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Abstract
We propose a general framework to investigate semantics of
Dung-style argumentation frameworks (AFs) by means of a
generic defeat notion formalized by refute operators. Af-
ter establishing the technical foundations, we propose natural
generic versions of Dung’s classical semantics. We demon-
strate how classical as well as recent proposals can be cap-
tured by our approach when utilizing suitable notions of refu-
tal. We perform an investigation of basic properties which se-
mantics inherit from the underlying refute operator. In partic-
ular, we show under which conditions a counterpart to Dung’s
fundamental lemma can be inferred and how it ensures the ex-
istence of the generalized version of complete extensions. We
contribute to a principle-based study of AF semantics by dis-
cussing properties tailored to compare different refute opera-
tors. Finally, we report computational complexity results for
basic reasoning tasks which hold in our general framework.

1 Introduction
Since Dung’s seminal 1995 paper (Dung 1995) introduc-
ing abstract argumentation frameworks (AFs), the field of
formal argumentation has become a vibrant research area
in Artificial Intelligence. Research in AFs is driven by in-
vestigating the behavior of semantics formalizing jointly ac-
ceptable sets of arguments (cf. (Baroni, Caminada, and Gi-
acomin 2018) for an overview). Over the years, many fun-
damental properties typically considered for non-monotonic
formalisms have been studied for abstract argumentation
semantics. Among others, central issues like existence
and uniqueness (Weydert 2011; Baumann and Spanring
2015), replaceability (Oikarinen and Woltran 2011; Bau-
mann 2016), expressibility (Dunne et al. 2015), as well as
general modularity and locality properties were studied (Ba-
roni and Giacomin 2007; Baumann 2011; Baroni, Giacomin,
and Liao 2018).

Due to the considerable amount of semantics that have
been proposed in the literature, researchers have developed
proposals in order to objectively assess their quality for dif-
ferent scenarios. This resulted in a comprehensive collec-
tion of so-called principles (Baroni and Giacomin 2007;
van der Torre and Vesic 2018), i.e. properties that formalize
(un-)desirable characteristics of semantics. The principles
range from basic concepts which hold by definition for most
semantics to rather technical requirements which formalize
different concepts of step-wise computability of extensions.

The principle-based analysis reveals that most commonly
accepted semantics are either based on the notion of admis-
sibility or naivity. In a nutshell, admissibility requires that
a set of arguments is capable of defending itself (that is,
counter-attacking any argument challenging it) in the given
AF, whereas naivity is not concerned with defense at all.

However, these two concepts do not always yield intuitive
results. Let us illustrate the sometimes undesired behavior
by considering the following example AFs. The formal the-
oretical background for AFs can be found in Section 2.

aF : b aG : b aH : b c

Suppose we are in a setting where we wish to neglect the
self-attacker a in F . Then b should be acceptable which is
however not the case for any admissible-based semantics.
As a possible solution we could consider naivity-based se-
mantics. But since they completely disregard the notion of
defense we then would also accept b in G. This is clearly
undesired though since in G, b is attacked by the undis-
puted argument a. Naivity-based semantics which also make
use of the SCC-recursive scheme (Baroni, Giacomin, and
Guida 2005) would handle F and G quite well, but due to
their reliance on the structure of the given graph, the AF H
would be treated unsatisfactory: It consists of a single SCC
only and therefore this approach collapses to the underlying
base function (we refer the reader to (Baroni, Giacomin, and
Guida 2005) for more details on SCC-recursive semantics).

These observations motivated the proposal of some recent
approaches which are tailored to find “good” ways to disre-
gard some of the attacking arguments in certain situations
(Bodanza and Tohmé 2009; Dondio and Longo 2021; Bau-
mann, Brewka, and Ulbricht 2020b; Dauphin, Rienstra, and
van der Torre 2021). Comparing the characteristics of such
non-classical semantics in a formal way is a challenging en-
deavor, since all of them make (more or less implicit) use of
different defense notions by disregarding certain attackers
of the given extension. Thus, a comprehensive understand-
ing of these semantics requires delving into and comparing
the varying underlying concepts. Moreover, the usual princi-
ples considered in the literature (Baroni and Giacomin 2007;
van der Torre and Vesic 2018) are not concerned with differ-
ent versions of defense making it hard to use them when
assessing what a “good” weak version of admissibility is.
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In this paper, we contribute to this line of research and
propose a unifying approach for investigating defense no-
tions, their implications for the induced semantics, and their
suitability for certain scenarios. The key observation in our
proposal is that Dung’s defense is based on the conception
that each attacker of a given argument shall be refuted by
the defending set. Therefore, by altering the definition of
“refute” we obtain versions of Dung’s theory, which are fa-
miliar in their spirit, but suitable for our purpose.

Our main contributions can be summarized as follows:
• After recalling the necessary AF background in Section 2

we introduce our general framework in Section 3. Based
on a generic refute operator δ we develop a defense notion
and a generalization of the characteristic function, yield-
ing counterparts to Dung’s semantics.

• We demonstrate how recent proposals from the literature
can be captured by our approach and the underlying de-
fense notion of the semantics is revealed (Section 4).

• We discuss formal properties of our general semantics
based on the characteristics of the specified refute oper-
ator. Most notably, we obtain a natural generalization of
Dung’s fundamental lemma (Section 5).

• We propose abstract principles, tailored to investigate
refute operators and evaluate the ones we introduced
throughout the paper (Section 6).

• We investigate the computational complexity of basic
reasoning tasks for semantics based on polynomial-time
computable refute operators (Section 7).

2 Background
We fix a non-finite background set U . An argumentation
framework (AF) (Dung 1995) is a directed graph F =
(A,R) with a set of arguments A ⊆ U and the attack re-
lation R ⊆ A × A. If not stated otherwise we assume any
AF to be finite and we use F for the set of all these graphs.
If (a, b) ∈ R we say that a attacks b as well as a attacks
(the set) E given that b ∈ E ⊆ A. This situation is de-
noted as a → b or a → E, respectively; we define E → a
analogously.

We frequently use the so-called range of a set E defined
as E⊕ = E ∪ E+ where E+ = {a ∈ A | E attacks a}.
We also let E− = {a ∈ A | a attacks E}. If E = {a} is
a singleton, we write a+ and a− instead of {a}+ and {a}−.
By F ↓E we denote F projected to the arguments in E, i.e.
F ↓E= (E,R ∩ (E × E)). The E-reduct of F is the AF
FE = (E∗, R ∩ (E∗ × E∗)) where E∗ = A \ E⊕. This
means, FE is the subframework of F obtained by removing
the range of E, i.e. FE = F↓A\E⊕ . For an AF F = (B,S)
we let A(F ) = B and R(F ) = S.

A semantics is a function σ : F → 22
U

with F =
(A,R) 7→ σ(F ) ⊆ 2A. This means, a semantics re-
turns a set of subsets of A, so-called σ-extensions. We
say that an argument a ∈ A is credulously accepted if
a ∈

⋃
σ(F ). Similarly, a is considered as skeptically ac-

cepted if |σ(F )| ≥ 1 and a ∈
⋂
σ(F ). In case of uniquely

defined semantics, i.e. |σ(F )| = 1 for any F we may simply
speak of accepted arguments as both notions coincide.

In this paper we consider several semantics which are in
spirit based on Dung’s classical admissible, complete, pre-
ferred, grounded and stable semantics (abbr. ad , co, pr ,
gr , stb). All mentioned semantics satisfy conflict-freeness.
A set E ⊆ A is conflict-free in F (for short, E ∈ cf (F ))
iff for no a, b ∈ E, a → b. For the present paper it will
be convenient to utilize the so-called characteristic func-
tion ΓF to define the semantics. For E ⊆ A we have
ΓF (E) = {a ∈ A | E defends a}. A set E defends a if
b→ a implies E → b.
Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).
1. E ∈ ad(F ) iff E ⊆ ΓF (E),
2. E ∈ co(F ) iff E = ΓF (E),
3. E ∈ pr(F ) iff E is ⊆-maximal in co(F ),
4. E ∈ gr(F ) iff E is ⊆-minimal in co(F ),
5. E ∈ stb(F ) iff E attacks any a ∈ A \ E.

3 Defeat and Defense
Defense and defeat are fundamental cornerstones in abstract
argumentation and before generalizing these notions, we
shall reflect about which basic principles we want to modify,
and which we want to preserve.

The first observation we are going to make is that the no-
tion of “defense” is actually based on the attack relation, i.e.
a set E of arguments defends some a ∈ A if E → b for each
b s.t. b → a. Since Dung AFs represent attacks between
arguments, it is natural to stipulate that an argument a is ac-
ceptable by default, and for each attacker b there needs to be
some reason to reject b, i.e. arguments attacking a represent
threats for the acceptance of it and hence need to be taken
care of. We therefore want to preserve the basic idea that an
argument is defended if each attacker is countered.

So we observe that if “defense” means each attacking ar-
gument is defeated, it suffices to adjust the notion of defeat.
For Dung’s classical semantics, the notion of “E defeats a”
is defined as ∃b ∈ E : b→ a. So defeat is merely syntactical
(and existential quantified); a choice which is natural from
an intuitive point of view, but technically speaking rather ar-
bitrary. The aforementioned choice also ties together the no-
tion of “conflict” (there is an attack between two arguments)
and “defeat” (an extension defeats an argument).

Let us separate these notions by introducing a general
concept of refutal. Given an AF F = (A,R), we expect
a refute operator to assign to a set E of arguments the subset
of A which is refuted by E. We do not impose any further
restriction and therefore end up with the following.
Definition 3.1. Let F = (A,R) be an AF. A refute operator
is a mapping δ : 2A → 2A; E δ-refutes a if a ∈ δ(E).

If the underlying AF is not clear from context, we denote
the refute operator by δ(F,E) to emphasize F . If δ and δ′
are two refute operators we write δ ⊆ δ′ if δ(E) ⊆ δ′(E)
holds for each set E of arguments in each AF F = (A,R).
Definition 3.2 (Classical Refutal). Let F = (A,R) be an
AF. The classical refute operator is δc(E) = E+.

Let us introduce a novel refute operator as well. For this,
suppose we want it to behave as close as possible to the clas-
sical δc, but disregard self-attacking arguments.
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Definition 3.3. Let F = (A,R) be an AF. For E ⊆ A we
define δself as δself (E) = E+ ∪ {a ∈ A | a→ a}.
Example 3.4. Consider the following AF F and E = {b}.

F : a b c

Then δc(E) = {c}, whereas δself (E) = {a, c}. For E′ =
{a, b} we get δc(E′) = δself (E′) = {a, b, c}.

Having established a general notion of refutal, let us now
define conflict-freeness. As mentioned before, the intuitive
idea of our proposal is to separate the notions of “conflict’
and “defeat”. We interpret a→ E resp. E → a as “conflict
between E and a” and a ∈ δ(E) as “E refutes a”. For a set
E to be conflict-free, we insist both notions are respected.
Definition 3.5. Let F = (A,R) be an AF and δ a refute op-
erator. A set E of arguments is δ-conflict free (E ∈ cf δ(F ))
iff i) E ∈ cf (F ) and ii) E ∩ δ(E) = ∅.
Example 3.6. Consider again our AF from Example 3.4.
The only δc-conflict free sets are cf δc(F ) = {∅, {b}, {c}}.
Since δc and δself only disagree regarding self-attacking ar-
guments, we infer cf δself (F ) = cf δc(F ).

Let us collect some basic properties of cf δ .
Proposition 3.7. For any AF F and refute operator δ, i)
∅ ∈ cf δ(F ), ii) cf δc(F ) = cf (F ), and iii) if δ is monotonic,
then E′ /∈ cf δ(F ) if there is E ⊆ E′ with E /∈ cf δ(F ).

For our definition of δ-defense we view each argument a
with a → E as a potential threat to our extension. In order
to take care of this threat, E must refute a, i.e. a ∈ δ(E). As
for usual defense, this condition must hold for each threat.
Definition 3.8. For an AF F = (A,R) and refute operator
δ, E ⊆ A δ-defends a ∈ A iff b ∈ δ(E) for each b ∈ a−.
Example 3.9. Returning to our Example 3.4, the set E =
{b} δself -defends itself because a ∈ δself (E), while it does
not δc-defend itself since a /∈ δc(E) = E+. Again, both
notions agree that E′ = {a, b} defends itself.

Based on our generalized version of defense, let us define
the natural induced characteristic function as well.
Definition 3.10. Let F = (A,R) be an AF and δ a refute
operator. The δ-characteristic function Γδ is the mapping
Γδ : 2A → 2A with Γδ(E) = {a ∈ A | E δ-defends a}.

Note Γ(E) = Γδc(E) for the classical refute operator δc.
The characteristic function is a fundamental concept in AFs
and therefore requires a suitable generalization for our set-
ting. However, as the following example illustrates we need
to carefully assess the behavior we expect.
Example 3.11. Recall our AF F from Example 3.4. The set
E = {b} δself -defends the self-attacker a: We already saw
δself (E) = {a, c}. Since a− = {a} we get a− ⊆ δself (E)
and thus a ∈ Γδself (E). In contrast, a /∈ Γ(E).

We therefore anticipate that a generalized version of com-
plete semantics would insist that E cannot be an extension
without a if δself is the considered refute operator. That is,
we would be forced to include a self-attacking argument in
our extension. The problematic behavior stems from the fact
that a conflict-free setE δself -defends an argument which is
also refuted by E. For Dung-semantics this cannot happen.

Proposition 3.12. Let F = (A,R) be an AF. If E ∈ cf (F ),
then Γ(E) = Γ(E) \ E+. That is, for the classical refute
operator δc we have Γδc(E) = Γδc(E) \ δc(E).

This property is a cornerstone in Dung’s theory as it is
the main ingredient for the proof of his fundamental lemma.
However, as we already saw for the quite simple refute oper-
ator δself , we cannot guarantee this behavior in general. We
will thus refine our δ-characteristic function before defining
the semantics. Later in Section 5.3 we will revisit this re-
quirement and investigate in which cases it is necessary and
under which conditions we can drop it.
Definition 3.13. Let F = (A,R) be an AF and δ a refute
operator. The polished δ-characteristic function χδ is the
mapping χδ : 2A → 2A with χδ(E) = Γδ(E) \ δ(E).
Example 3.14. In Example 3.4 we have χδself ({b}) = {b}.

We are ready to define the generalized versions of Dung’s
semantics from the paper (Dung 1995).
Definition 3.15. Let F be an AF and δ a refute operator.

1. E ∈ adδ(F ) iff E ⊆ χδ(E),
2. E ∈ coδ(F ) iff E = χδ(E),
3. E ∈ prδ(F ) iff E is ⊆-maximal in coδ(F ),
4. E ∈ grδ(F ) iff E is ⊆-minimal in coδ(F ),
5. E ∈ stbδ(F ) iff E ∈ cf δ(F ) and E ∪ δ(E) = A(F ).

The attentive reader may have observed that we did not
impose E ∈ cf δ(F ) as a precondition. Indeed, using the
polished characteristic function this property is implicit.
Proposition 3.16. For any AF F and refute operator E we
have that E ∈ adδ(F ) implies E ∈ cf δ(F ).
Example 3.17. For the AF F from before we already found
cf δself (F ) = {∅, {b}, {c}}. The three sets and their refuted
arguments are as follows.

a b c

χδself (∅) = {b}
a b c

χδself ({b}) = {b}
a b c

χδself ({c}) = {b}

We have b /∈ δself ({c}) and hence {c} /∈ adδself (F ). More-
over, ∅ ∈ adδself (F ) is easy to see, but χδself (∅) = {b}
yields ∅ /∈ coδself (F ). From the previous example we re-
call χδself ({b}) = {b} and hence {b} ∈ coδself (F ). This
also implies {b} ∈ prδself (F ) = grδself (F ) = coδself (F ).
From δself ({b}) = {a, c} = A \ {b} we also infer that
{b} ∈ stbδself (F ); there is no other δ-stable extension.

Using χδ is not necessary to define adδ as we show next.
For the general version of admissibility, we can always use
Γδ instead. The issue described in Example 3.18 which
gave rise to define the polished version χδ only applies to
complete-based semantics.
Proposition 3.18. Given an AF F and a refute operator δ,
we have that E ∈ adδ(F ) iff E ∈ cf δ(F ) and E ⊆ Γδ(E).

Let us finish this section by formalizing that the semantics
from Definition 3.15 faithfully generalize Dung’s semantics.
Proposition 3.19. For δ = δc we have σδ(F ) = σ(F ) for
each AF F and σ ∈ {ad , co, gr , pr , stb}.
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4 Defense Notions of Non-classical Semantics
Before delving into various formal properties of our new no-
tions, let us demonstrate how our approach captures several
non-classical semantics in a quite natural way. In this sec-
tion, we consider three different families of semantics based
on proposals from the literature. Since we do not intend
to discriminate based on any specific order, we will simply
proceed chronologically.

The aim of this section is to provide the reader with a se-
lection of examples of possible refute operators capturing re-
cently proposed non-classical semantics from the literature.
The subsequent sections are designed in a way that a full
understanding of these examples is not necessary in order to
follow the remainder of the paper.

4.1 Cogent Semantics
Bodanza and Tohmé presented alternative semantics with
the goal to limit the effect of self-defeating arguments (Bo-
danza and Tohmé 2009). In a nutshell, the idea is that de-
fense is not required against each argument in the given AF,
but only against ones which are serious enough in a certain
sense. The latter concept is implemented as follows.
Definition 4.1. Let F = (A,R) be an AF. A set E ⊆ A
is called cogent (E ∈ cog(F )) iff for any X the following
holds: If X ∈ ad(F↓X∪E), then E ∈ ad(F↓X∪E).

Then sustainable extensions are defined as maximal co-
gent, i.e. E ∈ sus(F ) iff E is maximal in cog(F ).
Example 4.2. Consider the following AFs F and G

aF : b c a2 a3a1G : b

We verify that E = {b} ∈ cog(F ). Observe that X ∈
ad(F ↓X∪E) can never be the case for some set X con-
taining the self-attacker a. Thus, the only conflict-free can-
didates for X are ∅, {b}, and {c}; in all cases, E ∈
ad(F↓X∪E) holds. Similarly, we find {c} ∈ cog(F ). Since
the emptyset is also cogent, cog(F ) = {∅, {b}, {c}}. Con-
sider nowG. In this case,E = {b} /∈ cog(G). The reason is
that we can set X = {a3} and in the subframework F↓X∪E
the argument b cannot counterattack a3. A similar reason-
ing can be applied to any argument inG and in summary we
obtain cog(G) = {∅}.

It turns out that cogency is closely related to classical
admissibility. Formally, the only difference is that self-
attacking arguments are disregarded since they can never be
in any cogent set. Consequently, cogent semantics can be
captured by the refute operator δself we already introduced.
Definition 4.3. Let F = (A,R) be an AF. The cogency re-
fute operator δcog is given as δcog = δself .

The following theorem formalizes that δself is the suitable
refute operator to capture the cogent semantics family.
Theorem 4.4. For any AF F we have E ∈ cog(F ) iff E ∈
adδself (F ), E ∈ sus(F ) iff E ∈ prδself (F ).

Thus, we have successfully extracted the underlying de-
fense notion of cogent semantics. As a by-product, we ob-
tain natural notions of “complete” and “grounded” seman-
tics by considering coδself and grδself , respectively.

4.2 Undecidedness Blocking
The paper (Dondio and Longo 2021) proposes a weakened
version of admissibility which is based on the following idea
of “undecidedness blocking”: Suppose we are given an ar-
gument a which is undecided w.r.t. some admissible exten-
sion E in the sense that a /∈ E⊕. Then, each argument
a′ attacked by a cannot be accepted, i.e. a′ /∈ E. If even
a′ /∈ E+ holds, then a′ is also undecided. This may lead to
chains of undecided arguments of an arbitrary length. Don-
dio and Longo therefore propose an approach where the ef-
fect of undecided arguments is limited. The original defini-
tion is given in terms of labelings. However, we can find a
convenient equivalent characterization via extensions.

Definition 4.5. A set E ⊆ A is called weakly ub-complete
(E ∈ cowu(F )) if E ∈ cf (F ) and Γ(E) ⊆ E.

Example 4.6. Recall our two AFs form Example 4.2. We
find cowu(F ) = {∅, {b}, {c}} so one might wonder whether
the definition of cowu yields some kind of “defense” notion.
The answer is affirmative, but the underlying notion is quite
subtle which is nicely illustrated inG: Here, {b} ∈ cowu(G)
as well since b clearly does not defend either of the ai. How-
ever, consider the situation when choosing e.g. a1:

a2 a3a1G : b

We have Γ({a1}) = {a3} so it does not hold that Γ({a1}) ⊆
{a1}. However, simply iterating Γ does not help to fix this
issue since {a1, a3, b} is not conflict-free in G. Indeed,
cowu(G) = {∅, {b}}, i.e. the arguments in the odd cycle
cannot be chosen. We want to mention though that the ac-
ceptability of b does not depend on a1, a2, a3 forming an odd
cycle. Consider H given as follows.

a2a1H : b

Here {b} ∈ cowu(H) as well since {b} does neither defend
a1 nor a2. In summary, cowu(H) = {∅, {b}, {a1}, {a2}}.

The behavior of the previous example generalizes to the
following idea: Whenever E defends some set E′ which in
turn attacks E, then E /∈ cowu(F ). The same is true if E′
defends some E′′ attacking E and so on. A concise way to
formalize this observation is the reduct FE = F↓A\E⊕ .

Proposition 4.7. Let F = (A,R) be an AF andE ∈ cf (F ).
There is some E′ ∈ cowu(F ) with E ⊆ E′ iff G ∈ gr(FE)
does not attack E in F .

We can consequently think of a “defense” notion which
is based on the grounded extension of FE . Indeed, we can
capture the semantics coub as follows.

Definition 4.8. For an F = (A,R) and E ⊆ A define the
wu operator as δwu(E) = {a ∈ A | a /∈ (gr(FE) ∪ E)}.

Theorem 4.9. Let F = (A,R) be an AF and E ⊆ A. Then
E ∈ cowu(F ) iff E ∈ coδwu

(F ).

We hence extracted the underlying defense notion of the
undecidedness blocking principle. Versions of “admissible”,
“grounded”, and “preferred” semantics can be obtained by
considering adδwu

, grδwu
, and prδwu

, respectively.
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4.3 Recursive “Weak Admissibility”
Weak admissibility as proposed in (Baumann, Brewka, and
Ulbricht 2020b) is based on a recursive definition utilizing
the reduct FE . The intuition is that arguments in E are ac-
cepted, those in E+ are rejected and out of those in A \E⊕,
attackers y of E are of concern. In order to assess such a y
as “serious” enough to be a threat, it has to be weakly admis-
sible in the reduct FE , leading to the following definition.
Definition 4.10. Let F = (A,R) be an AF. E ⊆ A is called
weakly admissible in F (E ∈ adw (F )) iff

1. E ∈ cf (F ), and
2. for any attacker y of E we have y /∈

⋃
adw (FE).

Example 4.11. Let us discuss our examples from the previ-
ous subsections. Regarding F , for both E = {b} and E′ =

{c} it holds that the corresponding reduct FE and FE
′

con-
tains only the self-attacker a. Since self-attacking arguments
can never be weakly admissible, adw(F ) = {∅, {b}, {c}}
follows. Observe that in an AF consisting of an odd cy-
cle a1, a2, a3, no argument occurs in a weakly admissi-
ble extension. It follows that adw(G) = {∅, {b}}. Since
{a1}, {a2} ∈ adw(H), b cannot survive without a1, so we
conclude adw(H) = {∅, {a1}, {a2}, {a1, b}}.

The decisive feature of weak admissibility is that argu-
ments which are not acceptable in the reduct FE are disre-
garded. The natural refute operator hence is the following.
Definition 4.12. Let F = (A,R) be an AF. The weak re-
fute operator δw is for each set E of arguments given as
δw (E) = E+ ∪

{
a ∈ FE | a /∈

⋃
adw (FE)

}
.

Intuitively, an argument a is δw -refuted by E iff it is ei-
ther attacked by E or occurring in the reduct without being
credulously accepted there. We formalize that δw is suitable
for our purpose as it captures weakly admissible semantics.
Theorem 4.13. Let F = (A,R) be an AF andE ⊆ A. Then
E ∈ adw (F ) iff E ∈ adδw (F ).

The paper also presents a notion of defense and the in-
duced weak complete, preferred, and grounded semantics.
Definition 4.14. Let F = (A,R) be an AF. Given two sets
E,X ⊆ A. We say E weakly defends (or simply, w-defends)
X iff for any attacker y of X we have,

1. E attacks y, or
2. y /∈ E, y /∈

⋃
adw

(
FE
)

and X ⊆ X ′ ∈ adw (F ).
Definition 4.15. Let F = (A,R) be an AF. A set E ⊆ A
is called weakly complete in F (E ∈ cow (F )) iff E ∈
adw (F ) and if E w-defends X ⊇ E, then X = E.

Weakly grounded (grw) and preferred (prw) are defined
as minimal resp. maximal weakly complete sets. In the pa-
per (Dauphin, Rienstra, and van der Torre 2021) the notion
of weak defense has been further investigated and interesting
alternatives are proposed, but within the scope of this con-
tribution we stick with Definition 4.15. The following result
establishes a natural fixed-point characterization for cow.
Theorem 4.16. Let F = (A,R) be an AF andE ⊆ A. Then
E ∈ cow (F ) iff E ∈ coδw (F ).
Corollary 4.17. Let F be an AF. Then i) E ∈ prw (F ) iff
E ∈ prδw (F ) and ii) E ∈ grw (F ) iff E ∈ grδw (F ).

5 Basic Properties
In this section we examine basic properties of semantics
based on general refute operators. This investigation is in-
spired by the behavior of the classical semantics, i.e. we par-
ticularly focus on the following questions.
• Is there a suitable version of the Fundamental Lemma?
• Under which conditions do complete extensions exist?
• Can we infer that the grounded extension is unique?
Our investigation requires caution since the classical refute
operator δc(E) = E+ is a simple syntactical one with in-
tuitive properties. Moving to a general mapping δ is thus a
challenging endeavour at first glance. However, it turns out
that under some mild conditions we can answer the above
questions affirmatively for a general refute operator δ. First,
let us mention that ∅ is admissible for any operator.
Lemma 5.1. Let F = (A,R) be an AF and δ a refute oper-
ator. Then ∅ ∈ adδ(F ). In particular, adδ(F ) 6= ∅.

5.1 The Fundamental Lemma
The above Lemma 5.1 is simple, yet our first major building
block in finding conditions ensuring coδ(F ) exists. Dung’s
classical proof for the existence of complete extensions
starts with some admissible set and then applies:
Lemma 5.2 (Fundamental lemma). Let F = (A,R) be an
AF and E ∈ ad(F ). If E defends a, then E∪{a} ∈ ad(F ).

Unfortunately, we cannot expect this property to hold for
any conceivable refute operator. Our goal is thus to find
conditions ensuring this property. However, before doing so
let us establish that a natural counterpart to the fundamental
lemma indeed yields the existence of complete extensions.
Definition 5.3. A refute operator induces the fundamental
lemma if for any AF F = (A,R) and E ∈ adδ(F ) the
following holds: If a ∈ χδ(E), then E ∪ {a} ∈ adδ(F ).

Theorem 5.4. Let F = (A,R) be an AF. If δ induces the
fundamental lemma, then coδ(F ) 6= ∅.

Proof. We have ∅ ⊆ χδ(∅). If even “=” holds, we are done.
So let E1 = {a1} for some a ∈ χδ(∅) and for each i ≥ 2 we
set Ei = Ei ∪ {ai} for some ai ∈ χδ(Ei−1) \ Ei−1. Since
δ induces the fundamental lemma, a simple induction shows
that Ei ∪ {ai} ∈ adδ(F ) for each i and ai /∈ Ei−1, i.e.
Ei−1 ( Ei. By finiteness of A, this procedure stops after at
most |A| steps with some Ei satisfying Ei = χδ(Ei).

Our goal is thus to find natural conditions ensuring that
our given refute operator δ induces the fundamental lemma.
We show that this can be ensured by the following two con-
ditions (which are both satisfied by δc):
Definition 5.5. We say χδ satisfies

• cf -monotonicity if for any AF F = (A,R) and E,E′ ∈
cf δ(F ) we have that E ⊆ E′ implies χδ(E) ⊆ χδ(E′);
• conflict-free transfer if for any AF F = (A,R) and E ∈

adδ(F ) we have E ∪ {a} ∈ cf δ(F ) for each a ∈ χδ(E).

We can show that in general, this two properties indeed
suffice in order to infer the fundamental lemma.
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Proposition 5.6. Let F be an AF and δ a refute operator. If
χδ satisfies both cf -monotonicity and conflict-free transfer,
then δ induces the fundamental lemma.

Proof. Let E ∈ adδ(F ) and a ∈ χδ(E). By conflict-free
transfer, E ∪ {a} ∈ cf δ(F ). Since E ∈ adδ(F ) we can
apply cf -monotonicity and find χδ(E) ⊆ χδ(E ∪ {a}). By
definition of E ∈ adδ(F ), we have E ⊆ χδ(E). From a ∈
χδ(E) we can therefore also infer E ∪ {a} ⊆ χδ(E).

As we show next, Proposition 5.6 is applicable to δcog .
Although this is not the case for δwu , this refute operator
induces the fundamental lemma nonetheless.
Proposition 5.7. The refute operator δself satisfies both cf -
monotonicity and conflict-free transfer, δwu induces the fun-
damental lemma but does not satisfy cf-monotonicity.

In contrast, the following shows that δw does not induce
the fundamental lemma and thus by Proposition 5.6 cannot
satisfy both cf -monotonicity and conflict-free transfer.
Example 5.8. In the AF F below {d} is δw-defended by ∅
but {d} /∈ adδw(F ).

aI : b c d e

Nonetheless coδw (F ) 6= ∅ for any AF F , so the funda-
mental lemma is no necessary condition.

5.2 Grounded and Preferred Extensions
Next we want to give a criterion ensuring that grδ is always
unique. As before our inspiration comes from the behavior
of the classical semantics. Notably, the following property
is a natural counterpart to conflict-free transfer.
Definition 5.9. Let δ a refute operator. The polished charac-
teristic function χδ satisfies admissibility transfer if for any
AF F and E ∈ adδ(F ) we have χδ(E) ∈ adδ(F ).
Theorem 5.10. Let F = (A,R) be an AF and δ a refute
operator. If χδ satisfies cf -monotonicity and admissibility
transfer, then |grδ(F )| = 1 and the unique δ-grounded ex-
tension G ∈ grδ(F ) satisfies G =

⋃
i∈N χ

i
δ(∅).

Proof. Let E ∈ coδ(F ). By cf -monotonicity we have
χδ(∅) ⊆ χδ(E). Now by induction and due to admissi-
bility transfer we infer χiδ(∅) ⊆ χiδ(E) for each integer
i. For some i, χiδ(∅) = χi+1

δ (∅), i.e. G is complete Since
E ∈ coδ(F ) we have E = χiδ(E) and thus, G ⊆ E.

Theorem 5.10 is applicable to both δcog and δwu .
Proposition 5.11. The refute operators δself and δwu satisfy
admissibility transfer.

Since grδw is not unique in general (Baumann, Brewka,
and Ulbricht 2020b) we can be certain that δw does not sat-
isfy both cf -monotonicity and admissibility transfer. The fi-
nal property of classical semantics we inspect more closely
here is regarding preferred semantics: They are defined as
maximal complete extensions, but this is equivalent to max-
imal admissible sets. Remarkably, the same properties en-
suring uniqueness of gr also yield this equivalence. First
consider an auxiliary lemma which establishes the technical
property we require. Then we infer the desired property.

Lemma 5.12. Let F = (A,R) be an AF and δ a refute
operator. Let E ∈ adδ(F ). If the polished characteristic
function χδ satisfies both cf -monotonicity and admissibility
transfer, then there is some E′ ∈ coδ(F ) with E ⊆ E′.
Proposition 5.13. Let F = (A,R) be an AF and δ a re-
fute operator. If the polished characteristic function χδ sat-
isfies both cf -monotonicity and admissibility transfer, then
prδ(F ) = {E ⊆ A | E is maximal in adδ(F )}.

Proof. For (⊆) let E ∈ coδ(F ). If E is not maximal in
adδ(F ), then there is some E′ ∈ adδ(F ) with E ( E′. By
Lemma 5.12, there is E′′ ∈ coδ(F ) with E ( E′ ⊆ E′′,
contradiction. The other direction (⊇) is analogous.

Observe that we can thus infer the following result which,
to the best of our knowledge, has not been stated explicitly in
the original papers where the semantics have been proposed.
Corollary 5.14. For any AF F we have prδ(F ) = {E ⊆
A | E is maximal in adδ(F )} for δ ∈ {δself , δwu}.

Proposition 5.13 is not applicable to δw , but due to (Bau-
mann, Brewka, and Ulbricht 2020b), prw(F ) = {E ⊆ A |
E is maximal in adw(F )} holds nonetheless.

5.3 Polished Refute Operators
We recall that our semantics based on a refute operator δ
were defined in terms of the polished characteristic function
χδ(E) = Γδ(E) \ δ(E). Since χδ(E) and Γδ(E) coin-
cide for Dung’s semantics whenever E is conflict-free (see
Proposition 3.12), one could argue that χδ is a faithful gen-
eralization of the classical characteristic function on its own.
Nonetheless, let us investigate situations where Γδ = χδ .
Definition 5.15. We call δ polished if for each AF F =
(A,R) we have χδ(E) = Γδ(E) for each E ∈ cf δ(F ).

We can give the following general negative result. Let us
stipulate the notation A◦ = {a ∈ A | a→ a}.
Proposition 5.16. Let F = (A,R) be an AF. A refute oper-
ator δ s.t. A◦ ⊆ δ(E) for each E ⊆ A is not polished.

Proof. Let F = ({a}, {(a, a)}). By assumption δ(∅) =
{a}. However, this means ∅ refutes each attacker of a which
implies a ∈ Γδ(∅) as well. Thus, χδ(∅) = ∅ ( {a} =
Γδ(∅). Since ∅ ∈ cf δ(F ), δ is not polished.

As we will later see when considering the self attack re-
fute principle, δself and δw satisfy A◦ ⊆ δ(E) for each
E ⊆ A in any AF F (see Table 1). We hence infer:
Corollary 5.17. Both δself and δw are not polished.

Recall that the semantics based on δself , δwu , and δw are
tailored to limit the impact self-defeating arguments have on
the reasoning in F . We thus assume a setting where it is
desired to disregard self-attackers. Hence, we want to em-
phasize that the above corollary is not a flaw of the refute
operators. Rather, Proposition 5.16 suggests that refute op-
erators serving this purpose will in general not tend to be
polished. As the last observation we make in this section we
will show that, in contrast, a refute operator which is stricter
than Dung’s classical refute will always be polished.
Proposition 5.18. Let F = (A,R) be an AF and δ a refute
operator. If δ(E) ⊆ E+ for each E ⊆ A, then δ is polished.
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δc δself δwu δw
Induces fundamental lemma 3 3 3 7
cf -monotonicity 3 3 7 7
Conflict-free transfer 3 3 3 3
Admissibility transfer 3 3 3 7
Polished 3 7 7 7
Requiring attacks 3 3 3 3
Refute possible 3 3 3 3
Monotonicity 3 3 7 7
Self-attack refutal 7 3 7 3
Self-attack neglection 7 3 7 3
Additivity 3 3 7 7
Context-free 3 7 7 7
Generalize classical defense 3 3 3 3
Tractable 3 3 3 7

Table 1: Refute Operator Principles

6 Principles and Their Relationships
Within the last decade, AF semantics have been extensively
studied w.r.t. certain principles, i.e. properties which are sat-
isfied (or not) by certain semantics. This line of research
helps establishing a comprehensive understanding of their
behavior. In view of this, the present paper gives rise to
approaching this endeavor in terms of the underlying refute
operator, i.e. this section is driven by the following research
questions.
• Can we investigate principles which are satisfied by se-

mantics by considering the underlying refute operator?
• What are the principles a refute operator should satisfy?
As we already mentioned, the non-classical semantics con-
sidered in this paper all serve the purpose of minimizing
the damage caused by self-defeating arguments. Inspired
by this, we also want to consider some specific principles
devised to compare semantics of this kind, i.e. we study:
• What is a “good” weak version of admissibility?
Throughout this section we assume an arbitrary but fixed AF
F = (A,R). The attentive reader will observe that we only
discuss a small selection of the usual principles mentioned in
the literature. This choice is made due to space restrictions; a
comprehensive study of this matter is left for future work. A
summary of all principles and which refute operators satisfy
them is reported in Table 1.

6.1 Defense and Defeat
We start by some basic properties of refute and defense op-
erators. Our first principles establish some basic ideas of
refute operators we intuitively expect. For classical refute
δc(E) = E+ these are all clear, but since in our general
setting δ is an arbitrary mapping, we want to mention them
here in our general investigation.
Principle 6.1 (Requiring Attacks). A refute operator δ re-
quires attacks if a− = ∅ implies a /∈ δ(E) for each E ⊆ A.
Principle 6.2 (Refute Possible). A refute operator δ satisfies
the refute possible principle if for each argument a ∈ U
there is some AF F = (A,R) and E ⊆ A s.t. a ∈ δ(E).

So these principles simply formalize that refutal of an ar-
gument should in general be possible, but not without pres-
ence of another argument questioning it. We want to empha-
size that requiring attacks does not distinguish whether some
attack stems from E, i.e. it is possible for a refute operator
to satisfy it, but we still have a− ∩ E = ∅ for an argument
a ∈ δ(E). Full absence of any attack within the given AF
however renders δ trivial.
Fact 6.3. If R = ∅, i.e. F = (A, ∅), and δ requires attacks,
then δ(E) = ∅ for each E ⊆ A. Moreover, grδ(F ) = {A}.

Next we consider monotonicity of δ. It is clear that this
is an important property, but as we saw already in the last
sections, not every reasonable operator satisfies it.
Principle 6.4 (Monotonicity). A refute operator δ satisfies
monotonicity if E ⊆ E′ ⊆ A implies δ(E) ⊆ δ(E′).

The next principles are concerned with self-attackers and
how they influence the refuted sets of arguments. This as-
pect is interesting for applications where the presence of
such arguments shall not influence the outcome of a discus-
sion, as is the case for our examples from Section 4.
Principle 6.5 (Self-Attack Refute). A refute operator δ sat-
isfies self-attack refutal if A◦ ⊆ δ(E) for each E.

Let us also consider an even stronger version of this prin-
ciples formalizing that self-attackers do not have any influ-
ence on the attacked arguments whatsoever (at least if E it-
self does not contain a self-attacker). For this, we let F ◦ be
the AF after removing self-attackers, i.e. F ◦ = F↓A\A◦ .
Principle 6.6 (Self-Attack Neglection). A refute operator δ
satisfies self-attack neglection if for each E ⊆ A(F ◦), a ∈
A it holds that a ∈ δ(F,E) iff (a, a) ∈ R or a ∈ δ(F ◦, E).

Observe that for refute operators which behave in a cer-
tain sense intuitively, we would expect that self-attack refu-
tal implies self-attack neglection. For this, suppose E does
not contain any self-attacker. Then any self-attacker a is re-
futed due to self-attack refutal. For arguments which are no
self-attackers, the condition a ∈ δ(F,E) iff a ∈ δ(F ◦, E)
simply implies that the present self-attackers do not influ-
ence whether or not E refutes a. Since E does not contain
any self-attacker, we would expect this behavior.

More broadly, the following principles consider the in-
teraction of arguments with each other in E as well as the
sensitivity to the remaining AF.
Principle 6.7 (Additivity). A refute operator δ satisfies ad-
ditivity if δ(E) =

⋃
e∈E δ({e}) for each ∅ 6= E ⊆ A.

Principle 6.8 (Context-free). A refute operator δ is context-
free if δ(F,E) = δ(F ′, E) where F ′ = (A,R′) is an AF
satisfying (a, b) ∈ R iff (a, b) ∈ R′ for each a ∈ E.

The latter condition formalizes that E has the same out-
going attacks in F ′. For example, classical refute based on
out-going attacks satisfies both additivity and context-free
since E+ =

⋃
e∈E{e}+ and E+ depends solely on E and

its out-going attacks. On the other hand, we can formal-
ize that under mild conditions a refute operator which disre-
gards self-attacking arguments cannot be context-free.
Proposition 6.9. There is no refute operator satisfying re-
quiring attacks, self-attack refutal, and context-free.
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With the addition of the additivity principle one might
now expect that there should be some quite natural char-
acterization of the classical refute operator δc(E) = E+.
However, it is still surprisingly difficult to capture δc in terms
of our abstract properties. At least for semantics which
are more liberal than ad – i.e. we have that

⋃
ad(F ) ⊆⋃

adδ(F ) – we can achieve this as follows.
Proposition 6.10. Let δ be a refute operator satisfying re-
quiring attacks, context-free, and additivity. If

⋃
ad(F ) ⊆⋃

adδ(F ), then δ(E) = E+ for each set E of arguments
satisfying E ∩A◦ = ∅.

For our final principle regarding refute operators, let us
have a closer look at the notion of defense. The following
relates χδ to the classical operator Γ, formalizing that χδ
contains at least the classically defended arguments.
Principle 6.11. A refute operator δ generalizes classical de-
fense if for each AF F = (A,R) and E ∈ cf (F ) it holds
that Γ(E) ⊆ χδ(E).

In particular refute operators designed to yield more lib-
eral versions of ad –like the ones we consider in the present
paper– should adhere to this property since it would not
make sense for these to credulously accept fewer arguments
than Γ. To conclude our discussion on principles for re-
fute operators we turn our attention to Table 1 summarizing
which operators satisfy which of our novel principles.
Theorem 6.12. Satisfaction of principles by the refute op-
erators considered in this paper is as depicted in Table 1.

6.2 Weak Admissibility Notions
In this section we discuss a selection of principles which are
tailored to compare semantics devised to yield more liberal
notions of defense. As is the case for our running example
semantics, we will assume that the underlying motivation
is to limit the effect of contradictory or self-attacking argu-
ments whose status is undecided. We start with a simple
property, stating that the given semantics is more liberal than
ad which formalizes that we indeed accept more arguments.
Principle 6.13. A semantics σ satisfies ad -liberalization if
for each AF F ,

⋃
ad(F ) ⊆

⋃
σ(F ) and there is some AF

F0 s.t.
⋃
ad(F0) (

⋃
σ(F0).

This is a basic requirement for the semantics sharing our
underlying motivation, with the exception of the “grounded”
version. Next we recall a property from (Baumann, Brewka,
and Ulbricht 2020a) formalizing that a semantics disregards
self-attackers.
Principle 6.14. A semantics σ satisfies neglection of self-
attackers if for any AF F , σ(F ) = σ(F ◦).

Interestingly, the way semantics are defined based on a
general refute operator allows us to infer satisfaction in an
intuitive way by means of the behavior of δ.
Proposition 6.15. If δ satisfies self-attack neglection, then
σ satisfies neglection of self-attackers for each σ ∈
{adδ, coδ, grδ, prδ, stbδ}.

As a corollary, we obtain that the considered semantics
based on δself and δw satisfy neglection of self-attackers.

Next we introduce a property which can be viewed as a gen-
eralization of neglection of self-attackers where we make
use of unattacked arguments, i.e. a set U of arguments s.t.
(a, b) ∈ R with b ∈ U implies a ∈ U . The underlying idea
is as follows. Given some unattacked set U of arguments
where σ(F↓U ) = {∅}. Then, as in the case of self-attackers,
no argument in U is acceptable. A semantics following the
intuition that arguments which can never be accepted shall
not be able to cause any harm can now be expected to behave
as if U was not part of the AF at all. We call this property
the separation property.
Principle 6.16. A semantics σ satisfies the separation prop-
erty if for any AF F and any unattacked U ⊆ A the follow-
ing holds: If σ(F↓U ) = {∅}, then σ(F ) = σ(F↓A\U ).

The separation property can grasp, among others, the idea
that an unresolved odd cycle can be removed from the AF.
Example 6.17. Consider F , G, and H from Example 4.11.
Semantics which require extensions to be conflict-free as
well as satisfying the separation property treat F like the
even cycle consisting of b and c. If in addition no argument
in an isolated odd cycle is accepted, G is equivalent to the
isolated argument b. In case of H , however, the separa-
tion property will most likely not make any difference since
the even cycle a1 and a2 yields two accepted arguments for
most semantics.

6.3 On the Relation to Classical Principles
We conclude our discussion on principles by recalling some
of the most basic ones from the literature and investigating
them by means of our general framework.
Definition 6.18. A semantics σ satisfies
• defense if E ⊆ Γ(E) for each F ∈ F , E ∈ σ(F );
• reinstatement if Γ(E) ⊆ E for each F ∈ F , E ∈ σ(F );
• I-maximality if σ(F ) forms an antichain for each F ∈ F .

We can ensure satisfaction of defense whenever δ is more
cautious than δc.
Proposition 6.19. Let δ be a refute operator s.t. δ ⊆ δc.
Then for each σ ∈ {adδ, coδ, prδ, grδ, stbδ}, the semantics
σ satisfies defense.

The reinstatement property holds for complete-based se-
mantics whenever δ generalizes classical defense. Clearly,
this cannot be ensured for δ-admissible extensions in gen-
eral ad is exclusively concerned with defense of the set E.
Proposition 6.20. Let δ be a refute operator generalizing
classical defense. Then for each σ ∈ {coδ, prδ, grδ, stbδ},
the semantics σ satisfies reinstatement.

Moreover, I-maximality holds by definition for any ver-
sion of grounded and preferred semantics. Observe that, at
least if δ is defined in a somewhat counter-intuitive way, we
cannot be certain that stbδ adheres to I-maximality.
Proposition 6.21. Let δ be a refute operator. Then for each
σ ∈ {prδ, grδ}, the semantics σ satisfies I-maximality.

To concludes this section, let us consider Table 2 reporting
satisfaction of principles formulated for semantics.
Theorem 6.22. Satisfaction of principles by the semantics
considered in this paper is as depicted in Table 2.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

70



δc δself δwu δw
Ad-liberal. 7 ad ad ad
Self-attack neg 7 3 7 3
Sep prop. 7 7 7 3
Defense 3 7 gr 7
Reinstatement σ 6= adδ σ 6= adδ σ 6= adδ σ 6= adδ
I-maximality gr , pr , stb gr , pr , stb gr , pr gr , pr , stb

Table 2: Semantics Principles. Here a checkmark means the prop-
erty holds for each induced σ. Similarly, σ 6= adδ indicates that the
property holds for all except δ . A crossmark indicates satisfaction
for none of them. Gray entries are known from the literature

7 Computational Complexity
The computational complexity of reasoning in AFs is well-
studied for the usual semantics (Dvorák and Dunne 2018).
In this section we discuss generic membership results we can
infer from the properties of the refute operator. We assume
the reader to be familiar with the polynomial hierarchy.
Definition 7.1. A refute operator is tractable if for each AF
F = (A,R) and E ⊆ A, the set δ(E) can be computed in
polynomial time.

If we are given a tractable refute operator, we can infer
the following upper bounds for the standard reasoning tasks.
Proposition 7.2. Let δ be a tractable refute operator. Decid-
ing whether a setE ⊆ A of arguments in an AF F = (A,R)
satisfies E ∈ σδ(F ) is tractable for each σ ∈ {ad , co, stb}
and in coNP for σ ∈ {gr , pr}.
Proposition 7.3. Let δ be a tractable refute operator. De-
ciding whether an argument a ∈ A is credulously ac-
cepted w.r.t. σδ in an AF F = (A,R) is in NP for σ ∈
{ad , co, pr , stb} and in ΣP2 for σ = gr .

Regarding skeptical reasoning, we need to check σ(F ) 6=
∅ in addition to the actual reasoning task. So we reduce our
attention to cases where this is unnecessary. From our results
from Section 5 we know that refute operators inducing the
fundamental lemma ensure coδ(F ) 6= ∅.
Proposition 7.4. For δ tractable and inducing the funda-
mental lemma, deciding whether a ∈ A is skeptically ac-
cepted w.r.t. σδ in an AF F = (A,R) is trivial for σ = ad ,
in coNP for σ ∈ {co, gr} and in ΠP

2 for σ = pr .
The computational complexity of the grounded extension

is surprisingly high in general considering that reasoning
with Dung’s classical variant is tractable. The latter can-
not be attributed to the fact that reasoning with the minimal
complete extension(s) is an easy task in general. Rather, this
stems from the fact that gr can be computed by iterating the
characteristic function Γ. This observation yields:
Theorem 7.5. Let δ be a tractable refute operator s.t. χδ
satisfies cf -monotonicity and admissibility transfer. Then
the following reasoning tasks are tractable. Deciding a ∈ A
is i) credulously accepted w.r.t. grδ , ii) skeptically accepted
w.r.t. grδ , iii) skeptically accepted w.r.t. coδ .

Let us now come to the operators considered in this pa-
per. Clearly, the classical refute operator δc(E) = E+ is
tractable. The same is true for δcog and δwu .

Proposition 7.6. The operators δcog and δwu are tractable.

The same is not true for δw as the complexity analysis
provided in (Dvorák, Ulbricht, and Woltran 2021) shows.
By applying the reduction given in this paper, we can infer
that the underlying decision problem is PSPACE-complete.

Proposition 7.7. Deciding whether two input E,X ⊆ A of
arguments in an input AF F = (A,R) satisfy E = δw (X)
is PSPACE-complete.

8 Discussion
Generalizing the underlying defense or refute notion in AFs
is conceptually not novel. A recent example is the pa-
per (Vassiliades et al. 2021) where the authors use differ-
ent kinds of attacks, some of which are capable of inducing
conflicts, whereas others can contribute to defense. The pa-
per (Yu et al. 2021) uses an adjusted notion of defense for a
multi-agent setting. In (Fan and Toni 2015) so-called related
admissibility is the theoretical foundation for computing di-
alectical explanations for acceptance of arguments.

As mentioned in the introduction, several recent proposals
attempt to find a middle ground between naivity-based and
admissibility-based semantics (Bodanza and Tohmé 2009;
Dondio 2018; Dondio and Longo 2021; Baumann, Brewka,
and Ulbricht 2020b; Dauphin, Rienstra, and van der Torre
2021), but also semantics defined by the SCC-recursive
scheme (Baroni, Giacomin, and Guida 2005), in particular
cf2 and stage2 (Dvořák and Gaggl 2014), can be seen as
semantics of this kind. The recently introduced weak ad-
missibility (Baumann, Brewka, and Ulbricht 2020b) is al-
ready well-studied (Baumann, Brewka, and Ulbricht 2020a;
Dauphin, Rienstra, and van der Torre 2020; Dvorák, Ul-
bricht, and Woltran 2021) and interestingly, the approach
discussed in (Dondio and Longo 2021) also contributes a
principle-based comparison. The paper (Dauphin, Rienstra,
and van der Torre 2020) also proposes novel SCCs-based
semantics.

Our research induces several interesting future work di-
rections. First, our Theorem 4.16 does not hold for the al-
ternatives proposed in (Dauphin, Rienstra, and van der Torre
2021), thus finding suitable refute operators would broaden
the results. The same is true for SCC-based semantics like
the ones introduced in (Dauphin, Rienstra, and van der Torre
2020). As a general observation, it is probably not straight-
forward how our approach could capture the SCC-recursive
scheme. The present paper generalizes Dung’s classical se-
mantics, but one could also consider generalized versions of
e.g. ideal (Dung, Mancarella, and Toni 2007), eager (Cami-
nada 2007), or semi-stable (Caminada 2006) semantics. Our
analysis in Section 5 was focused on the existence of com-
plete extensions, so it would be interesting to find condi-
tions ensuring the existence of δ-stable extensions, as done
in (Dung 1995) for the classical semantics. One could also
propose and investigate further refute operators, in particular
notions which are more cautious than admissibility, similar
in spirit to strong admissibility (Caminada 2014). Finally
the investigation of further principles would be conceivable,
in particular generalized versions of those discussed in Sec-
tion 6.3, by phrasing them in terms of χδ .
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