
Learning Typed Rules over Knowledge Graphs

Hong Wu1 , Zhe Wang1 , Kewen Wang1 , Yi-Dong Shen2

1School of Information and Communication Technology, Griffith University, Australia
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

hong.wu2@griffithuni.edu.au, {zhe.wang, k.wang}@griffith.edu.au, ydshen@ios.ac.cn

Abstract

Rule learning from large datasets has regained extensive
interest as rules are useful for developing explainable ap-
proaches to many applications in knowledge graphs. How-
ever, existing methods for rule learning are still limited
in terms of rule expressivity and rule quality. This paper
presents a new method for learning typed rules by employ-
ing type information. Our experimental evaluation shows
the superiority of our system compared to state-of-the-art
rule learners. In particular, we demonstrate the usefulness
of typed rules in reasoning for link prediction.

1 Introduction
Knowledge graphs (KGs) are a special kind of knowledge
bases that highlight interconnection among entities and rep-
resent such knowledge as graphs. They have found wide
applications in information retrieval, recommender systems,
question answering, and semantic data integration (Ji et al.
2020). A number of large-scale and general-purpose knowl-
edge graphs have been developed, such as WordNet (Miller
1995), YAGO (Suchanek, Kasneci, and Weikum 2007),
and Freebase (Bollacker et al. 2008). Although significant
progress has been made, some important research challenges
remain open. One challenge is to extract high-level schema
information from large KGs, and another is KG completion
or link prediction, as most KGs are still highly incomplete.

Hence, the problem of learning first-order rules over KGs
has recently regained extensive interest, as rules provide a
promising tool for KG reasoning in various KG applica-
tions. Compared to methods purely based on deep neu-
ral networks, logic rules are human-comprehensible knowl-
edge and naturally offer explainability of reasoning. Sev-
eral scalable rule learners have been proposed, including
(Galárraga et al. 2015; Chen, Wang, and Goldberg 2016b;
Yang, Yang, and Cohen 2017; Omran, Wang, and Wang
2018; Meilicke et al. 2019; Ahmadi et al. 2020; Pirrò
2020), and the learned rules have been successfully ap-
plied to link prediction and demonstrated competitive per-
formance (Meilicke et al. 2019; Pirrò 2020).

Several recent rule learners can only extract so-called
closed path rules (or CP-rules) (Yang et al. 2014; Chen,
Wang, and Goldberg 2016b; Omran, Wang, and Wang 2018;
Pirrò 2020). A major shortcoming of such rules is their lim-
ited expressivity. Consider an example,B(x, y)∧C(y, z)→

N(x, z) is a CP-rule for the head predicate N(x, z), which
means that if person x was born in city y of country z, then
x has the nationality z. So this CP-rule is essentially in-
tended to express the typed rule B(x : person, y : city) ∧
C(y : city , z : country)→ N(x : person, z : country). In
fact, this typed rule can be expressed as a first order Horn
ruleB(x, y)∧C(y, z)∧person(x)∧city(y)∧country(z)→
N(x, z). But such Horn rules cannot be expressed by the
syntax of CP-rules. Thus, typed rules provide a natural and
useful extension of CP-rules.

More importantly, a KG usually contains rich type in-
formation on entities (Hao et al. 2019; Zhang et al. 2020),
which is useful for optimising the search of rules. However,
this has not received sufficient attention in the literature on
rule learning over KGs, except for ScaLeKB (Chen, Wang,
and Goldberg 2016b) and RARL (Pirrò 2020), which are
based on ontological pathfinding (OP) (Chen et al. 2016a).
While these approaches utilise type information in both rule
search and rule evaluation, they do not learn typed rules.
Also, ontological pathfinding approaches typically use type
information as hard constraints on the candidate rules, i.e.,
each of them must represent a path going through entities
belonging to some types. Yet in practice, type informa-
tion in KGs is often highly incomplete, which would make
such hard constraints too restrictive. Besides path-based rule
learning, embedding-based rule learning has recently been
proposed and shows promising performance (Omran, Wang,
and Wang 2018), which employs latent representations from
Statistical Relational Learning.

In this paper, we propose a new rule learning approach
that is able to learn typed rules and better utilises type infor-
mation to guide the rule search. We adopt a combined ap-
proach of both path-based and embedding-based strategies
for our rule search. In the path-based strategy, candidate
rules are obtained from both ABox paths and TBox paths.
Moreover, type information is employed to confine the path
exploration. In the embedding-based strategy, a novel scor-
ing function is defined and used for rule evaluation, in which
type information is encoded as latent representations to re-
fine the embedding model.

We have implemented a prototype system TyRuLe and
evaluated its performance on both standard benchmarks and
a real-life KG AirGraph. The experiments show that our
system can learn high-quality and informative rules, and

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

494

the advantages of using type information are demonstrated
through both quantitative and qualitative analysis. As a com-
monly used rule quality indicator, link prediction results
show that TyRuLe outperforms existing rule learners and is
competitive compared to embedding-based link prediction
systems.

The rest of this paper is organised as follows. Section 2
provides a brief review on models for rule learning and link
prediction for knowledge graphs. Section 3 introduces some
basics of knowledge graphs and rule technologies. Section 4
describes technical details of our proposed TyRuLe, includ-
ing KG sampling, a path-based strategy and an embedding-
based strategy for rule extraction. Our experimental results
are presented in Section 5. Finally, we conclude the paper in
Section 6.

2 Related Work
In what follows, we discuss existing works on rule learning
and link prediction that are closely related to this paper.

2.1 Rule Learning
First-order rule learning has been extensively studied in
Inductive Logic Programming (ILP) literature (Muggleton
1990; Muggleton 1991; Cropper et al. 2022) by exploring
the rule space through refinement operators. Classical ILP
systems like QuickFOIL (Zeng, Patel, and Page 2014) can-
not be used directly to handle KGs due to the lack of nega-
tive examples and the large data sizes. Recently, rule learn-
ers such as AMIE and its extensions (Galárraga et al. 2015)
have been developed with the aim to handle large datasets
like KGs, which use plausibility metrics adapted from as-
sociation rule mining to address the lack of negative ex-
amples. Some work has been proposed to propose new
completeness-aware confidence metrics to better assess the
quality of rules (Pellissier Tanon et al. 2017). Also, learn-
ing non-monotonic rules have been studied (Gad-Elrab et al.
2016; Lisi and Weikum 2017).

Another group of approaches generates candidate rules by
exploring paths in KGs. AnyBURL (Meilicke et al. 2019) is
a bottom-up approach that substitutes entities from sampled
paths with variables, to generalise path instances to patterns
for rule generation. This allows AnyBURL to learn a large
number of rules, which together provide more accurate link
prediction than many of the embedding-based approaches.
Ontological pathfinding approaches ScaLeKB (Chen, Wang,
and Goldberg 2016b) and RARL (Pirrò 2020) adopt a top-
down approach by exploring the schema-level knowledge in
KGs, i.e., entity types and their relations. They construct
path patterns directly from schema-level graphs.

Recently, there is an emerging interest of applying deep
neural networks (DNNs) in rule learning. Differentiable
rule learners NeuralLP (Yang, Yang, and Cohen 2017) and
DRUM (Sadeghian et al. 2019) have been proposed to learn
rules directly using DNNs, by optimising objective func-
tions that roughly correspond to plausible path patterns.
In (Yang et al. 2014), the authors first suggest to use KG
embeddings extracted from neural networks for rule learn-
ing, and RLvLR (Omran, Wang, and Wang 2018) is, and as

far as know, the only rule learner that can handle large-scale
KGs like DBpedia or Wikidata, by using a sampling strategy
and matrix computation techniques.

Path-based and DNN-based rule learners can only learn
rules that resemble path patterns, with only binary predi-
cates. While ontological pathfinding approaches use type
information, the rules learned by them do not contain unary
predicates either; that is, type information is only used to
confine path search and the learned rules do not contain
types. While ILP-based methods do not necessarily have
such restrictions, scalable systems like AMIE+ adopt a lan-
guage bias that only slightly extends path patterns and do
not contain unary predicates either.

2.2 Link Prediction
Link prediction is a major inference task for KG completion.
Intensive research has been conducted to embed entities
and relations in KGs into low-dimensional latent representa-
tions, known as embeddings. Approaches to link prediction
train various scoring functions based on embeddings to es-
timate the plausibility of triples. Existing approaches along
this line can be roughly divided into three categories: ten-
sor decomposition models (Yang et al. 2014; Trouillon et al.
2016), geometric translational models (Bordes et al. 2013;
Sun et al. 2019) and deep neural models (Dettmers et al.
2018; Nguyen et al. 2018).

Some recent approaches also explore the type information
in KGs and propose embeddings for types. TKRL (Xie et al.
2016) is based on translation model and embeds hierarchi-
cal types as projection matrices for entities. JOIE (Hao et
al. 2019) adopts a more flexible approach that allows vari-
ous embedding models as base embeddings and uses non-
linear transformations to capture class membership and hi-
erarchies. HAKE (Zhang et al. 2020) uses a more complex
embedding model based on polar coordinate systems to cap-
ture hierarchical types.

Compared to black-box neural models, rules are explicit
knowledge and are also used for KG reasoning with human-
understandable explanations for the results. And link predic-
tion is also considered an important indicator for the qual-
ity of rules learned over KGs. With the recent advance of
rule learning, rule learners are increasingly used for link
prediction and demonstrate competitive accuracy and some-
times significantly better scalability over embedding-based
approaches (Omran, Wang, and Wang 2018; Meilicke et al.
2019; Pirrò 2020).

3 Preliminaries
In this section, we briefly introduce some basics of knowl-
edge graphs and rules as well as fixing some notations to be
used later.

3.1 Knowledge Graphs
A knowledge graph (KG) is a directed multi-relational
graph, often expressed as a set of triples of the form (s, p, o),
i.e., (subject, relation, object), where subjects and objects
are the vertices of the graph and they are connected via
relations. Triples in a KG K can be separated into two

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

495

TBox:
Airline, rdfs:subClassOf, Organization
Aircrew, rdfs:subClassOf, Person
…
hasAircraft, rdfs:domain, Flight
hasAircraft, rdfs:range, Aircraft
isFlightOf, rdfs:domain, Flight
isFlightOf, rdfs:range, Airline
…

ABox:
airline-NY, rdf:type, Airline
737-800, rdf:type, Aircraft
airport-JFK, rdf:type, Airport
…
Allen, wasBornIn, America
airline-NY, isAircraftOf, 737-800
airline-NY, hasBase, airport-JFK
…

Figure 1: An example knowledge graph.

categories, i.e., K = T ∪ A, where T is the TBox and
A is the ABox. ABox A describes instance level (or as-
sertional) knowledge about entities and their properties;
for instance, a triple (airline-NY, hasBase, airport-JFK) de-
scribes that the two entities airline-NY and airport-JFK are
associated by the property hasBase. A property is a bi-
nary predicate. A also describes the classes of entities,
such as a triple (airline-NY, rdf:type,Airline) expressing
that airline-NY is a member of the class Airline. A class
is a unary predicate. TBox T , on the other hand, describes
schema level (or terminological) knowledge about the re-
lations between classes and between classes and properties.
For example, triple (Airline, rdfs:subClassOf,Organization)
says that class Airline is a subclass of Organization,
and the two triples (hasBase, rdfs:domain,Airline) and
(hasBase, rdfs:range,Airport) state that property hasBase
has a domain Airline and a range Airport.

Formally, let sets of entities, classes, and properties in the
KG K be respectively E , C, and P . Triples in A are of the
forms

• (e1, p, e2) with e1, e2 ∈ E and p ∈ P , and

• (e, rdf:type, c) with e ∈ E , p ∈ P , and c ∈ C.

Following the tradition in knowledge bases, we denote the
two types of ABox triples as facts of the forms p(e1, e2) and
c(e), respectively. We write c(e) ∈ A or p(e1, e2) ∈ A
meaning the triple occurs in the ABox. Triples in T are of
forms

• (c1, rdfs:subClassOf, c2) with c1, c2 ∈ C,

• (p, rdfs:domain, c) with p ∈ P and c ∈ C, and

• (p, rdfs:range, c) with p ∈ P and c ∈ C.

For simplicity, the first type of triple is denoted c1 v c2.
We use v∗ to denote the transitive closure of the relation
v. Following (Hao et al. 2019; Pirrò 2020), we denote each
pair of triples (p, rdfs:domain, c1) and (p, rdfs:range, c2) as
a single triple (c1, p, c2), and they should not be confused
with ABox triples.

Triples of the form c1 v c2 are sometimes referred to
as class (or type) hierarchy, (c1, p, c2) as domain and range

constraints, and c(e) as class (or type) membership. They
together are called type information in the KG. In this paper,
we will use the terms “class” and “type” interchangeably.
For a relation p, p− denotes its inverse, i.e., triple (o, p−, s)
is equivalent to (s, p, o). Let P∗ = P ∪ {p− | p ∈ P}.

3.2 Rules
Existing rule learners mostly focus on closed-path (CP)
rules (Yang et al. 2014; Chen, Wang, and Goldberg 2016b;
Omran, Wang, and Wang 2018; Pirrò 2020) of the form

p1(x0, x1)∧ p2(x1, x2)∧ · · · ∧ pn(xn−1, xn)→ p(x0, xn),

where p ∈ P , pi ∈ P∗ (1 ≤ i ≤ n) and xj’s (0 ≤ j ≤ n)
are variables.

For instance, a Horn rule

hasAircraft(x, y) ∧ isFlightOf(x, z) → isAircraftOf(y, z)

says if a flight x has an aircraft y and x is a flight of an airline
z then y is an aircraft of z. It corresponds to a CP rule

hasAircraft−(x0, x1) ∧ isFlightOf(x1, x2)

→ isAircraftOf(x0, x2).

As discussed in the introduction, it is useful to include
types of variables in the rules.

hasAircraft−(x0 : Aircraft, x1 : Flight)

∧ isFlightOf(x1 : Flight, x2 : Airline)

→ isAircraftOf(x0 : Aircraft, x2 : Airline).

Such types can be naturally expressed as unary predicates,
and hence we want to learn first-order Horn rules with unary
predicates in the rule body.

A typed rule (or simply a rule) r is of the form

c0(x0) ∧ p1(x0, x1) ∧ c1(x1) ∧ p2(x1, x2)∧
· · · ∧ pn(xn−1, xn) ∧ cn(xn)→ p(x0, xn).

(1)

Each ci (1 ≤ i ≤ n − 1) is either a class from C or >,
where > is the class of all entities and >(e) is always
valid for any entity e. A variable in the rule body does not
have to be attached a type, and multiple occurrences of
the same variable may have multiple types. If no specific

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

496

type is attached, it has the > type. Clearly, CP-rules are
a special case of typed rules where all the ci’s are >.
The atom p(x0, xn) is the head of r and the set of atoms
{c0(x0), p1(x0, x1), c1(x1), p2(x1, x2), · · · , pn(xn−1, xn),
cn(xn)} is the body of r. The length of the rule body is n.
Note that the rule heads only contain binary predicates as
we learn such rules mainly for link prediction.

A key step in rule learning is to assess the plausibility of
candidate rules, and most rule learners for KGs use support,
standard confidence, and head coverage (Chen, Wang, and
Goldberg 2016b; Omran, Wang, and Wang 2018), or their
variants (Galárraga et al. 2015), as metrics for rule plausi-
bility. For a rule r of the form (1), insH(r) consists of all
the pairs of entities e0, en ∈ E such that when x0 and xn are
replaced with e0 and en, the fact obtained from the head of
r occurs in A. Similarly, insB(r) consists of all the pairs of
entities e0, en ∈ E such that there exist e1, . . . , en−1 ∈ E ,
when each xi is replaced with ei (0 ≤ i ≤ n), all the facts
obtained from the body of r occur in A. Then, the support
of r is defined as |insH(r) ∩ insB(r)|. That is, the support
of r is defined as the number of entity pairs that satisfy both
the head and the body of r. The standard confidence (SC)
and head coverage (HC) of r are defined as follows

sc(r) =
|insH(r) ∩ insB(r)|

|insB(r)|
and

hc(r) =
|insH(r) ∩ insB(r)|

|insH(r)|

Hence, SC is the normalisation of support through the num-
ber of entity pairs that satisfy the body, while HC is the nor-
malisation of support through the number of entity pairs that
satisfy the head. The higher the values are for these metrics,
the more plausible the rule is.

3.3 Rule-based Link Prediction
Link prediction is the task that given an entity e ∈ E and
a property p ∈ P∗, to predict entities e′ such that p(e, e′)
is plausible. Unlike embedding-based approaches that rank
the possible entities e′ via scoring functions, a rule-based
approach tries to derive plausible facts p(e, e′) by applying
the learned rules to the existing facts in the KG. For a rule r
of the form (1), the derived facts are p(e0, en) for e0, en ∈
E such that there exist e1, . . . , en−1 ∈ E , when each xi is
replaced with ei (0 ≤ i ≤ n), all the facts obtained from the
body of r occur in A.

The ranking of the derived fact is obtained from the con-
fidences of the rules deriving it. Note that each fact α can
be derived by multiple rules r1, . . . , rm. We adopt the rank-
ing method called Max-Aggregation (Meilicke et al. 2019),
which ranks a fact based on the maximum SC of all rules
deriving it. More specifically, let dα be a vector of the SC
values of all the rules deriving α in descending order, i.e.,
dα = (sc(rk1), . . . , sc(rkm)) with 1 ≤ k1, . . . , km ≤ m
and sc(rki) ≥ sc(rki+1

) for 1 ≤ i < m. Then, d < d′ if
there exists some i ≥ 0 such that di < d′i and dj = d′j for
all 0 ≤ j < i, where di (resp., d′i) is the i-th element of d
(resp., d′).

4 Rule Learning
In this section, we introduce our approach for rule learn-
ing. The proposed approach combines path-based and
embedding-based methods for candidate rule generation. To
obtain such an effective combination, major challenges in-
clude how to use type information to narrow down the path
search, and how to embed type information and utilize the
embedding.

To learn the following rule for a property isAircraftOf

Aircraft(x0) ∧ hasAircraft−(x0, x1) ∧ Flight(x1)

∧ isFlightOf(x1, x2) ∧ Airline(x2) → isAircraftOf(x0, x2),

we essentially want to extract a sequence of types and
properties like (Aircraft, hasAircraft−, Flight, isFlightOf,
Airline). For simplicity, we refer such a sequence as
a path pattern. In a knowledge graph, there are at
least two ways for obtaining a path pattern for the tar-
get property isAircraftOf . It can be achieved by ex-
ploring a path in the TBox in Figure 1 formed by the
two triples (Aircraft, hasAircraft−, Flight) and (Flight,
isFlightOf, Airline). Alternatively, the rule can be ob-
tained by exploring many paths in the ABox in Fig-
ure 1 such as (737-800, hasAircraft−, flight-KM68732) and
(flight-KM68732, isFlightOf, airline-NY).

Given a knowledge graph K , a path is a sequence of
triples (s1, p1, o1), (s2, p2, o2), . . . , (sn, pn, on) in K where
oi = si+1 (1 ≤ i < n), denoted (s1, p1, s2, p2, . . . , pn, on),
and its length is n. A TBox path (resp., ABox path) is a path
where si, oi ∈ C (si, oi ∈ E) and pi ∈ P∗ (1 ≤ i ≤ n).

Thus, we formally define path patterns in KGs as follows.

Definition 1. A path pattern of a KG K is of the form θ =
(c0, p1, c1, p2, · · · , pn, cn), where ci ∈ C (0 ≤ i ≤ n) and
pj ∈ P∗ (1 ≤ j ≤ n).

A path β = (s0, p1, s1, p2, . . . , pn, sn) inK is an instance
of θ if for each 0 ≤ i ≤ n,

• if si ∈ C, si v∗ ci, and

• if si ∈ E , c(si) ∈ A for some c v∗ ci.

Conversely, θ is a pattern of β.

Clearly, each TBox path is a path pattern, but not nec-
essarily vice versa, as a path pattern does not necessar-
ily consist of triples in the KG. Learning rules of the
form (1) is essentially learning path patterns with signif-
icant numbers of ABox paths as instances of the form
(e0, p1, e1, p2, . . . , pn, en) such that p(e0, en) ∈ A.

In our approach, we first extract a subgraph of K for
each p, which contains the relevant paths and type informa-
tion (Section 4.1). Then, we search path patterns on both
the TBox graph and ABox graph levels, while the type in-
formation is used to reduce the search space (Section 4.2).
Meanwhile, we embed the entities, relations, and classes in
a latent space, and use the embeddings to complement the
search (Section 4.3). Finally, the generated candidate rules,
which are in a much more manageable number, are assessed
using the SC and HC metrics.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

497

4.1 KG Modules
Sampling of large-scale KGs has been shown to be effective
in significantly reducing the data sizes (Omran, Wang, and
Wang 2018). For each predicate p that can occur in the head
of rules and a maximum rule body length n, we extract a
subgraph of K that is sufficient to generate path patterns.

Definition 2. For a property p ∈ P and an integer n ≥ 1, a
(p, n)-module of K is a subgraph of K that contains all the
ABox paths β = (e0, p1, e1, p2, . . . , pn, en) with p(e0, en) ∈
A, and all the triples containing some classes in the patterns
of β.

To extract a (p, n)-module, our method deploys a breath-
first tree search. Let l = bn+1

2 c.
• Take A0 as the set of triples in A that contain p, and E0 is

the set of entities in A0;

• For each 1 ≤ i ≤ l, let Ai be the set of triples in A
that contain some entity in Ei−1, Ei and Ci be the set of
respectively entities and classes inAi, and Ti be the set of
triples in T that contain some class in Ci.

Observation 1. Tl ∪ Al is a (p, n)-module of K.

For example, consider an ABox path of length 3,
(e0, p1, e1, p2, e2, p3, e3), such that p(e0, e3) ∈ A, then
e0, e3 ∈ E0, p1(e0, e1), p3(e2, e3) ∈ A1, e1, e2 ∈ E1, and
p2(e1, e2) ∈ A2.

Compared with the sampling in RLvLR (Omran, Wang,
and Wang 2018), our method has superior time efficiency,
taking only about half the time RLvLR uses. Also, our
method preserves all relevant path patterns, whereas RLvLR
is not necessary the case, as its method has to limit the enti-
ties or relations in each iteration due the large sizes of sam-
pling. In (Pirrò 2020), the author extracts a reduced ABox
for each candidate rule body that can be used to assess the
plausibility. We extract a module for each head property,
which can be used to generate all candidate bodies.

After we obtain a (p, n)-module, we use two strategies
to search for path patterns on the module to form candidate
rules. One strategy is to explore paths in both the TBox
and ABox in the module, and the other strategy is through
embeddings over the module. We present the two strategies
in the following two subsections. When the context is clear,
for annotation simplicity, we will consider the module as our
KG and use K to represent the module.

4.2 Path-based Strategy
TBox Paths For a KG K, we define its TBox coverage
(TC) as the ratio t/s, where t (resp., s) is the number of
TBox paths (resp., all path patterns) in K that have some
ABox paths as their instances. A KG is fully TBox cov-
ered if its TBox coverage is 1. When the TBox coverage
is relatively high, exploring TBox paths is an effective way
to generate candidate rules, as shown in (Chen, Wang, and
Goldberg 2016b; Pirrò 2020).

Yet generating candidate rules directly from TBox
patterns may cause important information in the class
hierarchies being neglected. For example, suppose
there are two triples (Aircrew,worksFor,Airline) and

(Organization, hasCountry,Country) in the TBox, they do
not form a TBox path from Aircrew to Country. Yet we
know airlines are organizations and have their associated
countries. With the class hierarchy Airline v Organization
in the TBox, the two path patterns are both reasonable,
(Aircrew,worksFor,Airline, hasCountry,Country) and
(Aircrew,worksFor,Organization, hasCountry,Country).

Based on this observation, we first relax the condition of
a TBox path to consider class hierarchies.
Definition 3. For a path formed by triples (s1, p1, o1), . . .,
(sn, pn, on), suppose pi is v or its inverse with some 1 ≤
i ≤ n, then a result of bridging is obtained by replacing si
with oi, or vice versa, and removing the i-th triple.

An extended TBox path is obtained by recursively bridg-
ing a path formed by triples from T till all the remaining
relations are from P∗.

In (Chen, Wang, and Goldberg 2016b), the authors
replace classes in each TBox path with their sub-
classes. This is different from our bridging opera-
tion. For instance, suppose there is a class hierarchy
EuropeAirline v Airline, their approach would add a triple
(Aircrew,worksFor,EuropeAirline), which may not be ex-
pected.

The notions TBox coverage and being fully TBox covered
can be extended by considering extended TBox paths instead
of TBox paths.

We explore the extended TBox paths for path patterns that
can be used for candidate rules. In particular, to learn rules
of the form (1), for each pair of classes c, c′ ∈ C that is
directly connected by p in the TBox, we check all the ex-
tended TBox paths from c to c′. Our exploration method
is combined with the KG module extraction process, as all
extended TBox paths of length k that have ABox path in-
stances can be constructed from Tl with l = bk+1

2 c.
ABox Paths Generating candidate rules directly from ex-
tended TBox paths may have the following issues. First,
many extended TBox paths may have few or no instances
in the ABox, which means the support of such rules will be
low. Second, for KGs with low TBox coverage, their ex-
tended TBox paths may fail to capture many plausible path
patterns. We address these two issues by exploring ABox
paths.

To address the first issue, we use ABox paths to filter the
extended TBox paths. This can be done on KG modules,
by evaluating whether the extended TBox paths have signif-
icant numbers of ABox path instances. This can efficiently
eliminate irrelevant path patterns before the plausibility as-
sessment via the SC and HC metrics. For the second is-
sue, we use lift ABox paths to complement the path patterns
extracted from the TBox. Unlike the bottom-up approach
in (Meilicke et al. 2019), where individual ABox paths are
lifted by substituting entities with variables, we use vector
computations to efficiently evaluate large numbers of ABox
paths together.

Our goal is to explore path patterns, from extended TBox
paths or lifted ABox paths, that have significant ABox path
instances. The ABox instances of a path pattern can be re-
trieved using a SPARQL query, which is rather inefficient

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

498

as one query is needed for each path pattern. We use a
lightweight check for rapid evaluation as below. For each
p ∈ P∗, let dom(p) = {e ∈ E | p(e, e′) ∈ A} and
ran(p) = {e ∈ E | p(e′, e) ∈ A}. Intuitively, for a
path pattern that forms the body of rule (1), there should
be a significant number of ABox path instances of the form
(e0, p1, e1, p2, . . . , pn, en) such that p(e0, en) ∈ A; that is,
a significant number of entities exist in the following sets

• dom(p) ∩ dom(p1) (i.e., as e0),

• ran(p) ∩ ran(pn) (i.e., as en), and

• ran(pi) ∩ dom(pi+1) (i.e., as ei for 1 ≤ i < n).

This is similar to the co-occurrence measure proposed
in (Omran, Wang, and Wang 2018), where embeddings of
dom(p) and ran(p) are defined as the averages of the em-
beddings of the entities occurring in the corresponding po-
sitions. Yet the meaning of such averages is less clear. Un-
like (Omran, Wang, and Wang 2018), we use one-hot en-
codings for dom(p) and ran(p). Suppose all the entities in
E are indexed from 1 to |E|. Let pdom (resp., pran) be a vec-
tor of length |E|, such that the scalar at position i is 1

|dom(p)|
(resp., 1

|ran(p)|) if ei ∈ dom(p) (resp., ei ∈ ran(p)), and 0

otherwise, for 1 ≤ i ≤ |E|.
The path scoring function is defined as follows.

fpath(r) =sim(pdom
1 ,pdom) + sim(pran

n ,pran)+

sim(pran
1 ,pdom

2) + ...+ sim(pran
n−1,p

dom
n),

where sim(·, ·) is defined by the Frobenius norm, i.e.
sim(v1,v2) = exp(−‖v1 − v2‖)F .

Our one-hot encoding is a computational method to ob-
tain statistics on entity distributions over predicates, which
is simple and effective in calculating ABox support. Hence,
we use the path scoring function to filter extended TBox
paths and to generate other path patterns from the ABox.
While the path scoring function does not include classes,
classes of entities on the ABox paths can be added and vali-
dated through the SC and HC metrics.

4.3 Embedding-based Strategy
Our path exploration method can effectively generate poten-
tials rules that are well supported by ABox facts, yet some
useful rules can be overlooked in such a search, especially
when the TBox coverage is not high, i.e., when many ABox
paths cannot be captured by extended TBox paths. In this
subsection, we present our embedding-based method that
further complements the path-based methods.

Embedding models capture the graph structure of KGs
through latent representations, which provide better gran-
ularity in modelling and can be efficiently manipulated.
We embed each entity e ∈ E and each property or its
inverse p ∈ P∗ as dA-dimensional vectors respectively
e,p ∈ RdA , where dA is an integer, as in TransE (Bor-
des et al. 2013). In TransE, the embeddings are generated
such that for each triple (e1, p, e2) in the ABox, their em-
beddings satisfy e1 + p ≈ e2. Intuitively, the embedding
p of a property p is a translation from e1 to e2 for each
pair of entities e1, e2 such that p(e1, e2) ∈ A. For ABox

paths of the form (e0, p1, e1, p2, . . . , pn, en), it should sat-
isfy e0+p1+p2+ · · ·+pn ≈ en; that is p1+p2+ · · ·+pn
is a translation from e0 to en for each pair of entities e0, en
connected via an ABox paths as above.

Hence, for a CP rule of the form p1(x0, x1)∧p2(x1, x2)∧
· · · ∧ pn(xn−1, xn) → p(x0, xn), it is expected that p1 +
p2+· · ·+pn ≈ p. We can use such an intuition to search for
potential rules as in (Omran, Wang, and Wang 2018). Un-
like the matrix embeddings adopted in (Omran, Wang, and
Wang 2018), TransE embeddings can significantly improve
learning efficiency. Yet, this approach do not take classes
into consideration. In what follows, we will extend it with
class embeddings that can describe class membership and
class hierarchy.

We embed each class c ∈ C as a dT -dimensional vector
c ∈ RdT , where dT is an integer that can be different from
dA; that is, class embeddings can be in a different latent
space from that of the entity embeddings. The class em-
beddings should capture the following three kinds of knowl-
edge: (i) membership of entities c(e) ∈ A; (ii) class hierar-
chy c1 v c2 ∈ T ; and (iii) domain and range constraints of
the form (c1, p, c2) ∈ T .

Our embedding approach for (i) and (ii) are inspired
by (Hao et al. 2019), and we map embeddings of entities
(resp., subclasses) to those of their classes (resp., super-
classes) through transformations. In particular, let fM (e) =
σ(WM · e + bM) be a non-linear affine transformation
that maps an entity embedding e to that of its class, where
WM ∈ RdT×dA is a weight matrix, bM ∈ RdT is a bias
vector, and σ(·) is a non-linear activation function such as
tanh. Similarly, fH(c) = σ(WH · c+ bH) is another non-
linear transformation that maps a class embedding c to that
of its superclass, with WH ∈ RdT×dT and bH ∈ RdT .
Then, our class embeddings should satisfy
• for each c(e) ∈ A, fM (e) ≈ c; and
• for each c1 v c2 ∈ T , fH(c1) ≈ c2.

For (iii), the embedding method in (Hao et al. 2019) treats
(c1, p, c2) ∈ T in the same way as a triple (e1, p, e2) ∈ A,
which is not intuitive for domain and range constraints.
Also, the approach in (Hao et al. 2019) assumes the prop-
erties in the TBox do not overlap with those in the ABox,
which would result in the TBox coverage of the KG being
0. Indeed, what (c1, p, c2) conveys is the membership of en-
tities in dom(p) and ran(p). Hence, our class embeddings
should satisfy for each (c1, p, c2) ∈ T :
• for each e ∈ dom(p), fM (e) ≈ c1; and
• for each e ∈ ran(p), fM (e) ≈ c2.

With the class embeddings trained together with the entity
and property embeddings, the property embeddings would
satisfy the domain and range constraints, and each entity
occurring on an ABox path is always confined by its class
membership. The embedding scoring function is defined as
follows.

fembd(r) = sim(p1 + · · ·+ pn,p),

where sim(·, ·) is the L2 norm of vector distance as in
TransE, i.e. sim(v1,v2) = −‖v1 − v2‖2.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

499

We use the embedding scoring function to generate path
patterns to complement those generated from the path-based
strategy. Again, although the embedding scoring function
does not include classes, type information is utilized through
embeddings to search for path patterns and classes can be
added to the candidate rules and validated through the SC
and HC metrics.

5 Experiments
We have implemented a prototype system TyRuLe (Typed
Rule Learning) and conducted experiments on rule learn-
ing and link prediction over both standard benchmarks and
a real-life dataset. Our experiments are designed to validate
the following claims:

1. TyRuLe can learn quality and informative typed rules, and
the benefit of such typed rules over CP rules is also shown
in enhancing the accuracy of link prediction.

2. TyRuLe outperforms major rule learners and several em-
bedding models on link prediction.

3. Both our path-based and embedding-based components
contribute to the typed rule learning.

For Claim 1, we first show the intuitiveness of typed rules
TyRuLe learns on a real-life dataset in the aviation domain,
which is extracted from Web sources and contains very spe-
cific domain knowledge. We also compare the rules learned
by TyRuLe with and without type information, and demon-
strate the benefit of typed rules in enhancing the accuracy
of link prediction. For Claim 2, we compare TyRuLe with
existing rule learners and embedding models on link predic-
tion over two commonly used benchmarks FB15K-237 and
WN18RR, and show the advantages of TyRuLe. Finally,
for Claim 3, we conduct an ablation study to analyse the
respective benefits of our path-based and embedding-based
measures.

All the experiments are conducted on a PC with Intel
Xeon Gold 5215 CPU at 2.50GHz and with 16G of RAM,
running on Ubuntu 18.04.3. Our system and benchmarks
can be found at https://github.com/Rainbow0625/TyRuLe.

5.1 Datasets
Our experiments use three commonly used benchmarks and
one real-life KG. Statistics of the four datasets are shown in
Table 1.

KG #Entity #Relation #Class #Triple
FB15K237 14541 237 79 310116
WN18RR 40943 11 - 89969
YAGO26K906 26078 34 106 390738
AirGraph 64782 40 24 360650

Table 1: Statistics of datasets.

FB15K237 (Toutanova and Chen 2015) and
WN18RR (Dettmers et al. 2018) are widely used bench-
marking datasets obtained from respectively Freebase and
WordNet. They are considered challenging benchmarks
for link prediction, and were developed to address the test

leakage issues in FB15K and WN18 (Toutanova and Chen
2015). We included explicit type information in FB15K237,
which is extracted from FB15K following (Xie et al. 2016).
Note that the type information is extracted from the original
FB15K dataset and should not be considered as external
knowledge. As most of the classes contain a very small
number of entities, we only kept the classes that contain at
least 1000 entities and those asserted as domains and ranges
of relations, which leads to a total number of 79 classes.
The version of WN18RR is the same as in (Dettmers et al.
2018) and we did not add explicit type information.

Another dataset is YAGO26K906 from (Hao et al. 2019),
which is obtained from YAGO with explicit type informa-
tion. The TBox and ABox in YAGO26K906 have disjoint
sets of properties, which means ontological pathfinding ap-
proaches cannot be applied, and we adopted it mainly for
comparison with embedding model JOIE (Hao et al. 2019)
for which the dataset was initially used.

Finally, since existing benchmarks are obtained from es-
tablished general-purpose KGs, we add a dataset we devel-
oped about a specific domain called AirGraph. AirGraph
is a KG about airlines, airports, and aircraft, obtained by
extracting and integrating data from four major sources:
Federal Aviation Administration (FAA)1, ourairports.com2,
openflights.org3, and DBpedia. The AirGraph is unavoid-
ably more noisy and incomplete compared to the established
KGs, which poses challenges to rule learners and link pre-
diction systems. On the other hand, it has very focused do-
main knowledge so it is easier to compare rules learned from
different systems.

5.2 Rule Learning
In the first set of experiments, we evaluate the performance
of TyRuLe in rule learning. We evaluate the benefits of
learning typed rules from both quantitative and qualitative
aspects. In particular, we compare the number of rules
learned by TyRuLe with the rule learners AMIE+ (Galárraga
et al. 2015) and AnyBURL (Meilicke et al. 2019) on Air-
Graph. RARL (Pirrò 2020) was not compared since we
could not access the system at the time of the experiment.
The maximum rule body length is 3 and the minimum SC is
0.001 for all the rule learners. A time limit of 3 hours per
head property is set for each rule learner, as AnyBURL is an
anytime rule learner and did not stop in 3 hours.

As AnyBURL learns partial-grounded rules, i.e., CP rules
with some variables substituted by entities, several such
rules can be obtained from a single CP rule. For a fair
comparison on rule numbers, we also record the CP rules
learned by AnyBURL. On AirGraph, TyRuLe learned 941
typed rules, including 815 CP rules. In the given time, Any-
BURL could learn 173396 rules (mostly partial-grounded)
including 357 CP rules, and AMIE+ could learn 76 rules.

In Table 2, we list the top 3 rules learned by each system
on the head property capableOfLanding with their standard

1https://www.faa.gov/data research/
2https://ourairports.com/
3https://openflights.org/data.html

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

500

https://github.com/Rainbow0625/TyRuLe
https://www.faa.gov/data_research/
https://ourairports.com/
https://openflights.org/data.html

AMIE+ r1:0.114 capableOfLanding(x, z1) ∧ hasPhysicalClass(z1, z2) ∧ hasGearConfig(z2, y) → capableOfLanding(x, y),

AnyBURL
r2:0.044 capableOfLanding(x, z1) ∧ isAircraftOf(z1, z2) ∧ isAircraftOf(y, z2) → capableOfLanding(x, y),
r3:0.042 hasSurface(x, z1) ∧ hasSurface(z2, z1) ∧ capableOfLanding(z2, y) → capableOfLanding(x, y),
r4:0.038 capableOfLanding(x, z1) ∧ hasWakeCategory(z1, z2) ∧ hasGearConfig(y, z2) → capableOfLanding(x, y),

TyRuLe

r5:0.851 Runway(x) ∧ capableOfLanding(x, z1) ∧ Aircraft(z1) ∧ isAircraftEventOf(z2, z1) ∧ Event(z2)
∧isAircraftEventOf(z2, y) ∧ Aircraft(y) → capableOfLanding(x, y),

r6:0.507 capableOfLanding(x, z1) ∧ hasGearConfig(z1, z2) ∧ hasWingtip(y, z2) → capableOfLanding(x, y),
r7:0.098 Runway(x) ∧ isRunwayOf(x, z1) ∧ Airport(z1) ∧ hasBase(z2, z1) ∧ Airline(z2)

∧isAircraftOf(y, z2) ∧ Aircraft(y) → capableOfLanding(x, y)

Table 2: Rules learned by different systems.

confidence degrees. This property is interesting as it asso-
ciates data from various original sources, such as aircraft in-
formation from FAA, airline data from openflights.org, and
airport and runway information from ourairports.com. For
this property, AMIE+ could only learn one rule with an SC
of 0.114, AnyBURL learned 17 CP rules with the maximum
SC of 0.044, and TyRuLe learned 25 typed rules with some
SC as high as 0.851. For the convenience of reading, inverse
properties are flipped around.

Both rules r5 and r7 are typed rules, and we observe that
specifying types of variables can (while not always) lead to
higher SC. Intuitively, with variable types, it can constrain
the grounding of the rules to those potentially well supported
by the ABox (i.e., with significant numbers of instances).
The typed rules are intuitive, for example, rule r7 says if an
aircraft y belongs to an airline z2 that has a base airport z1
with a runway x, then y can land on the runway x. Rule r5
says if an aircraft is involved in an event on a specific run-
way then the aircraft can land on the runway. Rules r2 and
r3 explore some commonalities between aircrafts (i.e., same
airline) and between runways (i.e., same surface). Finally,
rules r1, r4 and r6 discover some physical features of the
aircraft and runway that are related to landing capability.

5.3 Link Prediction
A major quantitative indicator on the quality of learned rules
is their performance in link prediction. Hence, in the second
set of experiments, we evaluate the performance of TyRuLe
in link prediction on various datasets. The way to apply the
learned rules for link prediction is described in Section 3.3.

First, we evaluated TyRuLe on FB15K-237
and WN18RR, in comparison with rule learners
AMIE+ (Galárraga et al. 2015), NeuralLP (Yang,
Yang, and Cohen 2017), RLvLR (Omran, Wang, and
Wang 2018), AnyBURL (Meilicke et al. 2019) and
RARL (Pirrò 2020), as well as with major embedding-based
models RESCAL (Nickel, Tresp, and Kriegel 2011),
TransE (Bordes et al. 2013), DistMult (Yang et al. 2014),
CompIEx (Trouillon et al. 2016), ConvE (Dettmers et al.
2018), RotatE (Sun et al. 2019) and HAKE (Zhang et al.
2020). We adopt the standard metrics for link prediction,
namely Mean Reciprocal Rank (MRR) and the proportion
of top n hits (Hits@1 and Hits@10), to represent the
accuracy of prediction. And we follow the literature to filter
the predictions before ranking (Bordes et al. 2013).

Table 3 shows the results. Besides the results of HAKE
is from (Zhang et al. 2020), all the other embedding-

based models for FB15K237 and WN18RR are obtained
from (Broscheit et al. 2020). The results of AMIE+, Any-
BURL and RARL are from (Pirrò 2020). And NeuralLP and
RLvLR are from (Omran, Wang, and Wang 2018). The best
results are highlighted in bold, and the second best ones are
underlined.

From Table 3, we can see that TyRuLe outperforms all the
rule learners in link prediction, especially on Hits@1, where
an improvement of up to 6.8% is achieved. This shows
the quality of the rules learned by TyRuLe and the benefit
of type information in link prediction. The performance of
TyRuLe is even comparable to the embedding methods, and
outperforms all the models on two metrics for FB15K237.
For WN18RR, as type information is implicit, HAKE, which
employs a more complex embedding for implicit hierarchi-
cal structures, shows better performance. And our perfor-
mance is still close to HAKE.

Following the comparison in Section 5.2 on AirGraph, we
compared the quality of learned rule through link prediction.
Table 4 shows the results. The rules learned by TyRuLe
again show better accuracy for link prediction, which con-
firms the quality of the learned rules.

Finally, as our embedding method is inspired from
JOIE (Hao et al. 2019), we compare with JOIE on
YAGO26K-906. The results are shown in Table 5, where
JOIE-X is the version of JOIE that uses a base embedding
method X with a configuration closest to ours (regarding the
embedding of class membership and hierarchies), and the
results on JOIE are from (Hao et al. 2019).

From Table 5, we can see that with the combination of
path-based and embedding-based strategies, our approach
can effectively utilize the type information and outperforms
JOIE, sometimes by a significant margin.

5.4 Ablation Study
In this set of experiments, we analyse the contributing fac-
tors of TyRuLe’s outstanding performance. First, we evalu-
ate the usefulness of type information in rule learning. More
specifically, we compare the quantities and quality of the
learned rules with and without types. In particular, we sep-
arate the rules learned by TyRuLe into two groups, the CP
rules (with no types) and the other rules (with types, called
T-rules). We also group the rules by their body lengths
n = 1, 2, 3. Table 6 shows the numbers of learned rules
per head property (#Rule) and the overall link prediction re-
sults (LP) of different groups of rules learned by TyRuLe on
FB15K237.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

501

Model FB15K237 WN18RR
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Link Predictor

RESCAL 35.6 26.3 54.1 46.7 43.9 51.7
TransE 31.3 22.1 49.7 22.8 5.3 52.0
DistMult 34.3 25.0 53.1 45.2 41.3 53.0
CompIEx 34.8 25.3 53.6 47.5 43.8 54.7
ConvE 33.9 24.8 52.1 44.2 41.1 50.4
RotatE 33.3 24.0 52.2 47.8 43.9 55.3
HAKE 34.6 25.0 54.2 49.7 45.2 58.1

Rule Learner

AMIE+ 17.4 40.9 35.8 38.8
NeuralLP 24 36.1
RLvLR 24 39.3
AnyBURL 31 23.3 48.6 47 44.1 55.2
RARL 32 25.1 49.1 36.13 35.1 40.9
TyRuLe 39.5 33.5 52.0 48.3 44.8 54.1

Table 3: Link prediction on FB15K237 and WN18RR: TyRuLe outperforms all rule learner and competitive to other models for link predic-
tion.

Model MRR Hits@1 Hits@3 Hits@10
AMIE+ 12.3 11.9 12.7 12.9
AnyBURL 31.3 26.2 34.3 43.1
TyRuLe 35.3 30.6 37.5 45.1

Table 4: Link prediction on AirGraph.

Model MRR Hits@1 Hits@10
JOIE-TransE 30.6 18.6 51.7
JOIE-DistMult 29.6 19.4 45.5
JOIE-HolE 32.7 22.4 52.4
TyRuLe 42.8 37.7 52.4

Table 5: Link prediction on YAGO26K-906.

We can see that while the numbers of T-rules are smaller
than those of CP rules, which may be due to the limited type
information, the T-rules achieve higher accuracy in link pre-
diction. And the link prediction accuracy is further enhanced
when the two groups rules are combined. This shows the
benefits of type information in both enriching and enhanc-
ing the quality of learned rules.

Then, we analyse the contributions of our path-based and
embedding-based strategies in rule learning. We separate
the rules respectively learned through the two strategies on
FB15K237. Table 7 shows the numbers of rules learned for
some head properties by the two different strategies, where
we separately record the numbers of CP rules (CP) and T-
rules (TR).

6 Conclusion
In this paper, we have developed a novel approach to learn
typed rules over KGs, by exploiting the rich type informa-
tion in KGs. Instead of using such type information as hard
constraints for rule search, we adopted a combined approach
using both path-based and embedding-based strategies for
the search of candidate rules. Type information from the
KG is used both in the path exploration and embedding gen-
eration, and the selected paths and generated embeddings in
turn are used to generate typed rules. We have evaluated our

#Rule n = 1 n = 2 n = 3 Total
CP rules 2.9 29.0 127.3 159.2
T-rules 1.7 23.5 116.5 141.7
Together 4.6 52.5 243.8 300.9
LP MRR Hits@1 Hits@3 Hits@10
CP rules 33.7 26.7 35.5 47.9
T-rules 38.7 32.8 40.1 50.8
Together 39.5 33.5 40.9 52.0

Table 6: Link prediction with and without types.

Path Emb. Overlap
Property CP TR CP TR CP TR
modeTransportation 201 101 168 73 143 65
disciplineOrSubject 21 6 18 2 16 2
parentGenre 45 36 80 43 27 21
eventLocation 122 113 141 130 115 109
directorFilm 157 153 237 208 144 130

Table 7: Path-based vs embedding-based strategies.

prototype system in both rule learning and link prediction
tasks, through quantitative and qualitative analysis. TyRuLe
showed superior performance over existing rule learners in
link prediction, and is competitive compared to embedding
models, which shows the quality of our learned rules.

In our typed rules, type atoms can only appear in the body
part of the rule. Next, we plan to extend our approach to
learn more expressive rules with type in the rule heads. Fur-
thermore, we will also explore the application of learned
rules in reasoning tasks over KGs, such as question answer-
ing, to provide explainability of predictions.

Acknowledgments

The authors would like to thank three anonymous referees
for their helpful comments. This work was partially sup-
ported by National Natural Science Foundation of China
(NSFC) (61976153).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

502

References
Ahmadi, N.; Huynh, V.-P.; Meduri, V.; Ortona, S.; and Pa-
potti, P. 2020. Mining expressive rules in knowledge graphs.
Journal of Data and Information Quality 12(2):1–27.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proc. of SIGMOD-08,
1247–1250.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. Proc. of NIPS-13 26:2787–2795.
Broscheit, S.; Ruffinelli, D.; Kochsiek, A.; Betz, P.; and
Gemulla, R. 2020. LibKGE - A knowledge graph embed-
ding library for reproducible research. In Proc. of EMNLP-
20 (Demos), 165–174.
Chen, Y.; Goldberg, S.; Wang, D. Z.; and Johri, S. S. 2016a.
Ontological pathfinding. In Proc. of COMAD-16, 835–846.
Chen, Y.; Wang, D. Z.; and Goldberg, S. 2016b. Scalekb:
scalable learning and inference over large knowledge bases.
The VLDB Journal 25(6):893–918.
Cropper, A.; Dumančić, S.; Evans, R.; and Muggleton, S. H.
2022. Inductive logic programming at 30. Mach. Learn.
111(1):147–172.
Dettmers, T.; Minervini, P.; Stenetorp, P.; and Riedel, S.
2018. Convolutional 2d knowledge graph embeddings. In
Proc. of AAAI-18, 1811–1818.
Gad-Elrab, M. H.; Stepanova, D.; Urbani, J.; and Weikum,
G. 2016. Exception-enriched rule learning from knowledge
graphs. In Proc. of ISWC-16, 234–251.
Galárraga, L.; Teflioudi, C.; Hose, K.; and Suchanek, F. M.
2015. Fast rule mining in ontological knowledge bases with
amie+. The VLDB Journal 24(6):707–730.
Hao, J.; Chen, M.; Yu, W.; Sun, Y.; and Wang, W. 2019.
Universal representation learning of knowledge bases by
jointly embedding instances and ontological concepts. In
Proc. of KDD-19, 1709–1719.
Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; and Yu, P. S. 2020.
A survey on knowledge graphs: Representation, acquisition
and applications. CoRR abs/2002.00388.
Lisi, F. A., and Weikum, G. 2017. Towards nonmonotonic
relational learning from knowledge graphs. In Proc. of ILP-
17, 94.
Meilicke, C.; Chekol, M. W.; Ruffinelli, D.; and Stucken-
schmidt, H. 2019. Anytime bottom-up rule learning for
knowledge graph completion. In Proc. of IJCAI-19, 3137–
3143.
Miller, G. A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Muggleton, S. 1990. Inductive logic programming. In
Arikawa, S.; Goto, S.; Ohsuga, S.; and Yokomori, T., eds.,
Proc.of ALT-90, 42–62.
Muggleton, S. 1991. Inductive logic programming. New
Gener. Comput. 8(4):295–318.
Nguyen, T. D.; Nguyen, D. Q.; Phung, D. Q.; et al. 2018.
A novel embedding model for knowledge base completion

based on convolutional neural network. In Proc. of NAACL-
HLT-18, 327–333.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-
way model for collective learning on multi-relational data.
In Proc. of ICML-28, 809–816.
Omran, P. G.; Wang, K.; and Wang, Z. 2018. Scalable rule
learning via learning representation. In Proc. of IJCAI-18,
2149–2155.
Pellissier Tanon, T.; Stepanova, D.; Razniewski, S.; Mirza,
P.; and Weikum, G. 2017. Completeness-aware rule learning
from knowledge graphs. In Proc. of ISWC-17, 507–525.
Pirrò, G. 2020. Relatedness and tbox-driven rule learning in
large knowledge bases. In Proc. of AAAI-20, 2975–2982.
Sadeghian, A.; Armandpour, M.; Ding, P.; and Wang, D. Z.
2019. Drum: End-to-end differentiable rule mining on
knowledge graphs. Proc. of NIPS-19 32:15321–15331.
Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago:
a core of semantic knowledge. In Proc. of WWW-07, 697–
706.
Sun, Z.; Deng, Z.; Nie, J.; and Tang, J. 2019. Rotate:
Knowledge graph embedding by relational rotation in com-
plex space. In Proc. of ICLR-19(Poster).
Toutanova, K., and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proc. of
CVSC-15, 57–66.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In Proc. of ICML-16, 2071–2080.
Xie, R.; Liu, Z.; Sun, M.; et al. 2016. Representation learn-
ing of knowledge graphs with hierarchical types. In Proc. of
IJCAI-16, 2965–2971.
Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2014.
Embedding entities and relations for learning and inference
in knowledge bases. In Proc. of ICLR-14.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
learning of logical rules for knowledge base reasoning. Proc.
of NIPS-2017 30:2319–2328.
Zeng, Q.; Patel, J. M.; and Page, D. 2014. Quickfoil:
Scalable inductive logic programming. Proc. of the VLDB
Endowment-14 8(3):197–208.
Zhang, Z.; Cai, J.; Zhang, Y.; and Wang, J. 2020. Learn-
ing hierarchy-aware knowledge graph embeddings for link
prediction. In Proc. of AAAI-20, 3065–3072.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

503

	Introduction
	Related Work
	Rule Learning
	Link Prediction

	Preliminaries
	Knowledge Graphs
	Rules
	Rule-based Link Prediction

	Rule Learning
	KG Modules
	Path-based Strategy
	Embedding-based Strategy

	Experiments
	Datasets
	Rule Learning
	Link Prediction
	Ablation Study

	Conclusion

