
On Syntactic Forgetting with Strong Persistence

Matti Berthold
Universität Leipzig

berthold@informatik.uni-leipzig.de

Abstract

It is generally agreed upon that so-called strong persistence
(SP) captures best the essence of forgetting in logic program-
ming. While classes of operators, such as FR and FSP, that
satisfy immediate relaxations of (SP), and in the case of FSP,
even (SP) whenever possible, have been characterized se-
mantically, many practical questions have yet to be addressed.
This technical paper aims to answer one of them: How can
atoms be forgotten from a program without having to calculate
its exponential number of models? To this end, we introduce
two concrete representatives of FR and FSP that forget sets of
atoms by syntactical manipulation of a program’s rules. This
may in many cases prevent exponential blowups and produce
a forgetting result that is close to the original program.

1 Introduction
The research area of forgetting has recently seen ample
amounts of progress in the context of logic programming.
Intuitively, forgetting means that bits of a program are re-
moved in such a way that the logical connections between the
remaining bits are left intact. Forgetting might be necessary,
for example, to tend to legal requests to remove informa-
tion of a user from a knowledge base, or, to simplify it by
removing unnecessary data.

Recent studies investigated several forgetting properties
and identified Strong Persistence (SP) to most accurately de-
scribe the essence of forgetting (Gonçalves, Knorr, and Leite
2016a). (SP), however, is not always obtainable (Gonçalves,
Knorr, and Leite 2016b). Therefore forgetting operators have
been defined semantically, satisfying different relaxations
of (SP), among them FR and FSP, where notably FSP does
satisfy (SP), whenever possible (Gonçalves et al. 2017).

While it is possible to obtain specific forgetting results
from the desired semantics by counter-models construction
(Cabalar and Ferraris 2007), this process necessarily involves
calculating an exponential number of interpretations. In many
cases, such blowups can be avoided by constructing a for-
getting result purely by syntactically manipulating the input
program.

In the literature there exists a number of such syntactic for-
getting operators (Zhang and Foo 2006; Eiter and Wang 2008;
Knorr and Alferes 2014; Gonçalves et al. 2021), however,
most of them do not satisfy the most basic properties, much
less (SP) (cf. (Berthold et al. 2019) for an overview).

The only syntactic operator to satisfy (SP), whenever pos-
sible, fSP , only forgets one atom. To this end, it was proven
to conform to the semantics of class FSP. But can fSP be
iterated to correctly forget arbitrary sets of atoms?
Example 1. Consider forgetting p and q from program P1:

a← p, q. q ← not p. p← notnot p.

The only remaining atom, a, is implied by p and q, who are
mutually exclusive. Since a can therefore not be deduced,
one would expect the result of forgetting to be the empty
program.1 And indeed, if we first forget q and then p via
fSP , we arrive at our desired result. Forgetting q first yields
fSP (P1, q):

((((((a← p,not p. p← notnot p.

where the appearance of q in the rule a ← p, q. is simply
replaced by not p, which implied q before. The resulting rule
can then be disregarded, as p and not p are unsatisfiable
together. Forgetting p subsequently naturally yields the empty
program, i.e. fSP (fSP (P1, q), p) = ∅.

Observe what happens if the order of forgetting p and q is
reversed: Forgetting p first yields fSP (P1, p):

a← q, notnot a. q ← notnot q.

where the cyclic dependency on p is transferred to a and q,
but the information that a was only implied by a contradiction
is lost. Forgetting q thereafter yields fSP (fSP (P1, p), q):

a← notnot a.

which is not our desired forgetting result.
Apparently, fSP is sensitive to the order in which atoms

are forgotten. We will show that, worse yet, for both classes,
FR and FSP, there are instances such that forgetting atoms
iteratively in any order will create a result deviating from for-
getting all atoms at once. This proves the existing forgetting
operator fSP insufficient for forgetting arbitrary sets of atoms
from programs by FSP semantics, and illustrates that concrete
forgetting procedures for both FR and FSP necessarily are
quite complex.

This paper introduces the syntactic operators fR and f∗SP to
overcome these issues, that forget any set of atoms correctly
by the semantics of FR and FSP.

1This intuition coincides with FSP.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

43

The paper is structured as follows: Sec. 2 recalls the basics
of logic programming and the semantics of forgetting. Sec. 3
collects a number of auxiliary syntactic operators that are
used when forgetting. We put a particular emphasis on their
connection to HT-semantics and provide some insights that
are essential to our main results.

The operators fR and f∗SP are defined and proven to be
correct in Sec. 4 and 5 respectively. Finally Sec. 6 contains
the intuitions behind the operators, as well as some positive
results demonstrating their performance. We close the paper
with a discussion in Sec. 7.

2 Background
Logic Programs We assume a propositional signature Σ.
A logic program P over Σ is a finite set of rules of the form

a1 ∨ . . . ∨ ak ← b1, ...,bl, not c1, ..., not cm,

notnot d1, ..., notnot dn,

where all a1, . . . , ak, b1, . . . , bl, c1, . . . , cm, and d1, . . . , dn
are atoms of Σ (Lifschitz, Tang, and Turner 1999). Such
rules r are also written more succinctly as

H (r)← B+(r), notB−(r), notnotB−−(r),

where H (r) = {a1, . . . , ak}, B+(r) = {b1, . . . , bl}, B−(r) =
{c1, . . . , cm}, and B−−(r) = {d1, . . . , dn}, and we will use
both forms interchangeably. Given a rule r, H (r) is called the
head of r, and B(r) = B+(r)∪notB−(r)∪notnotB−−(r)
is called the body of r, where, for a set A of atoms, notA =
{not q ∣ q ∈ A} and notnotA = {notnot q ∣ q ∈ A}.

Σ(P) and Σ(r) denote the set of atoms appearing in P
and r, respectively.

Given a program P and an interpretation, i.e., a set
I ⊆ Σ of atoms, the reduct of P given I , is defined as
P I = {H (r) ← B+(r) ∣ r ∈ P such that B−(r) ∩ I =
∅ and B−−(r) ⊆ I}. An HT-interpretation is a pair ⟨X,Y ⟩
s.t. X ⊆ Y ⊆ Σ. Given a program P , an HT-interpretation
⟨X,Y ⟩ is an HT-model of P , ⟨X,Y ⟩ ⊧ P , iff Y ⊧ P and X ⊧
PY , where ⊧ both denotes the standard satisfaction relation
for classical logic and for HT-logic.2 An HT-interpretation
⟨X,Y ⟩ is total iff X = Y . Given a rule r, ⟨X,Y ⟩ ⊧ r, iff
⟨X,Y ⟩ ⊧ {r}. We admit that the set of HT-models of a
program P is restricted to Σ(P) even if Σ(P) ⊂ Σ. We
denote by HT (P) the set of all HT-models of P . A set
of atoms Y is an answer set of P iff ⟨Y,Y ⟩ ∈ HT (P),
and there is no X ⊂ Y such that ⟨X,Y ⟩ ∈ HT (P). We
term HT-models ⟨X,Y ⟩ s.t. X ⊂ Y witnesses. The set of
all answer sets of P is denoted by AS(P). Two programs
P1, P2 are equivalent iff AS(P1) = AS(P2) and strongly
equivalent, P1 ≡ P2, iff AS(P1 ∪ R) = AS(P2 ∪ R) for
any program R. It is well-known that P1 ≡ P2 exactly
whenHT (P1) =HT (P2) (Lifschitz, Pearce, and Valverde
2001). Given a set V ⊆ Σ, the V -exclusion of a set of an-
swer sets (a set of HT-interpretations)M, denotedM∥V , is
{X\V ∣X ∈M} ({⟨X\V,Y \V ⟩ ∣ ⟨X,Y ⟩ ∈M}).

2For brevity, parentheses, commas and union signs within HT-
interpretations may be omitted, such that, for example, ⟨∅, Y pq⟩
means ⟨∅, Y ∪ {p, q}⟩.

Forgetting: Properties and Operators Let P be the set
of all logic programs. A forgetting operator is a (partial)
function f ∶ P × 2Σ → P . The program f(P,V) is inter-
preted as the result of forgetting about V from P . Moreover,
Σ(f(P,V)) ⊆ Σ(P)\V is usually required. In the follow-
ing we introduce some well-known properties for forgetting
operators (Gonçalves, Knorr, and Leite 2016a).

Strong persistence is presumably the best known one
(Knorr and Alferes 2014). It requires that the result of forget-
ting f(P,V) is strongly equivalent to the original program P ,
modulo the forgotten atoms.
(SP) f satisfies strong persistence iff, for each program P

and each set of atoms V , we have:
AS(P ∪ R)∥V = AS(f(P,V) ∪ R) for all programs R
with Σ(R) ⊆ Σ\V .

Notably, (SP) can be decomposed into the following three
properties, i.e. an operator f satisfies (SP) iff f satisfies all
(wC), (sC) and (SI), where
(wC) f satisfies weakened consequence iff, for each P and

each set of atoms V : AS(f(P,V)) ⊇ AS(P)∥V .
(sC) f satisfies strengthened consequence iff, for each P

and each set of atoms V : AS(f(P,V)) ⊆ AS(P)∥V .
Strong invariance requires that rules not mentioning atoms
to be forgotten can be added before or after forgetting.
(SI) f satisfies strong invariance iff, for each program P and

each set of atoms V , we have: f(P,V)∪R ≡ f(P ∪R,V)
for all programs R with Σ(R) ⊆ Σ\V .
Note that the presented properties are often considered

for certain subclasses such as disjunctive, normal or Horn
programs. Moreover, they naturally extend over classes of
forgetting operators, where a class satisfies a property, iff all
its members do.

In the light of the impossibility for a forgetting operator to
satisfy (SP) for all pairs ⟨P,V ⟩, called forgetting instances,
where P is a program and V is a set of atoms to be forgotten
from P (Gonçalves, Knorr, and Leite 2016b), (SP) was de-
fined for concrete forgetting instances. A forgetting operator
f satisfies (SP)

⟨P,V ⟩, ifAS(f(P,V)∪R) = AS(P ∪R)∥V ,
for all programs R with Σ(R) ⊆ Σ\V . A sound and com-
plete criterion Ω characterizes when it is not possible to forget
while satisfying (SP)

⟨P,V ⟩.
The definition of Ω is rather technical. To decide Ω for a

given ⟨P,V ⟩, all total models ⟨Y A,Y A⟩ with Y ⊆ Σ(P)\V
and A ⊆ V are considered for which there are no witnesses
⟨Y A′, Y A⟩ ∈ HT (P) with A′ ⊂ A. For each Y ⊆ Σ(P)\V
all such relevant A ⊆ V are collected:
RelY

⟨P,V ⟩ ∶= {A ⊆ V ∣ ⟨Y ∪A,Y ∪A⟩ ∈HT (P) and

∄A′ ⊂ A s.t. ⟨Y ∪A′, Y ∪A⟩ ∈HT (P)}.
Then, an instance ⟨P,V ⟩ satisfies criterion Ω iff between
the considered total models with matching unforgotten part
Y , there is no least element, with respect to their witnesses
modulo V , more formally, iff there is Y ⊆ Σ\V such that the
set of sets RY

⟨P,V ⟩ ∶= {R
Y,A
⟨P,V ⟩

∣ A ∈ RelY
⟨P,V ⟩} is non-empty

and has no least element, where
RY,A
⟨P,V ⟩

∶= {X\V ∣ ⟨X,Y ∪A⟩ ∈HT (P)}.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

44

Example 2. Consider the forgetting instance ⟨P2,{p}⟩,
where P2 has the following HT-models3:

⟨apq, apq⟩ ⟨aq, aq⟩ ⟨ap, ap⟩
⟨∅, apq⟩ ⟨a, aq⟩ ⟨a, ap⟩

Both ⟨apq, apq⟩ and ⟨aq, aq⟩ are considered, whereas
⟨ap, ap⟩ is not, because of ⟨a, ap⟩. ⟨apq, apq⟩ and ⟨aq, aq⟩
match w.r.t. Y = {a, q}, but none of them is least w.r.t. their
witnesses modulo p. Hence ⟨P2,{p}⟩ satisfies Ω.

Corresponding to the Ω criterion the classes FR and FSP

specify the HT-models of the forgetting result. It was shown
that FSP satisfies (SP)

⟨P,V ⟩ for all instances ⟨P,V ⟩ that do
not satisfy Ω. Moreover, in the case where Ω is satisfied, FSP

still exhibits desirable behavior, such as satisfying (SI) and
(wC), two of three characterizing criterions of (SP). FR

on the other hand always satisfies (sC) and (SI), which
makes it an ideal choice, if no new answer sets should be
created (Gonçalves et al. 2017).

The classes FR and FSP are are defined as follows:
FR ∶= {f ∣HT (f(P,V))={⟨X,Y ⟩ ∣ Y ⊆ Σ(P)\V ∧

X ∈⋃RY
⟨P,V ⟩}, for all programs P and V ⊆ Σ},

FSP ∶= {f ∣HT (f(P,V))={⟨X,Y ⟩ ∣ Y ⊆ Σ(P)\V ∧
X ∈⋂RY

⟨P,V ⟩}, for all programs P and V ⊆ Σ}.
where FR collects the union of all witnesses modulo V of the
considered models, and FSP collects their intersection.
Example 3. We assume f ∈ FR. The following graph con-
tains programs as nodes, represented by their respective set
of HT-models. Two nodes Pi and Pj are connected by an
edge labeled V , iff f(Pi, V) = Pj . An edge from Pi to Pj

is additionally labeled with Ω, iff ⟨Pi, V ⟩ satisfies Ω. The
program P2 from Exm. 2 is in the topmost box.

⟨apq, apq⟩ ⟨aq, aq⟩ ⟨ap, ap⟩
⟨∅, apq⟩ ⟨a, aq⟩ ⟨a, ap⟩

⟨aq, aq⟩
⟨a, aq⟩
⟨∅, aq⟩

∅

⟨ap, ap⟩
⟨a, ap⟩
⟨∅, ap⟩

∅
⟨a, a⟩
⟨∅, a⟩

Ω{p} Ω{q}

{p, q}

{q} {p}

If p is forgotten from P2, then Rel
{a,q}

⟨P2,{p}⟩
= {∅,{p}}. Hence

⟨aq, aq⟩ ⊧ f(P2,{p}). Since ⟨a, aq⟩ ⊧ P2, and ⟨∅, apq⟩ ⊧
P2, we get ⟨a, aq⟩ ⊧ f(P2,{p}) and ⟨∅, aq⟩ ⊧ f(P2,{p}).
For all Y ⊆ Σ(P2)\V , s.t. Y ≠ {a, q}, we have RelY

⟨P2,{p}⟩
=

∅, which entails ⟨Y,Y ⟩ /⊧ f(P2,{p})
3Given a set of HT-interpretations M , satisfying ⟨X,Y ⟩ ∈M ⇒

⟨Y,Y ⟩ ∈M , there exists a program P withHT (P) =M (Cabalar
and Ferraris 2007). In the following examples each set of models
represents the program that can be derived by the counter-models
construction.

Example 4. Now assume f ∈ FSP instead, and the same
graphical representation of forgetting as in Exm. 3. When
p is forgotten from P2, then ⟨aq, aq⟩ ⊧ f(P2,{p}), for
the same reason as in Exm. 3, since Rel

{a,q}

⟨P2,{p}⟩
≠ ∅, but,

since ⟨ap, apq⟩ /⊧ P2, and ⟨a, apq⟩ /⊧ P2, we get ⟨a, aq⟩ /⊧
f(P2,{p}). In addition, ⟨q, aq⟩ /⊧ P2, and ⟨∅, aq⟩ /⊧ P2 en-
tail ⟨∅, aq⟩ /⊧ f(P2,{p}). As before, for all Y ⊆ Σ(P2)\V ,
s.t. Y ≠ {a, q}, we have RelY

⟨P2,{p}⟩
= ∅, which entails

⟨Y,Y ⟩ /⊧ f(P2,{p})

⟨apq, apq⟩ ⟨aq, aq⟩ ⟨ap, ap⟩
⟨∅, apq⟩ ⟨a, aq⟩ ⟨a, ap⟩

⟨aq, aq⟩

⟨a, a⟩

⟨ap, ap⟩

⟨a, a⟩
⟨a, a⟩
⟨∅, a⟩

Ω{p} Ω{q}

{p, q}

{q} {p}

Whereas arbitrary sets of atoms can be forgotten, based on
the HT-models defined by FR and FSP via the counter-models
construction (Cabalar and Ferraris 2007) – a procedure not un-
like determining a formula in CNF based on classical models
– purely syntactical manipulations following FSP semantics
have only been defined to forget single atoms, and for FR up
until now there are none whatsoever.

Examples 3 and 4 witness that in general atoms cannot be
forgotten iteratively by the semantics of FR and FSP, which,
for one, proves fSP unfit to correctly forget multiple atoms.

3 Syntactic Tools
Defining syntactic forgetting operators obeying the semantics
of FR and FSP comes down to two points: i) identifying which
rules an interpretation is contradicted by, and ii) constructing
rules that contradict interpretations as semantically defined.
In this chapter we collect and introduce essential tools needed
to do these two things.

Firstly, to avoid complications and unnecessary calcu-
lations caused by redundant (parts of) rules, we bring
programs into a normal formal as has been done in pre-
vious related work (Inoue and Sakama 1998; 2004; Ca-
balar, Pearce, and Valverde 2007; Slota and Leite 2011;
Knorr and Alferes 2014). The construction used by Berthold
et al. in 2019 applies to programs with disjunctive heads and
double negation, and eliminates non-minimal rules (Brass
and Dix 1999).

First off, there is a number of redundancies that can be
removed easily, by considering each rule individually.

Example 5. Consider the following rules:

a ∨ b← a. a ∨ b← not a.

b← a,not a. b ← a,notnot a.

b← not a, notnot a.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

45

The three rules in the left column are tautological, they are
satisfied by any interpretation, and can thus be disregarded.

The two rules in the right column contain redundant liter-
als. An interpretation satisfying the body of the top rule, i.e.
not a cannot at the time satisfy a in the rule’s head. There-
fore a can be omitted. For the bottom rule it holds that any
interpretation satisfying a in the rule’s body also satisfies
notnot a, hence notnot a can be omitted.

Further, some rules are weaker (have more models) than
other rules. Such non-minimal rules can also be disregarded.
We broaden the notion of non-minimality, that has been used
by Berthold et al., by adapting subsumption of rules (Cabalar,
Pearce, and Valverde 2007).
Definition 1. Given two rules r and s, s subsumes r, in
symbols s ≤ r, iff:

1. H (s) ⊆ H (r) ∪B−(r),
2. B+(s) ⊆ B+(r) ∪B−−(r),
3. B−(s) ⊆ B−(r),
4. B−−(s) ⊆ B−−(r) ∪B+(r), and
5. B+(s) ∩B−−(r) = ∅ or H (s) ∩H (r) = ∅.

Subsumption is such that, if a rule s subsumes a rule r, then
s has no more HT-models than r. In other words it contains
at least as much information, and r is redundant.

A rule r is minimal in P , iff it is not (strictly) subsumed
by another rule s in P , i.e. iff ¬∃s ∈ P ∶ s ≤ r ∧ r /≤ s.
Example 6. Consider the following program P6:

a← notnot b. a← c, notnot b. ← b, not a.

In (Berthold et al. 2019), only the middle rule is non-minimal
in P6, since it contains more literals than the rule on the
left. In this paper, we additionally deem the right hand rule
non-minimal, since it is subsumed by the left hand rule.

Programs in normal form do not contain redundant parts
of rules, non-minimal rules, nor tautologies, where a rule r is
tautological iff H (r) ∩B+(r) /= ∅, or B+(r) ∩B−(r) /= ∅,
or B−(r) ∩B−−(r) /= ∅.
Definition 2. Let P be a program. We say that P is in normal
form iff the following conditions hold:

• P does not contain tautological rules;
• if a ∈ H (r), then not a ∉ B(r);
• if a ∈ B(r), then notnot a ∉ B(r);
• all rules in P are minimal.

Any program can be transformed into a strongly equivalent
program in normal form.
Definition 3. Let P be a program. The normal form NF (P)
is obtained from P by:

1. removing all tautological rules;
2. removing all atoms a from B−−(r) in the remaining rules

r, whenever a ∈ B+(r);
3. removing all atoms a from H (r) in the remaining rules r,

whenever a ∈ B−(r);
4. removing from the resulting program all rules that are not

minimal.

Proposition 1. Let P be a program. Then, NF (P) is in
normal form and is strongly equivalent to P .
The first three steps of the normal form construction only
require checking each rule by itself. Checking whether a rule
in a program P is non-minimal requires a comparison to
each other rule in P . Hence the normal form construction has
polynomial complexity.
Proposition 2. Let P be a program. Then, the normal form
NF (P) can be computed in PTIME.

The q-exclusion notation is short hand to remove an atom.
Definition 4 (q-exclusion). Given an atom q ∈ Σ, and
a set of literals L, a rule r and a program P over Σ,
the q-exclusions are L\q ∶= L\{q, not q, notnot q}, r\q ∶=
H \q(r)← B\q(r) and P \q ∶= {r\q ∣ r ∈ P}.

A rule in a program in normal form can only contain a
given atom q in six different ways. We define a partition of a
program along these occurrences.
Definition 5. Given a program P in normal form over Σ and
an atom q ∈ Σ, P is partitioned according to the occurrence
of q, i.e. occ(P, q) ∶= ⟨R,R0,R1,R2,R3,R4⟩, where

R ∶= {r ∈ P ∣ q /∈ Σ(r)}
R0 ∶= {r ∈ P ∣ q ∈ B(r)}
R1 ∶= {r ∈ P ∣ not q ∈ B(r)}
R2 ∶= {r ∈ P ∣ not not q ∈ B(r), q /∈H(r)}
R3 ∶= {r ∈ P ∣ not not q ∈ B(r), q ∈H(r)}
R4 ∶= {r ∈ P ∣ not not q /∈ B(r), q ∈H(r)}

By partitioning a program along the occurrences of an
atom, we are able to identify some first correspondences be-
tween rules and models – if an interpretation is not a model
of a program, it is contradicted by a rule with a certain occur-
rence of q.
Proposition 3. Given a program P in normal form over Σ,
X ⊆ Y ⊆ Σ, and an atom q ∈ Σ, with q ∉ Y , and occ(P, q) =
⟨R,R0,R1,R2,R3,R4⟩. Then the following equivalencies
hold:

⟨X,Y ⟩ /⊧ P ⇔ ∃r ∈ R ∪R1 ∪R4 ∶ ⟨X,Y ⟩ /⊧ r
⟨Xq,Y q⟩ /⊧ P ⇔ ∃r ∈ R ∪R0 ∪R2 ∶ ⟨Xq,Y q⟩ /⊧ r
⟨X,Y q⟩ /⊧ P ⇔ ∃r ∈ R ∪R2 ∪R3 ∪R4 ∶ ⟨X,Y q⟩ /⊧ r

The next construction conversely identifies, which inter-
pretations are models of a program.

The as-dual construction (Berthold et al. 2019) general-
izes constructions that collect sets of conjunctions of literals
aiming to replace negated occurrences of a literal (Eiter and
Wang 2008; Knorr and Alferes 2014). It takes into account
disjunctions and double negations, and can be used more gen-
erally to collect literals describing possible ways to satisfy
rules independently of a given atom. Applying the construc-
tion to the rules containing q in the head, the as-dual describe
exactly how q can be falsified.
Example 7. Consider the following program P7:

a ∨ q ← b. q ← c.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

46

If b does not hold, q cannot be derived from the first rule.
Likewise, q cannot be derived from the first rule, if a is not
false. Further, q cannot be derived from the second rule, if c
does not hold. Hence q is falsified by the following two sets
of literals: {not b, not c} and {notnot a, not c}.
Definition 6. Given a program P = {r1, . . . , rn} over Σ and
an atom q ∈ Σ, then:

Dq
as(P) ∶= {{l1, . . . , ln} ∣

li ∈ notB\q(ri) ∪ notnotH \q(ri),1 ≤ i ≤ n},
where, for a set S of literals, notS = {not s ∣ s ∈ S}
and notnotS = {notnot s ∣ s ∈ S}, where, for p ∈ Σ,
we assume the simplification notnotnot p = not p and
notnotnotnot p = notnot p.

The as-dual can also be applied more generally, to any
program P to gain sets of literals proving P to be satisfied
independently of an atom q.
Example 8. Let P8 consist of the following two rules:

a← q, b. c← d,notnot q.

Then each set in Dq
as(P8) =

{Hi!{notnot a, notnot c}, {not b, notnot c},
{notnot a, not d}, {not b, not d}Live long and prosper!}

describes how P8 can be satisfied independently of q.
By applying the as-dual to certain subsets of a program,

we are able to construct rules that contradict some models of
a program.
Proposition 4. Given a program P in normal form over Σ,
Y ⊆ Σ, and an atom q ∈ Σ, with q ∉ Y , and occ(P, q) =
⟨R,R0,R1,R2,R3,R4⟩. Then the following implications
hold:

⟨Y,Y ⟩ ⊧ P ⇒ ∃D ∈ Dq
as(R1 ∪R4) ∶ ⟨Y,Y ⟩ /⊧ ←D

⟨Y q, Y q⟩ ⊧ P ⇒ ∃D ∈ Dq
as(R0 ∪R2) ∶ ⟨Y q, Y q⟩ /⊧ ←D

⟨Y,Y q⟩ ⊧ P ⇒ ∃D ∈ Dq
as(R3 ∪R4) ∶ ⟨Y,Y q⟩ /⊧ ←D

In the case that R = ∅ the first and second implication hold
in both directions.

We define the product of rules (resp. of programs) and
double negation of rules to be able to construct rules (resp.
programs) that unite the models of two given rules (resp. of
programs).
Definition 7 (Product of Rules). Let r1 and r2 be rules. Their
product r1 × r2, is defined as:

H (r1) ∪H (r2)← B(r1) ∪B(r2)
Proposition 5. Let r1, r2 be rules over Σ, and X ⊆ Y ⊆ Σ,

Y ⊧ r1 × r2⇔ Y ⊧ r1 ∨ Y ⊧ r2

X ⊧ {r1 × r2}Y ⇔X ⊧ {r1}Y ∨X ⊧ {r2}Y

Definition 8 (Product of Programs). Let P1 and P2 be pro-
grams. Their product P1 × P2, is defined as:

{r1 × r2 ∣ r1 ∈ P1 ∧ r2 ∈ P2}

Proposition 6. Let P1, P2 be programs over Σ, and X ⊆
Y ⊆ Σ,

Y ⊧ P1 × P2⇔ Y ⊧ P1 ∨ Y ⊧ P2

X ⊧ (P1 × P2)Y ⇔X ⊧ PY
1 ∨X ⊧ PY

2

In general, HT (P1) ∪ HT (P2) = HT (P1 × P2) does
not hold, e.g. ⟨∅, ab⟩ /⊧ {a ←} and ⟨∅, ab⟩ /⊧ {← b}, but
⟨∅, ab⟩ ⊧ {a← b}. To get around this, we define the double
negation of a rule to be able to reason about, whether the
second item Y of an HT-model ⟨X,Y ⟩ is a classical model,
and therefore whether the corresponding total model ⟨Y,Y ⟩
is a potential answer set.
Definition 9. Given a rule r, we define the double negation
of r, i.e. notnot r, as:

notnot r ∶=← notH (r) ∪ notnotB(r)
Proposition 7. Given a rule r over Σ, and X ⊆ Y ⊆ Σ, the
following statement holds:

Y ⊧ r⇔ ⟨X,Y ⟩ ⊧ notnot r
Using the double negation, for example, we can construct

P = {a ←} × {notnot ← b} = {a ← notnot b}, such that
⟨∅, ab⟩ /⊧ P , andHT (P) =HT ({a←}) ∪HT ({← b}).

Any rule r subsumes notnot r. In order not to lose double
negated rules, we therefore restrict the normal form construc-
tion NF to its first three steps, denoted nf , when necessary
(in Def. 10 and Def. 11).

All the aforementioned correspondences between models
and rules remain, when an atom q is removed from a rule as
well as from an interpretation.
Proposition 8. Given a program P in normal form over Σ,
X ⊂ Y ⊆ Σ, and an atom q ∈ Σ, with q ∉ Y , and occ(P, q) =
⟨R,R0,R1,R2,R3,R4⟩. Then the following equivalences
hold:
⟨Y,Y ⟩ /⊧ P ⇔ ∃r ∈ R1 ∪R4 ∶ ⟨Y,Y ⟩ /⊧ notnot r\q

∨ ∃r ∈ R ∶ ⟨Y,Y ⟩ /⊧ r
⟨X,Y ⟩ /⊧ P ⇔ ∃r ∈ R ∪R1 ∪R4 ∶ ⟨X,Y ⟩ /⊧ r\q

⟨Y q, Y q⟩ /⊧ P ⇔ ∃r ∈ R0 ∪R2 ∶ ⟨Y,Y ⟩ /⊧ notnot r\q

∨ ∃r ∈ R ∶ ⟨Y,Y ⟩ /⊧ r
⟨Y,Y q⟩ /⊧ P ⇔ ⟨Y q, Y q⟩ /⊧ P

∨ ∃r ∈ R3 ∪R4 ∶ ⟨Y,Y ⟩ /⊧ notnot r\q

⟨Y,Y q⟩ ⊧ P ⇔ ⟨Y q, Y q⟩ ⊧ P
∧ ∃D ∈ Dq

as(R3 ∪R4) ∶ ⟨Y,Y ⟩ /⊧ ←D

⟨Xq,Y q⟩ /⊧ P ⇔ ∃r ∈ R ∪R0 ∪R2 ∶ ⟨X,Y ⟩ /⊧ r\q

⟨X,Y q⟩ /⊧ P ⇔ ⟨Y q, Y q⟩ /⊧ P
∨ ∃r ∈ R ∪R2 ∪R3 ∪R4 ∶ ⟨X,Y ⟩ /⊧ r\q

If additionally R = ∅, then
⟨Y,Y ⟩ ⊧ P ⇔ ∃D ∈ Dq

as(R1 ∪R4) ∶ ⟨Y,Y ⟩ /⊧ ←D

⟨Y q, Y q⟩ ⊧ P ⇔ ∃D ∈ Dq
as(R0 ∪R2) ∶ ⟨Y,Y ⟩ /⊧ ←D

For all r2 ∈ R2:
⟨Y q, Y q⟩ /⊧ r2⇔ ⟨Y,Y q⟩ /⊧ r2, and
⟨Xq,Y q⟩ /⊧ r2⇔ ⟨X,Y q⟩ /⊧ r2.

The rules identified in Prop. 8 constitute the essential build-
ing blocks, used to define fR and f∗SP .

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

47

4 Relativized Forgetting
Now, we define fR, such that fR ∈ FR. To that end, for
each A ⊆ V , we define an auxiliary operator fAR that de-
termines, whether A is relevant for a given Y ⊆ Σ(P)\V
(A ∈ RelY

⟨P,V ⟩), and whether for this A there exists a witness
⟨XA′′, Y A⟩, with A′′ ⊆ A. We construct these fAR(P,V),
such that they contradict ⟨Y,Y ⟩, iff A is not relevant w.r.t.
Y , i.e. ⟨Y,Y ⟩ /⊧ fAR(P,V)⇔ A ∉ RelY

⟨P,V ⟩, and such that,
if A is relevant, fAR(P,V) satisfies all the witnesses modulo
V that belong to ⟨Y A,Y A⟩, i.e. ⟨X,Y ⟩ ⊧ fAR(P,V)⇔ A ∈
RelY

⟨P,V ⟩ ∧ ∃A′′ ⊆ A ∶ ⟨XA′′, Y A⟩ ⊧ P .
FR is such that HT (fR(P,V)) = ⋃A⊆V HT (fAR(P,V)),

so we define fR as the conjunction all fAR by ⨉, to construct a
program that unites all of their the models.

The operators fAR are defined inductively. We therefore first
define them for one atom. If one atom q is forgotten from a
program P , there are two subsets of {q}. In other words, for
any Y ⊆ Σ, we have RelY

⟨P,{q}⟩ ⊆ {∅,{q}}.

For forgetting one atom q it holds that {q} ∈ RelY
⟨P,{q}⟩, iff

⟨Y q, Y q⟩ ⊧ P and ⟨Y,Y q⟩ /⊧ P . Using Prop. 8, we are able
to construct rules, contradicting ⟨Y,Y ⟩, iff {q} ∉ RelY

⟨P,{q}⟩,
and otherwise, if {q} is relevant, satisfying ⟨X,Y ⟩ iff
⟨Xq,Y q⟩ ⊧ P or ⟨X,Y q⟩ ⊧ P .
Definition 10 (f+R). Given a program P in normal form over
Σ and q ∈ Σ s.t. occ(P, q) = ⟨R,R0,R1,R2,R3,R4⟩. Then:

f+R(P, q) ∶= nf(A ∪B ∪C ∪D)
where: asd

A ∶= {←D ∣D ∈ Dq
as(R3 ∪R4)}

B ∶= {notnot r\q ∣ r0 ∈ R0 ∪R2}
C ∶= {r\q ∣ r ∈ R ∪R2}
D ∶= {(r0 × r′)\q ∣ r0 ∈ R0, r

′ ∈ R3 ∪R4}
The four sets A, B, C and D making up f+R(P, q) directly

correspond to the conclusions in Prop. 8. If ⟨Y q, Y q⟩ /⊧ P , a
rule r ∈ B∪C contradicts ⟨Y,Y ⟩. If ⟨Y,Y q⟩ ⊧ P , then a rule
r ∈ A contradicts ⟨Y,Y ⟩. Otherwise, if both ⟨Xq,Y q⟩ /⊧ P
and ⟨X,Y q⟩ /⊧ P , then a rule in C ∪D contradicts ⟨X,Y ⟩.
Proposition 9. Given a program P over Σ, an atom q ∈ Σ,
and sets X and Y , s.t. X ⊂ Y ⊆ Σ\{q}, then:

⟨Y,Y ⟩ ⊧ f+R(P, q)⇔ {q} ∈ RelY
⟨P,{q}⟩

If {q} ∈ RelY
⟨P,{q}⟩, then:

⟨X,Y ⟩ ⊧ f+R(P, q)⇔ ⟨Xq,Y q⟩ ⊧ P ∨ ⟨X,Y q⟩ ⊧ P
It holds that ∅ ∈ RelY

⟨P,{q}⟩ ⇔ ⟨Y,Y ⟩ ⊧ P . Once again,
we utilize Prop. 8 to construct an auxiliary program.
Definition 11 (f−R). Given a program P in normal form over
Σ and q ∈ Σ s.t. occ(P, q) = ⟨R,R0,R1,R2,R3,R4⟩. Then:

f−R(P, q) ∶= nf(A ∪B)
where:

A ∶= {r′\q ∣ r′ ∈ R ∪R1 ∪R4}
B ∶= {notnot r′\q ∣ r′ ∈ R1 ∪R4}

Proposition 10. Given a program P over Σ, an atom q ∈ Σ,
and sets X and Y , s.t. X ⊂ Y ⊆ Σ\{q}, then:

⟨Y,Y ⟩ ⊧ f−R(P, q)⇔ ∅ ∈ RelY
⟨P,{q}⟩

If ∅ ∈ RelY
⟨P,{q}⟩, then:

⟨X,Y ⟩ ⊧ f−R(P, q)⇔ ⟨X,Y ⟩ ⊧ P
Now, using f+R and f−R as building blocks, we inductively

construct fAR for V of arbitrary sizes. We assume an arbi-
trary ordering on the signature Σ to be able to fix a concrete
forgetting result. However, the subsequent propositions are
independent of this ordering and hence there is no loss of
generality. We leave the question about whether the given
ordering has a meaningful impact on the forgetting result for
future studies – the resulting program fR(P,V) is correct
anyhow.
Definition 12 (fAR). Let P be a program over Σ, and
A ⊆ {q1, q2, . . . , qn} = V ⊆ Σ, s.t. 0 < n, then:

fAR(P,∅) ∶= P

fAR(P,V) ∶= f⊗n

R (f
A\qn

R (P,V \{qn}), qn)
where:

f⊗n

R ∶= {f
+

R, if qn ∈ A
f−R, otherwise

For ∣V ∣ = n the auxiliary functions fAR consist of n nested
functions calls f+R or f−R. For example, given a program
P , V = {p, q} and A = {p}, fAR(P,V) = f−R(f+R(P, p), q).
Prop. 11 generalizes Prop. 9 and Prop. 10, and can be proven
by induction.
Proposition 11. Given a program P over Σ, and sets X , Y ,
A and V , s.t. A ⊆ V ⊆ Σ, and X ⊆ Y ⊆ Σ\V , then

⟨Y,Y ⟩ ⊧ fAR(P,V)⇔ A ∈ RelY
⟨P,V ⟩

If A ∈ RelY
⟨P,V ⟩, then:

⟨X,Y ⟩ ⊧ fAR(P,V)⇔ ∃A′′ ⊆ A ∶ ⟨XA′′, Y A⟩ ⊧ P
FR is such that all considered total models and their wit-

nesses (modulo V) are collected. In other words, for any
f ∈ FR we have

HT (f(P,V)) = ⋃
A⊆V

HT (fAR(P,V))

Therefore, we define the result of forgetting fR, by using
the × operator.
Definition 13 (fR). Let P be a program over Σ in normal
form and V ⊆ Σ.

fR(P,V) ∶= NF (⨉
A⊆V

fAR(P,V))

Using Prop. 6, Prop. 11 and the fact that any ⟨Y,Y ⟩ is
contradicted by a double negated rule, we arrive at:
Theorem 1. fR ∈ FR

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

48

5 Forgetting with Strong Persistence
Next, we define f∗SP , such that f∗SP ∈ FSP. For any program
P and set V , the forgetting result f∗SP (P,V) has a subset of
the models of fR(P,V), but the same total models, i.e.:

⟨Y,Y ⟩ ⊧ f∗SP (P,V)⇔ ⟨Y,Y ⟩ ⊧ fR(P,V).

In other words, f∗SP (P,V) and fR(P,V) only differ in their
witnesses. We hence construct f∗SP (P,V) by adding rules to
fR(P,V) that contradict the remaining witnesses. We call
these additional rules fW (P,V).
Example 9. Consider P2 from earlier, where

HT (fR(P2,{p})) = {⟨aq, aq⟩, ⟨a, aq⟩, ⟨∅, aq⟩}.

fW (P2,{p}) specifically contradicts ⟨a, aq⟩ and ⟨∅, aq⟩, s.t.

HT (fR(P2,{p}) ∪ fW (P2,{p})) = {⟨aq, aq⟩}.

As for fR, we define fW by the help of auxiliary opera-
tors for every A ⊆ V . Each fAW (P,V) contradicts ⟨X,Y ⟩,
i.e. ⟨X,Y ⟩ /⊧ fAW (P,V), iff A ∈ RelY

⟨P,V ⟩ and ∀A′′ ⊆ A ∶
⟨XA′′, Y A⟩ /⊧ P , where X ⊆ Y ⊆ Σ.

Also as before, the auxiliary operators fAW are defined
inductively by nested calls of f+W and f−W .

Definition 14 (f+W). Given a program P in normal form over
Σ and q ∈ Σ s.t. occ(P, q) = ⟨R,R0,R1,R2,R3,R4⟩, then:

f+W (P,V) ∶= NF (A ∪B)

where:

A ∶= {(r0 × r′ × notnot r)\q × ←D ∣
r0 ∈ R0, r, r

′ ∈ R3 ∪R4,D ∈ Dq
as(R0 ∪R2)}

B ∶= {(r × notnot r′)\q × ←D ∣
r ∈ R ∪R2, r

′ ∈ R3 ∪R4,D ∈ Dq
as(R0 ∪R2)}

The operator f+W creates a rule contradicting ⟨X,Y ⟩ iff
{q} ∈ RelY

⟨P,V ⟩ and ⟨Xq,Y q⟩, ⟨X,Y q⟩ ∉ HT (P). Accord-
ing to Prop. 8, {q} ∈ RelY

⟨P,V ⟩ entails the existence of
D ∈ Dq

as(P) and r ∈ R3 ∪ R4, s.t. ⟨X,Y ⟩ /⊧ ← D and
⟨X,Y ⟩ /⊧ notnot r\q. Also, ⟨Xq,Y q⟩ /⊧ P ∧ ⟨X,Y q⟩ /⊧ P

implies the existence of an r ∈ R ∪R2, s.t. ⟨X,Y ⟩ /⊧ r\q, or
r0 ∈ R0, and r′ ∈ R3 ∪R4, s.t. ⟨X,Y ⟩ /⊧ r

\q
0 × r′\q. Hence

the sets A and B.

Proposition 12. Given a program P over Σ, an atom q ∈ Σ,
and sets X and Y , s.t. X ⊆ Y ⊆ Σ\{q}, then:

{q} ∈ RelY
⟨P,{q}⟩ ∧ ⟨Xq,Y q⟩ /⊧ P ∧ ⟨X,Y q⟩ /⊧ P
⇔ ⟨X,Y ⟩ /⊧ f+W (P, q)

Definition 15 (f−W). Given a program P in normal form over
Σ and q ∈ Σ s.t. occ(P, q) = ⟨R,R0,R1,R2,R3,R4⟩, then:

f−W (P,V) ∶= NF (A)

where:

A ∶= {r′\q × ←D ∣ r′ ∈ R ∪R1 ∪R4,D ∈ Dq
as(R1 ∪R4)}

Again, using Prop. 8, ∅ ∈ RelY
⟨P,V ⟩ implies the existence

of D ∈ Dq
as(P) s.t. ⟨X,Y ⟩ /⊧ ← D, and if ⟨X,Y ⟩ /⊧ P then

there is a rule r ∈ R ∪R1 ∪R4 s.t. ⟨X,Y ⟩ /⊧ r\q .
Proposition 13. Given a program P over Σ, an atom q ∈ Σ,
and sets X and Y , s.t. X ⊆ Y ⊆ Σ\{q}, then:

∅ ∈ RelY
⟨P,{q}⟩ ∧ ⟨X,Y ⟩ /⊧ P

⇔ ⟨X,Y ⟩ /⊧ f−W (P, q)
Example 10. Recall P1 from the beginning,

f+W (P1,{p}) = {a← q, notnot a} ∪ ∅
f−W (P1,{p}) = {q ← notnot q}

Now, the operators fAW are defined inductively.

Definition 16 (fAW). Let P be a program over Σ, and
A ⊆ {q1, q2, . . . , qn} = V ⊆ Σ, s.t. 0 < n, then:

fAW (P,∅) ∶= P

fAW (P,V) ∶= f⊗n

W (f
A\qn

W (P\R,V \{qn}), qn) ∪R

where:

f⊗n

W ∶= {f
+

W , if qn ∈ A
f−W , otherwise

R ∶= {r ∈ P ∣ V ∩Σ(r) = ∅}
Prop. 14 generalizes Prop. 12 and Prop. 13, and can be

proven by induction. For technical reasons we assume R
to be empty. This assumption can be made without loss of
generality, since FSP satisfies (SI).
Proposition 14. Given a program P over Σ, and sets X , Y ,
A and V , s.t. A ⊆ V ⊆ Σ, X ⊆ Y ⊆ Σ\V , and
R = {r ∈ P ∣ V ∩Σ(r) = ∅} = ∅, then:

A ∈ RelY
⟨P,V ⟩ ∧ ∀A′′ ⊆ A ∶ ⟨XA′′, Y A⟩ /⊧ P
⇔ ⟨X,Y ⟩ /⊧ fAW (P,V)

Now, fW (P,V) is the union of all fAW (P,V).
Definition 17 (fW). Given a program P in normal form over
Σ and V ⊆ Σ. Then:

fW (P,V) ∶= NF (⋃
A⊆V

fAW (P,V))

The union of programs satisfies the intersections of their
models. Hence the next proposition.
Proposition 15. Given a program P over Σ in normal form,
three sets of atoms X , Y and V , s.t. X ⊆ Y ⊆ Σ, V ⊆ Σ, and
R = {r ∈ P ∣ V ∩Σ(r) = ∅} = ∅, then:

∃A ∈ RelY
⟨P,V ⟩ s.t. ∀A′′ ⊆ A.⟨XA′′, Y A⟩ /⊧ P
⇔ ⟨X,Y ⟩ /⊧ fW (P,V)

We arrive at the end. f∗SP is (the normal form of) the union
of fR and fW , and a member of FSP.
Definition 18 (f∗SP). Let P be a program over Σ in normal
form and V ⊆ Σ.

f∗SP (P,V) ∶= NF (fW (P,V) ∪ fR(P,V))
Theorem 2. f∗SP ∈ FSP

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

49

6 Intuitions and Results
The operators fR and f∗SP and their components are de-
fined methodologically, to match the semantics FR and FSP.
Nonetheless, their results can be observed to bear some intu-
itive sense. In fact, they implement adjusted versions of all
the derivation rules of fSP . In other words, all the intuitions
about fSP apply to fR and f∗SP .

To make a comparison, we recall the definition of fSP ,
rephrased to be more compact, and to match our notation us-
ing ‘×’. Notably, derivation rules 3a and 7 have been merged
into 3a. This simplification is possible, due to the application
of the normal form construction.

Definition 19 (fSP). Let P be a program in normal form over
Σ, q ∈ Σ, and occ(P, q) = ⟨R,R0,R1,R2,R3,R4⟩, then
fSP (P, q) ∶= NF (0∪1a∪2a∪3a∪1b∪2b∪3b∪4∪5∪6),
where:

0a = R
1a = {(r0 × r4)\q ∣ r0 ∈ R0, r4 ∈ R4}
2a = {(r0 × r3)\q × notnot r′\q ∣
asafr0 ∈ R0, r3 ∈ R3, r′ ∈ R1 ∪R4}

3a = {(r0 × r3 × notnot r′3)\q × ←D ∣
asafr0 ∈ R0, r3, r

′

3 ∈ R3, D ∈ Dq
as(R0 ∪R2})}

1b = {r\q2 × r′\q ∣ r2 ∈ R2, r
′ ∈ R1 ∪R4}

2b = {r\q2 × notnot r′\q ∣ r2 ∈ R2, r′ ∈ R1 ∪R4}
3b = {(r2 × notnot r3)\q × ←D ∣
asafr2 ∈ R2, r3 ∈ R3, D ∈ Dq

as(R0 ∪R2})}
4a = {r′\q ×←D ∣ r′ ∈ R1 ∪R4,D ∈ Dq

as(R3 ∪R4)}
5a = {r′\q × notnot r\q ∣ r′ ∈ R1 ∪R4, r ∈ R0 ∪R2}
6a = {r′\q × ←D ∣ r′ ∈ R1 ∪R4,D ∈ Dq

as(R1 ∪R4)}
In the case of forgetting one atom, fR implements the

derivation rules 0, 1a, 2a, 1b, 2b, 4 and 5. The operators
f+R and f−R respectively gather half of each derivation rule.
These halves are then conjoined by ×. The outputs of f+R
(resp. f−R) are indicated in the definition above in blue (resp.
red) text colors. For example, given that r0 ∈ R0 and r4 ∈
R4, f+R produces (r0 × r4)\q, while f−R produces r

\q
4 . Also

(r0 × r4)\q × r
\q
4 = (r0 × r4)\q – hence the purple text in 1a.

Example 11. Consider forgetting q from the program P11:

a← q. b← not q. q ← c.

Then fSP (P11, q) is derived by 1a, 4 and 5; f+R(P11, q) and
f−R(P11, q) each include half of these derived rules.

fR(P11, q) = fSP (P11, q) = {a← c ; b← not c ; b← not a}
f+R(P11, q) ⊇ {a← c ; ← not c ; ← not a}
f−R(P11, q) ⊇ { ← c ; b← }

After conjoining the results f+R and f−R by ×, all halves that
have been put together ‘incorrectly’ are eliminated by the
normal form construction. For the scope of this paper, we
rely on the normal form construction to eliminate these re-
dundancies – An efficient implementation might not produce
them in the first place.

When multiple atoms are forgotten via fR the pattern as
indicated in Def. 19 repeats recursively. Consider, for exam-
ple, forgetting V = {q1, q2} from P . Then, first, f+R(P, q1)
and f−R(P, q1) are calculated – the rules that are indicated in
blue (resp. red), but they are not immediately conjoined by ×.
Before, f+R and f−R are applied to them.

Now, the operator fW implements the remaining derivation
rules 3a, 3b and 6 in a way that circumvents the issue we
alluded to in the introduction.
Example 12. Consider again the first example, where forget-
ting p and q from program P1 via fSP in one order produces
an incorrect result. Why is that? P1 = {r1, r2, r3}, where:

r1 = a← p, q. r2 = q ← not p. r3 = p← notnot p.

Forgetting p yields fSP (P1, p) = {r4, r5}, where:

r4 = a← q, notnot a. r5 = q ← notnot q.

The initial program contains a self-cycle r3, which amounts to
a choice of whether p is true or not. Rules r4 and r5 which are
derived by 3a and 6 in fSP (P1, p)mimic this choice by giving
self-cycles to rules r1 and r2 that depend on p. However, the
information that they were derived from mutually exclusive
rules is lost. Therefore, when q is forgotten from fSP (P1, p),
r6 is derived by 3a, as if r4 and r5 (and hence r1 and r2)
are independent of each other. fSP (fSP (P1, p), q) = {r6},
where:

r6 = a← notnot a.

The operator fW circumvents the creation of r6 by compart-
mentalizing r4 and r5:

f+W (P1, p) = {r4} f−W (P1, p) = {r5}
and

f+W ({r4}, q) = f−W ({r4}, q) =
f+W ({r5}, q) = f−W ({r5}, q) = ∅

Hence fW (P1,{p, q}) = ∅, and thus f∗SP (P1,{p, q}) = ∅.

6.1 Computational Advantage
While for some forgetting instances exponential blowups are
inevitable (Eiter and Kern-Isberner 2018), forgetting via the
semantics of a program will always be exponential with re-
spect to the number of its atoms. In many scenarios forgetting
by syntactic manipulations is much simpler.
Example 13 (Inevitable Blowup). Consider forgetting q from
the following program P13:

a← not q. q ← b1, c1. . . . q ← bn, cn.

The programs fR(P13, q) and f∗SP (P13, q) are exponentially
large with respect to n.

We present some scenarios where forgetting via fR and
f∗SP clearly outperforms forgetting via the semantics, and
provide formal results proving that the result of forgetting by
fR and f∗SP are more similar to the initial program than the
result of forgetting by the semantics.

We denote the results of the counter-models method varia-
tion in (Wang, Wang, and Zhang 2013), (Wang et al. 2014)
from the expected HT models fsemR and fsemSP respectively.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

50

Example 14 (Computational Blowup). Consider forgetting
q from P14:

a← q. q ← b1, . . . , bn.

where
fR(P14,{q}) = f∗SP (P14,{q}) = {a← b1, . . . , bn}

are derived rather quickly through
fR(P14,{q}) = NF (f+R(P14, q) × f−R(P14, q))

= {a← b1, . . . , bn},
where
f+R(P14, q) = {a← b1, . . . , bn;

← not a, notnot b1, . . . , notnot bn}
f−R(P14, q) = {← b1, . . . , bn;← notnot b1, . . . , notnot bn}
and
f∗SP (P14,{q}) = fR(P14,{q}) ∪ f+W (P14, q) ∪ f−W (P14, q)

= fR(P14,{q}) ∪ ∅ ∪∅
= {a← b1, . . . , bn},

but deriving
fsemR (P14,{q}) = fsemSP (P14,{q}) =

{ ← b1, . . . , bn, not a;

a← b1, . . . , bn, notnot a }
involves checking 3n+2 interpretations.
Example 15 (Blowup of the Forgetting Result). Consider
forgetting q from P15:

a← b, not q. c← d,not q. e ← f, not q.

then fR(P15,{q}) = f∗SP (P15,{q}) =
a← b. c← d. e← f.

while fsemR (P15,{q}) and fsemSP (P15,{q}) both contain 127
rules, which, no doubt, in no way resemble P15.

The attentive reader might notice that the number of aux-
iliary operators fAR and fAW is exponential with respect to
the size of V , which seems to counteract the savings of not
having to calculate an exponential number of interpretations.
Proposition 16. Let P1, P2 and R be programs over Σ,

(P1 ∪R) × (P2 ∪R) ≡ (P1 × P2) ∪R.

Since f+R and f−R both simply pass on rules R not mention-
ing qi, the proposition above can be utilized to factor out any
rule not mentioning qi of its respective recursive step, thus
limiting potential exponential blowups. If an intermediate
result does not mention qi at all, the recursive step can be
skipped, halving the size of the recursive sub-tree. For fW
the hope is that some intermediate results are empty, to be
able to prune the recursive tree as well.

Furthermore, most of the time V is much smaller than
Σ(P), which is why in practice the complexity is expected to
be significantly smaller compared to the semantic approach.

The operator fSP has been proven to produce more fa-
vorable results compared to fsemSP . To that end, Berthold et
al. defined a distance measure between logic programs, and
proved that the result of fSP is closer to the initial program
than fsemSP . These results directly translate to fR and f∗SP .

7 Conclusion and Discussion
Strong persistence (SP) most accurately describes that the
relations of remaining atoms are left intact after forgetting.
Due to its general impossibility, a number of relaxations of
(SP) have been proposed and investigated. Notably, (SP)
decomposes into the three properties (sC), (wC) and (SI),
where an operator f satisfies (SP) iff f satisfies all (wC),
(sC) and (SI).

The classes of operators FR and FSP each guarantee two of
those three properties, and in the case of FSP, even all three,
and thus (SP), whenever possible.
FR and FSP are defined by the semantics of their forgetting

result, i.e. they do not define concrete functions, and up until
now the only way to forget via their definitions, was to cal-
culate the exponential number of models of a given input, to
apply them, and then to construct a new program from the
resulting models. This process is necessarily computationally
hard, and its result may in no way resemble the input.

This paper introduced two novel operators fR and f∗SP , to
circumvent these two issues. They forget atoms from a pro-
gram purely by syntactically manipulating its rules, avoiding
having to calculate the exponential number of its models, and
creating a result that in some way resembles its origin.

We proved their membership in FR resp. FSP, and there-
fore that fR and f∗SP inherit several (desirable) properties
(Gonçalves et al. 2017).
Corollary 3. fR satisfies (sC), (SI), (PP) and (SE),
but not (wE), (W), (wC), nor (CP).
Corollary 4. f∗SP satisfies (wC), (SI), (PP) and (SE),
but not (wE), (W), (sC), nor (CP).
Further, if ⟨P,V ⟩ satisfies ¬Ω, then f∗SP satisfies (SP)

⟨P,V ⟩.

Further, we provided examples that illustrate that mem-
bers of FR and FSP cannot always forget atoms iteratively.
Constructing forgetting results according to their semantics is
therefore necessarily involved. The operator fSP , for example,
that has previously been shown to adhere to FSP semantics,
has thus been proven to be unfit to correctly forget arbitrary
sets of atoms by FSP semantics.

In the context of modular logic programming, (SP) can
be relaxed to (UP), where the result of forgetting is only
required to have the same answer set (modulo V) under the
addition of facts (Gonçalves et al. 2019).

There exists a semantic class FUP, that guarantees (UP),
and interestingly for us, also guarantees (sC) and (wC),
with a representative fu ∈ FUP (Gonçalves et al. 2021), that
too, if applicable, forgets atoms through syntactic manipula-
tion. In other words, with fR, f∗SP and fu at our disposal, we
can now syntactically forget satisfying any two properties of
(wC), (sC) and (SI).

One future line of research is to explore how forgetting
translates to other formalisms, as has been done for abstract
argumentation (Baumann and Berthold 2022). Another one is
to investigate forgetting from logic programs with variables.
In this larger context, forgetting can mean a number of things:
the removal of all occurrences of a predicate, the removal of
all occurrences of an individual, or perhaps, the removal of all
occurrences of certain individuals within some predicates, to,
for example, just forget certain information about an entity.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

51

Acknowledgements
Quite obviously, this work is a continuation of my master’s
thesis, which was mainly supervised by Ricardo Gonçalves.
I want, therefore, to take the opportunity to express my grati-
tude for his support and efforts throughout the process.
Back then, he was the one to tell me that there might be a
wrong forgetting order, when iterating fSP , using a notation
that I adapted in Exm. 3 and 4. I hope you like my fix!
Further, I thank the anonymous reviewers for all of their
useful hints.
This work was supported by the German Federal Ministry of
Education and Research (BMBF, 01IS18026B-F) by fund-
ing the competence center for Big Data and AI “ScaDS.AI”
Dresden/Leipzig.

References
Baumann, R., and Berthold, M. 2022. Limits and possibilities
of forgetting in abstract argumentation. In Proceedings of
(IJCAI-22). To appear.
Berthold, M.; Gonçalves, R.; Knorr, M.; and Leite, J. 2019.
A syntactic operator for forgetting that satisfies strong per-
sistence. Theory and Practice of Logic Programming 19(5-
6):1038–1055.
Brass, S., and Dix, J. 1999. Semantics of (disjunctive)
logic programs based on partial evaluation. Journal of Logic
Programming 40(1):1–46.
Cabalar, P., and Ferraris, P. 2007. Propositional theories are
strongly equivalent to logic programs. Theory and Practice
of Logic Programming 7(6):745–759.
Cabalar, P.; Pearce, D.; and Valverde, A. 2007. Minimal
logic programs. In Proceedings of (ICLP-07). Springer.
Eiter, T., and Kern-Isberner, G. 2018. A brief survey on
forgetting from a knowledge representation and reasoning
perspective. KI - Künstliche Intelligenz.
Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. Artificial Intelligence 172(14):1644–1672.
Gonçalves, R.; Knorr, M.; Leite, J.; and Woltran, S. 2017.
When you must forget: Beyond strong persistence when for-
getting in answer set programming. Theory and Practice of
Logic Programming 17(5-6):837–854.
Gonçalves, R.; Janhunen, T.; Knorr, M.; Leite, J.; and
Woltran, S. 2019. Forgetting in modular answer set pro-
gramming. In Proceedings of (AAAI-19), 2843–2850. AAAI
Press.
Gonçalves, R.; Janhunen, T.; Knorr, M.; and Leite, J. 2021.
On syntactic forgetting under uniform equivalence. In Pro-
ceedings of (JELIA-21), volume 12678 of Lecture Notes in
Computer Science, 297–312. Springer.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016a. The ultimate
guide to forgetting in answer set programming. In Proceed-
ings of (KR-16), 135–144.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016b. You can’t
always forget what you want: On the limits of forgetting
in answer set programming. In Proceedings of (ECAI-16),
957–965.

Inoue, K., and Sakama, C. 1998. Negation as failure in the
head. Journal of Logic Programming 35(1):39–78.
Inoue, K., and Sakama, C. 2004. Equivalence of logic
programs under updates. In Proceedings of (JELIA-04).
Springer.
Knorr, M., and Alferes, J. J. 2014. Preserving strong equiva-
lence while forgetting. In Proceedings of (JELIA-14), volume
8761 of LNCS, 412–425. Springer.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2(4):526–541.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25(3-4):369–389.
Slota, M., and Leite, J. 2011. Back and forth between rules
and SE-models. In Proceedings of (LPNMR-11). Springer.
Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014. Knowl-
edge forgetting in answer set programming. Journal of Artifi-
cial Intelligence Research 50:31–70.
Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
answer set programs revisited. In Proceedings of (IJCAI-13),
1162–1168. IJCAI/AAAI.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. Artificial Intel-
ligence 170(8-9):739–778.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

52

