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ABSTRACT

Graphical belief networks, induding Bayes nets and influerrce diagrars, can be represented with directed
hlryergraphs. Eadr directed hl2eredge corresponds to a factor of the joint distribution of all variables
in the model. A hlperedge rreplacement gramrnar is a collection of rules for replacing hlperedges with
hlryergraphs. A h)"ercdge repl,aceurent gramfirar for graphical belief networks defines a collection of
graphical belief models.

Hyperedger,eplacementgramrnarshaveseveralinterestingimplicationsintheconstmctionof graphical
models. (1) They provide a way to represent the process of constmcting a graphical model. (2) Coupled
with an objectoriented variable type system, provide a convenient method for searching through candidate
factors to fill a particular slot in the model graph. (3) They provide a method for integrating high-level and
detailed views of a graphical model (a) ftrcy provide a mectranisrr for rcpresenting uncertainty about the
model stnrcture.

Keyrvords: GraphicalBeliefNetunrla,I(ttottildgeBasdMoitelConstntction,ValuationBa*dSystems,Object
Oriented Mdcl btstruction.

1.0 Intrroduction

Ivlany researchers have suggested using graphs to repres€nt the stnrctue of complex multivariate models.
These models have gone by many name6: Bay* tuts, infiuene diagrams, and, graphical belief futrctions are
fairly comuron Eadr of these models differs slightly in terms of what kind of diskibutions they represent:
Bayes nets only allow probabilities, influence diagrams allow probabilities and utilities, graphical belief
firnctions allow belief functions (and as a sp€cial case, probabilities). However, all of these $pes of models
carr be placed trnder a coulmon frasrework, graphiulbelief tutwork (Shenoy and Shafer[199O] describe the
common franework in more detail.)

Despite the well lcnown advarrtages of graphical belief networks, there ale two difficulties: (1) very large
models may stillbe coutputationally intractable and (2) the model must be constnrcted before any qtrestion
can be answered. Ideally, a graphical belief model could be assembled from existing model fragments
Iike a jigsaw pvz.Ae. This paper ocplores what shape the pieces must be in order for the computer to
provide support for the assembly operation. The constnrction method described here may offer a solution
to the 6rst problem as well This paper describes the results of atteurpting to impleurerrt ttree ideas in the
CTRAPIilcAL-BEI^EF computer environmerrt for graphical modelling.

There are two rotrgNy similar approaches to the probleur of model constnrction: I(ttotoleilge baxl
ttodel construction arrrd lvtodel fugttcnt libruri*. IQtouildge kset fidel constnutiot @reese, Goldman and
Wellman[l9{, Goldnan and Breese[L992\,Charniak and Goldmantl93D usies a convmtional rulebased
expert systert to build the graphical model. Note that by building a model which is just large enough
to solve a particular query, this approach also offers a way to address the veqy large model problem.
Mdcl fugnent Ebraris (Almon4 Bradstraw and Madigan 11993]) store fragments of models in an library
or database. The modeller can then search thrcugh this library for factors or other model fragments which
mightb. appropriate to the currentmodel and re-use them in thenew context.

Egar, Puerta and Musenalggzl propoce using graph grammars for manipulating influence diagrams.
Using the directed hlpergraph of a graphical belief network model, the manipulations of
the graph are represented by Hypaedge replacement gratnnars (Habel[192]). This paper explores how the
directedhlpergraphrepresentation canbe used to supportboth knowledgebased modelconstmction and
model fragurerrt libraries.

Section2 describesthe directed representationand its correspcrdence to more farriliarrep
reserrtations. Section3describeshyperedgereplacementmodelsandsomesimpleapplicationstographical
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belief network constnrctiqr. Section 4 shows how an o$ect-oriend type systeur for the variables can
produce intelligent search strategies for model fragments. And finally Section 5 dimrsses the implication
of these ideas.

2.0 The directed hypergraph representation

kr this pape, we use a iliteddhypergraph to represent the factorization of a large probability (or belief
function) model. For o<arrple if .,{,1 is irudependent of A2, we can factor the probability distribution over
the variables, AL, A2 and, E, into ttuee pieces as follows:

p(Ar, A2, E) = p(ElAr, Az)p(At)p(A2) (1)

Figure la strows tre directed hypergpaph representation of this factorization The round zodes represent
the variables in the model. The square hyV*edga represent the factors of the joint probability distribution.
Eadr hperedge has a nu:rrber of cottdition oariabla and a conxquence oaiable. Tmtacls (arrows) go fton the
condition variables to the hlryeredge and go fo the conseqgmce variables.
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Figute 7a. Hypercdge Replacenent [fiS) Fipre lb. Modcl Fmgnmt kqlacaw* RHS)

The real strrength of the directed hypergraph cunes from the fact that graph fragments
(corresponding to model fragments) can be represented by directed ! Figure 1 ilhrshaEs this
idea. Examine the collection of factors found within the dotted line in Figrue lb. They represent the
distribution:

p{ElAL,Az): E...!r(ar)r@2)p(clBt,At)p(DlB2,A2)p(ElD,c) (2)
BI,B2,C,D

Thus, the graph fragment wiftin the dotted line is a factor and canbe represerrbdby a $ryeredge; this is
the dotted hyperedge in Figure 1a.

In the model fragment shown in Figule 1, ,41 and A2 arc input (or conditiur) variables and E is an
output (or c variable. C , D, BL and .B2 are interior variables. If there was more model extending
beyond AL, A2 or E, ttren,,tl and A2 and E would forrr a lvlarkov bomdary for the interior variables: any
other variables are independent to C, D, 81 and Il2 given Al, A2 and E.

16



21 Implicit Independence Assuurptions

Each model fragment (or hyperedge replacement rule) conains an implicit independence assurnption:
any variablee intedor to the nrle must be conditionally independent of dl other variableg in the model
given the condition and consequence variables. Placing a model fragment into our library implicitly
carries tris asstrrption. Note that this means that all parrents of the consequence variables must be in the
fragment (at least as conditional variables).

For exarnple, consider two identical power supplies placed in parallel (to improve the reliability of a
system). One failure mode for the power supply is to be cnrshed by a heavy o$ect falling on it (say during
an earttrqrake). If the two power supplies are doee together, the sarte heavy obied could crustr them
both. If the qushcd variable was on the interior of the model ftagment describing the failule of a single
power supply, this would r€sult in a unwarranted independence assu:rrption among the oushd variables
corresponding to the two power supplies.

There is no way to get around the independence assurrptions. [nstea4 we need to calefully dreck any
model to make sure the implicit independence assumptions are reasonable. Sudr sealching for comsron
causes is an important part of the model constmction process.

3.0 Hlperedge Rqrlacement Grammars

Habel[1992] defines the corrcept of alrypereilge rqlacment grafirnar. The grammar is nothing more than a
collectionofrulesdescribingwhenyoucanrepl,aceahyperedgewithamor,eel,aborategraphfragment The
replacementprocesscontinuesrmtilallnon-terrrinalhlperedgssarerepliaced.Ino,trrcase,theendresultof
theneplacementprcc€ssisabeliefnetworlc Thusahyperedgereplacementgrammardefinesacollection
of models (a langwge of belief networla).

Figure 1 slrows a typical nrle in a hlryeredge repliacement grammar. ltre rule neplaces a non-terrrinal
hyperedge (straded with dots in the Figure la) with a hlpergraph fragmerrt with the specified inputs and
output (the contents of the dastrcd lhe in Figure 1b). The hyperedge being rcplad (dotted edge in
Figure 1+ left trand side of eEration 2) is the l$t lurd side fi]Il of the nrle and the graph
fragment which replaces it (dotEd line in Figure 1b, ritht hand side of eqgation 2) is the right luttd side
(RHS) of the replaceutent.

Note that we may want to qpalify the applicability of a nrle according to the labels of the nodes. For
o<arnple, if we have a fragment of a reliability model whidt describes the interaction between a valve and
an actuato& we m.ry only want to allow ahyperedge tobe neplaced if iccondition and conseqrence nodes
irre an acttrator and a valve. We can build this predicate for the nrles into the hfrcdge label, with a type
sigtutute. Sectiqr 4 develops this idea further.

3.1Model Construction

We can describe the process of model constnrction with just two node labels. The directed hypergraph
model i" fully specified only when there is a valuation (probability distribution, belief firnction or utility)
associated with each hlryeredge. We will label hyperedges which have a defined valuation with a "\y'".
Hperedges which do not yet have a defined valuatior; we l,abel with a "?".

Eigure?a. InitinlGraph Figure2b. Nao grrphlragnent Fiyre2c. SetValution

Figure2strowsatypicdmodelconstnrctionbysuccessiverefinernent. Figure2aistheinitialmodelwith
the target node .E and one undefined hlryeredge. In the first step (Figule 2b), we refine the hpercdge by
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replacingit with a model fragmentwhidr csrtains one defined hlperedge and two udefined hyperedges.

In the second step (Figule k), we lefine the hyperedge for ALby defining its valuation- This process
corrtinues until all hlperedtes ale assigned valuations and we can stop.

Note that sometimes the appropriate input variables will already be in place in the graPh, as in
Figur,e3a. Tohandlettresecases,weneedananothergraphmanipulationwhidrmergesrepeatedvariables,
as in Figrue 3b. For exanple, in the case of the redurdant power supplies dirussed in Section 2.1 the ctttshd
variable was aheady preserrt. Forcing the merging operations into the hlryeredge frasrework
is rather awknrard; it is better to ttrink of it as a sq>arate oPeration.

Figure2a. GrqhwithRepatunVariable Figure2b. UariableC Merged

32 Collapsedviews

Very large graphical belief networks rArill be difficult to display on a single page or scr€elr of information
In that case the gFaph mtrst be partitioned into several suraller pieces wtrich represent subsystems of the
systetn being modelled. If the interactions between the subsystems ale limited to a few variables, this
representation strould be simple to work wittu The modell'er would look at a s)'stem level rretrpork model
where much of the detail about would be allapxd into hlperedges. Expanding the subsystent

hlperedge would rerreal its graphical shrrcture.

Figrue 1 provides an illustration of this idea. Figure lb is an expanded view of the s'ubsystem which
is coltapsed into the dotted hlperedge in Figure 1a. Presunably, FigWe 1a would be emHded in a mudr
largergraplu Subspteutmodelgraphscouldtlreurselveshavecollapsedhyperedgesrthiscartbecarriedas
far asnecessary

The collapsed h1rperedges have an important implicatior for fusion and propagation as well as for
modet constnrction and display. Ihe collapsed hlperedge nepresents the conditional distribution of the
outputs given the inputs (e.g., p(ElAl,Az)). This conditional distribution could be precaloilated for the
collapsed hyperedge. Gtlis is espedally easy in the case of pr,obabilistic model, where it is sufficient to
condition ur each configuration of the inputs and calculate the distribution of the outpub.) If the modeller
does not fix the values of any of the interior variables in the subsysteu; this cached distribution will not
reqgirc recalculation.

33 ModelUncertainty

Often we will be trncertain about the stnrcture of the model even if we have built that stnrcture from data.
Madigan and Rafteryl1994] point out that ignoring that model uncertainty can lead to poorly calibrated pre-
dictions; averaging over the models leads to bettrer predictions. Properly accounting for model uncertainty
in the general case leEriles a general represerrtation for the space of possible models.

->

Or
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Figure 4. Prcbabilistic rqlacanent nne for model uncatainty
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Hyperedge gramma$ can be pressed into service once again to represent model uncer-
tainty. Figure 4 strows a probabilistic nrle whidr tries to .rssess whether or not B strould be a parent of D.
The hyperedge A,B + D on the lefthand side has two possible replacements, one in which I is corurected
to D and one in which it is not. The two possible repliacements are assigned probabilities .7 and,.3. These
probabilities could be updaH as more data about B and D make it possible to better assess the relationstrip.

d0 llrpe signahrres and candidate replacements

Whilehlperedgerepl,acernentgrarnmarsprovideamechani$nforcorstmctingmodelslikeajigsawpuzzle,
automated and sesri-automated model constmction procedures require a method for deciding if a partiorlar
piece is appropriate for a partictrlar slot. A simple way to do this is to restrict our search based on the ty'pes
of variables involved in the hyryeredge. This defines a tlpe signature for each hyperedge: an edge is
appropriate if it matctrcs the tlpe signature. h GRAPIilCAL-BEIEF the variable tlpes ale based on a variable
o$ect system.

4.1 Variable obiect syetem

Some model fragments may be more gmerally applicable than others. For example, a model fragment
describingavalv+actuatorsysteurmighthavetwoinputvariables, oneof typemotoroperateloalu andone
of tlpe achtator, and one output variable of type rnlomctuator rystcm. A model fragment describing the
rcliability of the valve brand H24C, might be specific to just that valve brand. A series systerr model might
b!,ervtofail-nofail variables as inputs and have a system variable as an output.

Valuation
Name

Valve-Actuator Systert
Series Systeut
Valve0peration

Signature

(Valve,Actuator) + (Vdv*Actuator-System)
(Fail-Nofail, Fail-Nofail) + (SubsysteuuVariable)

(Valvefault,Control-Signal) =+ (ValveStatus)

lt-*a

Ydves

is-a
I

is-a

9ro*

Fail-Nofsil Components,r+
ir.r

I

\

Pumps Actuators

la-A

Cteck-vdves Motor

ls-a
t

ValveH32M
A

is-a
I

vdves.r't9a

./
VelveHl!4CI

iee

CV-4&a MOY-25-a

Figute 5. brhcritarce graph f* W*s

Tocapturethegenerality,weintroduceaclassstmctureartongvariables. Figure5providesanexanple
for variables representing the fault states of valves. At the top we have the most general dasses, hycfail-
nofail. Lowet down we have more qrecific classes, like oaloe and motar operated oaloe. The lowest level
variables correspond to specific brands of valves and other comporrents.
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Goingfrom {true, fal.se} to amore general oukome space is an e:<arple of thetefuwent operatioru
Shafer[1975] describes the refinement operatiur in connection with the frame of discrmnrent (outcome
space)of abelief ftmction. Onevariablecaninheritfromanotherwhenthefraneof discerrrurentof theone
isarefinementof thefraureof theotlrer. Notettntusingtheconceptof refinestentonoutputvariableswill
lead naturally to belief firnctiqr models, but applying it to input variables will preserve the probabilistic
naturre of a Bayesiannetwork or influence diagrarnmodel.

One way GRApt[cAt-BEI^E uses this obiect system is for tlpe drccking. Thus if we pl,ace a valv*
actuatorsystemvaluationintothemodel, GRAPHIcAL-BELEFwill only allowaninputattadrenrentif itis of
t54)e "valve" or "acfuator". The computer can also use the type informatiqr to figrue out the correspondence
between itsinternal tabtre (orgraphicalmodel) describing the valuation and thevariables.

In order to obtain maximun re-usability we would like the tlpes of the variables in the nrles to be as

general as pcsibl,e. Consider the LHS of the replaceurent in Figure 1 (dotd hypercdge in Figure 1a). It
has two inputs: C1 and A2 a d, one output E. A rule b a antdiilate reptraceurerrt for that hlperedge if (1) its
input variables are zubclasses (refinements) of ,ll1 and .42 and (2) its output variable is a subclass of .8.

As an exanple, consider a valve modelled by two variables: oaloe-fault andoalpe+tatus. A valuation
(a probability or belief function dishibution) which linled the two variables would have one output, of
typeoaloe+tahts, and two inputs, one of typoal@-faulf and one of type cofitol+ignal. Another valuation
describingthereliabilityof thecomponentmighthavenoinputsandoneotrtput of typoalo*faultforValoe
H32C. mesumaUty, frre control+liaal input value wotrld be lhl<ed to some otlrer part of the model (Le., tlu
achutor).

e,eneralizing variables throuth an obiect system is one way to extend the scope of a replacement nrle
beyond its original use. C,oldman and Chamiak[1993] present an altemative approadr to generalizing vari-
ables through unification. In their model constnrction nrles, model variables are lists containing semantic
variables, for exarrple, (grass-wet ?date) . The semantic variables are set when the fragment is placed
inthemodel

42 Componentlibraries

Alrnon4 Bradstraw and Madigm t19941 propose putting the model fragments into libraries. There a.re two
general tlpes of replacementnrles, ure in whidr the RIIS is simply a valuation with the given type signature
(changing a nqr-terminal hyperedge to a terrrinal one) and ones in wtridt the RIIS is a graph fragment
(possibly containing more norrtenninal hypercdges). However, as all replaceurent rules wo,uld be stored
sortedby t)?e signaturc, ttre modellercanselect fleelyanongttre variouskinds of replacements.

The model corrponerrt library enables a kind of distribtrted of graphical betief networks
(Figur€ 5). For exauple, in building a reliability model, one engineer (a systems level reliability expert)
wouldbuildsurallmodelfragmentsdescribingtheinteractionarnongafewcmtponents. Anotherengineer
(a testing and pur&asing expert) would develop model for the various commonly trsed components from
theusualverrdors. Attrirdengineer(asysteurdesigner)wouldthenassesrblethemodelfromttrefragurerrts
created by the ottrer two engineers, drawing qt their expertise in the forrr of stored model fragments. The
t,?e signaturc s)rstem ensures that dl model components are used for their intended purpose. As Field
test databecoure available, testing and evaluation engineers update the models and model fragments in the
library.

4.3 Knowledge Based Model Constnrction

Many authors (e6., Breese, Goldrtan and WellmanlT99tl, Goldman and Breese[l92], Goldman and Char-
niak[193]) have suggested using a nrle base expert system to drive the model constnrction process. The
rules in ahlperedgerrepl,aceurerrtgrammarcoild form the core of zuch a qrstem-

In lrrowledge based model constnrction, the library of model courponents becomes a nrlebase. In other
words, attached to each replacrment rule, is a predicate telling when it is appropriate to the problem. The
rules world be predicated bottr on the current stnrcttue of the hlperyraph (ie., ttre t,?e signatues) and on
other aspects of the problectto be solved not represented in the graphicalmodel
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Figure 5. Enginers intaacting uzfh GRAptilcAL-BEI-rE libary

Obviously, a rrepliacementmtrst be applicable in the sense of the previous section before it can be used
for model corutnrction. The s)rstem would select from among applicable replaceurents on the basis of
production nrles wtrich world take the context of the particular query into accounl For o<aurple, it a
medical expert system would select between a detailed model of the cardiovascular systeur and a sketchy
model gving a general indication of cardiovascular fitness on the basis of production nrles describing
whether or not the detailed cardiovascrrlarmodel would benecessary for answering a partictrlar query.

5.0 Conclusioru

Hypergraph replaceurent nrles provide a straighfforuvard way of manipulating both the model graph and
the rurderlying probability distribution. Hyperedge replaceurent grammars offer a number of exciting
possibilities: linking ovenriews and detailed views of a graphical model (induding ways of doing the
computations separately), nepreserrtingmodeluncertainty<ne of the emergingfrontiersof belief network
research-and the ability to share lrrowledge, in the form of model fragments and valuations, both in
libraries of rules and as more forrral expert systems. This knowledge sharing wil be essential for large
proje6 within an organization as well as enabling researchers to better share their r€sults.

Goldman and Chamiak[l93] describe the FRAIIS system for hrowledge based model constnrction.
They note that each rule in their rule base is equivalent to adding a hlperedge to the graphicd modeL
thus their system is based on hlperedge addition rather ttran replacement. When two nrles bottr have
the same consequence variable, FRAII3 addsboth and combines theutwith a causalcombination firnction
(e.9., noisy-or). The hypetedge replacurent approadr would first select the meta-rule for combining the
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information souices (i.e., causal combination function), and then the applicable information nrles.

Inordertomakeareplaceurentnrlegenerallyapplicable,wemustbeabletogeneralizeiL Thevariable
objectsysteutdescriHinSectisr4isonewayofrepresentinggeneralizations. Themariageof thevariable
object systeur and knowledge based model constnrction forms obiut orientd mdcl constnrction with many
of theadvantagesof objectorientedprogramrninganddesigntechniques. ktpartiailar,wecanrecognized
fragments of models (trypereages) whidr can be used again and store these in libraries or nrle bases for
later re-use when appropriate. The t)"e signahues of the model fragments can be used as a sealch criteria
to find appropriate fragments.

Tossing nrles into a rule base elpert system with little thorght for ttreir inhaction often produces
mexpected behavior. The sasre is tnre for model fragment libraries or nrle bases. Eadt model fragment
carriesanimplicitindependenceassurpticr: thevariablesontheinteriorof thefragmentareindependent
from the variables not in the fragment given the variables on the borurdary (conditions and conseErences).
Unfortunately these asstrrtptions are difficult to verify within the context of building the library. Unless
these assurrptions ale approximatelycorrect, the resultingmodel willbeunredistic.
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