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Abstract

Neuro-symbolic reasoning approaches proposed in recent
years combine a neural perception component with a sym-
bolic reasoning component to solve a downstream task. By
doing so, these approaches can provide neural networks with
symbolic reasoning capabilities, improve their interpretabil-
ity and enable generalization beyond the training task. How-
ever, this often comes at the cost of poor training time, with
potential scalability issues. In this paper, we propose a scal-
able neuro-symbolic approach, called Embed2Sym. We com-
plement a two-stage (perception and reasoning) neural net-
work architecture designed to solve a downstream task end-
to-end with a symbolic optimisation method for extracting
learned latent concepts. Specifically, the trained perception
network generates clusters in embedding space that are iden-
tified and labelled using symbolic knowledge and a symbolic
solver. With the latent concepts identified, a neuro-symbolic
model is constructed by combining the perception network
with the symbolic knowledge of the downstream task, re-
sulting in a model that is interpretable and transferable. Our
evaluation shows that Embed2Sym outperforms state-of-the-
art neuro-symbolic systems on benchmark tasks in terms of
training time by several orders of magnitude while providing
similar if not better accuracy.

1 Introduction
Research into methods of combining neural and symbolic
approaches to AI has accelerated in recent years (Sarker
et al. 2021). Neural networks have achieved high success
over a large range of tasks involving perception, such as
object recognition (Zhao et al. 2019) or acoustic event de-
tection (Xia et al. 2019). However, tasks involving reason-
ing are generally considered challenging for a neural net-
work. While an architecture can be devised to solve specific
tasks (Palm, Paquet, and Winther 2018; Lample and Charton
2020), a trained network lacks the true generalization capa-
bilities that a reasoning system should possess, while also
not being interpretable. Neuro-symbolic methods are seen
as a method of enhancing a neural network by providing it
with some of the reasoning capabilities and interpretability
that a symbolic system traditionally has.

Broadly speaking, many systems are built around dif-
ferentiable neural architectures that learn to approximate
symbolic computation from data (Minervini et al. 2018;
Riegel et al. 2020). A different approach that has recently

gained attention involves extending the capabilities of sym-
bolic solvers by (1) allowing the system to depend on the
output of a neural component, and (2) using inconsistent re-
sults arising from the neural output, reasoning process and
data to guide the training of the network. These systems see
neuro-symbolic reasoning on raw data as a combination of
two tasks: a perception task, handled by a neural component,
and a reasoning downstream task, handled by the symbolic
solver. In this paper we refer to these systems as “neuro-
symbolic reasoning systems”. Prominent examples include
DeepProbLog (Manhaeve et al. 2021) and NeurASP (Yang,
Ishay, and Lee 2020).

In neuro-symbolic reasoning, the output of the neural
component is associated with a symbolic concept (typically
a predicate of a logic program). We refer to these concepts as
“latent” as one does not typically provide labels for them. In
fact, the ability of neuro-symbolic reasoning systems to train
a neural network by only using the labels of the downstream
task (“target labels”) is one of their great advantages. Addi-
tional advantages include increased interpretability, and the
ability to generalize to downstream tasks other than the one
the system was trained on (by keeping the perception com-
ponent fixed and applying different rules). However, ex-
periments have shown that the training time for these sys-
tems can be significantly long even when the perception
task is simple (Tsamoura, Hospedales, and Michael 2021;
Yang, Ishay, and Lee 2020). The difficulty in training is in-
herent in current approaches: in order to train, the symbolic
component must “work backwards” from a given target la-
bel to a set of possible latent labels, which can be expo-
nential in size. This fact has so far hindered most neuro-
symbolic reasoning systems from being applied to tasks in-
volving a larger number of inputs and more complex percep-
tion tasks are usually not considered, with a few exceptions,
e.g. (Huang et al. 2021).

In contrast, approaches such as Concept Bottleneck mod-
els (Koh et al. 2020) have demonstrated that performing the
reasoning step with a second neural network can achieve
competitive accuracy when latent concepts are effectively
integrated into the neural architecture, without loss of scal-
ability. But they require latent bottleneck concepts to be la-
belled to preserve interpretability and generalization. They
are also not typically applied in a neuro-symbolic setting
where multiple raw inputs must be considered together.
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In this paper, we introduce Embed2Sym, a novel approach
to neuro-symbolic reasoning that is scalable, able to produce
neuro-symbolic models that are interpretable and generalize
beyond the training task, and does not require latent con-
cepts to be labelled. Embed2Sym works in three steps. First,
a neural network composed of a perception component and
a reasoning component is trained on the downstream task
end-to-end. The architecture for this network has previously
been shown to be effective in solving diagrammatic reason-
ing tasks (Wang, Jamnik, and Liò 2018). Here we consider
its use within the context of a general neuro-symbolic ap-
proach. By training the perception component in this man-
ner, rather than through evaluation of a logical formula, we
avoid the combinatorial difficulty that other neuro-symbolic
reasoning systems confront. Second, we search for latent
concepts that have been learned by the perception compo-
nent by analysing the clustered structure of datapoints in
embedding space. Third, we identify the discovered la-
tent concepts and assign them their symbolic meaning by
means of an optimisation task solved using a symbolic sys-
tem (Clingo) and background knowledge of the task. In this
way, we are able to lift a purely neural model into a neuro-
symbolic one that is interpretable and can generalize to tasks
the neural network alone could not perform.

We evaluate Embed2Sym on several tasks previously in-
troduced to benchmark neuro-symbolic systems. Results
confirm Embed2Sym achieves similar or better accuracy to
competing systems while training faster by orders of mag-
nitude. The scalability of Embed2Sym allows it to train on
tasks involving at least dozens of raw inputs, such as adding
two 15-digit numbers given as MNIST images, which other
systems find infeasible. We also confirm Embed2Sym can
scale to tasks involving more challenging perception do-
mains such as the CIFAR-10 dataset.

The paper is structured as follows: Section 2 discusses
related work. Section 3 covers the various aspects of the
Embed2Sym algorithm for neuro-symbolic training and in-
ference. Section 4 presents the results of an evaluation of the
system confirming its performance and scalability. Section
5 discusses the results and Section 6 concludes the paper.

2 Related Work
Research on combining neural networks and symbolic rea-
soning has a long history, and approaches vary greatly, see
survey in (Besold et al. 2017). For example, Neural Theo-
rem Prover (Minervini et al. 2018) uses soft unification to
learn symbol embeddings to correctly satisfy queries. Logic
Tensor Networks (Badreddine et al. 2022) represent First-
Order Logic constructs as vectors and differentiable func-
tions, and uses fuzzy logical operations. Logical Neural
Networks (Riegel et al. 2020) implement conjunction and
disjunction using a perceptron whose weights and bias are
learned with a tailored activation function designed to pre-
serve two-valued semantics as much as possible.

We consider our work to be most closely related to neuro-
symbolic reasoning systems that extend a symbolic solver
with neural capabilities. DeepProbLog (Manhaeve et al.
2021) is an extension of the ProbLog system (De Raedt,
Kimmig, and Toivonen 2007). A new construct in the form

of a neural Annotated Disjunction allows for the output of
a network to be interpreted as the probabilities of atoms. A
formula computing the probability of a query is compiled
and transformed into an arithmetic circuit which can be eval-
uated and used to produce gradient information for the net-
work. DeepStochLog (Winters et al. 2021) is an analogous
framework that uses Stochastic Definite Clause Grammars
rather than probabilistic logic programs.

NeurASP (Yang, Ishay, and Lee 2020) extends Answer
Set Programming with neural predicates. The predicate is
linked to a neural network and translated by NeurASP into
a choice rule representing the various output of the network.
The answer sets of the program are assigned probabilities
based on the network predictions, and the network is then
trained to optimise a semantic loss function (Xu et al. 2018).

Abductive Learning (Dai et al. 2019) considers the output
of a neural network in the absence of latent labels as in-
complete knowledge and therefore uses abductive reasoning
to generate these labels. Neurolog (Tsamoura, Hospedales,
and Michael 2021) generalizes this concept by producing
all abductive solutions for a given goal, and then applying
a semantic loss. More recently, abductive learning has been
extended into ABL-sim that uses vector embedding of latent
concepts to guide the training of the neural network (Huang
et al. 2021), which is trained using an additional loss term.

Similarly to the neuro-symbolic reasoning systems men-
tioned above, we divide a task into perception and reason-
ing sub-tasks. We also enhance a symbolic paradigm, in our
case Answer Set Programming, by providing it with a means
to reason over unstructured data. Unlike these approaches,
we do not use the symbolic component to guide the training
of the network. Instead, we use it to extract and label the
latent concepts discovered by the network through end-to-
end training. Like ABL-Sim, we consider the representation
of latent concepts in embedding space. However, in our ap-
proach, these embeddings are not used as tools for guiding
the training of the perception component, and hence we do
not require any additional loss terms. Instead, these embed-
dings arise naturally when training the neural network, and
are used to extract symbolic concepts out of the trained net-
work for downstream symbolic computations.

3 Method
We wish to learn functions of the form f = h ◦ g : X →
Z → Y , where f can be decomposed into a perception
function g : X → Z and a reasoning function h : Z → Y .
X is the space of inputs, Y the space of target labels and Z
a space of latent concept values relevant for the task.

A latent concept is a tuple C = (nC , SC) where nC is
the name of the latent concept and SC is an associated set
of values, which we assume to be finite. The task input
X to the function f itself is composed of multiple inputs
X = x1 × x2 × ... × xm where each xi is either a raw
input (e.g. image, text) or a symbolic input. While there
could be many latent concepts, we assume w.l.o.g. that each
xi is associated with a single one. To deal with multiple
latent concepts per input, we can construct a composite la-
tent concept. For example, if xi should be associated with
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Figure 1: Embed2Sym architecture. Left: An example of a fully neural architecture for the MNIST Addition task. Middle: After training the
fully neural network, clustering is applied on embedding vectors computed by the perception network. Symbolic optimisation is used to label
the clusters together with the rules Ph. Right: An example inference on MNIST digits. The cluster labels are used as symbolic inputs to the
program P (which may differ from Ph).

both C1 = (nC1
, SC1

) and C2 = (nC2
, SC2

) then we con-
struct C1,2 =

(
nC1,2

, SC1
× SC2

)
. Y is a set of target labels

that represent the output of the full neuro-symbolic reason-
ing task. C is the set of latent concepts of the task.

To train our model, we are given a dataset of samples
D = {X, y} ⊂ X × Y . Crucially D does not contain any
information about the correct latent labels in Z . To perform
well at the task, the model would have to learn how to cor-
rectly map a raw input xi to its latent concept value, which
is the responsibility of the g function. g in general is in fact
several functions, one for each latent concept. We denote
the perception function associated with latent concept C as
gC . Each gC is effectively a classifier for the latent concept
C trained via a weakly supervised learning task using D.
Example 1. Consider the MNIST Addition task (Manhaeve
et al. 2021). In this task, we are given two images of MNIST
digits (LeCun, Cortes, and Burges 2010) and must output
their sum. The task input X is a composition of the two
28x28 pixel images x1 and x2. Each image is associated
with the latent concept (“digit”, { 0, 1, ..., 9 }). The target
labels are the 19 possible sums Y = {0, 1, ..., 18}. Samples
in D are of the form ( , , 7). g is just a single function
gdigit that maps an MNIST image to its corresponding digit.
gdigit must be trained when the only given label is the sum.

As is common in neuro-symbolic reasoning settings, we
assume the reasoning component h can be represented by
a given set of rules Ph that is known in advance and can
be considered background knowledge for the task. It may
have been provided by a human, online knowledge bases
such as WordNet (Fellbaum 1998) and ConceptNet (Speer,
Chin, and Havasi 2017), or an inductive rule learning sys-
tem (Law, Russo, and Broda 2020). In settings where such
knowledge is not known in advance, the rules would have
to be learned in conjunction with the perception module g.
We leave such cases for future work and for now assume we

have been given this knowledge.

3.1 Fully Neural Model
Since h can be implemented correctly using the known rules
Ph, training the perception component g remains the pri-
mary goal. However, since the rules are not differentiable,
this can present some challenges. Some authors have taken
the approach of replacing hard logical rules with probabilis-
tic or continuous approximations (Manhaeve et al. 2021;
Xu et al. 2018). We choose a different path. We begin by
training a fully neural model. In this model, h is modeled
as a neural network that is trained from the data as an ap-
proximate reasoner. Although this may look at first to be
counter-intuitive, as we are interested in a neuro-symbolic
model, this neural model is useful in three ways. First, it al-
lows us to train the perception function g in a setting where
neural networks excel: continuous space with dense repre-
sentations. Second, we will see that even though g is not
trained using domain knowledge, it still discovers structure
in the data that is relevant to the domain and can be used
to lift our differentiable model into a neuro-symbolic one.
Third, it allows us to scale very well with the number of raw
inputs the model receives.

For each latent concept C, we have a function gC : XC →
Rk as a neural network. XC is the space of raw inputs that
can be mapped to values of C. In the MNIST Addition task,
this will be 28x28 grayscale images. gC maps these inputs
to a vector space of embeddings of size k. k is a hyperpa-
rameter that can be set to different values for each C. The
embeddings should form a dense representation of the la-
tent concept values and a good gC function would map raw
inputs having the same concept values close together. The
function h is also a neural network that operates on the set
of embedding vectors produced from each input, and outputs
the predicted label y ∈ Y .
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Figure 2: t-SNE visualization of gdigit embedding space post-
training, clearly showing clusters representing 10 different digits.

More formally, for each input xi in X let C(i) be its as-
sociated latent concept. The fully neural model is composed
as follows:

∀i = 1...m v⃗i = gC(i) (xi) (1)

y = h (v⃗1, v⃗2, ..., v⃗m) (2)

Figure 1 (left) illustrates this architecture for the MNIST
Addition example when m = 2. gdigit in this case could
be a CNN such as a LeNet, but modified to output an em-
bedding vector (v⃗1/v⃗2) instead of a probability simplex vec-
tor, as commonly done by using a softmax operation. This
change is important, as softmax outputs of the perception
module do not make much sense in a purely neural setting.
In addition, its use of exponents tends to cause one argument
to dominate the others, sending a sparser signal to the rea-
soning component. For this task, h can simply be an MLP
with an output layer of size 19, corresponding to the 19 pos-
sible sums, activated using softmax. The outputs of gdigit
are concatenated before being fed into the h component.

3.2 Identifying Latent Concepts
The fully neural model described above can be trained to
solve the task using D. As the various gC functions are
trained, they tend to cluster datapoints corresponding to the
same latent value together. So if C = (nC , {v1, v2, v3}),
gC will converge to a function that maps datapoints to three
distinct clusters in embedding space. An example of this is
shown in Figure 2. The plot depicts a t-SNE visualization
of the embedding space of MNIST images after training the
fully neural model depicted in Figure 1 (left) on the MNIST
Addition task. Even though this model was not given any
knowledge about relevant latent concepts for the task, 10
clear clusters emerged, each associated with a specific digit.

This observation is key to lifting the fully neural model
into a neuro-symbolic one. To achieve neuro-symbolic rea-
soning, we need to transform each gC function into a clas-
sifier for C. We can exploit the clustering behaviour to do
so. After training gC , we identify the various clusters in em-
bedding space. Then, we label each cluster with the best
latent concept value. The process for cluster discovery and

1 latent concept(nc, si, i).
2
3 cluster assignment(sample id, nc, xi, j).
4
5 {cluster mapping(nc, X, Y) : Y=0..|SC |} = 1 :−
6 X=0..|SC |.
7 :− cluster mapping(nc, X, Z),
8 cluster mapping(nc, Y, Z), X != Y.
9

10 holds(Id, C, RawInput, Value) :−
11 cluster assignment(Id, C, RawInput, ClusterIdx),
12 cluster mapping(C, ClusterIdx, ValueIdx).
13 latent concept(C, Value, ValueIdx).
14
15 % Task−specific rules defining the label
16 % in terms of the ‘‘holds’’ predicate
17
18 :∼ holds(sample id, target, y). [−1, 0]

Listing 1: ASP encoding for the cluster labelling task.

labelling is depicted in Figure 1 (middle). When we wish to
predict the latent concept value associated with a raw input
xi, we compute gC(xi), check which cluster it belongs to
and predict the label of that cluster.

Cluster Discovery To perform the clustering in embed-
ding space, we employ the K-Means Clustering algorithm.
K-Means has the advantages of being simple and fast, al-
though it assumes clusters are isotropic in Euclidean dis-
tance. However, we believe this is sufficient to demonstrate
our approach and have observed good results over the range
of experiments we performed. Future work may be directed
at investigating other clustering algorithms, such as DBScan
(Ester et al. 1996) or Deep Clustering methods (Caron et al.
2018; Moradi Fard, Thonet, and Gaussier 2020).

Cluster Labelling So far we have identified the clusters
in gC’s embedding space, but we have yet to discover which
symbolic latent value of C is associated with each cluster.
In other words, the clusters are unlabelled. For the labelling,
we take advantage of the fact that the reasoning component
h can be given an alternative representation using Ph.

An assignment of clusters to labels of C is simply a one-
to-one mapping. We can evaluate such an assignment using
the dataset D. For each (X, y) ∈ D, apply g to X to receive
a sequence of embeddings. Each embedding is mapped to a
cluster by K-Means, and then a latent concept value by the
chosen assignment. We can then apply h in its symbolic rule
form (Ph) to compute a prediction y′. The amount of dat-
apoints misclassified is a measure of the assignment score.
The smaller this value is, the better the assignment.

We can therefore define the task of labelling clusters as
an optimisation problem, which we encode using an Answer
Set Program. The syntax of Answer Set Programs supports
an extensive range of programs allowing the expression of a
large variety of neuro-symbolic problems. To solve the task,
we use Clingo 5.5.1 (Gebser et al. 2017).
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A summary of the ASP encoding of the optimisation
task appears in Listing 1. For each latent concept C =
(nC , {s0, s2, ..., sl}) we assign its various latent values in-
dices. These are encoded as facts as can be seen in line 1.
Next, we encode the various assignments of samples to clus-
ters as provided by K-Means. For a sample with ID “sam-
ple id”, raw input xi and its associated latent concept C, and
the assigned cluster index j, we add a fact as in line 3.

For each latent concept C, we add a choice rule requiring
each cluster to be mapped to a latent concept value (lines 5-
6). We add an additional restriction that two clusters cannot
be mapped to the same value (lines 7-9). For example, for
MNIST Addition, we would have the following lines:
{cluster mapping(digit, X, Y) : Y=0..9} = 1 :− X=0..9.
:− cluster mapping(digit, X, Z),

cluster mapping(digit, Y, Z), X != Y.

These rules require that each cluster is mapped to exactly
one of the digits 0-9 in an answer set. The next rule, seen
in lines 10-13, defines the “holds” predicate that states that
a raw input of a sample has been assigned a particular latent
concept value in the answer set. A raw input xi associated
with latent concept C has been assigned a latent concept
value V alue if the following three conditions hold. First,
it has been assigned by K-Means to a cluster with index
ClusterIdx (indicated by the “cluster assignment” predi-
cate). Second, ClusterIdx has been mapped to a latent
concept value with index V alueIdx (indicated by the “clus-
ter mapping” predicate). Third, the latent concept value
with index V alueIdx has value V alue (indicated by the “la-
tent concept” predicate).

With these rules in place, we can add the background
knowledge related to the task (line 15). These are the rules
that are given by Ph. The rules should be specified in terms
of the “holds” predicate to establish a connection to the clus-
ter assignment for each sample. For example, adding two
MNIST digits together, we can add the following rule:

holds(Id, sum, Z) :− holds(Id, digit, x1, X),
holds(Id, digit, x2, Y), Z = X+Y.

The “holds” atoms in the body will become true if their
respective raw inputs have been mapped to a cluster that has
been labelled by the variable X (for the first raw input x1) or
Y (for the second raw input x2). The task’s target output, in
this case the sum, will also be indicated by a “holds” predi-
cate, defined by the rule. The sample ”Id” will have a target
output “sum” whose value Z equals X + Y , as required.

Once the rules of h have been added, the optimisation pro-
cess can produce predictions for every sample, once a clus-
ter mapping has been chosen. To compute a score for each
mapping, for each sample (X, y) with ID “sample id”, we
add the weak constraint appearing in line 18, indicating its
prediction for output “target” should be y. Each constraint
has a penalty of −1, indicating that its body should be true.
An optimal answer set has a minimal score, indicating the
best coverage over the dataset. Using weak constraints in
this way also allows us to deal with the fact that our data is
noisy - the cluster assignments are not perfect. Once the task
is solved, we extract the optimal cluster mapping out of the
answer set, thus successfully labelling the clusters.

Algorithm 1 Embed2Sym Training
Input: D, C, Ph

Output: g, K, π
1: Train fully neural model f = h ◦ g on D
2: Select D2 ⊆ D
3: K ← ∅
4: for c ∈ C do
5: V ← ∅
6: for (X, y) ∈ D2 do
7: for xi ∈ X s.t. c latent concept of xi do
8: Add gc (xi) to V
9: end for

10: end for
11: Train KC on V using K-Means Clustering.
12: Add KC to K
13: end for
14: Encode task O as in listing 1 using D2, C, K, PH

15: Solve O and select optimal answer set A
16: π ← ∅
17: for c ∈ C do
18: πc ← ∅
19: for cluster mapping(nC , i, j) ∈ A do
20: Assign πc (i) = j
21: end for
22: Add πc to π
23: end for
24: return g, K, π

3.3 Neuro-Symbolic Model
With the various components laid out, we can now present

the full Embed2Sym training and inference algorithms.
These are listed in Algorithm 1 and 2, respectively. An ex-
ample inference process is also depicted in Figure 1 (right).
In the algorithms we use some notations that we define here.

The perception component, g, is a cartesian product of
perception networks applied to each raw input individually.
If Ci is the latent concept corresponding to input xi, then:

g(X) = g (x1 × x2 × · · · × xm) =

= gC1
(x1)× gC2

(x2)× · · · × gCm
(xm) =

= v⃗1 × v⃗2 × · · · × v⃗m = v⃗ (3)

KC is a clustering function associated with latent concept C.
It maps vectors from the embedding space associated with C
to their cluster index. Formally, KC : RkC → {1, ..., |SC |}
where kC is the dimensionality of the embeddings space
C = (nC , SC). Generally, KC will be applied to the embed-
dings of several raw inputs. K denotes the cartesian product
of the KC’s analogously to g above. We have:

K(v⃗) = KC1
(v⃗1)×KC2

(v⃗2)× · · · ×KCm
(v⃗m) =

= (i1, i2, ..., im) = I (4)

πC is the mapping of cluster indices to value indices for
the latent concept C. πC is always a permutation of
{1, ..., |SC |}. π is defined analogously to g and K:

π(I) = πC1 (i1)× πC2 (i2)× · · · × πCm (im) =

= (j1, j2, ..., jm) = J (5)
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Algorithm 2 Embed2Sym Inference
Input: X , g, K, π, P , target
Output: y

1: v⃗ ← g (X)
2: I ← K(v⃗)
3: J ← π(I)
4: Facts← ∅
5: for j ∈ J do
6: Let s be the latent concept value of C corresponding

to j
7: Let xi be the raw input name corresponding to j
8: Add holds(0, nC , xi, s) to Facts
9: end for

10: Let A be an answer set of P ∪ Facts
11: return y s.t. holds(0, target, y) ∈ A

In line 2 of Algorithm 1 we make a selection of a subset
of the dataset D. This is motivated by the fact that both
K-Means clustering and cluster labelling using Clingo are
quite data efficient. These steps can therefore be sped up by
selecting a much smaller subset of D than was required for
training the perception module. Selection would typically be
done by uniformly sampling from D without replacement.

An important aspect of Embed2Sym is that Ph of Algo-
rithm 1 and P of Algorithm 2 need not be the same. This
allows the rules of the reasoning component to be changed,
as long as they are still concerned with the same latent con-
cepts. For example, if the model was trained on the ad-
dition of MNIST images, it can perform multiplication as
well at inference time. Hence, despite starting with a non-
generalizing neural model, we achieved the same level of
generalization other neuro-symbolic systems have, and the
same level of interpretability.

4 Experiments
In this section, we present results following an evaluation
of our Embed2Sym implementation in benchmark tasks in-
volving both perception and reasoning. In designing these
experiments, we aimed to answer the following questions:

1. Is Embed2Sym capable of solving tasks involving both
perception and reasoning?

2. Is Embed2Sym able to scale to more challenging tasks
involving a larger number of raw inputs?

3. Can Embed2Sym cope with challenging perception tasks?
4. How does Embed2Sym compare to other neuro-symbolic

systems in terms of accuracy and training time?
To answer questions 1 & 2, we tested Embed2Sym

on three benchmark tasks introduced before to evaluate
neuro-symbolic systems, namely MNIST Addition, Mem-
ber (Tsamoura, Hospedales, and Michael 2021) and Forth
Sort (Bošnjak et al. 2017). We chose these tasks in partic-
ular as a means of testing the scalability of Embed2Sym
when confronted with a large number of raw inputs, and
increasing this number is straightforward for both. To an-
swer question 3, we took the same approach previously in-
troduced to benchmark the ABL-Sim algorithm (Huang et

N 1 2 3 4 15

E2S - FN 97.40 82.10 22.50 00.73 00.00
E2S - NS 97.73 94.31 93.90 91.61 66.40
DPLog 96.02 T/O T/O T/O T/O
NeurASP 96.07 95.00 T/O T/O T/O

Table 1: Average test sum accuracy (%) on the MNIST Addition
task for varying number of digits. T/O stands for “timeout”.

al. 2021) and created a CIFAR-10 Addition task as a more
challenging version of the MNIST Addition task. To answer
question 4, we also compare our models to two state-of-the-
art neuro-symbolic systems, DeepProbLog and NeurASP, as
they are both well known and have code available that allows
for easy adaptation to the tasks we chose. When reporting
results, we use the shorthand notations “E2S - FN”, “E2S -
NS”, “DPLog” to refer to the fully neural, neuro-symbolic
models and DeepProbLog, respectively. Our implementa-
tion of Embed2Sym was developed in Python3.8 using the
TensorFlow framework, and can be found at the following
link: https://github.com/YanivAspis/Embed2Sym.

Experiments were performed on a system running Ubuntu
18.04.6 with the following specifications: Intel i7-6700 CPU
@ 3.40 GHz, 8 GB RAM and a single GeForce GTX
970 GPU. Hyperparameters for the experiments were de-
termined by performance on a separate validation set sep-
arate from the test set. The K-Means and logical optimi-
sation steps were performed using a subset of the dataset
of 100 samples (D∈ of algorithm 1). We ran each experi-
ment 5 times and report the average test accuracy and train-
ing time to account for the effects of random initialisation of
the weights. If a system takes longer than 4 hours to train
for any run, we stop training and declare a timeout.

4.1 MNIST Addition
We have used the MNIST Addition task as a running exam-
ple throughout the paper to illustrate our approach. Here we
consider the generalized task that allows for the addition of
numbers with multiple digits. Specifically, each summand
has N digits and so the number of raw inputs the model re-
ceives is 2N . For the fully neural model, we can follow
the architecture depicted in Figure 1 for small values of N .
However, as N grows, the number of target labels (possible
sums) grows exponentially, resulting in an output layer of
exponential size. To resolve this, the reasoning component
outputs each digit of the sum separately, so the number of
output neurons grows linearly. Otherwise, the architecture
is unchanged, where the gdigit component is applied to each
of the 2N MNIST images, and their embeddings are con-
catenated before the reasoning component is applied. We
generated for every N a training set of 30,000 samples, 500
validation samples and 5000 test samples. Results are sum-
marised in Tables 1, 2 and 3. The results reported in each
column are for training and testing on the number of digits
appearing at the top.

Table 1 shows that Embed2Sym is able to produce mod-
els that solve this task with close or better accuracy than that
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N 1 2 3 4 15

E2S - NS 98.86 98.54 98.96 98.92 98.64
DPLog 98.04 T/O T/O T/O T/O
NeurASP 98.02 98.72 T/O T/O T/O

Table 2: Average test digit accuracy (%) on the MNIST Addition
task for varying number of digits. T/O stands for “timeout”.

N 1 2 3 4 15

E2S - FN 38.2 65.0 93.7 115.7 412.3
E2S - NS 40.9 69.0 99.6 122.6 434.1
DPLog 1033.4 T/O T/O T/O T/O
NeurASP 919.7 3414.6 T/O T/O T/O

Table 3: Average training time (sec) on the MNIST Addition task
for varying number of digits. Training time of “E2S - FN” includes
the training time of “E2S - NS”. T/O stands for “timeout”. Results
reported here for DeepProbLog are after only 1 epoch of training.

of competing systems. For N = 1 the fully neural model
performs quite well, despite not having the advantage of be-
ing given any knowledge on the task. Note that in order to
get the answer correct, the fully neural model must get each
digit of the sum correct. Table 2 confirms that even though
the fully neural scores poorly on larger values of N , digit ac-
curacy remains high, meaning the perception network is still
well trained. As N grows, the reasoning task becomes very
difficult, as statistically speaking the network is likely to get
at least one digit in the sum wrong. Therefore the fully neu-
ral model by itself is incapable of solving the task for large
N in a satisfying manner.

However, all of this is solved once the model is lifted into
a neuro-symbolic form. Despite not succeeding in the down-
stream task, clusters still form in the perception network’s
embedding space, and this can be exploited by Embed2Sym
to create a neuro-symbolic model fully capable of adding
MNIST numbers of large lengths. Note that for N = 15, a
downstream average task accuracy of 66.40% is due to the
statistical independence of predicting each individual input
digit. An average accuracy of 98.64% in predicting each of
30 individual inputs correctly corresponds to a theoretical
overall accuracy of 66.31% in predicting them all at once.
Hence a result of 66.40% is in fact as high as one would
expect for such a length.

The results suggest two important conclusions. First, even
though the reasoning component did not achieve good ac-
curacy, Embed2Sym is still able to extract the latent con-
cepts from the perception component’s embedding space. In
this sense, the neuro-symbolic model can be used to improve
upon the fully neural one in tasks where the reasoning steps
may be more complex, by exploiting background knowl-
edge. Second, this improvement can be achieved using only
a limited portion of the dataset.

While other neuro-symbolic systems also provide a neural
network with generalization capabilities, we see the advan-
tage of Embed2Sym in its scalability in terms of training
time. For small N , training is still feasible for NeurASP and

Task (%) Image (%) Training Time

E2S - FN 84.68 –––– 5883.6
E2S - NS 84.45 91.74 5908.6
DPLog 55.29 73.75 (T/O) 14400.0
NeurASP 6.52 12.75 (T/O) 14400.0

Table 4: Results for the CIFAR-10 Single Digit Addition exper-
iment. Task % = Test accuracy in predicting the sum correctly.
Image % = Test accuracy in predicting the digit (object) correctly.
The fully neural model produces embeddings for the latent con-
cepts and therefore cannot be assessed on Image Accuracy. Train-
ing time is in seconds.

DeepProbLog. NeurASP trains faster than DeepProbLog
as it relies on the fast Clingo engine, being able to train
on 2 digit addition within the time limit. However, as we
move to 3 digits or more, training becomes infeasible to
both NeurASP and DeepProbLog, while Embed2Sym can
train up to N = 15 within minutes, and theoretically could
go higher. Analysing the results deeper, we see that Em-
bed2Sym spends most of its training time at the fully neural
stage, with the process of lifting to a neuro-symbolic one
only taking a few more seconds. In fact, our analysis shows
that those few seconds are mostly spent computing the em-
beddings using the perception component (lines 6-10 of Al-
gorithm 1), while K-Means clustering and Clingo each take
less than a second on their part. This suggests training time
can be further reduced by decreasing the number of epochs
spent training the fully neural model, although at the possi-
ble cost of reduced accuracy.

4.2 CIFAR-10 Addition
CIFAR-10 (Krizhevsky and Hinton 2009) is a dataset of im-
ages depicting 10 classes of objects including animals and
vehicles. In this task we consider each class to be a digit
instead. We created a dataset for CIFAR-10 Addition where
the MNIST images have been replaced with images from
CIFAR-10 and the sum label is computed based on the digit
each image label has been mapped to. Hence, the task in-
volves the same level of reasoning as MNIST Addition but
with a far more complex perception task. For the perception
component, we use a ResNet56 architecture (He et al. 2016).
If a system does not converge within 4 hours, we declare a
timeout and report the accuracy achieved at that point.

Results are summarised in Table 4. The experiment con-
firms Embed2Sym is capable of learning even in this more
difficult setting, completing training in less than 2 hours.
DeepProbLog did not achieve satisfying accuracy within the
time limit, although results could be higher if more time is
given. NeurASP was unable to learn as it could only train
for 1 epoch. We suspect that the limitation to a batch size of
1 is also affecting the training process negatively.

4.3 Member
In the Member task (Tsamoura, Hospedales, and Michael
2021), we are given a set of MNIST images, and a digit in
symbolic form. We must determine if the digit appears in
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N 3 4 5 20

E2S - FN 98.67 98.22 98.57 99.49
E2S - NS 96.82 96.51 97.53 93.46
DPLog 97.71 97.23 88.52 86.75
NeurASP 97.41 T/O T/O T/O

Table 5: Average test membership accuracy (%) on the Member
task for a varying size of the set. T/O stands for “timeout”.

N 3 4 5 20

E2S - NS 94.52 94.23 94.33 90.54
DPLog 96.94 95.94 78.85 79.46
NeurASP 95.36 T/O T/O T/O

Table 6: Average test digit accuracy (%) on the Member task for
varying number of digits. T/O stands for “timeout”.

one of the images in the set (In other words, if it is a member
of the set). For sets of N elements, the task has the following
specification:
• Latent Concept: (“digit”, { 0, 1, ..., 9 })
• Raw inputs: x1, x2, ..., xN , each a 28x28 image.
• Symbolic input: t, one of the values ‘0’ to ‘9’.
• Target labels: “True” and “False” (membership).

From a time complexity point of view, this task is inter-
esting as the number of ways one can interpret the set of raw
inputs increases exponentially with N . However, the label
gives minimal information: If it is true, we know one of the
images is labelled t, but we do not know which. If it is false,
all images must not be labelled t, but we have no further
information about their label. Therefore the label does not
eliminate the exponential number of sets that can be inter-
preted. We generated for every N 10,000 training samples,
1000 validation samples and 2000 test samples.

For the fully neural model, we keep the perception com-
ponent unchanged. The symbolic input t is fed directly into
the reasoning component, using one-hot encoding to repre-
sent the 10 possible values of t. This one-hot vector is trans-
formed using fully connected layers to an embedding vector,
which is joined to the other embedding vectors being fed into
the h component. For h, we use an attention-like mechanism
where the embedding of t is compared to the embedding of
each xi, and the results are then passed through multiple lay-
ers before the true/false prediction is made. For all N , we
train the fully neural model for 30 epochs.

Results of this experiment are listed in Tables 5, 6 and
7. In terms of accuracy, we see that Embed2Sym again
achieves comparable or better accuracy to competing sys-
tems. In this case, the fully neural model is slightly better
than the neuro-symbolic one, especially for N = 20. This is
most likely due to its more relaxed representation. The fully
neural model can retrieve the correct answer to the question
of membership, without having to commit to the exact iden-
tities of the images. For example, if it is asked if the digit
4 is in the set, it can answer ”yes” as long as it believes

N 3 4 5 20

E2S - FN 33.2 40.0 51.6 169.2
E2S - NS 35.6 42.6 54.9 177.2
DPLog 190.4 239.8 304.2 998.9
NeurASP 2044.4 T/O T/O T/O

Table 7: Average training time (sec) on the Member task for vary-
ing number of digits. Training time of “E2S - FN” includes the
training time of “E2S - NS”. T/O stands for “timeout”.

there are several images that could be a 4. It need not de-
cide between them. In contrast, the neuro-symbolic model
must assign a digit to each image. While this does mean
that the switch from the neural model to the neuro-symbolic
one comes with some cost of accuracy, there is a gain in
the form of sound reasoning and interpretability. The ability
to correctly predict membership without correctly predicting
all set members also explains why all systems demonstrate
lower digit accuracy than one would expect based on their
accuracy on the downstream task.

Once again, Embed2Sym is much faster to train than com-
peting systems. NeurASP is unable to scale beyond small
values, timing out already at N = 4. This is due to the time
spent by NeurASP computing all answer sets that satisfy a
label, as this number grows exponentially with N . Deep-
ProbLog, on the other hand, relies only on the various proof
paths to its query, which grows linearly with N . This al-
lows DeepProbLog to scale well on the Member task, while
other tasks such as MNIST Addition remain infeasible due
to the exponential number of proofs. This is in contrast to
the MNIST Addition task, where NeurASP performed bet-
ter, showing that the scalability on tasks can vary signifi-
cantly between systems. However, Embed2Sym is able of
scaling well on both tasks, and is about 5-6 times faster than
DeepProbLog. We also noticed that DeepProbLog had more
difficulty training for higher values of N , at times failing to
converge, which explains the lower average accuracy.

4.4 Forth Sort
The experiments so far have all been concerned with classifi-
cation of images to latent labels. However Embed2Sym can
be applied in a broader range of settings. To demonstrate
this, we performed the Forth Sort experiment (Bošnjak et
al. 2017) that is concerned with the induction of an opera-
tion, namely the decision to swap two elements in a list dur-
ing sorting. The input to this task is a list of symbolic dig-
its. Note the assumption that we do not know how to com-
pare two digits, and therefore cannot use this as background
knowledge. Instead, a ”perception” network is employed to
learn if two digits should be swapped or not. The latent con-
cept ”swap” therefore has two values: true and false. The
perception network receives every pair of digits in the list
and outputs an embedding. The reasoning network takes
these embeddings and outputs an approximate permutation
matrix to apply to the original list, and the sorted list is used
as a label. The background knowledge for the task involves
sorting based on the decision of swap/not swap for every
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N 4 5 6 7 8

E2S - NS 13.6 31.4 50.2 74.6 277.4
DPLog (B) 70.2 271.4 2277.3 T/O T/O
DPLog (Q) 27.7 213.5 791.3 1602.8 T/O

Table 8: Average training time (sec) for the Forth Sort task on var-
ious list lengths. Time to reach 100% accuracy on the test set is
reported. T/O stands for “timeout”. B/Q = Bubble/Quick Sort.

possible pair of digits.
Results are reported in Table 8. Following the Deep-

ProbLog paper, we report the time it takes to reach 100%
accuracy on a test set. In the DeepProbLog paper results for
Bubble Sort alone are reported. As we are concerned with
training time, we also report results for DeepProbLog using
Quick Sort. The results not only confirm that Embed2Sym
can be used to solve the Forth Sort task, but can do so much
faster than DeepProbLog.

5 Discussion
With regards to the four questions raised at the beginning
of section 4, we can now provide the following answers:
1) Embed2Sym successfully solves tasks involving percep-
tion and reasoning, as confirmed by the Addition, Member
and Forth Sort experiments. 2) Embed2Sym is capable of
scaling to tasks involving dozens of raw inputs and poten-
tially more. In particular, we have shown Embed2Sym is
capable of solving 15-digit MNIST addition and 20-digit
Member. 3) Embed2Sym can learn even when the percep-
tion task is more complex, as confirmed by the CIFAR-10
Addition experiment. 4) Embed2Sym achieves similar or
better test accuracy to competing systems on all the tested
tasks, while training faster by several orders of magnitude
and scaling to tasks infeasible to other systems.

Embed2Sym offers a more scalable approach to neuro-
symbolic reasoning by embracing a different philosophy
than other systems. While most approaches attempt to turn
logical formulas into differentiable operations, Embed2Sym
uses the neural and symbolic components as a means to
complement each other. The difficulty in creating a scalable
version of differentiable logic is highlighted by the combi-
natorial issues existing systems encounter. Backpropagation
through a differentiable logic gate requires answering the
question “Which input values would result in the correct out-
put”. Systems such as NeurASP and ABL link this question
to logical abduction. In the case of ABL this is done only in
the context of definite programs, whereas NeurASP uses the
full expressivity of Answer Set Programming. The difficulty
in using abduction is that these systems need to find the full
set of solutions which in general can be exponential in size.
DeepProbLog takes a proof-theoretical view to this question,
constructing a (weighted) boolean formula that satisfies a
given query. The time complexity of this construction can
be #P -complete (Fierens et al. 2015). We see these diffi-
culties manifest in practice particularly in the MNIST Addi-
tion experiment, where even for small values of N , training
becomes infeasible for both NeurASP and DeepProbLog.

Embed2Sym solves this issue by embracing the approxi-
mate nature of neural network inference. The training of the
fully neural model creates a structure in embedding space
that a symbolic system can later identify and exploit. This
gives a symbolic reasoning system access to inference on
raw data while circumventing the difficulties arising from
differentiable logic operations. The logical optimisation
step, which is the critical step in creating the neuro-symbolic
model, scales well with an increased number of raw inputs
because it builds upon the advances in solving an optimisa-
tion problem in Answer Set Programming. We see from ex-
periment that the logical optimisation step is very fast (less
than 1 second), and it is in fact the training of the neural
network that has a significant effect on training time.

It should be noted that while Embed2Sym works by iden-
tifying latent concepts discovered by a neural network, it
should not be understood as an explainability method. Em-
bed2Sym makes no attempt at explaining why the percep-
tion network associates a given raw input with a latent con-
cept value. It merely states that it did. Specifically, it is not
designed to discover if this relationship is due to a statisti-
cal correlation rather than a causal relation. Note that other
neuro-symbolic systems do not address this issue either.

Future work will be directed at further development of the
Embed2Sym method and testing on more challenging do-
mains. Embed2Sym may benefit from more sophisticated
methods of discovering cluster information in embedding
space (Guo, Lin, and Ye 2021). In the experiments in this
paper, we used a simple MLP for the reasoning component
during the neural training stage. But in general more sophis-
ticated models could be required, as reasoning gets more
complex. For example, reasoning involving differentiating
and integrating mathematical functions has been shown to
be possible using tree generating Seq2Seq models (Lample
and Charton 2020). We also wish to explore the possibility
of learning the logic program from data, rather than being
provided with the rules.

6 Summary

We introduced Embed2Sym, a novel approach to neuro-
symbolic reasoning that is capable of solving tasks involving
both perception and reasoning, interpretable and can gen-
eralize to other downstream tasks. Most importantly, our
system scales far better than competing systems, being ca-
pable of solving tasks involving a far larger amount of raw
inputs and to more complex perception tasks. Experiments
confirm Embed2Sym is much faster to train than compet-
ing systems and can scale to many raw inputs, being able
to train on the addition of 15 digits numbers (at least), far
larger than any competing system has so far achieved. Re-
sults on CIFAR-10 Addition confirm the system is capable
of training on more complex perception tasks, while other
systems time out. Future work will be directed toward ex-
perimentation in more challenging domains, experimenting
with more sophisticated clustering and reasoning networks,
and exploring the possibility of learning rules from data.
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Wang, D.; Jamnik, M.; and Liò, P. 2018. Investigating di-
agrammatic reasoning with deep neural networks. In Dia-
grams.
Winters, T.; Marra, G.; Manhaeve, R.; and De Raedt, L.
2021. Deepstochlog: Neural stochastic logic programming.
arXiv preprint arXiv:2106.12574.
Xia, X.; Togneri, R.; Sohel, F.; Zhao, Y.; and Huang, D.
2019. A survey: neural network-based deep learning for
acoustic event detection. Circuits, Systems, and Signal Pro-
cessing 38(8):3433–3453.
Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; and Van den
Broeck, G. 2018. A semantic loss function for deep learn-
ing with symbolic knowledge. In Dy, J., and Krause, A.,
eds., Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine
Learning Research, 5502–5511. PMLR.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

430



Yang, Z.; Ishay, A.; and Lee, J. 2020. Neurasp: Embracing
neural networks into answer set programming. In Bessiere,
C., ed., Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20, 1755–1762.
International Joint Conferences on Artificial Intelligence Or-
ganization. Main track.
Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; and Wu, X. 2019. Object
detection with deep learning: A review. IEEE Transactions
on Neural Networks and Learning Systems 30(11):3212–
3232.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

431


	Introduction
	Related Work
	Method
	Fully Neural Model
	Identifying Latent Concepts
	Neuro-Symbolic Model

	Experiments
	MNIST Addition
	CIFAR-10 Addition
	Member
	Forth Sort

	Discussion
	Summary

