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Abstract

In this paper we present a topological epistemic logic, with
modalities for knowledge (modeled as the universal modal-
ity), knowability (represented by the topological interior op-
erator), and unknowability of the actual world. The last no-
tion has a non-self-referential reading (modeled by Cantor
derivative: the set of limit points of a given set) and a self-
referential one (modeled by Cantor’s perfect core of a given
set: its largest subset without isolated points). We com-
pletely axiomatize this logic, showing that it is decidable and
PSPACE-complete, and we apply it to the analysis of a famous
epistemic puzzle: the Surprise Exam Paradox.

1 Introduction

Epistemic logic has been formalized by Hintikka within
the framework of possible-world semantics in relational
(Kripke) models, and later rediscovered by game theorists
(Aumann 1995) in the setting of partitional models (corre-
sponding to the special case of S5 Kripke models, based on
equivalence relations). In these forms, it has been used in
Computer Science to reason about distributed systems, in Al
to reason about agent-based knowledge representation, and
in Philosophy to explore issues in formal epistemology.

An alternative interpretation of modal logic is based not
on Kripke frames, but on topological spaces. This semantics
can be traced back to McKinsey and Tarski (McKinsey and
Tarski 1944). When the modal ¢ is interpreted as topolog-
ical closure Cl and the modal [J as topological interior Int,
one obtains a semantics for the modal logic S4. McKinsey
and Tarski also suggested a second topological semantics,
obtained by interpreting the modal ¢ as Cantor derivative
(where recall that the derivative d(A) of a set A consists of
all limit points of A). The modal logic of Cantor derivative
is semantically more expressive than the modal logic of the
interior/closure operators: the latter can be defined in terms
of derivative, but not vice-versa.

Since then, the usefulness of topological structures in
Computer Science and Knowledge Representation has been
well established. As noticed by Vickers (Vickers 1989) and
Abramsky (Abramsky 1991), the notion of observability and
its logic require a topological setting. Abstract notions of
computability also involve topological structures, with a fa-
mous example being the Scott topology. Research on spa-
tial reasoning, in both topological and metric incarnations,
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is also of significant interest for AI. More recently, develop-
ments in Formal Learning Theory (Kelly 1996; Brecht and
Yamamoto 2010; Baltag, Gierasimczuk, and Smets 2015)
and Distributed Computing (Goubault, Ledent, and Rajs-
baum 2020) have taken a topological turn. Moreover, recent
work in epistemic logic (Baltag et al. 2016; Ozgiin 2017;
Baltag et al. 2019b) on modelling and reasoning about evi-
dence and knowability uses topological structures.

These applications are based mostly on the notion of topo-
logical interior. Our paper builds on this existing work,
but is the first to show the usefulness for Knowledge Rep-
resentation of other topological notions, such as Cantor
derivative. From a technical point of view, our formal-
ism is obtained by adding to the logic of Cantor deriva-
tive a global modality (quantifying over all points), an op-
erator capturing the perfect core d*°(A) of a set A (de-
fined as the largest subset of A that is equal to its own
derivative) and a dynamic update modality (that goes from
the original space to some definable subspace). Building
on our previous work on topological p-calculus (Baltag,
Bezhanishvili, and Ferndndez-Duque 2021), we give a com-
plete axiomatization, as well as decidability and complex-
ity results. Our proof is natural and not difficult to grasp,
due in large part to subtle technical innovations which al-
low for a much more direct approach than that of related
results in the literature (see e.g. (Ferndndez-Duque 2011;
Goldblatt and Hodkinson 2017)).

From a conceptual point of view, the key contribution
of our paper is that we develop a logic of evidence-based
knowledge, knowability, and (un)knowability of the actual
world; and moreover, we apply it to the analysis of a famous
epistemic paradox: the Surprise Examination paradox.

We start by adopting the learning-theoretic reading of
topology (Kelly 1996; Baltag, Gierasimczuk, and Smets
2015; Baltag et al. 2019b), in which a topological space is a
way to represent the actual and potential evidence that some
(anonymous) agent may observe. The points of the space
represent possible worlds (or possible states of the world):
all the possibilities that are consistent with the agent’s cur-
rent knowledge. A proposition is known if it is true in all
possible worlds. The potential evidence (that might be ob-
served in the future) forms a topological basis B: if a world
x belongs to a basic open set x € U € B, then the agent may
observe proposition U in world z. The topological interior
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operator Int(A) captures the knowability of proposition A
through observations U € B. When the agent gains more
knowledge, some possibilities are eliminated (being ruled
out by the new information), and thus the space shrinks to a
subspace: this corresponds to performing a knowledge up-
date (described in our logic by dynamic update modalities).

While each of the above epistemic readings of standard
topological notions are already known from the literature,
the epistemic meaning of Cantor’s derivative and the perfect
core is not so obvious. In this paper, we propose a novel and
very natural learning-theoretic interpretation of derivative.
Essentially, the derivative d(A) is the proposition asserting
that the actual world is unknowable (through observations),
even if given (the additional information) A." Finally, the
epistemic meaning of the perfect core d*°(A) can be recon-
structed from its fixed-point definition: essentially, d*°(A)
is the self-referential version of Cantor’s derivative, i.e. the
proposition asserting that “A is true, but the actual world
is unknowable even given this information” (where ‘this’
refers to the very proposition that we are defining).

The main motivation for the introduction of the perfect
core modality comes from our analysis of the Surprise Exam
Paradox. The story says that a Student knows for sure that
the date of the exam has been fixed in one of the five (work-
ing) days of next week. But he doesn’t know in which day.
The Teacher (who is known to be always truthful) announces
that the exam’s date will be a surprise: even in the evening
before the exam, the Student will still not know for sure
that the exam is tomorrow. Intuitively, the Student can then
prove (by backward induction, starting with Friday) that the
exam cannot take place in any day of the week: first, if the
exam would be on Friday, then it wouldn’t be a surprise (-
since Friday is the last possible day, by Thursday evening
the Student would know it); since the Teacher (truthfully)
announced that the exam will be a surprise, it follows that
the exam will not take place on Friday. But once Friday is
eliminated, the Student can repeat the same argument, until
all days are eliminated. But this is a contradiction (since we
assumed the Student knows there will be an exam).

In some versions of the puzzle, there is an even more
“paradoxical” follow-up: the assumption that the Teacher
never lies is weakened, to allow the Student some way out.
After deriving the above contradiction, he concludes that the
Teacher lied: the exam will not be a surprise. Confident that,
whenever the exams comes, he will somehow get to know
it an evening in advance (and thus be able to study in that
last evening), the Student parties every day. Then, when the
exam comes (say, on Wednesday), it will indeed be a com-
plete surprise! So the Teacher told the truth after all?!

Indeed, prior to this paper, the dominant interpretation of
derivative in the epistemological literature was Steinsvold’s read-
ing in terms of “belief” (Steinsvold 2007). That interpretation has
been criticized as not correctly reflecting the intuitive properties of
belief and its relations to knowledge (Baltag et al. 2019a). Though
new, our interpretation is closer to an older work (Parikh 1992),
based on a different framework: multi-agent S5 Kripke frames.
In that setting, derivative is connected to ignorance (rather than to
unknowability): the agent does not know the actual world.
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In this paper, we give a full analysis of the paradox us-
ing our topological epistemic logic. We distinguish between
non-self-referential interpretations of Teacher’s announce-
ment (which can be formalized using Cantor derivative)
and self-referential interpretations (which are captured us-
ing the perfect core modality). The first interpretation was
pursued (in a non-topological, and less transparent, setting)
in (Gerbrandy 2007), and shown to be paradox-free: the
only conclusion is that the exam cannot be on Friday, but
the elimination process cannot be iterated. However, most
logicians consider that the most natural (and intended) in-
terpretation is the second, self-referential one. As in the
above intuitive argumentation, this does lead to a contra-
diction. The correct conclusion is that a Teacher who is
known to be always truthful cannot make such an announce-
ment (since if she did, it would be a lie). In this, we
agree with the verdict given in (Quine 1953). However,
we also show that the above contradiction is only produced
by the special evidential topology underlying the Surprise
Exam Story. By changing the topology, we obtain “non-
paradoxical” versions, in which the Teacher can truthfully
make similar future-oriented self-referential “surprise” an-
nouncements. Our conclusion (against the opinions of many
philosophical logicians) is that epistemic self-referentiality
is not the cause of the apparent ‘paradoxicality’ of the Sur-
prise Exam Paradox.

2 The Evidential Topology

As preliminaries, we recall here some notions from Gen-
eral Topology. In the view of our epistemic applications,
we strengthen somewhat the standard notion of topological
base, obtaining a concept that we call “strong base”.

2.1 Topological Preliminaries

Definition 2.1 (Topology, strong base, open and closed sets,
neighborhoods). A strong (topological) base on a set X
(called a space, and whose elements © € X are called
points) is a family B C P(X) of subsets of X (called ba-
sic open sets), with the property that it is closed under fi-
nite intersections: if U C B is any finite subfamily, then
(U € T. This is in fact equivalent to requiring that a base
is closed only under binary intersections (if U,V € B, then
U NV € B)and contains the whole space (i.e. X € B).2
A basic neighborhood of a point x € X is a basic open set
UeBwithx € U.

A topology on a set X is a strong base T C P(X), that
satisfies the additional requirement that: it is closed under
arbitrary (possibly infinite) unions: if U C T is any subfam-
ily, then JU € T. The pair (X, T) is a topological space
and the sets U € T are called open sets.> Their comple-
ments X — U (with U € T) are called closed, and have
dual closure properties to the opens. A neighborhood of a
point ¢ € X is an open set U € T withx € U.

2This last condition follows from applying closure under finite
intersections to the empty family &/ = ) C 13, since (|0 = X.

3By applying closure under unions to the empty family &/ = ),
it is easy to see that @) is open (as well as closed, being the comple-
ment X — X of the open set X).
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Operators in a Topological Space [Interior, closure,
derivative] An interior point of a set A C X is a point
x € X s.t. there exists a neighborhood U € T (of z) with
x € U C A. Given a strong basis B for the topology 7, it
is easy to see that x is an interior point of A iff there exists
a basic neighborhood U € B (of z) s.t. z € U C A. The
interior Int(A) of a set A C X is the set of all its interior
points. A point z € X is close to aset A C X if all its
(basic) neighborhoods intersect A: for all U € T (or equiv-
alently, for all U € B)sit. z € U we have U N A # (.
The closure C1(A) of the set A is the set of all points that
are close to A. A limit point of a set A C X is a point
x € X s.t. every (basic) neighborhood U of x contains a
point y € A with y # x; equivalently, x is a limit point of
Aiff x € Cl(A — {z}). The (Cantor) derivative d(A) of a
set A is the set of all the limit points of A. It is easy to see
that C1(A) = AUd(A). A non-limit point x € A — d(A) is
called isolated in A.

It is important to note that operators Int, Cl and d are
monotonic operators, e.g. in particular A C B implies
d(A) C d(B).

Generated Topology The topology generated by a strong
base B C P(X) is the smallest topology 7 C P(X) s.t.
B C T. We then say that B is a base for T. The generated
topology can be explicitly characterized as consisting of all
possible unions of basic opens: 7 = {|JU : U C B}.

Subspace Topology Every subset A C X of a topological
space (X, T) is a subspace of the original space, when en-
dowed with the subspace topology T4 = {ANU : U € T}.
Every strong base B for 7 induces a corresponding strong
base for T4, obtained by taking B4 = {ANU : U € B}.
All the above topological notions can be relativized to a sub-
space: e.g. for any subset P C A, we can define its relative
interior Int 4 (P) in A, closure Cl(P) in A and derivative
d4(P) in A, by applying the above definitions in the sub-
space A. Itis easy to see that Int 4 (P) = ANInt(PU(X —
A)), Cla(P) = ANCI(P),and dp(A) = ANd(P).

Perfect Sets and Perfect Core A set A C X is said to be
perfect if A = d(A). The perfect core of a set A is a sub-
set of A denoted by d*°(A), and defined as the largest per-
fect subset of A.* The perfect core d°(A) is the largest
fixed point of the relative derivative operator d4 : P(A) —
P(A), that takes subsets P C A into their relative deriva-
tive da(P) = AN d(P)in A3 This fixed point exists
(by the Knaster-Tarski fixed point theorem) because of the
monotonicity of the relative derivative operator d4 (itself
a consequence of the monotonicity of derivative and inter-
section). Using standard p-calculus notation for this largest
fixed point, we can thus write

d=(A) = vP. AN d(P).

*Here, “largest” is used in the sense of inclusion: so the perfect
core d*°(A) is the unique set B satisfying the following three con-
ditions: (1) B C A; (2) B = d(B); (3) every set B’ satisfying
conditions (1) and (2) is included in B.

>Once again, “largest” is taken here in the sense of inclusion.
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Cantor-Bendixson Rank For any set A C X, we define a
transfinite sequence of subsets of A, by putting:

d°(A) = A,  d*THA) = da(d*(A)) = ANd*(A),
dMA) = m d“(A) for limit ordinals \.

a<
It is easy to check that this is a descending sequence

A=d"(A)Dd(A)=d" (A)D...2d*(A)D...,

which thus must reach a fixed point; i.e. there must exist
an ordinal o s.t. d*t!'(A) = d*(A). The smallest such
ordinal is called the (Cantor-Bendixson) rank of A, denoted
by rank(A). Moreover, the fixed point of the above iterative
process d“(A) is the perfect core:

drank(A) (A) _ doo(A)

2.2 The Epistemic Interpretation of Topology

We proceed now to explain the intended epistemic interpre-
tation of the above topological notions, in terms of observ-
able evidence and information updates.

Possible Worlds, Knowledge, Observable Evidence, Ev-
idential Topology We think of the points € X as repre-
senting possible worlds (or possible states of the world): all
the possibilities that are consistent with some (anonymous)
agent’s information. Only one of these points represents the
actual world (the true state of affairs), but the agent may not
know which one: all she knows for certain is that it belongs
to the set X. Every subset P C X represents a “propo-
sition”, which may be “true” (i.e., hold) in a given world
or not. A proposition P is “known” for certain only if it is
true in all possible worlds that are consistent with the agent’s
information, i.e. if P = X. A strong basis B C P(X) rep-
resents our agent’s potential evidence: the properties of the
world that can in principle be directly observed by the agent.
When z € U € B, the agent may observe the truth of propo-
sition U in world x. Note that only the observable properties
that are frue in a world x will be observed in z (i.e. we as-
sume observations to be sound or “correct”). So in world x
the observable evidence corresponds to basic neighborhoods
of the point x. Note also that this is not yet “evidence in
hand” (that the agent already possesses), but “evidence out
there” (that might observed in the future). The two condi-
tions that underlie our definition of strong basis have a clear
epistemic meaning: closure under binary intersections says
that our agent is able to accumulate observations: after ob-
serving propositions U and V/, the agent will in effect have
observed the truth of the conjunction UNV (coming to know
that z € U N V); while the condition X € B says that the
agent can directly observe the truth of a tautology.

Knowability and Conditional Knowability Interior points
z € Int(P) represent worlds in which proposition P is
knowable (or “ verifiable”) based on direct observations: P
is true at x, and this fact can be known after some more
evidence about z is observed. This interpretation follows di-
rectly from the definition: « € Int(P) holds iff there exists
some observable evidence that entails P (i.e. U € B with
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x € U C P). So, as an epistemic proposition, Int(P) says
that proposition P can be known from observations. More
generally, the proposition Int(A = P) = Int((X —A)UP)
captures conditional knowability: it says that P can be
known (from observations) given A.

Unknowability and Falsifiability The complement X —
Int(P) thus corresponds to “unknowability” of P, while the
closure C1(P) = X — Int(X — P) corresponds to unfalsi-
fiability of P: x € CI(P) means that, no matter what more
evidence about x will be observed, P will never be known to
be false. Note though that our notion of unknowability is not
an absolute barrier to knowledge: it only expresses the fact
that P cannot be known by direct observations (of evidence
observable by the agent). Such an ‘unknowable’ P may still
become known based on information received from another
source (e.g. another agent).

Verifiable and Falsifiable Propositions The open sets U &
T represent (inherently) verifiable propositions: the ones
having the property that they are knowable/verifiable when-
ever they are true (cf. (Vickers 1989; Kelly 1996)). This
interpretation is backed by the following equivalence:

P e T iff PCInt(P).

Similarly, the closed sets represent (inherently) falsifiable
propositions: whenever they are false, they can become
known to be false after some more evidence is observed.

Knowledge Updates The move from the original topology
on X to the subspace topology on some subset A C X cor-
responds to performing an update of the agent’s knowledge
base with the proposition A: the possible worlds not satis-
fying A are eliminated, so the agent comes to know A after
that. The update can be the result of a direct observation
A € B; but it can also be the result of some communication
from some outside source of information (e.g. an announce-
ment from some other agent), in which case it is quite pos-
sible that A ¢ B (i.e. A is not observable by our agent).
However, for this update-by-elimination to be justified, it is
essential that our agent knows for certain that the source of
the new information is absolutely reliable (e.g. the other, in-
forming agent is telling the truth).® The relativized interior
Int4(P) = ANInt(P U (X — A)) in the subspace topol-
ogy will then capture a notion of updated knowability (after
updating with P, the agent can come to know A based on
further observations).

Examples of Evidential Topologies

 Complete ignorance: the trivial topology 7 = {0, X'}
onaset X;

* Omniscience (God’s topology): the discrete topology
T=PX)={Y|Y CX}onX;

* Knowledge based on measurements of a point on a line:
the standard topology of real numbers X = R, with the

SWhen this is not the case, other forms of updating are to be
considered (in which the non- A worlds are not eliminated, but only
considered in some sense less plausible, or less probable, than the
A-worlds).
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topology 7 generated by the strong basis B = {(a,b) :
a,b € Q,a < b} (open intervals with rational endpoints);

* Knowledge based on measurements in space: the stan-
dard topology on R", with state space X = R™ and
topology 7 = { countable unions of rational open balls},
ie. A C R™is open iff it is of the form A = (J2 {z €
Q"|d(x,a;) < b;}, where a;,b; € Q™ and d is the Eu-
clidean distance in n-dimensional space R™. A strong ba-
sis for this topology consists of all finite intersections of
rational open balls.

Concrete Example: The Policeman and the Speeding
Car A policeman may use radars with varying accuracy to
determine whether a car is speeding in a 50 mph speed-limit
zone. Then the the set of possible worlds is X = (0, 00)
(since we assume the car is known to be moving). The strong
base
B={(a,b):a,b€Q,0<a<b< oo}

consists of all possible measurement results by arbitrarily
accurate radars. The topology T generated by B is the stan-
dard topology on real numbers (restricted to X). “Speeding”
is the proposition S = (50, 00).

Suppose now that a radar with accuracy shows mph 51£2
mph. This induces an update: the original space X shrinks
to the subspace A = (49, 53). In this updated space, “Speed-
ing” becomes S4 = (50, 53). Still, even now (in the sub-
space A, i.e. after the radar reading), the policeman does
not know that the car is speeding (since S4 # A). However,
the property “the car is speeding” is in principle verifiable
(by the policeman): if the car is indeed speeding, then its
velocity must be some z € S4 = (50,53). Given a more
accurate radar, the policeman can obtain a better measure-
ment (a,b) with z € (a,b) C S4. This is reflected in the
fact that S5 = (50, 53) is open in the standard topology.

In contrast, Not-Speeding NS = (0, 50] is in general not
verifiable (not open). This means that whether N S is know-
able or not depends on the actual speed! For instance, N.S
is knowable in the world in which the speed is z = 49.
But it is not knowable in the world z = 50. On the other
hand, not-speeding NS is in general falsifiable (closed in
X): whenever it is false, it can be disproved by a sufficiently
accurate measurement of the speed.

The Epistemic Interpretation of Cantor Derivative To
understand the derivative, recall the equivalence:

z € d(A)iffx € Cl(A — {z}).
But note that C1(A — {z}) = X —Int(X — (4 — {z})) =
X —Int((X —A)U{x}) = X — Int(A = {x}). Using our
interpretation of X — P as negation of the proposition P,
and of Int(A = P) as conditional knowability (of P given
A), we conclude that

x € d(A) iff zis not knowable given A.
So, as an epistemic proposition, Cantor’s derivative d(A)
says that “the actual world is unknowable given A”.

The Epistemic Meaning of the Perfect Core Looking now
at the perfect core d*°(A), we can infer its epistemic mean-
ing from the above fixed-point identity:

d=(A) = vP. AN d(P).
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The perfect core can thus be understood as the self-
referential version of Cantor’s derivative: d*°(A) captures
the epistemic proposition “A is true, but the actual world is
unknowable given this information” (where ‘this’ refers to
the very proposition that we are defining). As we’ll see, this
is precisely the kind of self-referential statement that plays a
key role in the Surprise Examination Paradox.

3 The Logic of Derivative and Perfect Core

In this section we introduce the formal syntax and semantics
of our logic. We begin by defining the formal languages L.,
and £ we will work with:

Syntax. The language £ .y of dynamic-epistemic logic of
derivative and perfect core consists of formulas recursively
defined by the following BNF:

pu=p |l oo | oA | Qo | Op | Ko | {p)p

The language £ of (static) epistemic logic of derivative and
perfect core is the fragment of £ ., obtained by eliminating
all dynamic modalities ().

Semantics. We interpret this language on epistemic topo-
models M = (X, T, | - ||): topological spaces (X, T) with
a valuation function (mapping every atomic sentence p into
asubset ||p|| € X). The semantics is given by extending this
valuation recursively to all of L.y, defining || v using the
usual clauses for Booleans, while

10¢lim = d(ll#lln)
is the Cantor derivative of ||¢||m wrt the topology 7, and

I©¢llv = d el = vP.([lellva N d(P))

is the perfect core of ||p|la. The operator K is just the
global existential modality, quantifying existentially over all

possible worlds: ||K¢|m = X if |¢|lm # 0, otherwise

|K¢llm = @. Finally, (¢)t) is the dynamic modality for
epistemic updates, whose semantics is given by evaluating
1 in the updated model: if, for any subset A C X, we put
M = (A,Ta,| - ||a) for the updated model, with the sub-
space topology 74 = {UN A : U € T} and relativized
valuation [|p||4 = ||p|| N A, then we set

{e)ellm = 1Ll

where ||| = ||¢|/m is the valuation of ¢ in the original
model. As usual, we may write (M, z) = ¢ iff 2 € ||¢||Mm.
When the model M is clear from the context, we may skip
it, writing e.g. ||¢|| and = = .

In an epistemic context, we read K as epistemic possi-
bility: IA(gp says that “as far our agent knows, ¢ may be
true”, in the sense that ¢ is consistent with the agent’s in-
formation. We read Q¢ as saying that “the actual world is
unknowable (through observations) given ¢”’; we read O
as a self-referential statement, saying that “p is true, but
the actual world is unknowable (through observation) given
this information” (where ‘this information’ refers to the very
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proposition we are defining); finally, we read ()1 as saying
that “p holds, and ) will also hold after updating with .

Abbreviations: We will use the standard abbreviations for
propositional connectives ¢ V ¥, o = ¥, p < ¥, T and
L, as well as the following additional ones: Clp := =0,
Ko = =Ko, Kp = ¢V Op, and Ky = —K-p.
To justify these notations, note that K is just the univer-
sal modality (quantifying universally over all worlds that
are possible according to our agent), ¢ is just the closure
modality and /C is just the interior modality: | K¢| = X iff
lell = X, and [[Ko| = 0 otherwise; [[Kell = Cl([[¢]);
and ||[K¢|| = |l¢ A Op| = Int(]]¢]|). So, given our in-
terpretation of possible worlds, closure and interior, we can
read K¢ as “p is known” (to our agent), Ky as “y is know-
able” (through observations by our agent), and read IEgo as
“p cannot be falsified” (by any observations by the agent).

Theorem 3.1. [Completeness for L] The following sys-
tem is a sound and complete axiomatization of the dynamic-
epistemic logic of Cantor derivative and perfect core L .y:

* Axioms and Rules of Propositional Logic.

* Necessitation Rule, and Distribution (=Kripke’s Axiom),
for the modalities K, O and [p).”

* Positive and negative introspection for knowledge:
Kp= KKy Ko = K-Kyp

* Positive Introspection of Knowability (if ¢ is knowable,
then it is knowable to be knowable): Ky = KKy

* Knowledge implies knowability: Ko = Ko
=Y

Op = oY

o Fixed Point Axiom: ©Op = (p A OOp)

o Induction Axiom: K(p = Qp) = (¢ = Op)

* Reduction axioms for update modalities:

(p)p = (pADp)
R L)
(P KO < (pANEK(p)b)
()00 < (p A O(p)0)
(P)of < O(p)f
Proving soundness is an easy verification. Completeness

follows immediately from putting together the following two
results:

Theorem 3.2. [Provable Co-expressivity of L., and L] Ev-
ery formula in the language L .y is provably equivalent® to

some formula in the static fragment L. Hence, the two logics
Ly and L have the same expressivity.®

* Monotonicity rule for the perfect core:

"In fact, Necessitation for (] follows from Necessitation for K
and the axiom “Knowledge implies knowability”.

8This means that the equivalence is provable in the above ax-
iomatic system for L.y.

9But they differ in succinctness: formulas in L.y can be in gen-
eral exponentially more succinct than their translations in £. In
addition, they can capture the desired dynamic-epistemic scenarios
in a much more transparent and direct way than their translations.
This makes dynamic modalities very useful for applications, and
justifies our choice of the larger language L.y.
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Theorem 3.3. [Completeness for L] The system obtained
from the above axiomatic system for L., by eliminating all
axioms and rules that refer to dynamic modalities (specif-
ically: eliminating Necessitation and Distribution for [¢),
as well as all the reduction axioms) is a sound and com-
plete axiomatization of the static epistemic logic of Cantor
derivative and perfect core L.

Proof Summary While the proof of Theorem 3.2 is an
easy induction (using the reduction axioms to gradually
push the dynamic modalities past other operators and then
eliminate them), the proof of Theorem 3.3 is highly non-
trivial, and uses methods that we developed in our recent
work on topological p-calculus (Baltag, Bezhanishvili, and
Ferndndez-Duque 2021). Hence, we only give here a bird’s
eye overview of this proof. Essentially, we start from the
canonical model € (comprising all maximally consistent
theories accessible from some fixed theory), a standard con-
struction in modal logic. But we should stress that €2 is not
our intended model.'? Indeed, the usual Truth Lemma fails
for our logic £ in the canonical model: formulas are not
necessarily satisfied in {2 by the theories that contain them.
Next, for any given finite set of formulas ¥, we select a spe-
cial submodel of the canonical model Q% (called the X-final
model), consists of “X-final theories”: essentially, these are
the ones whose cluster is locally definable by some formula
in 2. Our goal will be to show that the Truth Lemma does
hold in Q* for X-formulas. It is easy to show that > sat-
isfies the usual Existential Witness Lemma for modalities ¢
and K (and formulas in XJ), but extending this to the perfect
core modality ® requires some work. Another key ingredi-
ent in our proof is the fact that QO is “essentially” a finite ob-
ject: though possibly infinite in size, it has finite ‘depth’, and
moreover it contains only finitely many bisimilarity classes.
As a consequence, the largest fixed points of the operators
P dj (P) (that define ||©¢||) are all attained in Q> be-
low some fixed finite stage of the Cantor-Bendixson process.
We then use these ingredients to prove our Truth Lemma for
the final model Q*.

The full details are in the Appendix to the extended ver-
sion (see Supplementary Material), where we also use the
selection method to obtain a finite submodel of Q* that satis-
fies the same relevant formulas, and then analyzing the com-
plexity of the selection algorithm, thus proving:

Theorem 3.4. [FMP, Decidability and Complexity] The
(static and dynamic) logics of Cantor derivative and per-
fect core have the strong finite model property (and hence
they are decidable). Moreover, the satisfiability problem for
the static logic L is PSPACE-complete.

Some Technical-Historical Connections. As mentioned
in the Introduction, McKinsey and Tarski (McKinsey and
Tarski 1944) were the first to look at the modal logic of topo-
logical closure and topological interior. In our notations,
these are captured by the knowability modalities /C and K.
They showed that this is the same as the modal logic of

1T fact, the notion of truth in the canonical model will play no
role in this paper: we never evaluate our formulas in it. Instead, we
only use a few basic syntactic properties of this model.
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reflexive-transitive frames, more precisely the modal logic
S4. In our formalism, the axiom 4 corresponds to our axiom
of Positive Introspection for knowability: Ko = KICop.
We refer to (van Benthem and Bezhanishvili 2007) for an
overview of results on topological completeness of modal
logics above S4.

As also mentioned in the Introduction, McKinsey and
Tarski also considered the modal logic of Cantor deriva-
tive. Esakia (Esakia 2001; Esakia 2004) showed that the
derivative logic of all topological spaces is the same as the
logic of weakly-transitive frames, namely the modal logic
wK4 = K + w4, where w4 is the weak transitivity axiom:
OOp — Op V p. In our formalism, this is easily seen to
be equivalent to the above-mentioned axiom of Positive In-
trospection for knowability. Indeed, given our definition of
knowability, the axiom Ky = KK¢ can be unfolded into

(p AOy) = O0ep.

This is a Sahlqvist formula (see e.g. (Chagrov and Za-
kharyaschev 1997)) corresponding to the weak-transitivity
condition on relational models, whose equivalent dual form
is Esakia’s weak transitivity axiom w4.

4 Surprise: Non-Self-Referential Version

There are many ‘solutions’ to the Surprise Exam Paradox in
the literature (Quine 1953; McLelland and Chihara 1975;
Wright and Sudbury 1977; Sorensen 1984; Chow 1998;
Hall 1999; Gerbrandy 2007; Levi 2009). Some of them con-
cern different versions of the puzzle, in which some of the
assumptions are suspended , e.g. the Student may not know
for sure (but only believe) that there will be an exam next
week, or that the Teacher always tells the truth. Though in-
teresting, these provide “easy” ways to avoid the contradic-
tion, so we will ignore these weakened versions, focusing on
the version in which these assumptions are granted. Even
so, most of the solutions proposed in the literature are un-
fortunately informal, or only half formalized. Gerbrandy’s
approach (Gerbrandy 2007) is one of the few exceptions. We
hereby briefly summarize his approach.

Gerbrandy’s Solution The setting uses the older, non-
topological version of our dynamic-epistemic logic, more
precisely the so-called Public Announcement Logic: an
epistemic model M = (X, || - ||) is simply given by a set of
possible worlds X together with a valuation map; the logic
is restricted to the fragment generated by atomic sentences,
Boolean connectives, the knowledge operator K ¢ (modeled
as universal modality) and the dynamic update operators
[©]0 (also called ‘public announcement’, and modeled by
relativization to the subset |||, with no subspace topologi-
cal structure). Like our logic, this logic is single-agent: the
Teacher is only treated as an infallible source of truthful in-
formation, not as an agent. So the knowledge operator K
refers to the Student’s knowledge. Knowability ¢, deriva-
tive modality Q and perfect core ®¢ do not belong to this
language. But the update modalities are still eliminable, via
the reduction laws for Booleans and knowledge.

More specifically, the set X = {x1,z9, x5, 24,25} con-
sists of five possible worlds, with the obvious meaning: for
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each 1 <4 < 5, x; is the world in which the exam will come
in the corresponding i*" day of the week. The language has
5 atomic sentences {p; : 1 < ¢ < 5}, where p; means “the
exam will be in the i*" day”. The valuation is again obvi-
ous: ||p;|| = {z;}. Clearly, this model satisfies K(\/?Z1 Di)s
which captures one of the main assumptions of the puzzle:
the Student knows for sure there will be an exam in the next
week. Furthermore, for each 1 < ¢ < 5, the passage of the
previous days without any exam can be ‘simulated’ in this
logic by an update with the sentence /\;;11 —p;: indeed, this
is the information gained by the Student by the evening of
day ¢—1. Hence, Gerbrandy formalizes Teacher’s announce-
ment as the sentence

5 1—1
SURPRISE = A\[ —p;]~Kp.

i=1 j=1

This sentence says that, no matter in which day ¢ will the
exam come, by the evening of day ¢ — 1 the Student will not
know for sure that the exam will be the next day. Using the
reduction axioms, this formula can be simplified to

5 %

surPRISE <\ ~K(\/ p)).

i=1 j=1

Finally, the assumption that the Student knows for sure that
the Teacher never lies is implemented by performing an up-
date with the sentence SURPRISE: all worlds in which the
sentence is false are eliminated, and the model shrinks to
|[SURPRISE||. But, using the above static equivalent, it is
easy to see that, in the model X the sentence SURPRISE
is false only in world ws (in which the exam is on Fri-
day) and true in all the others. Hence, the model shrinks
to [[SURPRISE|| = {1, x2,Z3, T4}.

Thus, according to Gerbrandy, the only valid conclusion
is that the exam cannot be on Friday: the first elimina-
tion step in the informal reasoning underlying the ‘para-
dox’ is the only correct one. All further elimination steps
are not justified: e.g., the second step (eliminating Thurs-
day) would require performing a second update with the
sentence SURPRISE. But the Teacher only announced the
sentence once! The sentence SURPRISE was true before be-
ing announced (assuming the exam won’t be on Friday), but
nothing guarantees that the sentence will still be true after
this announcement: the Teacher did not claim that! If say,
the exam will be on Thursday, then the sentence SURPRISE
changes its truth value (from true to false) after the Teacher’s
announcement: this does not in any way contradict the truth-
fulness of Teacher’s announcement (since it was true at the
moment when it was announced). So the apparent ‘paradox’
only points to the existence of sentences that change their
truth value after being announced.!!

A first objection to the above approach is that it gives a
very “low level” formalization of the sentence SURPRISE,
that is highly dependent on irrelevant details (such as the

'"Such examples are called ‘Moore sentences’ and are by now
well-understood as non-paradoxical utterings, easily dealt with in
the framework of Dynamic Epistemic Logic.
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number of days in the week, the linear temporal order of the
observable evidence in the form of day-passing, etc). If we
change the story to cover 2 weeks, the sentence SURPRISE
changes. Even worse: we can build similar stories, to which
the above approach simply cannot be applied, since e.g. the
number of worlds is infinite, the potential observations are
also infinitely many, and they cannot be arranged in any
salient linear order. Let us look now at such an example.

Infinite Surprise Let us denote the set of positive integers
by N. It is known that the Teacher chose a point = belonging
to the set
A= {0} U {1/’n tn e N} U {1/n(n+l) n e N}

and marked it on the real line drawn on a board. The Stu-
dent can perform observations, measuring the position of the
point, with any arbitrary precision € > 0 (by building bet-
ter and better measurement devices); but obviously, he can
never measure the position with infinite precision (¢ = 0)!
But the Teacher (who is known to be always truthful) tells
the Student: “No matter how good your measurement is, you
will never know the exact position of the point!”

Intuitively, the Student can reproduce the Surprise Exam
argument to conclude that z ¢ A, obtaining a contradiction
(since he knows that x € A). First, if the point is of the
form x = ﬁ for some n € N, then he eventually be
able to know its location exactly, if he continues increasing
the precision of his measurements: indeed, whenever he will
reach a precision €< | n(nh—l) - (7L+1)1(n+2) | = 71,(n+11)(n+2) ’
then his measurement will yield an open interval of the form
(a—€,a+¢€) 2 x, whose only intersection with A is the sin-
gleton {z} = {m} consisting of the exact position. But
this contradicts the Teacher’s announcement (that he will
never know the exact position); this contradiction rules out

all points of the form —L—, so = must belong to the set
{0} U{t/n:

n(n+1)

n € N}. By repeating the argument, the Stu-
dent can rule out next all points of the form x = % (with
n € N), since in any such case he will eventually be able
to know its location exactly (whenever he reaches a preci-

: 1 1 1 :
sion e < [~ — (n)(n+1)| = ntan)- concluding that @ must

belong to the singleton set {0}. So now the Student knows
the exact location z = 0 (without even having had to do
any measurement), again contradicting Teacher’s announce-
ment!

Though the argument is essentially identical to the Sur-
prise Exam, it cannot be treated using the above approach,
due to the fact that both the possible worlds and the possible
observations (measurement intervals) are infinite.

This is where the topological approach comes to the res-
cue. By abstracting away from day-passing or measure-
ments, and considering them to be just special cases of fam-
ilies of observable evidence, given in the form of strong
topological bases, we can see the sentence SURPRISE simply
says that “the actual world is not knowable through observa-
tions”. Using our semantics, this is captured by the formula

SURPRISE := OT,

where ¢ is the derivative modality wrt the evidential topol-
ogy (generated by the basis B). In the case of our Infinite
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Surprise, it is clear what the evidential topology is: the
standard topology on the set A, generated by the family
B={(a,b)NA:a,beQ,a < b} of (relativized) open in-
tervals with rational endpoints. Applying Gerbrandy’s anal-
ysis to this topological version, we see that || SURPRISE|| 4 =
[0T]la = da(A) = d(A) = {0} U{L : n € N} (since all
other points are isolated in A), and we can thus conclude that
only this first elimination step is correct: the only informa-
tion that can be extracted from Teacher’s announcement is
that z € {2 : n € N}. Further elimination steps are not jus-
tified: though true when it was announced, the sentence (T
may have changed its truth value after the announcement.

Going back to the original Surprise Exam story, what is
the evidential topology in that case? Since “observations”
correspond there to the passing of days without exams, the
relevant strong base is

B ={01,03,03,04,05},

where O; = X — {z; : j < i} = {z; : i < j}. Here,
01 = X corresponds to the trivial tautological observation
(before Monday) that the exam will be in one of the 5 days
of next week; O- corresponds to the negative observation
after Monday morning: that the exam was not on Monday
(hence it will be in one of the remaining four days); etc.
The generated evidential topology is 7 = {0} U B. Once
again, as in Gerbrandy’s analysis, ||0T| = X — {25} =
{x1,29, 23,24} (since x5 is the only isolated point in this
topology).

We have thus obtained a uniform treatment of the puzzle,
that simplifies and generalizes Gerbrandy’s solution.

S Surprise: Self-Referential Version

While the above formalization of the sentence SURPRISE
seems natural at first sight, there is something profoundly
odd about it. The teacher announced that the exam’s date
will be a surprise: this seemed to point to the actual future,
as it will unfold after this announcement is made. How-
ever, the above formalization allows for the possibility that
the announcement was meant to be true only before the an-
nouncement (or counterfactually: if no such announcement
was made), but to possibly change its truth value to false af-
ter the announcement is made. In that case, in what sense
can one still claim that the Teacher was truthful in her an-
nouncement about “will” happen?

Looking at the sentence {'T (or at Gerbrandy’s more com-
plicated non-topological counterpart), we can see that the
best way to describe it in natural language is a counterfac-
tual statement of the type: “the exam’s date would have been
a surprise, if I didn’t make this very announcement”. More-
over, this interpretation in terms of a counterfactual (instead
of the actual) future seems to be crucial for Gerbrandy’s ‘so-
lution’ of the paradox.

However, this is not what the Teacher said, and it does not
sound like the most natural interpretation of her statement.
When referring to the future in an announcement, it is typi-
cally implicitly assumed that the speaker factors in her own
announcement action: thus, she is expected to use the word
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“will” to refer to what will happen after she makes the an-
nouncement. “It will be a surprise” means that it will be so,
not that it would have been so in some other possible future.

Thus, to understand the Teacher’s statement we need to
make explicit its implicit self-referentiality, reading it as
“You will not know in advance the exam day (i.e. after
hearing this very announcement)”. Most authors who wrote
about the paradox agree that this self-referential interpreta-
tion is the intended one.

Gerbrandy was aware of this interpretation (without for-
malizing it), but like many other logicians he thought that it
leads to a genuine, Liar-like paradox, because of its circu-
larity. In contrast, other logicians, such as Quine, argued in
older work (Quine 1953) that there is no real paradox, but
only an impossible assumption: the conclusion should only
be that a source who is known to always tell the truth can-
not make such a (future-oriented, implicitly self-referential)
announcement (since that would be a lie).

Using our derivative and dynamic modalities, we can
formalize the self-referential announcement as a ‘circular’
proposition P satisfying the equation

P = (P){T.

Moreover, this is all that is claimed in the Teacher’s an-
nouncement: there is no other implicit information in it.
This means that we are looking at the most general state-
ment satisfying the equation, i.e. the largest fixed point of
the operator P — (P){T. Using standard u-calculus no-
tation, we can write the statement as

SURPRISE™ := vP.(P)OT,

and call it the self-referential surprise announcement. Al-
though the above formalization is not in our language L.,
(but only in its fixed-point extension), it can be given an
equivalent formulation. Using our reduction laws, we can
see that (P)OT is equivalent to P A O(P)T, which in turn
is equivalent to P A OP. So the sentence SURPRISE™ is
equivalent to any of the following formulas:

VPP AOP =vP.OP =vP.(TAOP)=0T.

Thus, the formula ®T, denoting the perfect core of our
space ||©T||x = d*(X), captures the full self-referential
meaning of the surprise announcement SURPRISE®. There
is nothing paradoxical with this type of self-referentiality:
the monotonicity of the derivative operator ensures the ex-
istence of the fixed point. If a Teacher who is known never
to lie made this announcement, that would induce an update
that shrinks the original space X to its perfect core X >°.
We can now recognize the successive eliminative steps
in the Student’s reasoning as corresponding to the Cantor-
Bendisxon process of calculating the perfect core: the first
step eliminates the isolated point x5, calculating the Can-
tor derivative d*(X) = X — {x5}; the next step calculates
d*(X) = X — {x4,75}; etc. After five steps, we reach a
fixed point d®(X) = d*°(X) = ). A similar remark ap-
plies to our above Infinite Surprise example: the first step
yields d'(4) = {0} U {2 : n € N}; the next step yields
d?(A) = {0}; finally, the third step reaches the fixed point
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d3(A) = d*(A) = 0. And since in both cases the perfect
core is empty, a contradiction is actually reached!

But, in this interpretation, all the elimination steps are jus-
tified (unlike in Gerbrandy’s counterfactual interpretation).
The conclusion is that, in the self-referential version of the
story, the Student’s entire inductive eliminative reasoning
is entirely correct! The contradiction obtained in the end
(|ISURPRISE®|| = d*°(X) = () only shows that the up-
date with SURPRISE™® cannot be truthfully performed in this
case: if it is known that the Teacher never lies, then the state-
ment SURPRISE® is false, and in fact known to be false, re-
gardless of the day of the exam.

Liar-like paradox? Not really. The sentence SURPRISE™
has in any case some definite truth value, unlike the Liar sen-
tences. As already mentioned, one of the assumptions of the
story must simply be false: either it is not known for sure that
the Teacher always tells the truth, or else the Teacher never
makes this self-referential announcement in these particular
situations (since it would be a lie). The appearance of para-
dox is due to the fact in this specific example the only fixed
point is the empty set. However, a proposition with empty
extension is by definition not paradoxical, but just false (in
all possible worlds).

But this doesn’t validate the Students’ ultimate conclusion
(in the follow-up story): partying every day is not justified.
That last follow-up step is the Student’s only mistake. If the
Student gives up the first assumption (that he knew that the
Teacher never lies), then the whole iterative elimination rea-
soning is blocked: even the first step is no longer justified!
So, in that case, the Student can no longer be sure that the
Teacher lies: she may be lying, or she may be telling the
truth. All bets are off, the exam might come any day. Study-
ing every day, instead of partying, is now the only safe op-
tion.

Our diagnosis agrees with Quine’s: a Teacher who is
known not to lie cannot truthfully make the announcement
SURPRISE®™ in our two examples. But, contrary to Quine,
Gerbrandy and other philosophical logicians, we claim that
this impossibility result is not due to the self-referential char-
acter of the announcement. Self-referentiality is only dan-
gerous when applied to non-monotonic operators (such as
negation, e.g. the Liar). But derivative is monotonic, so the
type of self-referentiality involved in the Surprise story is in-
nocuous.'? In fact, the sentence SURPRISE® can even be

2In contrast, the Liar sentence requires a fixed point for nega-
tion/complementation, which doesn’t exist in a Boolean algebra.
Another possible source of the feeling of paradox given by the
Surprise Exam story might be the negative form of the Surprise
sentence, as expressed in natural language, which makes it superfi-
cially similar to the Liar sentence. Thus, its self-referentiality may
look dangerous at first sight. But looks are deceiving: in the expres-
sion “the actual world can be known, given P”, the proposition P
appears conditionally, and thus in a negative position; hence, when
we negate this expression (saying “the world cannot be known,
given P”), P reverts to a positive position. This explains the mono-
tonicity of Cantor’s derivative (and relative derivative), and thus the
non-paradoxical nature of SURPRISE™.
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true in some situations! To see this, let us consider a modi-
fied version of the above Infinite Surprise example.

Infinite Surprise with a Twist Everything goes as in the
Infinite Surprise story, except that this time the Teacher
choses a point x belonging to the set B = A U [1,2],
where A = {0} U{L :n € N}U{m :n € N}is
the set in the previous (untwisted) version of Infinite Sur-
prise. The same Cantor-Bendixson inductive process of
elimination can be now used to show that the perfect core is
d*(B) = d>*(B) = [1,2]. In this situation, an update with
the same self-referential sentence SURPRISE® shrinks the
set of possible points to the subspace [1,2]. In other words,
an announcement of this sentence by a Teacher known to lie
simply conveys the information that the actual points satis-
fies z € [1,2]. A smart Student should be able to correctly
infer this information, by applying the same type of “para-
doxical” reasoning as in the above examples. But no contra-
diction is reached now: this scenario can happen, and if the
point really is in [1, 2] then the Teacher told the truth!

The conclusion of our analysis is that, in any Surprise-
like paradox, the appearance of “paradoxicality” is not due
to self-referentiality, but only to the fact that the perfect core
happens to be empty. The existence of non-empty perfect
sets is a topological fact, that has important epistemic conse-
quences: the self-referential sentence involved in Surprise-
like scenarios can in fact be true (even if in the standard
story it turns out to be false). The Surprise Exam ‘Paradox’
is not a paradox at all, and the Students’ inductive process
of elimination is a correct logical argument'3: just a special
case of the inductive Cantor-Bendixson process of calculat-
ing the perfect core! Thus, our analysis reveals deep con-
nections between the apparent paradox and classical work
in Analysis and Topology.

6 Concluding Remarks

In this paper, we developed a unified topological interpre-
tation of knowledge, observable evidence, knowability and
knowledge updates, and studied a notion of “epistemic sur-
prise” (expressing the unknowability of the actual world),
that comes in two flavors: a non-self-referential version (de-
scribed by Cantor derivative) and a self-referential one (de-
scribed by the perfect core). We applied these notions to
the analysis of the Surprise Exam Paradox, gave a complete
axiomatization of the associated logic, and proved that it is
decidable and that its static fragment is PSPACE-complete.

Some outstanding open questions still remain. First, what
is the complexity of our dynamic logic L.,? Although the
reduction to £ is exponential, we conjecture that L.y is still
PSPACE-complete. Second: developing a multi-agent ver-
sion of our logic would be of great value for studying epis-
temic dialogues, security protocols and other multi-agent
epistemic scenarios and puzzles. In future work, we plan
to tackle these open problems and their applications.

3With the obvious exception of the follow-up story: as we ex-
plained above, going to party every day (after giving up on the
initial assumption that it was known that the Teacher never lies) is
the Student’s only mistake.
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