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Abstract

Deep neural network-based methods have recently enjoyed
great popularity due to their effectiveness in solving difficult
tasks. Requiring minimal human effort, they have turned into
an almost ubiquitous solution in multiple domains. However,
due to the size and complexity of typical neural network mod-
els’ architectures, as well as the sub-symbolical nature of the
representations generated by their neuronal activations, neu-
ral networks are essentially opaque, making it nearly impos-
sible to explain to humans the reasoning behind their deci-
sions. We address this issue by developing a procedure to in-
duce human-understandable logic-based theories that attempt
to represent the classification process of a given neural net-
work model, based on the idea of establishing mappings from
the values of the activations produced by the neurons of that
model to human-defined concepts to be used in the induced
logic-based theory. Exploring the setting of a synthetic image
classification task, we provide empirical results to assess the
quality of the developed theories for different neural network
models, compare them to existing theories on that task, and
give evidence that the theories developed through our method
are faithful to the representations learned by the neural net-
works that they are built to describe.

1 Introduction

In this paper, we investigate how to induce logic-based the-
ories that reflect a given neural network’s classification pro-
cess. Our results suggest that this is achievable by using an
inductive reasoning framework and relating the activations
of a neural network with human-defined concepts, without
the need to retrain or modify the neural network, while re-
quiring few labeled data.

Artificial neural networks have allowed for multiple
breakthroughs in different challenging areas in the last few
years, being capable of matching or surpassing state-of-
the-art approaches in real-time object detection (Ren et al.
2017), video classification (Karpathy et al. 2014) and seg-
mentation (Fu et al. 2021), translation (Bahdanau, Cho, and
Bengio 2015), even outperforming humans at facial recogni-
tion (Wang and Deng 2021), playing strategic games (Silver
et al. 2017), just to name a few. For this reason, they have
gained popularity, and are now being applied to solve the
most varied tasks in multiple different domains, e.g., in med-
ical diagnosis, (Sun, Zheng, and Qian 2016), self-driving ve-
hicles (Kanagaraj et al. 2021), crime prevention (Lin, Chen,
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and Yu 2017) and fraud detection (Benchaji et al. 2021).

Despite all the successes and popularity achieved by artifi-
cial neural network-based methods, neural network models
are typically viewed as black boxes (Guidotti et al. 2019),
i.e., their input-output behavior is typically considered of
highest importance, while the inner representations learned
by these models are largely disregarded.

On the one hand, the opaqueness of neural network mod-
els might be attributed to their typical size and complexity,
having potentially many billions of parameters spread across
several dozens of layers performing non-linear transforma-
tions (Brown et al. 2020). On the other hand, these models
are subsymbolic in nature, meaning that their internal rep-
resentations are generally based on a high-dimensional Eu-
clidean space, i.e., real-valued tensors, which do not possess
an associated declarative meaning (Hitzler et al. 2020). In
practice, when a neural network is used to make a prediction,
there is no human-interpretable indication regarding why a
particular output was produced.

This shortfall led to the search for methods for explaining
how to these models are achieving their results, ultimately
contributing to the rise of the field of explainable AI (Ig-
natiev 2020), which we briefly review in Section 6.

There are many different ways one can look at explana-
tions (Miller 2019), but they are usually taken to be an-
swers to (often interactive sequences of) “why” questions,
whose selection and evaluation requires a) a language con-
taining human-understandable concepts and meaningful re-
lations between those concepts, b) some knowledge about
the domain, and c) one or more forms of reasoning e.g., de-
ductive, abductive, counterfactual, etc.

One recent proposal (de Sousa Ribeiro and Leite 2021),
takes a step towards providing richer explanations for the
outputs of neural network models by exploring the idea of
establishing mappings from the values of the activations pro-
duced by the neurons of a neural network model, to human-
defined concepts from a selected existing logic-based theory.
These mappings are established by what is referred in (de
Sousa Ribeiro and Leite 2021) as mapping networks — small
neural networks built to predict a single human-defined con-
cept from the activations of a given neural network model.
When input is fed to a particular main network — the neural
network model whose outputs we want to justify — it is pos-
sible to use these mapping networks and observe whether
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the concepts they were trained to predict were identified
in the main network’s activations, thus acquiring additional
knowledge about how the main network has processed its
input. The justifications are then obtained using logic-based
reasoning methods over the selected logic-based theory, to-
gether with the observations made for a given input regard-
ing each mapped concept. They are minimal sets of axioms
from the selected logic-based theory that, together with the
mapping networks’ observations, entail the output of the
main network. They are symbolic, human-understandable,
since they are expressed in the language of the chosen logic-
based theory, and we can reason about them. While the se-
lected logic-based theory provides the necessary language
and background knowledge to adequately convey justifica-
tions for the main networks’ output, the established map-
pings provide additional knowledge about how the main net-
work has processed its input, allowing for an interpretation
of its internal representations.

However, the fact that the justifications discussed in (de
Sousa Ribeiro and Leite 2021) depend not only on the map-
ping networks’ observations of the input but also on the se-
lected existing logic-based theory, raise two important ques-
tions. First, because of the dependency on the selected logic-
based theory, one cannot really take them to be exact repre-
sentations of how a neural network reaches its output, but
rather plausible and understandable rationalisations of how
it might have arrived at its results, based on the selected
logic-based theory. The axioms of the theory that are in-
cluded in the justification might not be warranted by how
the neural network is achieving its results. Second, a logic-
based theory might not be available, either because our main
network solves a task in a domain where there is little back-
ground knowledge available, or no one has yet encoded it as
a logic-based theory.

What if we do not have a logic-based theory, or we do not
want to rely on existing ones because we suspect that they
are in some way incorrect or do not properly reflect how our
main network might be achieving its results?

To address this issue, in this paper, instead of using the
output of the mapping networks as knowledge about how
the main network has processed its input to be used together
with an existing logic-based theory, we explore its use to
generate alogic-based theory. We use the mapping networks
to provide additional labels to a data set which we then use to
induce a logic-based theory. By choosing an appropriate set
of human-defined concepts to build the mapping networks,
the generated logic-based theory will provide explanations
in a language with the required level of abstraction. By re-
lying on the mapping networks, hence on the internal repre-
sentations of the main neural network, the generated logic-
based theory will better reflect the classification process of
that neural network model. Hence, following the method
described in (de Sousa Ribeiro and Leite 2021), it can be
used for the generation of justifications that are more than
just rationalisations — they are closer to providing a global
description of how a given neural network is achieving its
classifications, based on human-defined concepts.

In this paper, after presenting a formal account of neu-
ral networks in Section 2, we proceed, in Section 3, with
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a formalization of the process of extracting concepts from
a neural network using mapping networks, only informally
described in (de Sousa Ribeiro and Leite 2021). In Section
4, we describe our method to generate the logic-based theo-
ries. Then, in Section 5, we describe a series of experiments
conducted to empirically test the proposed method, includ-
ing evaluating the quality of the generated theories; how the
generated theories depend on the concepts used to construct
the mapping networks, regarding both their level of abstrac-
tion and their adequacy; the cost of the method; and whether
the generated theories are indeed a good reflection of the
classification process of the neural network model. In Sec-
tion 6 we discuss related work, and conclude in Section 7.

2 Neural Networks

In this section, we formally introduce the necessary notions
and notation on neural networks.

We start by defining the mathematical objects that neural
networks manipulate, tensors. Formally, a tensor space is
a subset A of Rt ™ *"s with s > 1, and each T € A
is called a tensor. Vectors and matrices are particular cases
of tensors, namely elements of R™ and R™*", respectively.
We denote by size(A) = Ilcqq,.. s3ni the size of A, that
is, the number of components of A. Given a tensor T € A
andanindex j € {1,...,ni}x---x{1,...,ns},by T; we
denote the j-component of T.

A useful operation on tensors is the vectorization of a se-
quence of tensors, also known as flattening, which corre-
sponds to the representation of such sequence using a vector
that preserves the components of the tensors. We abstract the
details of possible vectorizations, and assume that for each
sequence (A1, ..., Ay) of tensors spaces, there is a function
vec: Ay X x Ay = R withn =37, ) 1y size(A;),
that gives the vectorization of each sequence of tensors.

The basic elements of neural networks are called units or
neurons, and are defined as functions u: I, x S, — R,
where I, and S, are tensor spaces, representing the input
and the parameters space of u, respectively. Units that share
input and parameters spaces can be combined to form layers.
Formally, a layer is a function L: Iy, xSy, — Op, where [,
S, and Qf are tensor spaces, where Qp, is called the out-
put tensor space. The units of a given layer L, one for each
component j of the output tensor space Oy, are given by the
functions L;: Iy, x S;, — R, where L;(X;0) = L(X; 0);.

As an example, a fully connected sigmoid layer with two
units can be defined as L: R* x R2(*+1) — [0, 1]? such that
L(z; (61,02)) = ($(xwy + by), $(xws + by)), where ¢
is the sigmoid activation function, k the size of the input «,
0; = (w;, b;), where w; and b; are the weights and biases of
the corresponding unit . The output of each unit is the pro-
jection of the output of the layer into the respective compo-
nent, i.e., Li(ac; (01, 02)) = L(SU; (01, 02)% = ¢(£B’wl+bz)

A neural network N is a sequence (L!,..., L) of lay-
ers such that the input of one layer is the same as the out-
put of the previous layer, that is, I;; = Qp;-1, for all

j € {2,...d}. The outputs of all layers of N are also usu-
ally called the activations of V.

Given a neural network N = (L',... L%), its input
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space is equal to the input space of the first layer, that is,
I = I, its output space is equal to the output space of
the last layer, that is, Oy = Oy, its parameter space is
the product of the parameter spaces of each layer, that is,
SN =Sp1 X -+ X Spa, and its size is the number of units it
has, that is, size(N) = > .cqq gy size(Opi).

A neural network N is said to be for classification if there
exists a set of concepts Cy and a function concepty : Op X
Cn — {0, 1}, such that concept (Y, C) = 1 indicates that
concept C can be identified in output Y.

As a simple example of a classification neural network,
take N with a single output, that is, Oy = [0, 1], and a
single concept Cy = {C}. Then, concepty can be defined
as concept y (y, C) = 1iff y > 0.5, that is, concept C is only
identified when the output value is larger than 0.5.

A neural network model is pair M = (N, @), where N
is a neural network and 6 is a choice of parameters for each
layer of NNV, that is, 0 € Sy. Given a model M = (N, 5),
with N = (L',..., L% and @ = (04, ..., 0), the output of
a layer j can be obtained using a function F/jvt Iy — O
defined as the composition of the layers up to layer 7, that
is, FJJM(X) = Lj(Lj_l(. .. Ll(X, 01) cees 9]‘_1); 0]) The
function associated with the entire model Fyq: Iy — Opn
is exactly the function of the last layer, that is, F)aq = Fj\i,1

A training set for a neural network N is a set of labeled
examples, that is, a set of pairs {(X',Y'),... (X" Y*)},
with {X', ..., X*} CIyand {Y',...,Y"} C Oy.

Given a neural network model (N, ), the training pro-
cess consists in finding a new model (N, 6’), by optimiz-
ing some objective function with respect to the parameters
space Sy over a training set for N. The accuracy of a
classification model M over a set of samples X, denoted
by acex(M), is the proportion of well-classified examples
from the sample set. We may omit X when it is implicit.

3 Extracting Concepts from Neural
Networks

In this section we formalize the method proposed
in (de Sousa Ribeiro and Leite 2021) to extract human-
understandable concepts from the activation patterns of a
trained neural network, usually called main network.

We assume the main network model M = (IV, 0) to be
fixed, where N = (L', ..., L?) is a classification network
for a set Cy of concepts. We also assume a vectorization
vec : Op1 x ... x QOpa — RF, with k = size(N), that
transforms the activations of NV into a vector form.

The fundamental elements of the method are the mapping
networks, each being a classification network M that has as
input the activations of the main network and is associated
with a single concept Cj;. Formally, a mapping network
over M is a classification network M, with I, = R¥, where
k= SiZE(N), @]\,{ = [0, 1], and CM = {C]w}.

To allow mapping networks to consider only a subset of
the set of all units of the main network N, we associate to
each a sequence of selection tensors, sely; = (Sl, e Sd),

one for each layer of IV, such that each S’ has the same
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dimension as Q. but is restricted to 0's and 1’s!. The po-
sitions of S* with a 1 correspond to the units of the main
network that are to be considered as input for the mapping
network M. Given a possible output of the main network,
(0',...,0% € Op1 x ... x Opa, the corresponding in-
put for a mapping network M is vec(0' - S', ..., 0% . §9),
where - is the point-wise multiplication of tensors.

As an example, let M = (NN, 8) be a main network model
where N has two layers, one with 3 x 2 units and the other
with 4 units. The vectorization transforms the output of the
two layers in a vector of size 10, the size of the input vector
of every mapping network for M. The selection sequence of
each mapping network M is a pair selp; = (S*,S?), where
S' is a 3 x 2 binary matrix and S? is a size 4 binary vector.

A mapping network is trained to identify its associated
concept Cjs, given the activations of the main network.
Therefore, the training set of a mapping network is a set of
pairs, each composed by the activations of the main network
together with a label that indicates whether C;; was iden-
tified on the input to the main network that generated such
activations. To build such training sets, we first need to la-
bel samples of the main network with the concepts associ-
ated with the mapping networks. Given a concept C and a
set of samples X C I, a labeling function for C is of the
form labelc: X — {0,1}, such that labelc(X) = 1 indi-
cates whether concept C is present in a given sample X € X.
A training set for a mapping network M can then be ob-
tained by labeling the output of the units of the main net-
work model generated by an input sample X with the cor-
responding label labelc,, (X). Formally, given a set of sam-
ples X C I, the training set for M generated by X is the set
of pairs (vec(FLy(X) - S',..., F¢(X) - S%), labelc,, (X)),
X € X. The cost of training a mapping network is labeling
the samples, which usually needs domain expert knowledge.

After training a mapping network M, the resulting model
Mys = (M, 0)) can be used to predict its associated con-
cept Cps from the activations of the main network. There-
fore, we can associate to each M, a labeling function
labelp,, : I — {0,1} where labelp(X) is given by
conceptnr (Fay, (vee(FL(X) -S*, ... FE (X) - 8%))), for
each X € I y. Intuitively, this labeling function is the appli-
cation of the function associated with M to the activations
of N generated by X. Then, concept ), indicates whether
the concept Cp; was identified in the activations of N. It is
important to note that, once a mapping network is trained,
its labeling function has almost negligible cost (one forward
pass of both the main and the mapping network), specially
when compared with the cost of manually labeling data.

4 Inducing Logical Theories from Neural
Networks

In this section we describe our method to induce human-
understandable logic-based theories that aim to represent the

"For the sake of presentation, we assumed that the size of the
input vector of each mapping network is equal to the number of
units of V. In practice, the size of the input vector of each mapping
network is the size of the considered subset of units of N.
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Figure 1: Architecture.

classification process of a neural network model, based on
the output of mapping networks, illustrated in Figure 1. We
assume a fixed trained main network model M = (N, 8).
To represent the classification process of M and the domain
of interest, we need a logical language £ that is rich enough
to allow for the representation of concepts, relations between
them, and knowledge specific to the individuals of the do-
main of discourse. Our method is general in the sense that
it is parametric on the choice of a logical language (e.g. De-
scription Logics (Baader et al. 2003), Answer-Set Program-
ming (Brewka, Eiter, and Truszczynski 2011), etc.) and an
induction framework defined over that language. We just
assume that £ is defined over a given set of concepts that
includes the concepts in Cy and a set of concepts of inter-
est C, which are concepts relevant to the domain of the main
network N that would normally be obtained from domain
experts, and be dependent on the end-users’ preferences or
level of expertise (e.g., a health practitioner would proba-
bly require a set of concepts different than those required
by a patient). For example, for a neural network trained
on the CIFAR-10 dataset (Krizhevsky and Hinton 2009) we
could use concepts such as ‘wheels’, ‘horns’, or ’water’,
while for one trained on the HAM10000 dataset (Tschandl,
Rosendahl, and Kittler 2018), we could use concepts such
as ‘asymmetric’, or ‘patchy’. We also assume a fixed set of
constants cy = {cx: X € I}, representing the individu-
als of the domain of interest, corresponding to the possible
input elements of the main network, i.e., its input space.
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The elements of £ are called formulas, and should in-
clude as basic elements the atoms of the form C(c), for
C € CUCy and ¢ € cy. We assume given a conse-
quence relation =C 2L % £ over £. Then, an inductive
framework over (£, =) has three ingredients: the so called
background knowledge, denoted by BK, which is a sub-
set of £ and represents the known knowledge; a set Pos of
atoms, usually called the positive examples; and a set Neg
of atoms, called the negative examples. The goal of the in-
ductive framework is to induce an hypothesis, which is a set
of formulas that together with the background knowledge
entails all the positive examples and none of the negative
examples. Formally, a set H C L is called an inductive hy-
pothesis if BK U H = C(c) for every C(¢) € Pos, and
BK U H = C(c) for every C(c) € Neg.

In our method, the positive and negative examples will
refer to the concepts in Cp, while the background knowl-
edge will contain knowledge about the concepts of interest
in C. This way, we can obtain a logical theory representing
the classification process of IV by characterizing the con-
cepts in C in terms of those in C. To construct the sets
BK, Pos and Neg, we fix a set of samples X C .
For each sample X € X, we check using the main net-
work model, if the concepts of C are identified or not in
X, adding this information to the positive or negative exam-
ples, accordingly. Formally, for each C € Cp, we define:
Pos® = {C(cx): X € X and conceptn (Fa(X),C) = 1};
Neg® = {C(cx): X € X and concept y (Faq(X),C) = 0}.
The sets of positive and negative examples are defined as
Pos = Ucecy Pos® and Neg = Ucec,, Neg®, respectively.

The distinctive characteristic of our method is the use of
mapping networks to obtain such background knowledge.
The fact that mapping networks learn to classify using the
activations of the main network is fundamental to assure that
this classification is intrinsic to the main network. For each
concept C € C we train a mapping network Mc as described
in Sect. 2, resulting in a mapping network model M. Since
some of these mapping networks may not learn to correctly
identify its associated concept, we assume some threshold «
for the accuracy of the mapping networks, below which we
do not use them to build the background knowledge. Then,
only the concepts in C, = {C € C: acc(Mc) > a} will be
used to build the background knowledge. Formally, we have
BEK = {C(cx): X € Xand C € C,, and labelp. (X) = 1}.
Note that the set BK could also include additional back-
ground knowledge over C, e.g. provided by a domain expert,
but we do not further explore that possibility in this paper.

Given the sets Pos, Neg and BK defined above, the
logic-based theory given by the induction framework can be
seen as a representation over L of the classification process
of the main network, describing in a human-understandable
logical language the characterization of the concepts of the
main network in terms of the concepts of interest.

S Empirical Evaluation
In this section, we empirically evaluate our proposed method
using the XTRAINS Dataset (de Sousa Ribeiro, Krippahl,
and Leite 2020). After introducing the dataset in Section 5.1
and the experimental setting in Section 5.2, we discuss the
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Figure 2: Sample images from the XTRAINS dataset.
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direct application of our method to this dataset in Section
5.3, followed by a set of experiments to highlight different
aspects of our proposal: —Section 5.4 discusses how the in-
duced theories are affected when using concepts with dif-
ferent levels of abstraction; —Section 5.5 analyzes how our
method behaves when provided with insufficient concepts
to induce a theory for a neural network; —Section 5.6 eval-
uates the cost of applying our method, and how it performs
with different amounts of available data; and —Section 5.7
examines the importance of using mapping networks when
inducing a theory for the classification process of a neural
network model.

5.1 Dataset and Main Networks

The XTRAINS is an image dataset containing representa-
tions of trains, such as those in Figure 2. The images are
labeled according to their visual features, which correspond
to human-understandable concepts. Having an accompany-
ing ontology, this dataset provides a controlled environment
for the experiments. The use of images is challenging since
human-understandable concepts cannot be directly extracted
from pixel representations.

The dataset images can be seen as 152 x 152 x 3 tensors,
and are highly diverse. The trains vary in the number, size,
and shape of their wagons and wheels, and in the quantity,
size and relative position of the geometric shapes inside each
wagon, but also in the distance between each wagon, the
thickness of the wagons’ walls or the height of the trains’
couplers. Also, noise is present in the form of missing pixels
from the trains’ representations.

The ontology accompanying the dataset is represented us-
ing Description Logics, which are a family of logic based
knowledge representation languages, consisting of decid-
able fragments of First-Order Logic.?> Figure 3 presents a
subset of this ontology, which agrees with the labels of the
XTRAINS dataset. The ontology represents how different
concepts are related, e.g., a train has a wagon or locomotive,
and how trains are classified in this domain, e.g., a type A
train is either a war train or an empty train.

In our experiments, we consider three different main net-
work models — referred to as Ma, Mg, Mc. Each of these
models was trained to identify, respectively, trains with the
following descriptions, each illustrated in Figure 2, and de-
scribed in the accompanying ontology, cf. Figure 3:

* TypeA —trains having either, a wagon with at least a circle
inside and a wagon with two walls in each side, or no
wagons with geometric figures inside them;

2We assume basic familiarity with Description Logics (see
(Baader et al. 2003)).
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* TypeB —trains having a long wagon, or two wagons, with
at least a circle inside, or trains having at least two long
wagons, or three wagons, with at least two of which with
a geometric figure inside that is not a circle;

¢ TypeC — trains having a wagon with no geometric figure
inside and either, a wagon with a circle inside and a wagon
with a geometric figure inside that is not a circle, or no
long wagons and a wagon with a figure inside.

Each of the three main networks® was trained using a set
of 25 000 images and achieved an accuracy of about 99% on
a test set of 10 000 images. The three main networks pos-
sess different architectures, but all start with a set of convo-
lutional, batch normalization, pooling, and dropout layers,
followed by a varying number of fully connected and batch
normalization layers, with a single output unit at the end.

5.2 Experimental Setting

The mapping networks used in the following experiments
all have the same architecture, being composed solely by
an input layer, receiving the main network’s activations, and
an output layer with a single neuron using the sigmoid ac-
tivation function. Similarly to the main networks, the map-
ping networks were trained using the optimization algorithm
Adam (Kingma and Ba 2015), with a learning rate of 0.001,
the binary cross entropy as loss function, and early stopping
with a patience value of 20 (30 for main networks). Each
mapping network was trained using a balanced set of 800
samples and tested using 1 000 samples, with the exception
of those in Section 5.6, where we discuss the effects of vary-
ing the amount of available training samples.

The accuracy threshold «, used to select which map-
ping networks should be considered when building the back-
ground knowledge, is set to be o = 90%.

We choose ontologies over Description Logics as our log-
ical language, a standard choice for taxonomic classifica-
tion, which also allow us to compare our induced theories
with the accompanying ontology of the dataset. As for the
induction system, we use DL-Learner framework (Lehmann
2009), which supports supervised ontology induction. Other
alternatives for learning logic-based theories could have
been used, such as ILASP (Law, Russo, and Broda 2014)
or even differentiable logic machines (Zimmer et al. 2021).
We use the CELOE algorithm (Lehmann et al. 2011), which
is biased to minimize the induced theory, and consider a
positive-negative learning problem using closed world rea-
soning with a maximum execution time of 60 seconds. In
all experiments, the theories are induced using a set of 3 000
samples, and tested with a set of 1 000 samples.

The main metric to quantitatively evaluate the quality of
our induced theories is the fidelity measure (Fisq4n), Which
computes how well a given theory imitates the classifica-
tions of the main network model it was induced from. This
metric is computed as the ratio of samples where the classi-
fications of the main network coincide with those obtained
from the induced theory together with the knowledge ob-
tained from the outputs of the mapping networks.

3The networks are available at https://bit.ly/X TrainsModels
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Jhas.EmptyWagon M 3has. (PassengerCar LI FreightWagon) M —3has.LongWagon C RuralTrain

Train = Jhas.(Wagon U Locomotive)

TypeA = WarTrain LI EmptyTrain

TypeB = PassengerTrain U LongFreightTrain
TypeC = RuralTrain U MixedTrain
LongFreightTrain = LongTrain M FreightTrain

Jhas.FreightWagon M Jhas.PassengerCar M Jhas.EmptyWagon C MixedTrain
Thas.(PassengerCar M LongWagon) LI (> 2 has.PassengerCar) C PassengerTrain

Jhas.ReinforcedCar M Jhas.PassengerCar C WarTrain
(> 2 has.LongWagon) U (> 3 has.Wagon) C LongTrain
(> 2 has.FreightWagon) C FreightTrain

EmptyTrain = Vhas.(EmptyWagon LI Locomotive) M Jhas.EmptyWagon

Figure 3: A subset of the XTRAINS dataset’s ontology.

Given the high accuracy of the three main networks be-
ing studied, we consider another fidelity metric (F'x1rqins),
which measures the concordance of the induced theories
with respect to the XTRAINS dataset labeling. This met-
ric is computed as the ratio of samples where the classifica-
tions of the XTRAINS labels (for the main network’s output
concepts C) coincide with those obtained from the induced
theory together with the knowledge obtained from the la-
bels of the mapped concepts (C,). This metric allows us to
compare whether the induced theories are better suited to the
classifications of our main and mapping networks, or to the
labeling of the dataset. Even when obtaining high Fisqin
scores, it is relevant to also examine F'x7,qins, Since if it
is significantly greater than F'y/4in, it could mean that our
method was overfitting to the dataset labels.

Additionally, we also inspect how the induced theories
logically compare with the existing XTRAINS’ ontology.
However, whereas an existing logical relation between both
could serve as confirmation of the quality of the induced the-
ory, it is worth noting that the absence of such a relation
should not be seen as evidence of an induced theory with
poor quality since the main networks may have learned to
perform the same classifications through a different internal
process.

Each experiment was run 20 times, using different bal-
anced sets of samples for training and testing purposes.
Throughout the paper, the induced theories that we present
and logically analyze are the mode of the 20 runs, while the
discussed fidelity scores correspond to the runs’ averages.

5.3 Inducing a Main Network’s Theory

In this section, we test our main hypothesis, namely that we
can leverage on the classifications provided by mapping net-
works, trained to identify concepts of interest, and use them
as basis to induce a human-understandable theory describing
how a neural network processes its inputs.

To that end, for each main network, we trained mapping
networks to identify the following 11 concepts* from the on-
tology in Figure 3: EmptyTrain, FreightTrain, LongTrain,
MixedTrain, PassengerTrain, RuralTrain, WarTrain,
Jhas.FreightWagon, Jhas.LongWagon, dJhas.OpenRoof,
Jhas.ReinforcedCar. In this process, we treat each complex
concept, e.g., Fhas.FreightWagon, as an atomic concept.

Using our method, we induced the following theories for

“We selected the same 11 concepts that were explored in (de
Sousa Ribeiro and Leite 2021)
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F./Wa,in FXTT'ains
Ma | 99.72+0.18% | 99.92 +0.35%
Mg | 98.71£0.31% | 99.83+0.76%
Mc | 99.33£0.32% | 99.52 £ 1.52%

Table 1: Fidelity scores for the theories of each main network.

each of the three main networks:

TypeA =WarTrain L EmptyTrain

TypeB = (FreightTrain M LongTrain)
LI (PassengerTrain M —EmptyTrain)

TypeC = MixedTrain L RuralTrain

For example, the theory induced for M4 states that a sam-
ple is classified as being a TypeA train if and only if it is
either a war train or an empty train, whereas the theory in-
duced for Mg states that a sample is classified as being a
TypeB train if and only if it is either a freight train and a
long train, or a passenger train and not an empty train.

It is worth noting that, despite the usage of 11 concepts
when inducing each theory, only 3 of those concepts were
used on average. This suggests that the proposed method
was able to properly select the concepts better suited to de-
scribe each neural network’s classification process.

A logical comparison of the induced theories with the on-
tology that accompanies the XTRAINS dataset allows us
to observe that both the definitions of concepts TypeA and
TypeC in the induced theories for Mp and M, respec-
tively, are equivalent to the respective definitions of TypeA
and TypeC in the datasets’ ontology. The concept of TypeB
in the induced theory for Mg is a subclass of TypeB as de-
fined in the XTRAINS ontology, meaning that any individ-
ual of TypeB in the induced theory is also considered to be
of TypeB according to the XTRAINS ontology.

Table 1 shows the fidelity scores of the induced theories.
The resulting high F)74;, scores provide evidence that the
resulting theories are properly reflecting the main network’s
internal classification process, strongly supporting our main
hypothesis. Furthermore, one can observe that the induced
theories are also faithful to the dataset’s labels, achieving
similar F'x7.qins and Fizqin scores. This is an interesting
indication that the main networks have learned to classify
their samples in similar fashion to how they are classified by
the ontology accompanying the XTRAINS dataset.

5.4 Levels of Abstraction

It is often the case that different scenarios require differ-
ent levels of abstraction and detail to interpret a neural net-
works’ classification process. For example, we may want to
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understand how a neural network is classifying some type of
train based on other known types of trains, or otherwise wish
to be more specific and understand how particular kinds of
wagons are influencing the output of the neural network.

To investigate how our method performs when faced with
concepts at different levels of abstraction, we crafted the fol-
lowing sets of concepts:

Train-level:

{EmptyTrain, LongFreightTrain, Mixed Train,

PassengerTrain, RuralTrain, WarTrain}

Wagon-Level:

{3has.EmptyWagon, Jhas.FreightWagon,
Jhas.LongWagon, Fhas.(LongWagon 1 PassengerCar)
Jhas.PassengerCar, Jhas.ReinforcedCar,
> 2has.FreightWagon, > 2has.LongWagon,
> 2has.PassengerCar, > 3has.Wagon}

The application of our method to the three main networks,
using the train-level concepts, resulted in the theories:

TypeA = EmptyTrain LI WarTrain

TypeB = LongFreightTrain U PassengerTrain

TypeC = MixedTrain LI RuralTrain

While with the wagon-level concepts we obtained:

TypeA = (Jhas.PassengerCar LI ~Jhas.FreightWagon)

M (Jhas.ReinforcedCar LI ~Jhas.PassengerCar)
TypeB = Jhas.(LongWagon M PassengerCar)

U (> 3has.Wagon M > 2has.FreightWagon)

TypeC = Jhas.EmptyWagon M (—3has.LongWagon
L (> 3has.Wagon 1 Jhas.PassengerCar))

Comparing the induced theories with the dataset’s ontol-
ogy, the induced definitions for the train-level theories of
TypeA, TypeB, and TypeC are all logically equivalent to the
ones in the dataset’s ontology. Turning to the wagon-level
induced theories, we can observe that the induced definition
of TypeB is a subclass of the corresponding definition in
the dataset’s ontology, while neither the induced definitions
of TypeA and TypeC are subclasses or superclasses of their
corresponding definitions in the dataset’s ontology.

However, when we turn to the fidelity scores for both
groups of induced theories, shown in Table 2, we can ob-
serve that the train-level theories achieve, on average, a
slightly higher value (99.35%) than the wagon-level ones
(96.74%), but they are all high, showing that our method is
able to generate high-quality theories using concepts at dif-
ferent levels of abstraction. The slight difference in fidelity
between the results achieved by the train-level and wagon-
level induced theories can be attributed to the difference in
accuracy of the mapping networks — 97.43% on average
for the train-level concepts and 96.07% for the wagon-level
ones — amplified by the fact that the wagon-level induced
theories use more concepts.

5.5 Insufficient Concepts

Having shown that the proposed method is able to induce
theories that represent a neural network’s classification pro-
cess, even when using concepts with different levels of ab-
straction, we now turn our attention to the case where the
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FJVIain FXTT‘(LinS
Train- Ma | 99.76 £0.19% 100.00 £ 0.0%
level Mg | 98.82£0.39% 100.00 £ 0.0%
Mc | 99.46 £ 0.20% 100.00 £ 0.0%
Wagon- | Ma [ 9455+ 10.14% | 94.44 £11.12%
level Mg | 97.50 £0.52% 96.73 £ 1.18%
Mc | 98.16 £0.36% 99.02 £ 0.56%

Table 2: Fidelity scores of the train- and wagon-level theories.

chosen concepts of interest are somehow insufficient to de-
scribe the neural networks’ classification process. This is
relevant since, in real-life, it may occur that we are unable
to determine a set of concepts that is adequate, or sufficient,
to describe a neural networks’ classification process.

We expect the fidelity of the resulting theories to reflect
the adequacy of the concepts C being mapped. If the cho-
sen concepts are insufficient to properly describe a main
network’s M classification process, then the induced the-
ory would have a diminished F,;, fidelity. Otherwise, it
would mean that our method could be picking up on spuri-
ous correlations to describe M’s classification process.

To test this, we sampled 20 random sets of 5 concepts
among all concepts defined in the XTRAINS ontology, and
induced theories for each of the three main networks. The
average fidelity scores Fyrqin and Fxrrqins Of the result-
ing theories were, respectively, 72.6% and 71.9%, which
are considerably lower than the ones obtained in Sections
5.3 and 5.4. These results back our hypothesis that the in-
adequacy of the selected concepts negatively reflects in the
quality of the resulting theories.

As an example, using the set {LongFreightTrain,
Jhas.LongWagon, Jhas.PassengerCar, > 3has.Wagon,
> 2has.PassengerCar}, resulted in the following theories:

TypeA=T
TypeB = > 3has.Wagon U LongFreightTrain

TypeC = (> 3has.Wagon M Jhas.PassengerCar)
U (=(> 2has.PassengerCar) M —3has.LongWagon)

A logical comparison of these theories with the dataset’s
ontology shows that the definition of TypeA in the dataset’s
ontology is a subclass of the induced definition of TypeA, al-
though this is hardly interesting since that would be the case
for any concept. The definitions of TypeB and TypeC are
not directly comparable with their respective definitions in
the dataset’s ontology, given that they are neither their sub-
classes or superclasses. The poor quality of these theories is
reflected in their fidelity scores, shown in Table 3. The high
fidelity of the theory obtained for Mg can be explained by
the use of concepts > 3has.Wagon and LongFreightTrain,
which, based on the experiments of Sections 5.3 and 5.4, are
adequate to describe the classification process of Mg.

5.6 Theory Induction’s Cost

The experiments presented so far provide evidence that our
method is able to perform properly in multiple scenarios,
as long as the mapped concepts are sufficient to describe a
neural network’s classification process. However, in order to
verify the method’s feasibility, its cost needs to be assessed.
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F]Main FXTrains
Ma | 50.16 +0.26% | 50.00 + 0.00%
Mg | 9253 +2.75% | 92.70 + 1.43%
Mc | 76.78 £1.99% | 76.99 + 0.94%

Table 3: Fidelity scores of the theories with randomly selected con-
cepts.

The method requires the training of multiple mapping net-
works, and a set of samples to induce the theory. The map-
ping networks’ development adds little computational over-
head, given their simple architectures, but requires data la-
beled with respect to the concepts C to be mapped. However,
this data can be repurposed to induce the theory, by relabel-
ing it according to the mapping networks’ classifications.

Hence, if the quality of our resulting theories would
mostly depend on the accuracy of the mapping networks,
and assuming the availability of enough unlabeled data, then
the main cost of applying our method would be in labelel-
ing the data required to train the mapping networks. Conse-
quently, since mapping networks are known to require few
labeled data to train, as shown in (de Sousa Ribeiro and Leite
2021), the cost of our method would be relatively low, de-
pending mostly on the amount of concepts C to be mapped.

To test whether the quality of the resulting theories mostly
depends on the accuracy of the mapping networks, for each
of the three main networks used throughout this paper, we
induced theories using the 11 concepts selected in Section
5.3, while varying the amount of data used for their training
between 50 and 1200 samples. The amount of data used to
induce the theories remained constant at 3000 samples. A
Pearson’s correlation test on fidelity F);4;, and the average
accuracy of the mapping networks for C,, with o = 90%,
shows a significant strong correlation (r 0.8161, p <
0.0001), thus indicating that when the mapping networks’
accuracy increases, the quality of the induced theories in-
creases as well. Since mapping networks are able to achieve
high accuracies even with few training data, and that this
data is typically the limiting factor, the cost of our method
can be considered to be quite moderate. Even when consid-
ering only 50 samples to both train the mapping networks
and induce the theories, the resulting theories were typically
quite accurate, with an average fidelity F;q;y, of about 96%.

5.7 Importance of the Mappings

The goal of our proposed method is to develop a human-
understandable theory representing the classification pro-
cess of a given neural network model. Given that our the-
ories are induced based on the results of mapping networks,
which in turn were trained based on labeled data, one might
wonder why they should bother with using mapping net-
works, instead of inducing the theories directly from the
labels used to train the mapping networks. We hypothe-
size that theories induced directly from labeled data, even if
faithful to the data classification, can misrepresent the classi-
fication process of the neural network model they were built
to represent. Conversely, we hypothesize that the theories
induced through our method, being reliant on the internal
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Figure 4: Sample images of the designed classification problem.

representations of the model obtained through the mapping
networks, will more faithfully represent its internal process.
To test our hypotheses, we designed a classification prob-
lem where four traffic signals are added to each image of the
XTRAINS dataset, as shown in Figure 4. A traffic signal
is said to be on if it contains any symbol inside it, and off
if it does not contain any symbol inside or if it only con-
tains diagonal stripes inside. The images were then labeled
regarding 5 different concepts: ToplLeftOn, TopRightOn,
BottomLeftOn, BottomRightOn, with obvious meaning,
and On whenever some traffic signal is on. The dataset was
designed such that whenever one of the top traffic signals is
on, at least one of the bottom traffic signals is on as well, and
vice versa. A neural network is then tasked with identifying
whether some traffic signal is on in a given image. Notice
that, due to the way the dataset was designed, it is enough to
look at either the top, or bottom signals to be able to identify
if any traffic signal is on. Thus, one would expect that neu-
ral networks trained to perform this task would sometimes
learn to identify the top signals, sometimes learn to identify
the bottom ones, and sometimes learn to identify them all.
In this setting, we trained 50 different main networks
with a test accuracy higher than 90%. When inducing
a theory for each of the developed main networks, using
their outputs and the dataset labels (instead of the mapping
network outputs), the same theory was always obtained:
{On = BottomLeftOn LI BottomRightOn}.> This observa-
tion strongly supports our first hypothesis, suggesting that
due to the high accuracy of the main networks’ outputs,
when using the dataset labels, the induced theories are in-
stead describing how the dataset was labeled. Hence, having
no relation to the main networks classification process.
However, if we apply our proposed method to the same
50 main networks, which considers the outputs of the map-
ping networks, we observe diverse induced theories. Our
results reveal that 22% of the main networks learned to clas-
sify their outputs just by considering whether the two top
signals were on, resulting in the induced theory {On =
TopLeftOn U TopRightOn}, while 42% looked at the two
bottom signals, resulting in the induced theory {On
BottomLeftOn L BottomRightOn}. This indicates that dif-
ferent main networks learned to classify their inputs differ-
ently, which was captured by the induced theories using the
outputs of the mapping networks, but not when only the

SDespite the existence of two minimal theories that describe the
dataset’s labels, {On = BottomLeftOn LI BottomRightOn} and
{On = TopLeftOn L TopRightOn}, DL-Learner always presents
the same one because it is not non-deterministic — the induced the-
ory depends on the order in which the concepts were presented.
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dataset labels were used. The remaining main networks
learned to classify their inputs based on some other com-
bination of signals, e.g., by observing all signals. Interest-
ingly, our results hint that some of these networks did not
seem to have learned the concepts that we considered, but
instead had learned to classify their inputs based on some
other spurious correlations present in the dataset.

6 Related Work

The success of artificial neural network-based methods,
along with their characteristic opaqueness, led to the de-
velopment of many methods with the goal of increasing
the interpretability of artificial neural network models. One
of the most popular approaches being saliency and attribu-
tion methods (Li et al. 2021; Sundararajan, Taly, and Yan
2017; Wang et al. 2020), where the explanation for a neu-
ral network’s behavior is given in terms of the contribu-
tion of each input feature for a given prediction. This is
the case of gradient-based methods (Ancona et al. 2018),
which compute the gradient of the output with respect to
the input to approximate the input features’ contributions,
and backpropagation-based methods (Montavon et al. 2019;
Rebuffi et al. 2020), where a set of propagation rules is used
to propagate the output backwards, in order to compute the
relevancy of each input feature. There also exist saliency and
attribution methods based on perturbation (Zeiler and Fergus
2014; Ivanovs, Kadikis, and Ozols 2021), where the input
features’ contributions are estimated by measuring how the
output changes when masking different parts of the input,
or based on abduction (Ignatiev, Narodytska, and Marques-
Silva 2019), where inputs are selected based on an encoding
of the model as a set of constrains.

Other methods, known as proxy-based methods (Gilpin
et al. 2018), attempt to substitute the model being inter-
preted for another one that has a similar behavior and is
inherently interpretable. One popular proxy-based method
is LIME (Ribeiro, Singh, and Guestrin 2016), where local
linear models are used as a simplified proxy for the full
model. Automatic rule extraction algorithms (Guidotti et al.
2019) are a large subgroup of proxy-based methods, where
different approaches can be found. Pedagogical rule ex-
traction algorithms (Augasta and Kathirvalavakumar 2012;
Schmitz, Aldrich, and Gouws 1999) treat the neural network
as a black-box and attempt to produce rules based only on its
input-output behavior, decompositional rule extraction algo-
rithms (Zilke, Mencia, and Janssen 2016) consider the inner
structure of a neural network model to generate its rules,
and eclectic rule extraction algorithms (Towell and Shavlik
1993) apply both elements of pedagogical and decomposi-
tional rule extraction algorithms. Recently, multilayer per-
ceptrons were mapped into quantitative bipolar argumenta-
tion frameworks (Potyka 2021), although the meaning of the
resulting arguments, and the added-value, is yet unclear.

While the above mentioned methods increase the inter-
pretability of neural network models in some way, most only
do so in terms of the inputs of the model being interpreted,
with explanations consisting only of sets of input features
and their corresponding contribution values. However, user
studies (Adebayo et al. 2020; Chu, Roy, and Andreas 2020;
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Shen and Huang 2020) have shown that such explanations
typically end up being ignored or unhelpful to end users.
We attribute this to the fact that this kind of explanations do
not explicitly present any kind of clarification regarding the
underlying phenomena that lead to the production of a par-
ticular output from a given input to the model, leaving to the
user the burden of understanding why the explanation, e.g.,
a particular set of input features and contribution values, jus-
tifies the output of a neural network. Works such has TCAV
(Kim et al. 2018) use a notion of “human-interpretable con-
cepts”, but no account is given regarding how these concepts
relate to the output of the neural network.

The field of neuro-symbolic Al (Besold et al. 2017) and
inductive logic-based explainable AI (Schmid 2018) have
also contributed to the increase of the interpretability of
subsymbolic models. Works such as LIME-FOLD (Shak-
erin and Gupta 2019) and SHAP-FOIL (Shakerin and Gupta
2020) induce a theory for explaining a model’s input-output
behavior, by leveraging local explanation methods to deter-
mine input feature importance, while (Sarker et al. 2017)
attempts to induce such a theory based on labels describing
a model’s inputs and outputs. (D’ Asaro et al. 2020) employs
a similar approach, but addresses preference learning tasks,
using ILASP (Law, Russo, and Broda 2014) and its ability to
learn weak constraints to explain a model. However, given
that these methods are pedagogical rule-extraction methods,
they are limited to only describing a model’s input-output
behavior, and thus might fail to be truthful to a neural net-
works’ internal representations.

7 Conclusions

In this paper, we proposed a method for inducing logic-
based theories that represent the classification process of a
neural network model, providing a human-understandable
description of how a neural network is achieving its results
based on human-defined concepts.

We provide a formalization of our method along with an
experimental evaluation. We were able to show that the
method is capable of inducing theories that are faithful to
a neural network’s classifications. The method has shown
to be able to deal with unnecessary concepts, and select
the ones that are adequate, depending on the neural net-
work model to which it is being applied. Moreover, it was
able to induce theories at different levels of abstraction, and
shown to be applicable even when few labeled data is avail-
able. Our results indicate that it is indeed possible to ob-
tain logic-based theories that reflect the internal classifica-
tion process of a given neural network, by leveraging the
knowledge hidden in its internal representations to extract
symbolic human-defined concepts. This allows us to better
understand how a neural network model is performing its
classifications, at an adequate level of abstraction, and thus
better interpret that model.

Regarding future work, an interesting avenue of research
is to explore how to induce probabilistic theories based on
the accuracy of the mapping networks, in order to obtain the-
ories that better represent the internal classification process
of neural network models.
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