoder as the SSE
head, but instead of predicting the start and end probabili-
ties, it outputs a probability distribution over a set of labels
for each token. We use V to denote a label set. Formally,
given H , for each of the m tokens, the QASL head com-
putes the probability of a label assigned to the i-th token as

plabel
i = softmax(hiW V + bV) (9)

where dh is the hidden dimension of the encoder, W V ∈
Rdh×|V| and bV ∈ R|V| are trainable parameters.

In this paper, we experiment with the BIO labeling scheme
(Sang 2000; Huang, Xu, and Yu 2015), including three label
types: B (beginning of a relation span), I (internal word in
a relation span), and O (not part of a relation span). The
labeling for a sequence of a non-existent relationship is all
O. We illustrate the labeling for a sequence consisting of a
multi-span relation with an instance from Figure 1: “DonnaO
KaranO wasO bornO inO LongO IslandO ,O NewO YorkO .O SheO
hasO aO specialO comprehensionO ofO NewO YorkO ,O knownB
byI theO worldO asB aO cosmopolitanO cityO .O”

Training We train the QASL head for predicting the cor-
rect sequence labeling L = (y1, y2, ..., ym) corresponding
to a ground-truth relation by minimizing the loss LQASL:

pQASL
k = p(L|Hk) =

m∏
i=1

p(yi|y1, ..., yi−1,Hk) (10)

LQASL = − 1

N

N∑
k

log pQASL
k (11)

where m denotes the length of L , and Hk is the encoding
output of example k. N is the number of examples.

Inference At test time, we would like to find and decode
the most likely labeling L̂ from all the valid labelings. For
the BIO scheme, the set of all valid labelings S includes all
labelings that do not have an I after an O. Given H , we hope
to find:

L̂ = argmax
Ls∈S

p(Ls|H) (12)

where the used maximization method is the Viterbi algo-
rithm (Viterbi 1967) that performs in linear time.

2.6 Multi-head Framework
We employ a multi-head framework to handle diverse open
relations in single/multi-span or non-existent forms. A head
θ is a module that inputs the contextual representation H
and calculates a probability distribution over predictions. To

derive a relation Rk for the example k having a context Ck

and an argument tuple Ak, a head θ computes

pθk = pθ(Rk|Ak,Ck) = pθ(Rk|Hk) (13)

In addition, we train an extra module δ to decide which
head to use for each example:

pδk = pδ(θ|Ak,Ck) = pδ(θ|Hk) (14)

Training The training object of multi-head framework is
to minimize the loss LMH corresponding to the cumulative
probability of each head’s prediction:

p(Rk|Ak,Ck) =
∑
θ

pδ(θ|Ak,Ck)× pθ(Rk|Ak,Ck)

(15)

LMH = − 1

N

N∑
k

log p(Rk|Ak,Ck) (16)

Inference In the inference process, we first predict which
head to function using Equation 14, then output the predic-
tion from the chosen head.

With this framework, we integrate both SSE and QASL
heads, dynamically deciding which head to utilize based on
the input and achieving different forms of open relations.

3 Experimental Setup
We propose the following hypotheses and design a set of
experiments to examine the performances of QuORE multi-
head framework and its sub-modules. We choose LOREM
as the comparison baseline because it is the state-of-the-art
ORE method and the only multi-lingual neural model capa-
ble of processing English and Chinese texts. We arrange the
hypotheses based on the following considerations: H1: As
stated in Introduction, the extraction of (Arg1, Single-span
Rel., Arg2) is the most influential part of the overall per-
formance since the triple form takes the majority of tuples
in KGs. Thus, we first evaluate on the original single-span
OpenIE4En, LSOIE-wikiEn, LSOIE-sciEn, COERZh datasets.
H2: As a follow-up to H1, we augment the above four
datasets and investigate the twofold abilities of existing and
non-existent relation extraction. H3 explores the multi-span
relation extraction capabilities on the existing multi-span-
style SAOKEZh.

• H1: For extracting existent single-span open relations,
QuORE can outperform the SOTA model LOREM with
notable performances of the multi-head framework and
the SSE model.

• H2: For open relation extraction with non-existent re-
lationships, our multi-head framework can process an
input using a suitable sub-module, flexibly determining
whether to extract or not and exceeding LOREM in over-
all performances.

• H3: For a challenging Chinese ORE dataset SAOKEZh

with multi-span relations and polyadic arguments,
QuORE shows effectiveness in extracting relations with
a diverse number of spans.
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OpenIE4En LSOIE-wikiEn LSOIE-sciEn COERZh SAOKEZh

#Con #Tupori #Tupaug #Con #Tupori #Tupaug #Con #Tupori #Tupaug #Con #Tupori #Tupaug #Con #Tupori

Train 11998 21295 30143 11872 11872 19145 11983 11983 18931 12000 13914 20463 11680 24451
Dev 1500 2660 3749 3142 3142 5045 1498 1498 2376 1500 1746 2572 1480 3059
Test 1499 2567 3647 3202 3202 5065 1499 1499 2380 1500 1771 2633 1461 3126

Table 1: Statistics of five datasets and corresponding augmentations. (Con: Contexts; Tup: Tuples; ori: original; aug: augmented.)

3.1 Datasets and Augmentation
We evaluate the performances of our proposed QuORE
framework on five public datasets covering English (En) and
Chinese (Zh). Table 1 lists the statistics of the used training,
development and test sets.
• OpenIE4En2 was bootstrapped from extractions of Ope-

nIE4 (Mausam 2016) from Wikipedia and annotated with
POS and dependency information by Zhan and Zhao.

• LSOIE-wikiEn and LSOIE-sciEn3 (Solawetz and Larson
2021) were algorithmically re-purposed from the QA-
SRL BANK 2.0 dataset (FitzGerald et al. 2018), covering
the domains of Wikipedia and science, respectively.

• COERZh4 is a high-quality Chinese knowledge base, cre-
ated by an unsupervised open extractor (Tseng et al. 2014)
from heterogeneous web text.

• SAOKEZh5 (Sun et al. 2018) is a human-annotated
large-scale dataset for Chinese open information ex-
traction, containing a single/multi-span relation and bi-
nary/polyadic arguments in a tuple.

In the data cleaning process, we only retain argument-
relation tuples whose components are spans of a context.
From our statistics, a tuple from OpenIE4En, LSOIE-wikiEn,
LSOIE-sciEn, and COERZh is made up of a single-span re-
lation and binary arguments. After preprocessing, we re-
construct SAOKEZh into a dataset with single/multi-span re-
lations and binary/polyadic arguments.

To adapt the data to our setting of ORE with non-existent
relations, we augment the datasets that only contain binary-
argument tuples. We implement a rule-based augmenta-
tion method, as shown in Algorithm 1. In this way, we
add 0 or 1 non-existent relation to each context and con-
sider the arguments having an order to specify the direction
of a relation. The number of tuples before and after aug-
mentation are recorded in Table 1 as #Tupori and #Tupaug,
respectively. By randomly dividing a dataset, we obtain
close ratios Ro/a =

#Tupori
#Tupaug

among the training, develop-
ment, and test sets. The percents Ro/a (%) of test sets in
OpenIE4En, LSOIE-wikiEn, LSOIE-sciEn, and COERZh are
respectively 70.48, 63.22, 62.98, and 67.26. We omit to
augment SAOKEZh for the complexity of permutations of
multiple arguments and the ambiguity of Chinese that an ar-
gument tuple can entail a certain relation when containing
some unnecessary argument or not.

2https://github.com/zhanjunlang/Span OIE
3https://github.com/Jacobsolawetz/large-scale-oie
4https://github.com/TJUNLP/COER
5https://ai.baidu.com/broad/introduction?dataset=saoke

Algorithm 1 Augmentation for Non-existent Open Rela-
tions
Input: All tuples Tps = [tps1, tps2, ..., tpsk] of existent
relations in the corresponding k contexts, where tpsi =
[(Ai,j,1, Ri,j , Ai,j,2)

li
j=1], i ∈ [1, k] and li is the number of

tuples in tpsi
Output: Augmented tuples
Tpsaug = [tpsaug1 , tpsaug2 , ..., tpsaugk ] with non-existent re-
lations

1: Let Tpsaug be an empty list
2: for tuples tps in Tps do
3: Let Sarg be an empty set and tpsaug be a deep copy

of tps
4: for tuple tp in tps do
5: Find the arguments A1, A2 in tp
6: Sarg .ADD (A1) and Sarg .ADD (A2)
7: end for
8: Construct the argument-pair permutations Parg of

length 2 from Sarg

9: for tuple tp in tps do
10: Remove the pair (A1, A2) of tp from Parg

11: end for
12: Add a special empty pair (A0, A0) to Parg

13: Randomly select a pair pnon = (Ax, Ay) from Parg

14: if pnon ̸= (A0, A0) then
15: Create a non-existent relation tuple tpnon =

(Ax, empty str, Ay)
16: tpsaug .ADD (tpnon) then Tpsaug .ADD (tpsaug)
17: else
18: Tpsaug .ADD (tpsaug)
19: end if
20: end for
21: return Tpsaug

3.2 Implementations
Encoder We utilize the bert-base-cased language model
as the encoder on English datasets and bert-base-chinese on
Chinese datasets.

Model Training BertAdam optimizer is used with default
parameters and a learning rate of 3e-5. We train on a single
NVIDIA Tesla P100 GPU with a batch size of 12 for 15
epochs with an early-stopping patience of 5. Evaluation is
performed with our token-level evaluation script.

Sub-modules In some experiments, we implement the
multi-head QuORE model along with its individual sub-
modules (i.e., SSE and QASL models) which work solely
controlled by our not-to-integrate option.
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OpenIE4En LSOIE-wikiEn

P R F1 EM P R F1 EM

SSE .9911 .9934 .9910 .9817 .9639 .9703 .9650 .9572
QASL .9820 .9861 .9821 .9677 .9587 .9671 .9611 .9472

Multi-H .9897 .9913 .9891 .9790 .9653 .9666 .9650 .9600

LOREM .9287 .9441 .9216 .8098 .7199 .7108 .7138 .7017

LSOIE-sciEn COERZh

P R F1 EM P R F1 EM

SSE .9678 .9746 .9690 .9566 .9435 .9585 .9377 .8837
QASL .9640 .9730 .9664 .9500 .9396 .9504 .9318 .8758

Multi-H .9730 .9793 .9740 .9620 .9475 .9529 .9356 .8826

LOREM .7812 .7698 .7736 .7585 .4537 .4535 .4228 .2693

Table 2: Evaluation on four datasets with all existing open relations. (Multi-H: Multi-head.)

3.3 Evaluation Metrics
We keep track of the metrics of F1 score, precision, recall,
and Exact Match (EM). (1) For existing relations, the met-
rics are token-level. The F1 score measures the average
overlap between a model’s prediction and the ground-truth
relation. Formally, F1 denotes the harmonic mean of pre-
cision and recall, where precision is defined as the ratio of
correctly predicted tokens to the total number of predicted
relation tokens. Recall, meanwhile, is the ratio of correctly
predicted tokens to the total number of tokens in the ground-
truth relation. Exact Match considers if a prediction exactly
matches the correct relation, which means every token is the
same. (2) For non-existent relations, we regard the values of
F1, precision, and recall as the same as Exact Match, indi-
cating if the prediction suggests non-existent, then the four
metrics are all 1; if existing, then 0.

4 Experimental Results
4.1 H1: QuORE for Existing Single-span

Relations
In H1, we train three individual models of SSE, QASL and
multi-head to compare with the SOTA method LOREM.
From Table 2, we observe that all the models of QuORE
outperform LOREM on four existing single-span relation
datasets of English and Chinese, with notable performances
from the multi-head and SSE models. We next explain the
advantages of QuORE over LOREM by comparing the two
architectures.

LOREM encodes an input sequence using pre-trained
word embeddings and adds argument tag vectors to the word
embeddings. The argument tag vectors are simple one-hot
encoded vectors indicating if a word is part of an argument.
Then LOREM utilizes CNN and BiLSTM layers to form a
representation of each word. The CNN is used to capture the
local feature information, as LOREM considers that certain
parts of the context might have higher chances of containing
relation words than others. Meanwhile, the BiLSTM cap-
tures the forward and backward context of each word. Next,
a CRF layer tags each word using the NST tagging scheme

(Jia, Xiang, and Chen 2018): S (Single-word relation), B
(Beginning of a relation), I (Inside a relation), E (Ending of
a relation), O (Outside a relation).

Our QuORE framework generates the initial representa-
tions with word embeddings and position embeddings from
BERT (Devlin et al. 2019). Unlike the simple one-hot ar-
gument vectors of LOREM, QuORE derives the argument
information by creating a query template of arguments. We
combine the query with the context to form the input of
encoder, and the encoder outputs a contextual representa-
tion that we utilize to compute the relevance of each to-
ken to a gold relation (Equation 4, 5 for SSE and Equa-
tion 9 for QASL). Moreover, by employing the self-attention
mechanism of the Transformers-based encoder, QuORE has
the benefit of learning long-range dependencies easier and
deriving a better representation for computing relevances,
which we interpret in the following. Learning long-range
dependencies is a key challenge in encoding sequences and
solving related tasks (Vaswani et al. 2017). One key factor
affecting the ability to learn such dependencies is the length
of the paths forward and backward signals have to traverse
between any two input and output positions in the network.
The shorter these paths between any combination of posi-
tions in the input and output sequences, the easier it is to
learn long-range dependencies. Vaswani et al. also provide
the maximum path length between any two input and output
positions in self-attention, recurrent, and convolutional lay-
ers, which are O(1), O(n), and O(logk(n)), respectively. (k
is the kernel width of a convolutional layer.) The constant
path length of self-attention makes it easier to learn long-
range dependencies than CNN and BiLSTM layers. Despite
the gating in LSTMs and gradient clipping (Graves 2013),
recurrent layers are difficult to optimize for such long de-
pendencies due to gradient vanishing and explosion prob-
lems. As for CNNs, the way they derive dependencies is
by applying different kernels to a sequence. For example, a
kernel of size 2 learns connections between pairs of words,
a kernel of size 3 captures connections between triplets of
words. The evident problem here is that the number of ker-
nels required to capture dependencies among all combina-
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OpenIE4En
Aug LSOIE-wikiEn

Aug

P R F1 EM P R F1 EM

Multi-H [All] .9602 .9624 .9605 .9544 .9165 .9170 .9159 .9102
[Exg.] .9744 .9774 .9748 .9661 .9582 .9589 .9572 .9482
[Non.] .9265 .9265 .9265 .9265 .8449 .8449 .8449 .8449

LOREM [All] .8971 .8855 .8816 .8108 .7811 .7751 .7771 .7692
[Exg.] .9024 .8859 .8803 .7798 .7205 .7111 .7142 .7017
[Non.] .8847 .8847 .8847 .8847 .8857 .8857 .8857 .8857

LSOIE-sciEn
Aug COERZh

Aug

P R F1 EM P R F1 EM

Multi-H [All] .9402 .9450 .9411 .9345 .9415 .9397 .9307 .8959
[Exg.] .9605 .9680 .9619 .9513 .9396 .9369 .9235 .8718
[Non.] .9058 .9058 .9058 .9058 .9455 .9455 .9455 .9455

LOREM [All] .7983 .7912 .7935 .7840 .6053 .5888 .5784 .4839
[Exg.] .7225 .7111 .7149 .6998 .4420 .4175 .4020 .2614
[Non.] .9281 .9281 .9281 .9281 .9408 .9408 .9408 .9408

Table 3: Evaluation on four augmented datasets with non-existent open relations. (Multi-H: Multi-head; Exg.: Existing; Non.: Non-existent;
Aug: Augmented.) The measures of [All], [Exg.], and [Non.] are the performances on a whole dataset and the subsets of existing and non-
existent relationships, respectively.

tions of words would be enormous and unpractical, because
of the exponentially growing combinations when increas-
ing the maximum length of sequences. Overall, QuORE
achieves substantial improvements over LOREM in extract-
ing existing relations due to the better sequence represen-
tations with long-term dependencies, a basis of computing
token relevances to gold relations.

If we focus on the performances of SSE, QASL and multi-
head models, we find that the results from multi-head and
SSE are relatively more significant than QASL. The SSE
model exceeds QASL with marginal improvements in F1
scores on the four datasets of single-span relations, which is
in line with the advantage of SSE on the single-span extrac-
tion task. The results also suggest that the single/multi-span
QASL may be used by itself as a more general extraction
method on these single-span relation datasets. Meanwhile,
we observe that the multi-head models maintain high preci-
sions due to integration.

4.2 H2: QuORE with Non-existent Relations
For open relation extraction with non-existent relationships,
we compare our multi-head QuORE model and LOREM on
four augmented datasets, as shown in Table 3. We also
provide an in-depth analysis of the functions of each sub-
module (i.e., head) in our multi-head framework via the vi-
sualization in Figure 3.

Table 3 presents the evaluation results of multi-head
QuORE and LOREM on the augmented datasets and their
subsets of existing and non-existent relationships. Our
multi-head model achieves more precise outcomes on the
overall performances and the parts of existing relations than
LOREM on all four datasets. LOREM, meanwhile, outper-
forms on the non-existent relation subsets of LSOIE-wikiEn

Aug

and LSOIE-sciEn
Aug. If we focus on contrasting the partial

measures between the [Exg.] and [Non.] parts of multi-
head QuORE itself, we observe that the performances in
[Non.] part are not compatible with the ones in [Exg.] on the
datasets except COERZh

Aug, implying there exists improve-
ment space for the task of verifying non-existent relations.

We further probe into the functions of SSE and QASL
heads in our multi-head framework by studying the data
percents processed by each head and the corresponding F1
scores in Figure 3. By observation, the Subfigures 3a, 3c,
and 3d present a similar trend in the data distribution while
the Subfigure 3b is different. In the following, we first ana-
lyze the performances on the three datasets of OpenIE4En

Aug,
LSOIE-sciEn

Aug, and COERZh
Aug.

In the Subfigures 3a, 3c, and 3d, the vast majority of
examples with existing relations are distributed to the SSE
head due to the observed high precision of SSE in extract-
ing single spans from Table 2. Meanwhile, the QASL head
is responsible for most non-existent relationships, obtaining
notable results with F1 scores (%) of 97.27, 94.10, and 95.88
on its processed [Non.] parts of OpenIE4En

Aug, LSOIE-sciEn
Aug,

and COERZh
Aug, respectively. We also observe that SSE is

not available to detect non-existent relations from 3a and 3c,
and QASL cannot extract effectively if given only a small
portion of existing relation examples.

The data distribution in LSOIE-wikiEn
Aug (Subfigure 3b) is

different from the other three datasets, suggesting that our
multi-head framework can dynamically decide which head
to use if the overall data feature of a dataset changes. In
Subfigure 3b, the non-existent relations are allocated to the
QASL head similarly to the other three charts, but QASL
also processes the large part of existing relations, illustrat-
ing that QASL has the general ability to extract existing re-
lations and detect non-existent relationships.

On the whole, the overall performances from Table 3 and
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(a) OpenIE4En
Aug (b) LSOIE-wikiEn

Aug

(c) LSOIE-sciEn
Aug (d) COERZh

Aug

Figure 3: Performances of the SSE and QASL sub-modules in multi-head QuORE on existing and non-existent relations from the four
augmented datasets. (Exg.: Existing; Non.: Non-existent.) The percents in the parentheses are the data percentage processed by a sub-
module, and [Exg.] or [Non.] denotes the relation type. The F1 scores are beside the triangles of each part in a pie chart.

the detailed measures of each head in Figure 3 show that our
multi-head model can determine a suitable sub-module to
work dynamically based on the input data mixed with both
existing and non-existent relationships.

4.3 H3: QuORE with Multi-span Relations
In the challenging Chinese dataset SAOKEZh, the relation
tuples are not necessarily in the form of single-span relations
and binary arguments; some have multi-span relations along
with polyadic arguments, as shown in Figure 1. We evaluate
the multi-span extraction abilities of QuORE and LOREM
on SAOKEZh and present the results in Table 4 and Figure 4.

Table 4 shows that our individual SSE, QASL and multi-
head models all outperform LOREM. We also investigate
from the results on SAOKEZh and COERZh from Tables 2
and 4 that the performances of LOREM on the Chinese
datasets are dissatisfactory. If we focus on the extracted
number of spans by the multi-head QuORE and LOREM in
Figure 4, we discover that LOREM tends to output single-
span relations while QuORE is able to generate a various
number of spans dynamically depending on the input and

achieve relatively high precisions. The sub-module SSE ac-
counts for the effective single-span extraction, and QASL
contributes to the diverse outputs of multi-span relation-
ships. Thus, the overall performance of multi-head model is
influenced by the above specialties of its two sub-modules.

4.4 Case Study
We conduct case studies of the above three hypotheses
to compare the predictions of the multi-head QuORE and
LOREM. We present context words in double-quotes.

• Cases in H1: (1) We notice that QuORE is better at han-
dling cases where arguments separately locate in main
and subordinate clauses than LOREM. For instance, given
a sentence “Different enzymes that catalyze the same
chemical reaction are called isozymes.” and the argu-
ments (“Different enzymes”, “the same chemical reac-
tion”), QuORE gives out the gold relation “catalyze”
whereas LOREM predicts “called” incorrectly. (2) We
summarize that the major errors of QuORE occur in
cases where the relation concerns modal verbs or auxil-
iary verbs, such as “can” and “have been”. QuORE may
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SAOKEZh

P R F1 EM

SSE .9123 .8015 .8114 .6045
QASL .8937 .9162 .8867 .7389

Multi-H .8918 .9220 .8887 .7347

LOREM .6904 .5349 .5657 .3544

Table 4: Evaluation on SAOKEZh with multi-span relations

Figure 4: Comparison of QuORE (multi-head) and LOREM on the
test set of SAOKEZh by the number of spans in gold relations. La-
bels at the bottom indicate the average number of predicted spans.
Ovals at the top denote the number of examples.

extract either fewer or more words than a gold relation,
e.g., provided a sentence “Algae had covered moist land
areas for millions of years.” and the arguments (“Algae”,
“moist land areas”), QuORE predicts “covered” as the re-
lation, fewer than the ground truth “had covered”. Mean-
while, we observe that LOREM also outputs “covered”.

• Case in H2: QuORE can take the argument order into ac-
count and detect a non-existent relation. Given a context
“The bus was out-of-control and going downhill when it
struck a truck from behind.” and the arguments (“down-
hill”, “The bus”), our model correctly predicts a non-
existent relationship considering the reverse order of ar-
guments.

• Case in H3: Provided a multi-span case of a context
““远望5号”测量船给“嫦娥一号”下达指令，指示“嫦
娥”不断变轨，使其按照固定轨道顺利运行。” and
the arguments (““远望5号””, ““嫦娥””), QuORE out-
puts the gold multi-span relation (“指示”, “不断变轨”).

5 Related Work
We have reviewed the previous open relation extraction sys-
tems and datasets in the Introduction. In this section, we
focus on the related works of our model framework.

Multi-span Extraction Some recent studies on machine
reading comprehension have designed different models to

extract multi-span answers. Segal et al. cast the multi-span
question answering task as a sequence tagging problem, pre-
dicting for each token whether it is part of the answer. Yang,
Zhang, and Zhao modify the single-span extraction method
by adding a special virtual span to generate multi-span an-
swers. Hu et al. propose to predict the number of output
spans for each question and use a non-differentiable infer-
ence procedure to find them in the text.

Multi-head Models There has been substantial interest in
training a multi-head model for multiple tasks, including the
fields of languages (Collobert and Weston 2008; Liu et al.
2019; McCann et al. 2018; Dua et al. 2019; Hu et al. 2019;
Segal et al. 2020), computer vision (Lu et al. 2020), and
robotics (Teh et al. 2017).

6 Conclusion
Our work targets the practical demands of open relation ex-
traction with non-existent and multi-span relationships using
a novel query-based multi-head framework QuORE. The ex-
periments and analyses present the effective performances
in the multiple tasks and corresponding explanations. In
the future, we will enhance the model architecture, transfer
our model to other languages, and explore the few/zero-shot
learning abilities in low-resource languages and domains.

A Different Query Templates
We analyze the effects of different query templates by ex-
perimenting with the question-mark (QM) style TQM , w/o
QM style Tw/oQM , comma style T comma, and language-
specific natural-language (NL) style TNL in English (En)
or Chinese (Zh), as listed below. However, the evaluation
results of these templates have marginal differences, which
is observed on all datasets used in this paper. We present
the evaluation of different queries on LSOIE-wikiEn in Ta-
ble 5. The possible reason for the marginal results is that all
the templates consist of the necessary argument information,
and the representations learned via a pre-trained Transform-
ers encoder are similar due to the robust expression ability
of the encoder.

• Tw/oQM = “A1”“A2”...“An”

• T comma = “A1”, “A2”, ..., “An”

• TNLEn = What is the relation among“A1”, ..., and“An”?

• TNLZh = “A1”, “A2”, ..., “An”之间的关系是?

QM w/o QM Comma NLEn

SSE F1 0.9650 0.9654 0.9660 0.9663

EM 0.9572 0.9594 0.9588 0.9597

QASL F1 0.9611 0.9548 0.9537 0.9585

EM 0.9472 0.9422 0.9419 0.9403

Multi-H F1 0.9650 0.9664 0.9674 0.9640

EM 0.9600 0.9582 0.9600 0.9572

Table 5: Evaluation of different queries on LSOIE-wikiEn
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