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Abstract

We present a method for learning multiple relational models for each class in the
data. Bayesian probability theory offers an optimal strategy for combining classifica-
tions of the individual concept descriptions. Here we use a tractable approdmation to
that theory. Previous work in learning multiple models has been in the attribute-va,lue
reahn. We show that stochastically learning multiple relational (first-order) models
consisting of a ruleset for each class also yields gains in accuracy when compared to
the accuracy of a single detemrinistically learned relational model. In addition we show

that learning multiple models is most helpful when the hypothesis space is "flat" with
respect to the gain metric used in learning.

1 Introduction
There has been much work in leaming relational models of data in recent years (e.g. FOIL:
Quinlan, 1990; FOCL: Pazzari & Kibler, 1992; CLINT: De Raedt, 1992). Here we present
results that combiue leaming first-order concept descriptions with Bayesian probability the-
ory (e.g. Buntine, 1990) which stipulates that in order to rnaximize accuracy one should
use all hypotheses in the hypothesis space not just a single description. The descriptions
vote with weight equal to their posterior probability (given the data). Descriptions that are
highly probable represent a "good fit" to the data and so are given higher weight. Although
learning multiple descriptions reduces human comprehensibility, it is important in situations
where additional data are hard to obtain and each percentage point in accuracy is important.

There are two results of this paper. The first is that multiple concept descriptions are
particularly helpful in searching "flat" hypothesis spaces. Briefly, a search space if flat with
respect to a learning metric (e.g. information gain) if there are many equally good ways to
grow a rule, each candidate being ranked similarly by that learning metric. The second result
is experimental evidence that learning rnultiple rule sets yields more accurate classifications
than learning multiple rules (Kononenko and Kovacic, 1992). We also present results on
learning recursive concepts in the context of learning multiple models. To demonstrate
these results, we adapt a relational learning algorithm (HYDRA, Ali & Pazzani,, 1993) to
learn multiple models, yielding HDYRA-MM. HYDRA-MM learns multiple models, each
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class-a(X,Y) :- b(X),c(Y).

description for class a

Y) :- e(X,Y),f(X,X).

,class-b(Y,X).

lst

lst model of the data 2nd model of the data

2nd concept description for class a

class-a(X,Y) :- b(X),c(Y).

class-a(X,Y) r d(X,Z) h(Z,Y).

2nd concept description for class b
class-b(X,Y) :- e(X,Y),k(X,X).
class-b(X,Y) :- g(X),class-b(Y,X).

Figure 1: HYDRA-MM learns many concept descriptions for each class and combines their
classifications to produce a classification for the class.

lst model of the data 2nd model of the data

class-a(X,Y) :- b(D,c(Y)

lst concept descri for class a

lst concept for class b

class-b(X,Y) :- e(X,Y),f(X,X).

Znd description for class a

2nd concept description for class b

class-a(X,Y) :- b(X),d(X,Z),c(Y).

class-b(X,Y) :- g(X),f(X,D.

Figure 2: The multiple rules a1>proach learns several approximations for each class, each

approximation consisting of a single rule.

consisting of a rule set for each class. Because HYDRA is a relationol learning algorithm, it
can learn the more expressive first-order rules rather than just attribute-value rules.

The learning task requires as input (1) a collection of examples belonging to a set of
specified classes (e.g. class-a, clas.s-b) which partition the example space and (2) a set

of background relation.s (e.g. o..k) for which full definitions are provided to the learning
algorithm. The task then is to build a concept description for each class using combinations
of the background relations as in Figure 1.

Although previous work in machine learuing (e.g. Buntine (1990); Smyth and Goodman
(1992)) has shown that the predictive accuracy of a classifier can be increased by learning
multiple models from the data, there has been no work in learning concept descriptions
consisting of rule sets or in leaming relational descriptions. Previous work in learning mul-
tiple models, each consisting of a single rule (Kononenko & Kovacic) is limited by the basic

assumption that that eac.h class can be accurately described by a single, purely conjunctive
rule (Figure 2). In our approach each concept description consists of rnany rules for each

class that describe different rnodes or subclasses within the class (Figure 1). Past success of
systems like FOIL (Quinlan, 1990) wliich learns many rules for a concept suggests such de-

scriptions are appropriate for rnany problents. Figure 3 shows the problem with the multiple
rules approach in trying to learn a concept with multiple modes (subclasses or disjuncts): a
rule for the minor class cannot be learned well because examples of the major disjunct have

not been removed from the training set.
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Figure 3: Comparison of 3 algorithms trying to learn on a domain where the first class
consists of 2 disjuncts (dark circles). The area outside the dark circles corresponds to the
other class. Light lines show coverage of rules learned by the 3 algorithms.

Table 1: Pseudo-code for FOIL

F0IL(P0S,l{EG, Metric) :

Let POS be the positive exanples
Let NEG be the negative "**pt"".Set NesClause to enpty.
Until POS is empty do:
Separate: (begin a new clause)
Renove from POS all positive examples that

satisfy NewClause.
Reset llewClause to empty.
Until NEG is empty do:
Conguer: (buiId a clause body)
Choose a literal L using Metric
Conjoin L to NewC1ause.
Remove fron NEG examples that dont satisfy
. NegClause.

2 Learning in HYDRA
HYDRA uses a separate and conquer control strategy based on FOIL (Quinlan, 1990) in
which a rule is learned and theu the training examples covered by that rule are separated
from the training set. Subsequent rules are learned on the remaining data. The pseudo-code
for FOIL is presented in Table 1. FOIL begins to learn a rule for say class-a(X,Y) bV
starting with the rule with the empty body (this rule is true for all positive and negative
examples):

cla.ss-a(X,Y) *
Then, it ranks each literal by the information that would be gained if the empty body was
replaced by that literal (Table 2). e in Table 2 denotes the empty rule body. If p and z
denote the numbers of 1>ositive and negative training examples covered by some rule, their
information coutent (Quinlan, 1990) is defined to be

I(P,'): -l'g, P,

Ptn
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Rule Num.
positive
covered

Num.
negative
covered

Information
content

Gain

class-a(X,Y) +- e

class-a(X,Y) * b(X)
class-a(X,Y) + c(Y)

10

9

8

10

3

2

1.0

0.415
0.322

0.0
5.26
5.42

Table 2: Ranki literals information

and the information gain is defined to be

gain : p x (l(po,ro) - I(p,"))

where pe and ns denote the numbers of positive and negative examples covered by the rule
before addition of the current literal. (justifications for these measures and more details can
be found in (Quinlau, 1990)). FOIL adds the literal which yields the largest gain and resets
ps and ns to reflect the numbers of positive and negative examples covered (after addition
of the new literal). FOIL contines to add literals until the rule covers no negative examples.
Then, it removes positive examples covered by the rule and learns subsequent rules with the
reduced set of exarnples. The process tenninates when no positive examples are left in the
training set.

HYDRA calls FOIL for eaclt class in the data, treating positive examples of other classes
as negative for the curreut class. The major difference between HDYRA and FOIL is that
HYDRA attaches a reliability measure (such as coverage over the training data) to each
rule. In order to classify a test example if that test example satisfies rules from more than
one class, HYDRA chooses the class corresponding to the satisfied rule with the highest
reliability. Ali & Pazzani (1993) show that this modification to FOIL makes the system much
more accurate in noisy domains. In this paper, we use a Laplace estimate of the accuracy
of a rule (estimated from the training examples) as its estimate of reliability. The Laplace
accuracy of a rule coveriugp positive and n negative training examples ir (p+ t)l@+n*2).
Tlre advantage of using this rather than the maximum likelihood estimate (pl@ + n)) is
that it does not assign an accuracy of 1 to a rule covering just a small number of positive
examples and no negative examples. The reliability of such rules is quite different from that
of a rule covering say a liunclred positive artd no negative examples. Yet, both would have the
same maximum likelihood accuracy estitnate. Arnong rules covering no negative examples,
the Laplace estitnate rises monotonically witli increasing coverage of positive examples.

3 Learning multiple models with HYDRA
Bayesian theory recommends making classifications based on voting from all concept de-
scriptions in the hypothesis space but in practice we want to find a few highly probable
concept descriptions. Using the notation in Buntine (1990), let c be a class, T be the set of
hypotheses (descriptions) the learning algorithm has producecl, r be a test example and d
denote the traiuing examples. Then, we should assign x to c that maximizes

pr(clx,T: L pr(clr,f)prQli) (1)
TinT
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Stochastic search is used by HDYRA-MM to find such descriptions. Ideally, one would
want the n most probable concept descriptions with their probability evaluated globally, but
the search would be intractable. HYDRA searches for literals whose addition to the rule
currently being learned would maximize the posterior probability of the new rule. The pos-

terior probability of a rule covering p positive examples out of P positive training examples,
and n negative examples out of N negative training examples is

pr(p,n,p - p,N -r) xpr(T), B(p!.ar'n! o.z) * B(P -p! oa'N : n* o.z) 
e)B(a1,a2) B(a1,o,2) \u)

where pr(T) is the prior probability of the clause, B is the beta function and a1 and o2

are parameters. The posterior probability of the concept description is the product of the
middle terms of the right side of equation 2.

During the process of deciding which literal (test) to add to the body of a rule being
learned, HYDRA-MM stores the top MAX-BEST literals (ranked in terms of how much
they contribute to the posterior probability of the current rule). HYDRA-MM then chooses

a literal stochastically frorn this set; the probability of a literal being chosen is equal to the
amount of contribution that literal rnakes to the posterior probability of the rule. Thus,
HYDRA-MM conducts a greedy searchl searching for the rules with the highest posterior
probability given the data.

Classiffcation in HYDR.A.-MM: To compute the degree of belief that a test example
belongs to some class, all concept descriptions of that class that had at least one rule satisfied
by the example are considered. From each description, the training accuracy of the most
reliable rule (frorn that description) is multiplied by the probability of that description.
These products are sumlned over all descriptions of tliat class to yield a degree of belief for
that class. Finally, the example is classified to the class with the highest degree of belief.
If no rules from any description are satisfied by the example, HYDRA-MM classifies the
example to the most frequent class (estimated from the training data).

4 Experimental Results
The goals of this research are to deter.mine the conditions under which learning multiple
descriptions yields the greatest increase in accuracy and to provide sorne evidence that
learning multiple rulesets yields urore accurate classifications than learning multiple rules.

Our hypothesis is that multiple concept descriptions help in domains where no single literal
has much higher gain than otirers. This "flatness' is defined to be the percentage of attempts
at adding a literal during learning in which more than one literal had the highest posterior
probability. In such a situation, the greedy deterministic learner is at a disadvantage because

it cannot explore both search paths: it rnust choose one literal and forget about the other
equally good alternative. Table 3 indicates that multiple concept descriptions are most
helpful in the DNA promoters domain which also has a very "flat" hypothesis space.

We tested on problems that are traditionally tackled using attribute-value learners (e.g.

Promoters, Lymphography) as well as relational problems (King Rook King (Muggleton et

a/., 1989), Students (Pazzani & Brunk, 1991) and Document (Esposito et aI.,1992).
Recursive concept descriptions- In the document task (Esposito el o/., 1992) the

problem is to determine whether an example representing a document or a part of a docu-
ment is a "date-block". A "date-block" is that part of a document which contains the date
(other parts being the body, the signature-block etc). This domain is used for automatic
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Domain Deter-
ministic

1

CD
2

CDs
5
CDs

11

CDs
SIG ties f Train

eg.s
Promoters 65.1 75.0 77.2 85.9 84.8 NA 24.0% 105
Lymphography 79.3 80.5 80.5 82.0 82.8 98 2r.L% 99

Cancer 7t.2 71.5 71.7 77.1 7t.l NS 9.3T0 181

KRKP 94.6 94.3 94.8 94.8 94.9 NS 18.770 200
Document 98.3 97.4 98.4 99.0 99.5 NA 25.2% 220
Students 86.1 85.4 86.9 88.9 90.4 99 7.3% 100

KRK 160,20 92.3 91.6 91.8 91.9 92.0 NS 7.2% 160
KRK 320,20 95.5 94.9 95.3 95.6 95.5 NS 5.8% 320

Table 3: Accuracies obtained by learning multiple models. The numbers in the 3rd-last
column give the significance level (SIG) at which 1l concept descriptions (CDs) accuracy
differs from that of 1 deterministic description according to the paired 2-tailed t-test. NS -
not significant, NA - t-test not applicable. KRK 160,20 denotes learning from 160 training
exam with 20% artificial class noise on the Rook-K task. MAX-BEST is 2.

classification (using optical chara,cter recognition and a learned relational rule-base) of doc-
uments into types of documents sucli as letters, orders, etc. An example is a symbol (such
as block-29) and its attributes can be obtained using background relations provided to the
learner (such as the l-a.rity relation height-smaI1(Block)). For this domain, HYDRA and
HYDRA-MM learned recursive rules such as (in Prolog notation):

date-block(X) * to-the-right(X,Y), date-block(Y).

During learning, the extensional definition of date-block is used. That is, the recursive call
to ilate-bloc& is satisfied if the value bound to variable Y is present in the set of positive
examples (the extensional definition) for d,ate-bloc&. Duriug classification of test examples, to
determine if the recursive call is satisfied, we use the set of rules (the intensional description)
learned f.or ilate-block. Orte issue that arises when recursive descriptions are mixed with
multiple models is whether in order to check if the recursive call succeeds one should check
all models of. d,ate-block or just the current model. That is, if the rule being matched against
a test example cornes from the i-th rnodel, then to deterrnine if a recursive call succeeds,
should one check just rules of the i-th model or those of all rnodels? We chose the former
option in order to maintain the independence of the models. Table 3 shows that using
multiple models in this way Ieads to a significant increase in accuracy. We also have to
ensure that the matching process of a ruleset to an example terrninates. Currently, we
employ an absolute depth-lirnit in the SLD resolution tree to ensure termination.

Multiple rulesets versus rules- To compare rnultiple rule sets to multiple rules, we
adapt HYDRA to produce HYDRA-R which stochastically learns multiple concept descrip-
tions, each consisting of one rule. HYDRA-R was only able to achieve a 87.970 accuracy on
the KRK domain with 320 examples and 20% class noise, whereas HYDRA-MM achieves
94.7Vo. This is because it is known that that a single purely conjunctive rule is insufficient
to describe the KRK concept (frorn the standard set of relations used for this domain). HY-
DRA and HYDRA-MM are successful on the KRK dornain because they learn many rules
to describe each class in this dornain. Because they rernove traiuing exmaples belonging to

13



the major disjunct they are better able to learn rules for the other disjuncts. Even though
HYDRA-R learns ulany rules, it does not separate examples like HYDRA does and so is un-
able to model the rninor disjuncts well. This illustrates that for some domains, it is necessary
to learn descriptions consisting of rule sets. Learning multiple descriptions, each consisting
of a single rule, is no substitute for the separate and conquer approach necessary for such
problems.

5 Conclusion
We have characterized an experimental property (hypothesis space flatness) which indicates
when learning of multiple models is useful. We have some empirical evidence that learning
multiple concept descriptions consisting of rule sets yields more accurate classifications than
learning multiple descriptions consistiug of rules. Another outcome of this work was learning
of multiple models containing recursive rules which also were more accurate than a single
recursive description. Finally, we have presented a system that makes classifications in a
theoretically sound marlner and uses a tractable approximation of the Bayes theory to learn
multiple relational models consisting of rule sets.
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